

(11) **EP 3 677 683 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 08.07.2020 Bulletin 2020/28

(21) Application number: 18850283.5

(22) Date of filing: 31.08.2018

(51) Int Cl.:

C12N 15/61 (2006.01) C12N 1/19 (2006.01) C12N 9/90 (2006.01) C12N 1/15 (2006.01) C12N 1/21 (2006.01) C12P 7/02 (2006.01)

(86) International application number:

PCT/JP2018/032418

(87) International publication number: WO 2019/045058 (07.03.2019 Gazette 2019/10)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

(30) Priority: 01.09.2017 JP 2017168128

(71) Applicants:

Niigata University
 Niigata-shi, Niigata 950-2181 (JP)

 Adeka Corporation Tokyo 116-8554 (JP) (72) Inventors:

 SATO Tsutomu Niigata-shi Niigata 950-2181 (JP)

 HOSHINO Tsutomu Niigata-shi Niigata 950-2181 (JP)

 TAKEHANA Toshihiko Tokyo 116-8554 (JP)

 KOIKE Seiji Tokyo 116-8554 (JP)

 SHIGENO Koichi Tokyo 116-8554 (JP)

(74) Representative: Gille Hrabal Brucknerstrasse 20 40593 Düsseldorf (DE)

(54) **EFFICIENT METHOD FOR PRODUCING AMBREIN**

(57) An object of the present invention is to provide a method for preparing ambrein, which can easily and efficiently obtain the ambrein.

The object can be solved by a mutated tetraprenyl- β -curcumene cyclase wherein (1) a 4th amino acid residue of a DXDD motif, aspartic acid, is substituted with

an amino acid other than aspartic acid, and (2) an amino acid adjacent to the N-terminus of a (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine, or a 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine.

Description

TECHNICAL FIELD

⁵ **[0001]** The present invention relates to a mutated tetraprenyl-β-curcumene cyclase, and a method for a method for preparing ambrein using the same. According to the present invention, ambrein can be efficiently synthesized by using squalene or 3-deoxyachilleol A as a substrate

BACKGROUND ART

10

15

20

30

45

50

[0002] Ambergris is a high grade perfume which has been used from around the seventh century, and has been also used as a Chinese medicinal drug. Ambergris is thought to be produced in sperm whales due to lithification of indigestation of foods (octopuses, squids, or the like) by gastrointestinal secretions and then excreted. The exact production mechanism, however, is unknown. The principal component of ambergris is ambrein, and it is considered that ambrein is subject to oxidative decomposition by sunlight and oxygen, while the ambergris floats on the ocean's surface, thereby producing compounds having a variety of fragrances.

[0003] Although ambrein, the principal component of ambergris, is used as perfume or in pharmaceuticals, it is impossible to obtain a large quantity of ambrein is naturally produced. A variety of organic synthesis methods have thus been proposed.

[0004] For example, as a method of producing (+)-ambrein easily, efficiently and inexpensively. Patent literature 1 discloses a method comprising a step of producing a new sulfonic acid derivative from ambrenolide and coupling with an optically active γ -cyclogeranyl halide.

[0005] Non-patent literature 1 discloses a method of obtaining ambrein by convergent synthesis using a Julia coupling reaction between 2-(1R,2R,4aS,8aS)-2-(methoxymethoxy)-2,5,5,8a-tetramethyl decahydronaphthalene-1-yl) acetaldehyde synthesized from (\pm)(5,5,8a-trimethyloctahydro-1H-spiro[naphthalene-2,2'-oxirane]-1-yl)methanol and 5-((4-((S)-2,2-dimethyl-6-methylenecyclohexyl)butane-2-yl)sulfonyl)-1-phenyl-1H-tetrazole synthesized from (\pm)methyl 6-hydroxy-2,2-dimethyl cyclohexanecarboxylate.

[0006] However, since conventional organic synthesis methods of ambrein involve many synthesis stages, the reaction systems are complex, and therefore commercialization thereof has been unsuccessful.

CITATION LIST

PATENT LITERATURE

35 [0007]

[Patent literature 1] Japanese Unexamined Patent Publication (Kokai) No 10-236996 [Patent literature 2] WO 2015/033746

40 NON-PATENT LITERATURE

[8000]

[Non-patent literature 1] Tetrahedron Asymmetry, (2006) Vol. 17, pp. 30373rd045 [Non-patent literature 2] Biosci. Biotechnol. Biochem., (1999) Vol. 63, pp. 2189-2198 [Non-patent literature 3] Biosci. Biotechnol. Biochem., (2001) Vol. 65, pp. 2233-2242 [Non-patent literature 4] Biosci. Biotechnol. Biochem., (2002) Vol. 66, pp. 1660-167th0 [Non-patent literature 5] J. Am. Chem. Soc., (2011) Vol. 133, pp. 17540-17543

[Non-patent literature 6] J. Am. Chem. Soc., (2013) Vol. 135, pp. 18335-18338

SUMMARY OF INVENTION

TECHNICAL PROBLEM

[0009] A method in which 3-deoxyachilleol A which is a monocyclic triterpene is obtained from squalene by using a mutated enzyme (D377C, D377N, Y420H, Y420W, or the like) of a squalene-hopene cyclase is also known (Non-patent literatures 2-4).

[0010] The present inventors found that ambrein can be produced by reacting a mutated squalene-hopene cyclase

capable of producing 3-deoxyachilleol A from squalene with squalene to obtain 3-deoxyachilleol A, and further reacting tetraprenyl-β-curcumene cyclase therewith to produce ambrein (Patent literature 2).

[0011] However, there are a problem that a by-product is formed in the 2nd step reaction, (i.e., the reaction converting 3-deoxyachilleol A to ambrein), and a problem of difficulty in scaling up.

Further, the method disclosed in Patent literature 2 is a multi-step reaction. Furthermore, there is also room for improvement in yield.

[0012] Accordingly, the object of the present invention is to provide an ambrein-preparation method capable of easily and efficiently obtaining ambrein.

SOLUTION TO PROBLEM

[0013] The present inventors conducted intensive studies into a method for easily preparing ambrein, and as a result, surprisingly found that a mutated tetraprenyl-β-curcumene cyclase having a few specific mutations has an activity to produce ambrein from squalene. In addition to the above mutations, the present inventors have found that a mutated tetraprenyl-β-curcumene cyclase having a further mutation has an activity of more efficiently producing ambrain from squalene. Further, the present inventors have found that a mutated tetraprenyl-β-curcumene cyclase with a specific mutation has the activity of efficiently producing ambrain from 3-deoxyachilleol A.

[0014] The present invention is based on the above findings.

[0015] Namely, the present invention relates to:

20

25

30

15

[1] a mutated tetraprenyl-β-curcumene cyclase wherein (1) a 4th amino acid residue of a DXDD motif, aspartic acid, is substituted with an amino acid other than aspartic acid, and (2) an amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine, or a 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine, (a) having a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, an (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues on the N-terminal side, a QXXXXGX(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXXGXW motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif, (b) having 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and (c) exhibiting ambrein production activity using squalene as a substrate, [2] the mutated tetraprenyl-β-curcumene cyclase of item [1], not having a QXXXGXW motif at a position separated

by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif,

35

40

45

50

[3] the mutated tetraprenyl-β-curcumene cyclase of item [1] or [2], wherein a polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase is (1) a polypeptide wherein aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, (2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which aspartic acid at position 373 from the Nterminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, (3) a polypeptide having 40% or more identity with the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, (4) a polypeptide comprising the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, (5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid

55

sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1

is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, or(6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acids sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate,

- [4] the mutated tetraprenyl- β -curcumene cyclase of any one of items [1] to [3], wherein the 4th amino acid residue of a DXDD motif is substituted with cysteine or glycine from aspartic acid, and the amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with alanine or glycine from tyrosine, or the 4th amino acid of the GXGX(G/A/P) motif is substituted with alanine or phenylalanine from leucine,
- [5] a mutated tetraprenyl-β-curcumene cyclase having DXDD motif wherein a 4th amino acid of the GXGX(G/A/P) motif is an amino acid other than leucine, glycine or proline, (a) having a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, a QXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif, (b) having 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and (c) exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,
 - [6] the mutated tetraprenyl- β -curcumene cyclase of item [5], not having a QXXXGXW motif at a position separated by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif,
 - [7] the mutated tetraprenyl-β-curcumene cyclase of item [5] or [6], wherein a polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase is (1) a polypeptide wherein leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, (2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate, (3) a polypeptide having 40% or more identity with the amino acid sequence in which leucine at position 596 from the Nterminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate, (4) a polypeptide comprising the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3deoxyachilleol A as a substrate, (5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate, or (6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,
 - [8] the mutated tetraprenyl- β -curcumene cyclase of any one of items [5] to [7], wherein the 4th amino acid of the GXGX(G/A/P) motif is alanine or phenylalanine,
 - [9] a polynucleotide encoding the mutated tetraprenyl-β-curcumene cyclase of any one of items [1] to [8],
 - [10] a microorganism having the polynucleotide of item [9],
 - [11] a vector comprising a DNA having the polynucleotide of item [9],
 - [12] a transformant having the vector of item [11],

5

10

15

20

25

30

35

40

45

50

- [13] a method for preparing ambrein characterized by bringing into contact the mutated tetraprenyl-β-curcumene cyclase of any one of items [1] to [4] with squalene, to obtain ambrein,
 - [14] a method for preparing ambrein characterized by bringing into contact the mutated tetraprenyl-β-curcumene cyclase of any one of items [5] to [8] with 3-deoxyachilleol A, to obtain ambrein, and
- [15] a method for preparing ambrein characterized by culturing the microorganism according claim 10, or the transformant of item [12].

ADVANTAGEOUS EFFECTS OF INVENTION

[0016] According to an embodiment of the mutated tetraprenyl- β -curcumene cyclase of the present invention, ambrein can be synthesized in one step using squalene as a substrate, without a concomitant use of a mutated squalene-hopene cyclase. Further, an ambrein can be efficiently prepared from a carbon source contained in a culture solution by microbial fermentation.

[0017] The mutated tetraprenyl- β -curcumene cyclase used in the present invention can produce 3-deoxyachilleol A from squalene. Further, the mutated tetraprenyl- β -curcumene cyclase used in the present invention can produce ambrein from the bicyclic triterpene (8 α -hydroxypolypoda-13,17,21-triene).

[0018] The mutated tetraprenyl- β -curcumene cyclase used in the present invention can exhibit the above-mentioned effect efficiently, when compared with a tetraprenyl- β -curcumene cyclase, wherein the 4th amino acid residue of the DXDD motif, aspartate, is only substituted with an amino acid other than aspartate.

[0019] According to another embodiment of the mutated tetraprenyl- β -curcumene cyclase of the present invention, ambrein can be efficiently produced from 3-deoxyachilleol A.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020]

Fig. 1 is a diagram showing a conventional ambrein synthesis pathway using squalene as a substrate, wherein the mutated squalene-hopene cyclase and tetraprenyl-β-curcumene cyclase (A), and a diagram showing an ambrein synthesis pathway using 3-deoxyachilleol A as a substrate, wherein the mutated tetraprenyl-β-curcumene cyclase of the present invention (A).

Fig. 2 is a diagram showing two pathways for preparing ambrein from squalene, using the mutated tetraprenyl-β-curcumene cyclase of the present invention.

Fig. 3 is a graph showing a production efficiency of ambrein using squalene as a substrate by using Y167A/D373C mutant (Example 1), D373C/L596A mutant (Example 2), D373C mutant (Comparative Example 1), Y167A mutant (Comparative Example 2), and L596A mutant (Comparative Example 3).

Fig. 4 is a graph showing the rate of ambrein and the other reaction products (by-products)

in the enzymatic reaction using squalene as a substrate by using Y167A/D373C mutant (Example 1), D373C/L596A mutant (Example 2), and D373C mutant (Comparative Example 1).

Fig. 5 is a graph showing the productivity of ambrein using squalene as a substrate by using Y167A/D373C mutant (Example 1), and changing the substrate concentration.

Fig. 6 is a graph showing a production efficiency using 3-deoxyachilleol A as a substrate by using L596A mutant (Example 5), L596F mutant (Example 6), wild type (Comparative Example 5), L596V mutant (Example 7), L596P mutant (Comparative Example 6).

Fig. 7 is a graph showing the rate of ambrein and the other reaction products (by-products)

in the enzymatic reaction using 3-deoxyachilleol A as a substrate by using wild type (Comparative Example 5), L596A mutant (Example 5).

Fig. 8 is a chart showing the amino acid sequences of the wild type tetraprenyl-β-curcumene cyclase, the mutated tetraprenyl-β-curcumene cyclase wherein aspartic acid at position 373 is substituted with cysteine, and tyrosine at position 167 is substituted with alanine, and the mutated tetraprenyl-β-curcumene cyclase wherein aspartic acid at position 373 is substituted with cysteine, and leucine at position 596 is substituted with alanine.

Fig. 9 is a chart showing the amino acid sequences of the wild type tetraprenyl- β -curcumene cyclase, the mutated tetraprenyl- β -curcumene cyclase wherein leucine at position 596 is substituted with alanine, the mutated tetraprenyl- β -curcumene cyclase wherein leucine at position 596 is substituted with phenylalanine, and the mutated tetraprenyl- β -curcumene cyclase wherein leucine at position 596 is substituted with valine.

Fig. 10 is a chart showing an alignment of amino acid sequences of the tetraprenyl- β -curcumene cyclase of Bacillus megaterium, Bacillus subtilis, and Bacillus licheniformis, and amino acid sequence of the squalene-hopene cyclase of Alicyclobacillus acidocaldarius.

DESCRIPTION OF EMBODIMENTS

(Tetraprenyl-β-curcumene cyclase)

[0021] The wild type tetraprenyl- β -curcumene cyclase (hereinafter sometimes referred to as a TC) can produce ambrein by using 3-deoxyachilleol A, which comprises a monocycle at one end, as a substrate. That is, when 3-deoxyachilleol A is utilized as a substrate, the tetraprenyl- β -curcumene cyclase selectively forms a ring on the end of the 3-deoxyachilleol

5

15

20

25

5

10

35

30

40

45

50

55

A on which a ring has not formed to produce a compound which is cyclized at both ends.

[0022] Further, the tetraprenyl- β -curcumene cyclase can produce bicyclic 8α -hydroxypolypoda-13, 17, 21-triene using squalene as a substrate (Non-patent literature 5). Furthermore, the tetraprenyl- β -curcumene cyclase selectively forms a ring on the end of the bicyclic 8α -hydroxypolypoda-13, 17, 21-triene on which a ring has not been formed to produce a onoceranoxide and 14β -hydroxyonocera-8(26)-en which are cyclized at both ends (Non-patent literature 6).

[0023] That is to say, tetraprenyl- β -curcumene cyclase, which is classified as belonging to EC 4.2.1.129, is an enzyme capable of catalyzing a reaction which produces baciterpenol A from water and tetraprenyl- β -curcumene or a reaction which produces 8α-hydroxypolypoda-13,17, 21-triene from squalene.

[0024] For example, bacteria such as Bacillus, Brevibacillus, Paenibacilus, or Geobacillus has the tetraprenyl-β-curcumene cyclase. As the Bacillus bacterium, there may be mentioned Bacillus subtilis, Bacillus megaterium, or Bacillus licheniformis. The tetraprenyl-β-curcumene cyclase has a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, a QXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acid residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, and a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, with respect to the DXDD motif. The squalene-hopene cyclase also has the above motifs, and further has a QXXXGXW motif at a position separated by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif. On the other hand, the tetraprenyl-β-curcumene cyclase does not have the QXXXGXW motif. Furthermore, the tetraprenylβ-curcumene cyclase preferably has a (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues on the N-terminal side, with respect to the DXDD motif, but the squalene-hopene cyclase does not have the (A/S/G)RX(H/N)XXP motif. Further, squalene-hopene cyclase has a GXGFP motif on the C-terminal side of the QXXXGXW motif, and is characterized in that the 4th amino acid of the DXDD motif is phenylalanine (F). The tetraprenylβ-curcumene cyclase also has a GXGX(G/A/P) motif similar to the GXGFP motif. However, the 4th amino acid is not phenylalanine, but is basically leucine (L).

[1] Mutated tetraprenyl-β-curcumene cyclase

(First embodiment)

10

25

50

30 [0025] In the first embodiment of the mutated tetraprenyl-β-curcumene cyclase of the present invention, (1) a 4th amino acid residue of a DXDD motif, aspartic acid, is substituted with an amino acid other than aspartic acid, and (2) an amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine, or a 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine, and the mutated tetraprenyl-β-curcumene cyclase has (a) a QXXXGX(W/F) motif at a position separated by 100 amino acid 35 residues or more on the N-terminal side, an (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues on the N-terminal side, a QXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the Cterminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a 40 GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif, and has (b) 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and exhibits (c) ambrein production activity using squalene as a substrate.

[0026] Alphabets defining each motif or sequence mean one letter amino acid codes, and the character "X" means an arbitrary amino acid. That is to say, in the case of the QXXXGX (W / F) motif, glutamine (Q), any three amino acids (X), glycine (G), any amino acid (X), any one of tryptophan (W) or phenylalanine (F) are arranged from the N terminus to the C terminus. In addition, the wording "having QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side with respect to the DXDD motif means that there are 100 amino acid residues or more between the DXDD motif and the QXXXGX (W/F) motif. Identification of other motifs is similar. Hereinafter, the same applies unless otherwise noted.

[0027] Further, the 4th amino acid residue of a GXGX(G/A/P) motif means the 4th amino acid counted from the N-terminal side, and the same applies to other sequences. Hereinafter, the same applies unless otherwise noted.

[0028] Amino acid sequence identity is expressed as a percentage by aligning with appropriate gaps so that the amino acid residues of the sequences being compared match, and by dividing the number of matched amino acid residues by the total number of amino acid residues.

⁵⁵ [0029] Identity can be calculated using well-known programs (e.g. BLAST, FASTA, CLUSTAL W, etc.).

[0030] As the preferable embodiment of the first embodiment of the mutated tetraprenyl- β -curcumene cyclase of the present invention, a polypeptide constituting the mutated tetraprenyl- β -curcumene cyclase is

- (1) a polypeptide wherein aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine.
- (2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate,
- (3) a polypeptide having 40% or more identity with the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate,
- (4) a polypeptide comprising the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate
- (5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, or
- (6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acids sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate.
- **[0031]** Further, according to a most preferable embodiment of the mutated tetraprenyl-β-curcumene cyclase of the present invention, the polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase includes a polypeptide consisting of the amino acid sequence of SEQ ID NO: 5 or 6 which is derived from Bacillus megaterium. In this mutated tetraprenyl-β-curcumene cyclase, a 4th amino acid residue of a DXDD motif, aspartic acid, is substituted with cysteine, and an amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with alanine, or a 4th amino acid of the GXGX(G/A/P) motif is substituted with alanine.
- 45 (Substitution of 4th amino acid residue of DXDD motif)

5

10

15

20

25

30

35

40

50

- **[0032]** In the mutated tetraprenyl-β-curcumene cyclase (hereinafter sometimes referred to as a mutated TC) of the present invention, the 4th amino acid residue of the DXDD motif is substituted with an amino acid other than aspartic acid. The amino acid other than aspartic acid is not limited, as long as the effect of the present invention can be achieved, but includes alanine, cysteine, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine. However, it is preferably cysteine or glycine, more preferably cysteine.
- [0033] By substituting the 4th amino acid residue of the DXDD motif with the amino acid other than aspartic acid (particularly cysteine or glycine), the mutated tetraprenyl- β -curcumene cyclase of the present invention can produce 3-deoxyachilleol A from squalene, and can produce ambrein from 8 α -hydroxypolypoda-13,17,21-triene.
- [0034] For example, the DXDD motif is located at positions 370th to 373 from the N-terminal side of the amino acid sequence of SEQ ID NO:1 of the tetraprenyl- β -curcumene cyclase of Bacillus megaterium. Further, it is located at positions 375th to 378th from the N-terminal side of the amino acid sequence of SEQ ID NO:2 of the tetraprenyl- β -

curcumene cyclase of Bacillus subtilis. The above aspartic acid of the DXDD motif is extremely highly conserved, and generally, the 4th amino acid residue from the N-terminal side thereof is aspartic acid (Figure 10).

(Substitution of amino acid residue adjacent to N-terminus of (A/S/G)RX(H/N)XXP motif)

[0035] In the mutated TC of the present invention, the amino acid residue adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine. The amino acid other than tyrosine is not limited, as long as the effect of the present invention can be achieved, but includes alanine, cysteine, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or aspartic acid. However, it is preferably hydrophobic amino acids (glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, and tryptophan). In particular, it is preferably alanine or glycine, more prefearably alanine.

[0036] By substituting the amino acid residue adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif with the amino acid other than tyrosine (particularly alanine or glycine), the mutated tetraprenyl- β -curcumene cyclase of the present invention has improved functions of producing 3-deoxyachilleol A from squalene and producing ambrein from 8α -hydroxypolypoda-13,17,21-triene.

[0037] For example, the (A/S/G)RX(H/N)XXP motif is located at positions 168 to 174 from the N-terminal side of the amino acid sequence of SEQ ID NO:1 of the tetraprenyl- β -curcumene cyclase of Bacillus megaterium. Further, it is located at positions 170 to 176 from the N-terminal side of the amino acid sequence of SEQ ID NO:2 of the tetraprenyl- β -curcumene cyclase of Bacillus subtilis. The above amino acid residue adjacent to the N-terminus of the (A/S/G)RX(H/N)XXP motif is extremely highly conserved, and it is basically tyrosine (Figure 10) in the wild type. In the present invention, it has been found that, the tetraprenyl- β -curcumene cyclase has improved the ambrein production activity using squalene as a substrate, by mutating this specific amino acid with high conservation.

(Substitution of 4th amino acid residue of GXGX(G/A/P) motif)

5

10

30

35

50

55

[0038] In the mutated TC of the present invention, the 4th amino acid residue of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine. The amino acid other than leucine is not limited, as long as the effect of the present invention can be achieved, but includes alanine, cysteine, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, tyrosine or aspartic acid. However, it is preferably alanine, phenylalanine, valine, methionine, isoleucine, or tryptophan. In particular, it is preferably alanine or phenylalanine, more preferably alanine.

[0039] By substituting the amino acid residue of the 4th amino acid residue of the GXGX(G/A/P) motif with the amino acid other than leucine (particularly alanine or phenylalanine), the mutated tetraprenyl- β -curcumene cyclase of the present invention has improved functions of producing 3-deoxyachilleol A from squalene and producing ambrein from 8α -hydroxypolypoda-13,17,21-triene.

[0040] For example, the GXGX(G/A/P) motif is located at positions 593 to 597 from the N-tenninal side of the amino acid sequence of SEQ ID NO:1 of the tetraprenyl-β-curcumene cyclase of Bacillus megaterium. Further, it is located at positions 594 to 598 from the N-terminal side of the amino acid sequence of SEQ ID NO:2 of the tetraprenyl-β-curcumene cyclase of Bacillus subtilis. The 4th amino acid residue of the motif is leucine as far as the inventors know, in the wild type whose function is confirmed (Figure 10). In the present invention, it has been found that, the tetraprenyl-β-curcumene cyclase has improved the ambrein production activity using squalene as a substrate, by mutating this leucin.

[0041] Figure 8 shows amino acid sequences of wild type tetraprenyl- β -curcumene cyclase of Bacillus megaterium, the mutated tetraprenyl- β -curcumene cyclase in which aspartic acid at position 373 is substituted with cysteine, and tyrosine at position 167 is substituted with alanine, and the mutated tetraprenyl- β -curcumene cyclase in which aspartic acid at position 373 is substituted with cysteine, and leucine at position 596 is substituted with alanine.

[0042] Origin of the mutated tetraprenyl-β-curcumene cyclase of the present invention is not particularly limited, and all tetraprenyl-β-curcumene cyclases can be used. That is, the mutated tetraprenyl-β-curcumene cyclase wherein the 4th amino acid of the DXDD motif, aspartic acid, is substituted with an amino acid other than aspartic acid (preferably cysteine or glycine), and the 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine (preferably alanine or phenylalanine) or the amino acid adjacent to the N-terminus of a (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine (preferably alanine or glycine), can exhibit the effect of the present invention. More specifically, the mutated tetraprenyl-β-curcumene cyclase wherein it has a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, an (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues or more on the N-terminal side, a QXXXXGX(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXXGXW motif at a position separated by 120 to 170 amino

acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif; and the 4th amino acid of the DXDD motif, aspartic acid, is substituted with an amino acid other than aspartic acid (preferably cysteine or glycine), and the 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine (preferably alanine or phenylalanine) or the amino acid adjacent to the N-terminus of a (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine (preferably alanine or glycine), can exhibit the effect of the present invention. Preferably, the mutated tetraprenyl- β -curcumene cyclase of the present invention does not have the QXXXGXW motif at a position separated by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif. For example, the amino acid sequence identity of the polypeptides between Bacillus subtilis and Bacillus megaterium is about 50%. However, both enzymes have the feature of the present invention, and thus can produce 3-deoxyachilleol A from squalene and produce ambrein from 8 α -hydroxypolypoda-13, 17, 21-triene. In connection to this, the amino acid sequence of tetraprenyl- β -curcumene cyclase of Bacillus megaterium is shown in SEQ ID NO:1, and the amino acid sequence of tetraprenyl- β -curcumene cyclase of Bacillus subtilis shown in SEQ ID NO:2.

15 (Second embodiment)

[0043] The mutated tetraprenyl-β-curcumene cyclase of a second embodiment of the present invention has the DXDD motif, and a 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than n leucine. Further, the mutated tetraprenyl-β-curcumene cyclase has (a) a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, a QXXXXGX(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif, and has (b) 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and exhibits (c) ambrein production activity using 3-deoxyachilleol A as a substrate

[0044] The definition of alphabetsof each motif or sequence is the same as in the first embodiment

[0045] As the preferable embodiment of the second embodiment of the mutated tetraprenyl-β-curcumene cyclase of the present invention, a polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase is

(1) a polypeptide wherein leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine,

(2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,

(3) a polypeptide having 40% or more identity with the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,

(4) a polypeptide comprising the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,

(5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate, or

(6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate.

[0046] Further, according to a most preferable second embodiment of the mutated tetraprenyl- β -curcumene cyclase of the present invention, the polypeptide constituting the mutated tetraprenyl- β -curcumene cyclase includes a polypeptide consisting of the amino acid sequence of SEQ ID NO: 9, 10 or 13, which is derived from Bacillus megaterium. In this mutated tetraprenyl- β -curcumene cyclase, a 4th amino acid of a GXGX(G/A/P) motif is substituted with alanine, phenylalanine, or valine.

9

30

10

20

35

45

40

50

55

(Substitution of 4th amino acid residue of GXGX(G/A/P) motif)

10

15

20

30

35

40

45

50

55

[0047] In the mutated TC of the present invention, the 4th amino acid residue of the GXGX(G/A/P) motif is an amino acid other than leucine, glycine, and proline. The 4th amino acid is not limited, as long as the effect of the present invention can be achieved, but includes alanine, cysteine, glutamic acid, phenylalanine, histidine, isoleucine, lysine, methionine, asparagine, glutamine, arginine, serine, threonine, tryptophan, tyrosine or aspartic acid. However, it preferably includes alanine, phenylalanine, methionine, isoleucine, or tryptophan. In particular, it is preferably alanine or phenylalanine, more preferably alanine.

[0048] By substituting the amino acid residue of the 4th amino acid residue of the GXGX(G/A/P) motif with the amino acid other than leucine (particularly alanine or phenylalanine), the mutated tetraprenyl- β -curcumene cyclase of the present invention has improved function of producing ambrein from 3-deoxyachilleol A.

[0049] For example, the GXGX(G/A/P) motif is located at positions 593rd to 597th from the N-terminal side of the amino acid sequence of SEQ ID NO:1 of the tetraprenyl- β -curcumene cyclase of Bacillus megaterium. Further, it is located at positions 594th to 598th from the N-terminal side of the amino acid sequence of SEQ ID NO:2 of the tetraprenyl- β -curcumene cyclase of Bacillus subtilis. The 4th amino acid residue of the motif is leucine as far as the inventors know, in the wild type whose function is confirmed. In the present invention, it has been found that, the tetraprenyl- β -curcumene cyclase can efficiently produce ambrein from 3-deoxyachilleol A, by mutating the leucine to an amino acid other than leucine, glycine, and proline.

[0050] Figure 7 shows amino acid sequences of wild type tetraprenyl-β-curcumene cyclase of Bacillus megaterium, and the mutated tetraprenyl-β-curcumene cyclase in which leucine at position 596 is substituted with alanine or phenylalanine.

[0051] Origin of the mutated tetraprenyl-β-curcumene cyclase of the present invention is not particularly limited, and all tetraprenyl-β-curcumene cyclases can be used. That is, the mutated tetraprenyl-β-curcumene cyclase wherein the 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than tyrosine (preferably alanine or phenylalanine), can exhibit the effect of the present invention. More specifically, the mutated tetraprenyl- β -curcumene cyclase wherein it has a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the Nterminal side, a QXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif; and the 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than tyrosine (preferably alanine or phenylalanine), can exhibit the effect of the present invention. Preferably, the mutated tetraprenyl-β-curcumene cyclase of the present invention does not have the QXXXGXW motif at a position separated by 170 amino acid residues or more on the Cterminal side, with respect to the DXDD motif. For example, the amino acid sequence identity of the polypeptides between Bacillus subtilis and Bacillus megaterium is about 50%. However, both enzymes have the feature of the present invention, and thus can improve the production efficiency of ambrein from 3-deoxyachilleol A. In connection to this, the amino acid sequence of tetraprenyl-β-curcumene cyclase of Bacillus megaterium is shown in SEQ ID NO:1, and the amino acid sequence of tetraprenyl-β-curcumene cyclase of Bacillus subtilis shown in SEQ ID NO:2. Futhrmore, the mutated tetraprenyl-β-curcumene cyclase of a second embodiment of the present invention preferably has a (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues on the N-terminal side, with respect to the DXDD motif, [0052] Figure 10 shows an alignment of amino acid sequences of the tetraprenyl-β-curcumene cyclase of Bacillus megaterium (SEQ ID NO: 1), Bacillus subtilis (SEQ ID NO: 2), and Bacillus licheniformis (SEQ ID NO: 3), and amino acid sequence of the squalene-hopene cyclase of Alicyclobacillus acidocaldarius (SEQ ID NO: 4). The first and second embodiments of the mutated tetraprenyl-β-curcumene cyclase of the present invention has a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, with respect to the DXDD motif, preferably has two motif A at a position separated by 100 amino acid residues or more on the N-terminal side, with respect to the DXDD motif.

[0053] As shown in Figure 1, when producing ambrein from squalene, conventionally, squalene is converted to 3-deoxyachilleol A by a mutated squalene-hopene cyclase (hereinafter sometimes referred to as mutated SHC), and then 3-deoxyachilleol A is converted to ambrein by wild type tetraprenyl-β-curcumene cyclase, to produce ambrein (Patent literature 2). As shown in Figure 1(B), the efficiency of converting 3-deoxyachilleol A to ambrain was significantly improved by using the mutated tetraprenyl-β-curcumene cyclase of the second embodiment of the present invention.

[0054] When ambrein is produced from squalene by using the mutated tetraprenyl- β -curcumene cyclase of the second embodiment of the present invention, it is produced through a pathway with monocyclic 3-deoxyachilleol A as an intermediate (hereinafter sometimes referred to as a monocyclic pathway) and a pathway with 8 α -hydroxypolypoda-13, 17, 21-triene as an intermediate (hereinafter referred to as a bicyclic pathway), as shown in Figure 2.

(Monocyclic pathway)

[0055] In the monocyclic pathway, the monocyclic 3-deoxyachilleol A is produced from squalene by the mutated TC, and then ambrein is produced from 3-deoxyachilleol A by the mutated TC. The conventional wild type TC can convert 3-deoxyachilleol A to ambrein, but cannot convert squalene to monocyclic 3-deoxyachilleol A. The mutated TC of the present invention can convert squalene to monocyclic 3-deoxyachilleol A. Therefore, as shown in Figgure 2, two reactions, i.e. a conversion of squalene to 3-deoxyachilleol A (reaction (a) in Figure 2), and a conversion of 3-deoxyachilleol A to ambrein (reaction (b) in Figure 2) can be efficiently carried out by one enzyme.

(Bicyclic pathway)

35

40

45

50

55

[0056] In the bicyclic pathway, 8α -hydroxypolypoda-13, 17, 21-triene is produced from squalene by the mutated TC, and then ambrein is produced from 8α -hydroxypolypoda-13, 17, 21-triene by the mutated TC. The conventional wild type TC can convert squalene to 8α -hydroxypolypoda-13, 17, 21-triene, but cannot convert 8α -hydroxypolypoda-13, 17, 21-triene to ambrein. The mutated TC of the present invention can convert 8α -hydroxypolypoda-13, 17, 21-triene to ambrein. Therefore, as shown in Figure 2, two reactions, i.e. a conversion of squalene to 8α -hydroxypolypoda-13, 17, 21-triene (reaction (c) in Figure 2), and a conversion of 8α -hydroxypolypoda-13, 17, 21-triene to ambrein (reaction (d) in Figure 2) can be efficiently carried out by one enzyme.

[0057] According to the mutated TC of the present invention, in the process of producing ambrein from squalene, four reactions, i.e. a conversion of squalene to 3-deoxyachilleol A (reaction (a)), a conversion of 3-deoxyachilleol A to ambrein (reaction (b)), a conversion of squalene to 8α -hydroxypolypoda-13, 17, 21-triene (reaction (c)), and a conversion of 8α -hydroxypolypoda-13, 17, 21-triene to ambrein (reaction (d)), can be carried out by one enzyme. The important mutation capable of performing the above four reactions is a mutation in which the 4th aspartic acid of the DXDD motif is substitutesed with an amino acid other than aspartic acid (for example, D373C). The mutated TC of the first embodiment of the present invention has the substitution of the amino acid adjacent to the N-terminus of a (A/S/G)RX(H/N)XXP motif with the amino acid other than tyrosine (for example, Y167A), or the substitution of the 4th amino acid of the GXGX(G/A/P) motif with the amino acid other than leucine (for example, L596A), in addition to the above substitution, and thus can carry out the reactions of monocyclicpathway and bicyclic pathway by one enzyme.

30 (Amino acid sequence in which one or plural amino acids are deleted, substituted, inserted and/or added)

[0058] A polypeptide of the mutated tetraprenyl-β-curcumene cyclase of the present invention, may be a polypeptide consisting of an amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO:1. The polypeptide of mutated tetraprenyl-β-curcumene cyclase of the first embodiment exhibits an ambrein production activity using squalene as a substrate, and the polypeptide of mutated tetraprenyl-β-curcumene cyclase of the second embodiment exhibits an ambrein production activity using 3-deoxyachilleol A as a substrate. That is, a polypeptide which does not exhibit an ambrein production activity using squalene as a substrate or 3-deoxyachilleol A respectively, is not comprised in the polypeptide of the mutated tetraprenyl-β-curcumene cyclase of the present invention. The term "amino acid sequence in which one or plural amino acids are deleted, substituted, inserted and/or added" as used herein means an amino acid sequence modified by amino acid substitution or the like. The number of amino acid modifications can be, for example, 1 to 330, 1 to 300, 1 to 250, 1 to 200, 1 to 150, 1 to 100, or 1 to 50, preferably is 1 to 30, more preferably 1 to 10, still more preferably 1 to 5, most preferably 1 to 2. An example of the modified amino acid sequence of the mutated peptide which can be used in the present invention is preferably an amino acid sequence in which the amino acid has one or plural (preferably 1, 2, 3 or 4) conservative substitutions.

(Amino acid sequence having 40% or more identity with the amino acid sequence)

[0059] A polypeptide of the mutated tetraprenyl-β-curcumene cyclase of the present invention, may be a polypeptide consisting of an amino acid sequence having 40% or more identity with the amino acid sequence of SEQ ID NO:1. The polypeptide of mutated tetraprenyl-β-curcumene cyclase of the first embodiment exhibits an ambrein production activity using squalene as a substrate, and the polypeptide of mutated tetraprenyl-β-curcumene cyclase of the second embodiment exhibits an ambrein production activity using 3-deoxyachilleol A as a substrate. That is, a polypeptide which does not exhibit an ambrein production activity using squalene as a substrate or 3-deoxyachilleol A respectively, is not comprised in the polypeptide of the mutated tetraprenyl-β-curcumene cyclase of the present invention. The mutated tetraprenyl-β-curcumene cyclase is a polypeptide consisting of an amino acid sequence preferably having an identity of 45% or more, an amino acid sequence more preferably having an identity of 50% or more, an amino acid sequence more preferably having an identity of 70% or more, an amino acid sequence more preferably having an identity of 70% or

more, an amino acid sequence more preferably having an identity of 80% or more, an amino acid sequence more preferably having an identity of 90% or more, an amino acid sequence most preferably having an identity of 95% or more, and having an ambrein production activity from squalene or 3-deoxyachilleol A.

[0060] The "amino acid sequence in which one or plural amino acids are deleted, substituted, inserted and/or added" in the amino acid sequence of SEQ ID NO:1 or "amino acid sequence having 40% or more identity with the amino acid sequence" of SEQ ID NO:1 means that the amino acid sequence of SEQ ID NO:1 or 13 is substituted. This substitution in the amino acid sequence is a conservative substitution that maintains the function of the mutated tetraprenyl-βcurcumene cyclase of the present invention. In other words, the term "conservative substitution" means a substitution that does not lose the excellent effects of the mutated tetraprenyl-β-curcumene cyclase of the present invention. That is, even when the insertion, substitution, deletion, or addition is carried out, the ambrein production activity can be improved using squalene or 3-deoxyachilleol A as a substrate. Specifically, the term "conservative substitutions" used herein means that amino acid residue(s) are replaced with different amino acid(s) having similar chemical properties. As for the conservative substitution, there may be mentioned, for example, a substitution of a hydrophobic residue for another hydrophobic residue, or a substitution of a polar residue for another polar residue having the same charge. Functionally similar amino acids that can be used for such substitutions are known in the art for each amino acid. As for nonpolar (hydrophobic) amino acids, there may be mentioned, for example, alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, methionine, or the like. As for polar (neutral) amino acids, there may be mentioned, for example, glycine, serine, threonine, tyrosine, glutamine, asparagine, cysteine, or the like. As for basic amino acids having a positive charge, there may be mentioned, for example, arginine, histidine, lysine, or the like. As for acidic amino acids having a negative charge, there may be mentioned, for example, aspartic acid, glutamic acid, or the like.

[0061] In the mutated tetraprenyl-β-curcumene cyclase of the present invention, the mutation (substitution) of the 4th amino acid residue of the DXDD motif, aspartic acid, into the amino acid other than aspartic acid, the mutation (substitution) of the amino acid adjacent to the N-terminus of the (A/S/G)RX(H/N)XXP motif, into the amino acid other than tyrosine, or the mutation (substitution) of the 4th amino acid residue of the GXGX(G/A/P) motif, into the amino acid other than leucine, is an active substitution (mutation) for imparting an activity to produce ambrein using squalene or 3-deoxyachilleol A as a substrate. However, the above conservative substitution is for maintaining the activity to produce ambrein using squalene or 3-deoxyachilleol A as a substrate and can be easily carried out by those skilled in the art.

[0062] The mutated tetraprenyl- β -curcumene cyclase of the present invention can be obtained using known genetic recombination techniques and the like. For example, a chromosomal DNA of Bacillus megaterium is obtained and tetraprenyl- β -curcumene cyclase is amplified by, for example, PCR using appropriate primers. The obtained gene is inserted into an appropriate vector, and the gene sequence is determined. A gene encoding the mutated tetraprenyl- β -curcumene cyclase of the present invention can be obtained by introducing the above mutation(s). The mutated tetraprenyl- β -curcumene cyclase of the present invention can be obtained by incorporating the resulting gene into a host such as yeast and expressing the same.

[0063] Further, the tetraprenyl-β-curcumene cyclase is known to exist in bacteria such as Bacillus in addition to Bacillus megaterium, and thus it is possible to obtain an enzyme derived from Bacillus subtilis (accession number: AB 618206), and an enzyme derived from Bacillus licheniformis (accession number: AAU 41134), and the like.

[0064] Further, the gene encoding the mutated tetraprenyl- β -curcumene cyclase of the present invention can be synthesized by a known gene synthesis method such as the method of Khorana et al. (Gupta et al., 1968), the method of Narang et al. (Scarpulla et al., 1982) or the method of Rossi et al. (Rossi et al., 1982). Then, the mutated tetraprenyl- β -curcumene cyclase can be obtained by expressing the resulting synthetic gene.

[2] Polynucleotide

10

20

30

35

40

55

[0065] The polynucleotide of the present invention is not particularly limited as long as it is a polynucleotide encoding the tetraprenyl-eotide of t cyclase of the present invention. For example, there may be mentioned a polynucleotide (SEQ ID NO:7) encoding the polypeptide of SEQ ID NO:5, a polynucleotide (SEQ ID NO:8) encoding the polypeptide of SEQ ID NO:11) encoding the polypeptide of SEQ ID NO:9, a polynucleotide (SEQ ID NO:12) encoding the polypeptide of SEQ ID NO:10, a polynucleotide (SEQ ID NO:14) encoding the polypeptide of SEQ ID NO:13,
Further, there may be mentioned a polynucleotide hybridizing under stringent conditions to the polynucleotide

[0066] Further, there may be mentioned a polynucleotide hybridizing under stringent conditions to the polynucleotide consisting of base sequence of SEQ ID NO:7, 8, 11, 12, or 14 and having an ambrein production activity using squalene. In connection to this, the term "polynucleotide" as used herein includes both DNA and RNA.

[0067] Further, the polynucleotide of the present invention is preferably changed to base sequence of the optimal codon according to the microorganism or the host cell into which the polynucleotide is introduced.

[3] Microorganism

[0068] The microorganism of the present invention has the polynucleotide of the present invention. That is, the micro-

organism is not particularly limited so long as it includes the polynucleotides of the present invention within cell thereof, and there may be mentioned Escherichia coli, Bacillus subtilis, Brevibacillus, Actinomycete, Baker's yeast, Aspergillus oryzae, or Neurospora crassa.

⁵ [4] Vector

10

30

35

40

55

[0069] The vector of the present invention comprises the DNA having polynucleotide encoding the mutated tetraprenyl- β -curcumene cyclase. That is, the vector of the present invention is not particularly limited, so long as it comprises the polynucleotide of the present invention. As the vector, there may be mentioned, for example, a vector obtained by introducing the polynucleotide of the present invention into a known expression vector appropriately selected in accordance with a host cell to be used.

[0070] Preferably, the expression vector is autonomously replicable in the host such as E. coli, or baker's yeast, or can be incorporated into the chromosome, and has a high expression efficiency of the foreign protein. The expression vector for expressing the polynucleotide is autonomously replicable in the microorganism, and is preferably a recombinant vector composed of a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence. Further, it may contain a gene controlling the promoter.

[0071] More particularly, as an expression vector, for example, pBTrp2, pBTacl, pBTac2 (three vectors are commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-8 (QIAGEN), pQE-30 (QIAGEN), pKYP10 (Japanese Unexamined Patent Publication (Kokai) No.58-1 10600), pKYP200 [Agricultural Biological Chemistry, 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescriptII SK+, pBluescriptII SK (-)(Stratagene), pTrS30 (FERMBP-5407), pTrS32 (FERM BP-5408), pGEX (Pharmacia), pET-3 (Novagen), pTerm2 (US4686191, US4939094, US5160735), pSupex, pUB110, pTP5, pC194, pUC18 [gene, 33, 103 (1985)], pUC19 [Gene, 33, 103 (1985)], pSTV28 (TAKARA), pSTV29 (TAKARA), pUC118 (TAKARA), pPA1 (Japanese Unexamined Patent Publication (Kokai) No.63-233798), pEG400 [J. Bacteriol., 172, 2392 (1990)], pColdI, pColdII, pColdII, pColdIV, pNIDNA, pNI-HisDNA (TAKARA BIO) and the like can be exemplified.

[0072] As the promoter, any one can be used as long as it can be expressed in host cells such as Escherichia coli, baker's yeast and the like. For example, there may be mentioned a promoter derived from Escherichia coli, phage, or the like, (such as a trp promoter (Ptrp), lac promoter (Plac), PL promoter, PR promoter, or PSE promoter), SPO1 promoter, SPO2 promoter, penP promoter or the like. Further, a promoter designed and modified artificially, such as a promoter (Ptrpx 2) in which two Ptrp are connected in series, tac promoter, let I promoter, or lacT 7 promoter, can also be used. In order to prepare an enzyme for production by an enzymatic method (biosynthesis by in vitro enzymatic reaction using squalene as a substrate), a promoter which functions as a strong promoter and is capable of mass production of a target protein is preferable. In addition, an inducible promoter is more preferable. As the inducible promoter, for example, there may be mentioned a promoter of the cold shock gene cspA which is induced at low temperature, T7 promoter induced by the addition of inducer IPTG, or the like. Further, in a fermentative production (biosynthesis in vivo by a host using a carbon source such as glucose), among the above promoters, a promoter capable of constantly expressing a target gene regardless of tissue, i.e., constitutive promoter is more preferable. As the constitutive promoter, there may mentioned a promoter of an alcohol dehydrogenase 1 gene (ADH1), a translation elongation factor TF-1 α gene (TEF1), a phosphoglycerate kinase gene (PGK1), a triose phosphate isomerase gene (TPI1), a triose phosphate dehydrogenase gene (TDH3), or a pyruvate kinase gene (PYK1).

[5] Transformant

[0073] The transformant of the present invention is not particularly limited, so long as it comprises the polynucleotide of the present invention. The transformant of the present invention may be, for example, a cell in which the polynucleotide is integrated into a chromosome of a host cell, or a transformant containing the polynucleotide as a vector comprising polynucleotide. Further, the transformant of the present invention may be a transformant expressing the polypeptide of the present invention, or a transformant not expressing the polypeptide of the present invention. The transformant of the present invention may be obtained by, for example, transfecting a desired host cell with the vector of the present invention or the polynucleotide of the present invention per se.

[0074] The host cell is not particular limited. A strain which is easy to handle, such as Escherichia coli, Bacillus subtilis, Brevibacillus, actinomycete, yeast, Aspergillus oryzae, or Neurospora crassais is preferable, but insect cells, plant cells, animal cells or the like can be used. However, in order to prepare an enzyme used for production by an enzymatic method (biosynthesis by in vitro enzymatic reaction using squalene as a substrate), Escherichia coli, Bacillus subtilis, Brevibacillus, and Aspergillus oryzae are preferable, and Escherichia coli is most preferable. Further, in a fermentative production (biosynthesis in vivo by a host using a carbon source such as glucose), yeast is most preferable. As the most preferable yeast strain, there may be mentioned sake yeast. The sake yeast Kyokai 7, or Kyokai 701 is more preferable.

The strain Kyokai K701 is a non-foaming mutant strain bred from wild-type strain Kyokai K7. However, the strain Kyokai K701's characters other than the above characters are the same as Kyokai K7.

[6] Method for preparing ambrein

5

10

20

30

35

50

[0075] The first embodiment of the method for preparing ambrein of the present invention is characterized by bringing into contact the mutated tetraprenyl-β-curcumene cyclase with squalene, to obtain ambrein. The second embodiment of the method for preparing ambrein of the present invention is characterized by bringing into contact the mutated tetraprenyl-β-curcumene cyclase with 3-deoxyachilleol A, to obtain ambrein.

[0076] The mutated tetraprenyl-β-curcumene cyclase can be prepared by culturing the transformant obtained by introducing the enzyme expression vector into bacteria or the like. The medium used for culturing the transformant may be a commonly used medium and is appropriately selected depending on the type of host. For example, in the case of culturing E. coli, LB medium and the like are used. Antibiotics according to the type of selective marker may be added to the medium.

[0077] The mutated tetraprenyl- β -curcumene cyclase may be obtained by extraction followed by purification from a culture medium which has been obtained by culturing a transformant capable of expressing the enzyme. Further, it may be expressed as a fusion protein obtained by fusing a trigger factor (TF), a His tag or the like to the N-terminal side or the C-terminal side of the polypeptide of the mutated tetraprenyl-a fusion protein obtained by fusing a trigger factor (TF), a purification and the like may be facilitated. An extraction liquid containing the enzyme, which has been extracted from a transformant in a culture medium, may be used as it is. As a method of extracting an enzyme from a transformant, a known method may be applied. A step of extracting an enzyme may comprise, for example, crushing a transformant in an extraction solvent and separating cell contents from crushed pieces of the transformant. The obtained cell contents contain the mutated tetraprenyl- β -curcumene cyclase of interest.

[0078] As the method of crushing a transformant, a known method in which a transformant is crushed and an enzyme liquid can be recovered may be applied, and examples thereof include ultrasonic crushing and glass beads crushing. The conditions of crushing are not particularly restricted as long as the enzyme is not inactivated, such as a condition of not higher than 10°C and for 15 minutes.

[0079] Examples of the method of separating cell contents from crushed pieces of microorganism include sedimentation, centrifugation, filtering separation, and a combination of two or more thereof. Conditions for these separation methods are known to those skilled in the art. The conditions are, for example, from $8,000 \times g$ to $15,000 \times g$ and from 10 to 20 minutes in the case of centrifugation.

[0080] The extraction solvent may be a solvent which is usually used as a solvent for extracting an enzyme, and examples thereof include Tris-HCl buffer and potassium phosphate buffer. The pH of an extraction solvent is, from the viewpoint of enzyme stability, preferably from 3 to 10 and more preferably from 6 to 8.

[0081] The extraction solvent may contain a surfactant. Examples of the surfactant include a nonionic surfactant and an ampholytic surfactant. Examples of the nonionic surfactant include: a polyoxyethylene sorbitan fatty acid ester such as poly(oxyethylene)sorbitan monooleate (Tween 80); alkylglucoside such asn-octylβ-D-glucoside; a sucrose fatty acid ester such as sucrose stearate; and a polyglycerol fatty acid ester such as polyglycerol stearate. Examples of the ampholytic surfactant include N,N-dimethyl-N-dodecylglycine betaine which is an alkylbetaine. Besides the above, surfactants generally used in the art such as Triton X-100 (TRITON X-100), polyoxyethylene(20)cetyl ether (BRIJ-58), and nonylphenol ethoxylate (TERGITOL NP-40) can be utilized.

[0082] The concentration of a surfactant in an extraction solvent is, from the viewpoint of enzyme stability, preferably from 0.001% by mass to 10% by mass, more preferably from 0.10% by mass to 3.0% by mass, and further preferably from 0.10% by mass to 1.0% by mass.

[0083] From the viewpoint of enzyme activity, an extraction solvent preferably contains a reducing agent such as dithiothreitol or β -mercaptoethanol. The reducing agent is preferably dithiothreitol. The concentration of dithiothreitol in an extraction solvent is preferably from 0.1 mM to 1M and more preferably from 1 mM to 10 mM. In a case that dithiothreitol is present in an extraction solvent, a structure such as a disulfide bond in the enzyme is easily to be retained and enzyme activity is easily to be enhanced.

[0084] From the viewpoint of enzyme activity, the extraction solvent preferably contains chelating agent such as ethylenediaminetetraacetic acid (EDTA). The concentration of EDTA in the extraction solvent is preferably from 0.01 mM to 1 M and more preferably from 0.1 mM to 10 mM. In a case that EDTA is present in the extraction solvent, a metal ion which may reduce enzyme activity is chelated, and therefore, enzyme activity is easily to be enhanced.

[0085] The extraction solvent may contain, besides the ingredients described above, a known ingredient which can be added to an enzyme extraction solvent.

[0086] The mutated tetraprenyl- β -curcumene cyclase may be used singly, or in combination of two or more kinds thereof.

[0087] The conditions of a reaction between the mutated tetraprenyl-β-curcumene cyclase and squalene or 3-deoxy-

achilleol A are not particularly restricted as long as the conditions are such that an enzyme reaction can be proceeded. For example, the reaction temperature and the reaction time may be appropriately selected based on the activity of the mutated tetraprenyl- β -curcumene cyclase or the like. From the viewpoint of reaction efficiency, the reaction temperature and the reaction time may be, for example, from 4°C to 100°C and from 1 hour to 30 days, and preferably 30°C to 60°C and 16 hours to 20 days. From the viewpoint of reaction efficiency, the pH is, for example, from 3 to 10, and preferably from 6 to 8.

[0088] A reaction solvent is not particularly restricted as long as the reaction solvent does not inhibit an enzyme reaction, and a buffer or the like which is usually used can be used. For example, the same solvent as an extraction solvent which is used in a step of extracting an enzyme can be used. An extraction liquid (for example, cell-free extract) containing the mutated tetraprenyl-β-curcumene cyclase may be used as it is as an enzyme liquid in the reaction.

[0089] From the viewpoint of reaction efficiency, the concentration ratio between mutated tetraprenyl- β -curcumene cyclase and squalene or 3-deoxyachilleol A which is the substrate thereof in a production reaction of ambrein is preferably from 1 to 10000, more preferably from 10 to 5000, still more preferably from 100 to 3000, and still further preferably from 1000 to 2000 in terms of the molar concentration ratio (substrate/enzyme) of the substrate to the enzyme.

[0090] From the viewpoint of reaction efficiency, the concentration of squalene or 3-deoxyachilleol A to be used for an enzyme reaction is preferably from 0.000001% by mass to 10% by mass, and more preferably from 0.00001% by mass to 1% by mass with respect to the total mass of the reaction solvent.

[0091] The reaction step between the mutated tetraprenyl-β-curcumene cyclase and squalene or 3-deoxyachilleol A may be repeated a plurality of times. This can increase the yield of ambrein. In the case that a plurality of reaction steps are repeated, the purification method may be comprised: a step of recharging squalene or 3-deoxyachilleol A to be the substrate; a step of recovering and purifying a reaction product in a reaction liquid after inactivating the enzyme by a known method; and the like. In a case that squalene is recharged, a charging point in time, and the amount of charging of squalene can be appropriately set according to the concentration of the mutated tetraprenyl-β-curcumene cyclase in the reaction liquid, the amount of the substrate remained in the reaction liquid, or the like.

[0092] According to another embodiment of the preparation method of the present invention, it is characterized by culturing the microorganism or the transformant of the present invention.

[0093] An ambrein can be prepared by culturing the microorganism or the host cell transformed with the expression vector. Regarding the yeast, the yeast may be cultured in a conventional YPD medium and the like. For example, the yeast wherein a gene is introduced by a homologous recombination, or the yeast having the expression vector, is precultured. Then, the precultured yeast is inoculated to an YPD medium or the like, and it is cultured for about 24 to 240 hours, preferably about 72 to 120 hours. The ambrein which is secreted into the medium can be used as is, or after a purification by the known method. In particular, as the purification method, there may be mentioned solvent extraction, recrystallization, distillation, column chromatography, and HPLC.

35 EXAMPLES

10

20

30

40

50

[0094] The present invention now will be further illustrated by, but is by no means limited to, the following Examples. Bacillus megaterium is sometimes abbreviated as "Bme" in the specification, figures, or Tables, and tetraprenyl-β-curcumene cyclase derived from Bacillus megaterium is sometimes abbreviated as "BmeTC.

<<Example 1>>

[0095] In this Example, the mutated tetraprenyl- β -curcumene cyclase was cloned and an expression vector was constructed.

45 [0096] A polynucleotide encoding wild type tetraprenyl-β-curcumene cyclase was obtained by PCR using Bacillus megaterium chromosomal DNA as a template, and an amino acid sequence of the wild type enzyme was determined. (Hereinafter, unless otherwise noted, tetraprenyl-β-curcumene cyclase has a sequence derived from Bacillus megaterium, and is sometimes simply referred to as "wild type.")

[0097] The mutated tetraprenyl- β -curcumene cyclase gene was designed based on the amino acid sequence of the wild type enzyme, so that aspartic acid at position 373 is substituted with cysteine, and tyrosine at position 167 is substituted with alanine, and was synthesized by optimizing codons for Escherichia coli of the host. The synthesized gene was inserted into the cloning site (restriction enzyme EcoRV site) of the vector pColdTF (TAKARA BIO), to obtain the expression vector containing the mutated tetraprenyl- β -curcumene cyclase gene of Y167A/D373C mutant (SEQ ID NO:5).

⁵⁵ **[0098]** Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene.

<< Example 2>>

10

30

35

50

55

[0099] In this Example, the mutated tetraprenyl-β-curcumene cyclase gene wherein aspartic acid at position 373 is substituted with cysteine, and leucine at position 596 is substituted with alanine, was constructed.

[0100] The mutated tetraprenyl-β-curcumene cyclase gene was designed based on the amino acid sequence of the wild type enzyme, so that aspartic acid at position 373 is substituted with cysteine, and leucine at position 596 is substituted with alanine, and was synthesized by optimizing codons for Escherichia coli of the host. The synthesized gene was inserted into the cloning site (restriction enzyme EcoRV site) of the vector pColdTF (TAKARA BIO), to obtain the expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene of D373C/L596A mutant (SEQ ID NO:6).

[0101] Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene.

<< Comparative Examples 1 to 3>>

⁵ **[0102]** In this Comparative Example, expression vectors of the mutated tetraprenyl-β-curcumene cyclases wherein only one amino acid at position 373, 167, and 596 was substituted, were constructed.

[0103] The procedure described in Example 1 was repeated except that a site-specific mutation was introduced thereinto by a Quick Change method so that aspartic acid at position 373 was substituted with cysteine, a site-specific mutation was introduced thereinto by a Quick Change method so that tyrosine at position 167 was substituted with alanine, or a site-specific mutation was introduced thereinto by a Quick Change method so that leucine at position 596 was substituted with alanine, to obtain the expression vectors and transformants of D373C mutant (Comparative Example 1), Y167A mutant (Comparative Example 2) or L596A mutant (Comparative Example 3).

[0104] Codons optimized for E. coli of host were used.

25 <<Example 3 and Comparative Example 4>>

[0105] In this Example and Comparative Example, enzyme activities of the mutated tetraprenyl-β-curcumene cyclases were examined using squalene as a substrate.

[0106] The transformants prepared in Example 1, Example2, and Comparative Examples 1 to 3 were respectively inoculated in the LB medium (1 L) containing ampicillin (50 mg / L) and the whole were cultivated at 37°C, for 3 hours while shaking. After cultivation, isopropyl- β -thiogalactopyranoside (IPTG:0.1M) was added thereto, the whole was shaken at 15°C, for 24 hours, to induce the expression of the mutated tetraprenyl- β -curcumene cyclases.

[0107] Thereafter, the bacterial cells collected by centrifugation $(6,000 \times g, 10 \text{ minutes})$ were washed with 50 mM Tris-HCl buffer (pH 7.5). Then, the bacterial cells (5g) were suspended in 15 mL of buffer A [containing 50 mM Tris-HCl buffer (pH 7.5), 0.1 v/v% Tween80, 0.1 v/v% sodium ascorbate, 2.5 mM dithiothreitol, 1 mM EDTA], and the suspension was sonicated at 4°C, for 20 minutes, using UP2005 sonicator (Hielscher Ultrasonics, Teltow, Germany). The sonicated sample was centrifuged at $12,300\times g$, for 20 minutes, and the supernatant obtained after centrifugation was used as a cell-free extract solutions A to E. (Hereinafter, the cell-free extracts prepared by using the transformants in Example 1 and 2 were designated as cell-free extracts A and B, respectively, and the cell-free extracts prepared by using the transformants in Comparative Examples 1 to 3 were designated as cell-free extracts C to E, respectively.)

[0108] Squalene ($100\mu g$) was mixed with Triton Tween80 (5 mg) for solubilization and then added to buffer A (1 mL) to prepare a squalene solution. The whole amount of the squalene solution was added to cell-free extract A (4 mL) to prepare a reaction solution and incubated at 30°C, for 64 hours. The molar ratio (substrate/enzyme) of squalene (substrate) to the mutated tetraprenyl- β -curcumene cyclase (enzyme) in the reaction solution was about 200.

[0109] After the incubation, 15% potassium hydroxide in methanol (6 mL) was added to the reaction solution to stop the enzymatic reaction. Then, n-hexane (5 mL) was added to the reaction solution, and the reaction product was extracted three times.

[0110] Ambrein production rates of the resulting extracts are shown in Figure 3. The amounts of ambrain production of the Y167A/D373C mutant obtained in Example 1 and the D373C/L596A mutant obtained in Example 2 were improved, compared with the D373 mutant. On the other hand, the Y167A mutant obtained in Comparative Example 2 and the L596A mutant obtained in Comparative Example 3 cannot produce ambrain.

[0111] In addition, the production rate of ambrain and by-products is shown in Figure 4. The reaction selectivity from squalene (substrate) to ambrain is improved, and thus the Y167A/D373C mutant and the D373C/L596A mutant can produce ambrein efficiently. In addition, the identification of the ambrein and the calculation of the production rate were performed by GC / MS and NMR

[0112] The identification of ambrein and the calculation of the production rate were performed by GC / MS and NMR.

<<Example 4>>

[0113] In this Example, the productivity of ambrein of the mutated tetraprenyl-β-curcumene cyclase was examined using squalene as a substrate by using Y167A/D373C mutant obtained in Example 1, and changing the substrate concentration. The procedure described in Example 3 was repeated except that the substrate concentration was changed. The results are shown in Figure 5. $427\mu g$ of ambrein could be produced from $1~000\mu g$ of squalene, and the reaction efficiency was 43%.

<<Example 5>>

10

25

30

35

40

[0114] In this Example, the mutated tetraprenyl- β -curcumene cyclase was cloned and an expression vector was constructed. The mutated tetraprenyl- β -curcumene cyclase gene was designed based on the amino acid sequence of the wild type enzyme, so that leucine at position 596 is substituted with alanine, and was synthesized by optimizing codons for Escherichia coli of the host. The synthesized gene was inserted into the cloning site (restriction enzyme EcoRV site) of the vector pColdTF (TAKARA BIO), to obtain the expression vector containing the mutated tetraprenyl- β -curcumene cyclase gene of L596A mutant (SEQ ID NO:9).

[0115] Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene.

20 (Transformant producing L596A mutant enzyme)

<<Example 6>>

[0116] In this Example, the mutated tetraprenyl- β -curcumene cyclase gene wherein leucine at position 596 is substituted with alanine, was constructed.

[0117] The procedure described in Example 5 was repeated except that a site-specific mutation was introduced thereinto so that leucine at position 596 was substituted with alanine, to obtain the expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene (codons were optimized for Escherichia coli of the host) of L596F mutant (SEQ ID NO:10). Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene. (Transformant producing L596F mutant enzyme)

<< Comparative Example 5>>

[0118] In this Comparative Example, the wild type tetraprenyl- β -curcumene cyclase was cloned and an expression vector was constructed.

[0119] The procedure described in Example 5 was repeated except that a site-specific mutation for substituting leucine at position 596 with alanine was not introduced thereinto, to obtain the expression vector containing the tetraprenyl-β-curcumene cyclase gene having leucine at position 596 (codons were optimized for Escherichia coli of the host). Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene.

(Transformant producing wild type enzyme)

<<Example 7>>

45

[0120] In this Example, the mutated tetraprenyl-β-curcumene cyclase gene wherein leucine at position 596 is substituted with valine, was constructed.

[0121] The procedure described in Example 5 was repeated except that a site-specific mutation was introduced thereinto so that leucine at position 596 was substituted with valine, to obtain the expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene of L596V mutant (codons were optimized for Escherichia coli of the host). Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl-β-curcumene cyclase gene.

(Transformant producing L596V mutant enzyme)

55

50

<<Comparative Example 6>>

[0122] In this Comparative Example, the mutated tetraprenyl-β-curcumene cyclase gene wherein leucine at position

596 is substituted with proline, was constructed.

[0123] The procedure described in Example 5 was repeated except that a site-specific mutation was introduced thereinto so that leucine at position 596 was substituted with proline, to obtain the expression vector containing the mutated tetraprenyl- β -curcumene cyclase gene of L596P mutant (codons were optimized for Escherichia coli of the host). Then, a transformant of Escherichia coli BL21 (DE3) was prepared using the obtained expression vector containing the mutated tetraprenyl- β -curcumene cyclase gene.

(Transformant producing L596P mutant enzyme)

10 <<Example 8 and Comparative Example 7>>

15

20

30

35

40

45

50

55

[0124] In this Example and Comparative Example, enzyme activities of the mutated tetraprenyl-β-curcumene cyclases were examined using 3-deoxyachilleol A as a substrate.

[0125] The transformants prepared in Examples 5 to 7, and Comparative Examples 1 to 3 were respectively inoculated in the LB medium (1 L) containing ampicillin (50 mg / L) and the whole were cultivated at 37°C, for 3 hours while shaking. After cultivation, isopropyl-β-thiogalactopyranoside (IPTG:0.1M) was added thereto, the whole was shaken at 15°C, for 24 hours, to induce the expression of the mutated tetraprenyl-β-curcumene cyclases.

[0126] Thereafter, the bacterial cells collected by centrifugation $(6,000 \times g, 10 \text{ minutes})$ were washed with 50 mM Tris-HCl buffer (pH 7.5). Then, the bacterial cells (5g) were suspended in 15 mL of buffer A [containing 50 mM Tris-HCl buffer (pH 7.5), 0.1 v/v% Tween80, 0.1 v/v% sodium ascorbate, 2.5 mM dithiothreitol, 1 mM EDTA], and the suspension was sonicated at 4°C, for 20 minutes, using UP2005 sonicator (Hielscher Ultrasonics, Teltow, Germany). The sonicated sample was centrifuged at $12,300\times g$, for 20 minutes, and the supernatant obtained after centrifugation was used as a cell-free extract solutions F to J. (Hereinafter, the cell-free extracts prepared by using the transformants in Example 5 to 7 were designated as cell-free extracts F to H, respectively, and the cell-free extracts prepared by using the transformants in Comparative Examples 5 to 6 were designated as cell-free extracts I to J, respectively.)

[0127] 3-deoxyachilleol A $(100\mu g)$ was mixed with Triton Tween80 (2 mg) for solubilization and then added to buffer A (1 mL) to prepare a 3-deoxyachilleol A solution. The whole amount of the 3-deoxyachilleol A solution was added to each of cell-free extracts F to J (4 mL) to prepare a reaction solution and incubated at 30°C, for 112 hours. The molar ratio (substrate/enzyme) of 3-deoxyachilleol A (substrate) to the mutated tetraprenyl- β -curcumene cyclase (enzyme) in the reaction solution was about 200.

[0128] After the incubation, 15% potassium hydroxide in methanol (6 mL) was added to the reaction solution to stop the enzymatic reaction. Then, n-hexane (5 mL) was added to the reaction solution, and the reaction product was extracted three times.

[0129] Ambrein production rates of the resulting extracts are shown in Figure 6. As a result, in the L596A mutant, L596F mutant, and L596V mutant, ambrein was obtained with high conversion efficiency. In particular, in the L596Avarian had few by-product, and 94% of the product was ambrein. On the other hand, the wild-type tetraprenyl-β-curcumene cyclase produced little ambrain and had a high by-products ratio.

[0130] In addition, the production rate of ambrain and by-products is shown in Figure 7. 4. The reaction selectivity from 3-deoxyachilleol A (substrate) to ambrain is improved, and thus the L596A mutant can produce ambrein efficiently.

INDUSTRIAL APPLICABILITY

[0131] According to the present invention, in the production of ambrein, it is possible to produce ambrein in one step using squalene as a substrate by using the mutated tetraprenyl- β -curcumene cyclase. Ambrein obtained by the present invention can be used, for example, as a raw material for production of pharmaceuticals and the like.

18

SEQUENCE LISTING

	<110>	NIIGA ADEKA														
5	<120>	Mutat									cycla	ase a	and o	one e	enzyme	method
	<130>	ADK-	024													
10	<150> <151>				28											
	<160>	14														
15	<170>	Pater	ntIn	vers	sion	3.5										
20	<210> <211> <212> <213>	PRT	llus	mega	ateri	Lum										
	<400>	1														
25	Met Il 1	e Ile	Leu	Leu 5	Lys	Glu	Val	Gln	Leu 10	Glu	Ile	Gln	Arg	Arg 15	Ile	
20	Ala Ty	r Leu	Arg 20	Pro	Thr	Gln	Lys	Asn 25	Asp	Gly	Ser	Phe	Arg 30	Tyr	Cys	
30	Phe Gl	u Thr 35	Gly	Val	Met	Pro	Asp 40	Ala	Phe	Leu	Ile	Met 45	Leu	Leu	Arg	
35	Thr Ph	_	Leu	Asp	Lys	Glu 55	Val	Leu	Ile	Lys	Gl n 60	Leu	Thr	Glu	Arg	
	Ile Va 65	l Ser	Leu	Gln	Asn 70	Glu	Asp	Gly	Leu	Trp 75	Thr	Leu	Phe	Asp	Asp 80	
40	Glu Gl	u His	Asn	Leu 85	Ser	Ala	Thr	Ile	Gln 90	Ala	Tyr	Thr	Ala	Leu 95	Leu	
45	Tyr Se	r Gly	Туг 100	Tyr	Gln	Lys	Asn	Asp 105	Arg	Ile	Leu	Arg	Lys 110	Ala	Glu	
50	Arg Ty	r Ile 115	Ile	Asp	Ser	Gly	Gly 120	Ile	Ser	Arg	Ala	His 125	Phe	Leu	Thr	
	Arg Tr	_	Leu	Ser	Val	As n 135	Gly	Leu	Tyr	Glu	Trp 140	Pro	Lys	Leu	Phe	
55	Tyr Le	u Pro	Leu	Ser	Leu 150	Leu	Leu	Val	Pro	Thr 155	Tyr	Val	Pro	Leu	Asn 160	

	Phe	Tyr	Glu	Leu	Ser 165	Thr	Tyr	Ala	Arg	Ile 170	His	Phe	Val	Pro	Met 175	Met
5	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Leu 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
10	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
45	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
15	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
20	Glu	Arg	Tyr	Met	Leu 245	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser
25	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	Ile 265	Tyr	Gly	Leu	Leu	Ala 270	Leu	Gly
	Tyr	Lys	Lys 275	Asp	Ser	Phe	Val	Ile 280	Gln	Lys	Ala	Ile	Asp 285	Gly	Ile	Cys
30	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr
35	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
40	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
	Lys	Lys	Arg	Gln 340	His	Thr	Lys	Leu	Gly 3 4 5	Asp	Trp	Gln	Phe	His 350	Asn	Pro
45	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	Asn 365	Thr	Asn	Asn
50	Pro	Asp 370	Leu	Asp	Asp	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400
55	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu

	Lys	Asn	Thr	Asp 420	Ser	Ile	Leu	Phe	Thr 425	Tyr	Leu	Pro	Leu	Glu 430	Asn	Ala
5	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
10	Leu	Glu 450	Cys	Leu	Gly	Asn	Phe 4 55	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
15	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 475	Gln	Leu	Asp	Asn	Gly 480
	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
20	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	Asp 510	Pro	Arg
25	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly
30	Gly	Phe 530	Gly	Glu	Ser	Cys	Tyr 535	Ser	Ala	Ser	Leu	Lys 540	Lys	Tyr	Val	Pro
	Leu 545	Ser	Phe	Ser	Thr	Pro 550	Ser	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560
35	Met	Thr	Ile	Cys	Pro 565	Leu	Lys	Asp	Gln	Ser 570	Val	Glu	Lys	Gly	Ile 575	Lys
40	Phe	Leu	Leu	Asn 580	Pro	Asn	Leu	Thr	Glu 585	Gln	Gln	Thr	His	Tyr 590	Pro	Thr
45	Gly	Ile	Gly 595	Leu	Pro	Gly	Gln	Phe 600	Tyr	Ile	Gln	Tyr	His 605	Ser	Tyr	Asn
	Asp	Ile 610	Phe	Pro	Leu	Leu	Ala 615	Leu	Ala	His	Tyr	Ala 620	Lys	Lys	His	Ser
50	Ser 625															
55	<210 <211 <212 <213	L> (2> E	532 PRT	llus	subt	:ilis	3									

	<400)> 2	2													
5	Met 1	Gly	Thr	Leu	Gln 5	Glu	Lys	Val	Arg	Arg 10	Tyr	Gln	Lys	Lys	Thr 15	Ile
	Ala	Glu	Leu	Lys 20	Asn	Arg	Gln	Asn	Ala 25	Asp	Gly	Ser	Trp	Thr 30	Phe	Cys
10	Phe	Glu	Gly 35	Pro	Ile	Met	Thr	Asn 40	Ser	Phe	Phe	Ile	Leu 45	Leu	Leu	Thr
15	Ser	Leu 50	Asp	Glu	Gly	Glu	Asn 55	Glu	Lys	Glu	Leu	Ile 60	Ser	Ala	Leu	Ala
	Ala 65	Gly	Ile	Arg	Glu	Lys 70	Gln	Gln	Pro	Asp	Gly 75	Thr	Phe	Ile	Asn	Tyr 80
20	Pro	Asp	Glu	Thr	Ser 85	Gly	Asn	Ile	Thr	Ala 90	Thr	Val	Gln	Gly	Tyr 95	Val
25	Gly	Met	Leu	Ala 100	Ser	Gly	Cys	Phe	His 105	Arg	Ser	Asp	Pro	His 110	Met	Arg
30	Lys	Ala	Glu 115	Gln	Ser	Ile	Ile	Ser 120	His	Gly	Gly	Leu	Arg 125	His	Val	His
30	Phe	Met 130	Thr	Lys	Trp	Met	Leu 135	Ala	Val	Asn	Gly	Leu 140	Tyr	Pro	Trp	Pro
35	Val 145	Leu	Tyr	Leu	Pro	Leu 150	Ser	Leu	Met	Ala	Leu 155	Pro	Pro	Thr	Leu	Pro 160
40	Val	His	Phe	Tyr	Gln 165	Phe	Ser	Ala	Tyr	Ala 170	Arg	Ile	His	Phe	Ala 175	Pro
	Met	Ala	Val	Thr 180	Leu	Asn	Gln	Arg	Phe 185	Val	Leu	Lys	Asn	A rg 190	Asn	Ile
45	Pro	Ser	Leu 195	Arg	His	Leu	Asp	Pro 200	His	Met	Thr	Lys	As n 205	Pro	Phe	Thr
50	Trp	Leu 210	Arg	Ser	Asp	Ala	Phe 215	Glu	Glu	Arg	Asp	Leu 220	Thr	Ser	Ile	Trp
	Ser 225	His	Trp	Asn	Arg	Ile 230	Phe	His	Ala	Pro	Phe 235	Ala	Phe	Gln	Gln	Leu 240
55	Gly	Leu	Gln	Thr	Ala	Lys	Thr	Tyr	Met	Leu	Asp	Arg	Ile	Glu	Lys	Asp

					r Ser Tyr Ala S				250					255		
5	Gly	Thr	Leu	Tyr 260	Ser	Tyr	Ala	Ser	Ala 265	Thr	Ile	Phe	Met	Val 270	Tyr	Ser
	Leu	Leu	Ser 275	Leu	Gly	Val	Ser	Arg 280	Tyr	Ser	Pro	Val	Ile 285	Lys	Arg	Ala
10	Ile	As n 290	Gly	Ile	Lys	Ser	Leu 295	Met	Thr	Lys	Cys	Asn 300	Gly	Ile	Pro	Tyr
15	Leu 305	Glu	Asn	Ser	Thr	Ser 310	Thr	Val	Trp	Asp	Thr 315	Ala	Leu	Ile	Ser	Tyr 320
20	Ala	Leu	Gln	Lys	Asn 325	Gly	Val	Thr	Glu	Thr 330	Asp	Gly	Ser	Ile	Thr 335	Lys
	Ala	Ala	Ala	Tyr 340	Leu	Leu	Glu	Arg	Gln 3 4 5	His	Thr	Lys	Arg	Ala 350	Asp	Trp
25	Ser	Val	Lys 355	Asn	Pro	Ser	Ala	Ala 360	Pro	Gly	Gly	Trp	Gly 365	Phe	Ser	Asn
30	Ile	A sn 370	Thr	Asn	Asn	Pro	Asp 375	Cys	Asp	Asp	Thr	Ala 380	Ala	Val	Leu	Lys
35	Ala 385	Ile	Pro	His	Ser	Tyr 390	Ser	Pro	Ser	Ala	Trp 395	Glu	Arg	Gly	Val	Ser 400
	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Asn	Asp	Gly 410	Gly	Phe	Ser	Ala	Phe 415	Glu
40	Lys	Asn	Val	Asn 420	His	Pro	Leu	Ile	Arg 425	Leu	Leu	Pro	Leu	Glu 430	Ser	Ala
45	Glu	Asp	Ala 435	Ala	Val	Asp	Pro	Ser 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
50	Leu	His 450	Phe	Leu	Gly	Glu	Lys 455	Ala	Gly	Phe	Thr	Glu 460	Lys	His	Gln	His
	Ile 465	Gln	Arg	Ala	Val	Asn 470	Trp	Leu	Phe	Glu	His 4 75	Gln	Glu	Gln	Asn	Gly 480
55	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala

	Ala	Leu	Thr	500	Met	His	Ala	Cys	505	Val	Asp	Arg	Lys	H1s 510	Pro	Ala
5	Ile	Gln	Lys 515	Ala	Leu	Arg	Trp	Leu 520	Lys	Ser	Ile	Gln	His 525	Asp	Asp	Gly
10	Ser	Trp 530	Gly	Glu	Ser	Cys	As n 535	Ser	Ala	Glu	Val	Lys 540	Thr	Tyr	Val	Pro
	Leu 545	His	Lys	Gly	Thr	Ile 550	Val	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560
15	Leu	Thr	Tyr	Glu	Ser 565	Ser	Glu	His	Pro	Ser 570	Val	Val	Lys	Gly	Met 575	Gln
20	Tyr	Leu	Thr	Asp 580	Ser	Ser	Tyr	His	Gly 585	Ala	Asp	Ser	Leu	Ala 590	Tyr	Pro
25	Ala	Gly	Ile 595	Gly	Leu	Pro	Lys	Gln 600	Phe	Tyr	Ile	Arg	Tyr 605	His	Ser	Tyr
	Pro	Tyr 610	Val	Phe	Ser	Leu	Leu 615	Ala	Val	Gly	Lys	Tyr 620	Leu	Asn	Ser	Ile
30	Glu 625	Lys	Glu	Thr	Ala	A sn 630	Glu	Thr								
35	<210 <211 <212 <213	> 5 > P	92 PRT	llus	lich	nenii	formi	s								
40	<400			_									_		_	
	Met 1	Thr	Asp	Ser	Phe 5	Phe	Ile	Leu	Met	Leu 10	Thr	Ser	Leu	Gly	Asp 15	Gln
45	Asp	Ser	Ser	Leu 20	Ile	Ala	Ser	Leu	Ala 25	Glu	Arg	Ile	Arg	Ser 30	Arg	Gln
50	Ser	Glu	Asp 35	Gly	Ala	Phe	Arg	Asn 40	His	Pro	Asp	Glu	Arg 45	Ala	Gly	Asn
	Leu	Thr 50	Ala	Thr	Val	Gln	Gly 55	Tyr	Thr	Gly	Met	Leu 60	Ala	Ser	Gly	Leu
55	Tyr 65	Asp	Arg	Lys	Ala	Pro 70	His	Met	Gln	Lys	Ala 75	Glu	Ala	Phe	Ile	Lys 80

	ASP	AIA	GIY	GIY	85	гу	GIY	Vai	птѕ	90	Mec	1111	гур	IIP	95	теп
5	Ala	Ala	Asn	Gly 100	Leu	Tyr	Pro	Trp	Pro 105	Arg	Ala	Tyr	Ile	Pro 110	Leu	Ser
10	Phe	Leu	Leu 115	Ile	Pro	Ser	Tyr	Phe 120	Pro	Leu	His	Phe	Tyr 125	His	Phe	Ser
	Thr	Туг 130	Ala	Arg	Ile	His	Phe 135	Val	Pro	Met	Ala	Ile 140	Thr	Phe	Asn	Arg
15	Arg 145	Phe	Ser	Leu	Lys	A sn 150	Asn	Gln	Ile	Gly	Ser 155	Leu	Arg	His	Leu	Asp 160
20	Glu	Ala	Met	Ser	Lys 165	Asn	Pro	Leu	Glu	Trp 170	Leu	Asn	Ile	Arg	Ala 175	Phe
25	Asp	Glu	Arg	Thr 180	Phe	Tyr	Ser	Phe	As n 185	Leu	Gln	Trp	Lys	Gln 190	Leu	Phe
	Gln	Trp	Pro 195	Ala	Tyr	Val	His	Gln 200	Leu	Gly	Phe	Glu	Ala 205	Gly	Lys	Lys
30	Tyr	Met 210	Leu	Asp	Arg	Ile	Glu 215	Glu	Asp	Gly	Thr	Leu 220	Tyr	Ser	Tyr	Ala
35	Ser 225	Ala	Thr	Met	Phe	Met 230	Ile	Tyr	Ser	Leu	Leu 235	Ala	Met	Gly	Ile	Ser 240
40	Lys	Asn	Ala	Pro	Val 245	Val	Lys	Lys	Ala	Val 250	Ser	Gly	Ile	Lys	Ser 255	Leu
70	Ile	Ser	Ser	Cys 260	Gly	Lys	Glu	Gly	Ala 265	His	Leu	Glu	Asn	Ser 270	Thr	Ser
45	Thr	Val	Trp 275	Asp	Thr	Ala	Leu	Ile 280	Ser	Tyr	Ala	Met	Gln 285	Glu	Ser	Gly
50	Val	Pro 290	Glu	Gln	His	Ser	Ser 295	Thr	Ser	Ser	Ala	Ala 300	Asp	Tyr	Leu	Leu
	Lys 305	Arg	Gln	His	Val	Lys 310	Lys	Ala	Asp	Trp	Ala 315	Val	Ser	Asn	Pro	Gln 320
55	Ala	Val	Pro	Gly	Gly 325	Trp	Gly	Phe	Ser	His 330	Ile	Asn	Thr	Asn	As n 335	Pro

	Asp	Leu	Asp	340	Thr	Ala	Ala	Ala	145	Lys	Ala	Ile	Pro	350	GIn	Arg
5	Arg	Pro	Asp 355	Ala	Trp	Asn	Arg	Gly 360	Leu	Ala	Trp	Leu	Leu 365	Ser	Met	Gln
10	Asn	Lys 370	Asp	Gly	Gly	Phe	Ala 375	Ala	Phe	Glu	Lys	Asp 380	Val	Asp	His	Pro
	Leu 385	Ile	Arg	Asn	Leu	Pro 390	Leu	Glu	Ser	Ala	Ala 395	Glu	Ala	Ala	Val	Asp 400
15	Pro	Ser	Thr	Ala	Asp 405	Leu	Thr	Gly	Arg	Val 410	Leu	His	Leu	Leu	Gly 415	Leu
20	Lys	Gly	Arg	Phe 420	Thr	Asp	Asn	His	Pro 425	Ala	Val	Arg	Arg	Ala 430	Leu	Arg
25	Trp	Leu	Asp 435	His	His	Gln	Lys	Ala 440	Asp	Gly	Ser	Trp	Tyr 445	Gly	Arg	Trp
	Gly	Val 450	Cys	Phe	Ile	Tyr	Gly 455	Thr	Trp	Ala	Ala	Leu 460	Thr	Gly	Met	Lys
30	Ala 465	Val	Gly	Val	Ser	Ala 4 70	Asn	Gln	Thr	Ser	Val 475	Lys	Lys	Ala	Ile	Ser 480
35	Trp	Leu	Lys	Ser	Ile 485	Gln	Arg	Glu	Asp	Gly 490	Ser	Trp	Gly	Glu	Ser 495	Cys
40	Lys	Ser	Cys	Glu 500	Ala	Lys	Arg	Phe	Val 505	Pro	Leu	His	Phe	Gly 510	Thr	Val
	Val	Gln	Ser 515	Ser	Trp	Ala	Leu	Glu 520	Ala	Leu	Leu	Gln	Tyr 525	Glu	Arg	Pro
45	Asp	Asp 530	Pro	Gln	Ile	Ile	Lys 535	Gly	Ile	Arg	Phe	Leu 540	Ile	Asp	Glu	His
50	Glu 545	Ser	Ser	Arg	Glu	Ar g 550	Leu	Glu	Tyr	Pro	Thr 555	Gly	Ile	Gly	Leu	Pro 560
	Asn	Gln	Phe	Tyr	Ile 565	Arg	Tyr	His	Ser	Tyr 570	Pro	Phe	Val	Phe	Ser 575	Leu
55	Leu	Ala	Ser	Ser 580	Ala	Phe	Ile	Lys	Lys 585	Ala	Glu	Met	Arg	Glu 590	Thr	Tyr

	<210 <211 <212 <213	1> 2> :	4 631 PRT Alicy	yclok	oacil	llus	acio	docal	ldari	ius						
5	<400)>	4													
	Met 1	Ala	Glu	Gln	Leu 5	Val	Glu	Ala	Pro	Ala 10	Tyr	Ala	Arg	Thr	Leu 15	Asp
10	Arg	Ala	Val	Glu 20	Tyr	Leu	Leu	Ser	Cys 25	Gln	Lys	Asp	Glu	Gly 30	Tyr	Trp
15	Trp	Gly	Pro 35	Leu	Leu	Ser	Asn	Val 40	Thr	Met	Glu	Ala	Glu 4 5	Tyr	Val	Leu
20	Leu	Cys 50	His	Ile	Leu	Asp	Arg 55	Val	Asp	Arg	Asp	Arg 60	Met	Glu	Lys	Ile
25	Arg 65	Arg	Tyr	Leu	Leu	His 70	Glu	Gln	Arg	Glu	Asp 75	Gly	Thr	Trp	Ala	Leu 80
25	Tyr	Pro	Gly	Gly	Pro 85	Pro	Asp	Leu	Asp	Thr 90	Thr	Ile	Glu	Ala	Tyr 95	Val
30	Ala	Leu	Lys	Tyr 100	Ile	Gly	Met	Ser	Arg 105	Asp	Glu	Glu	Pro	Met 110	Gln	Lys
35	Ala	Leu	Arg 115	Phe	Ile	Gln	Ser	Gln 120	Gly	Gly	Ile	Glu	Ser 125	Ser	Arg	Val
	Phe	Thr 130	Arg	Met	Trp	Leu	Ala 135	Leu	Val	Gly	Glu	Tyr 140	Pro	Trp	Glu	Lys
40	Val 145	Pro	Met	Val	Pro	Pro 150	Glu	Ile	Met	Phe	Leu 155	Gly	Lys	Arg	Met	Pro 160
45	Leu	Asn	Ile	Tyr	Glu 165	Phe	Gly	Ser	Trp	Ala 170	Arg	Ala	Thr	Val	Val 175	Ala
50	Leu	Ser	Ile	Val 180	Met	Ser	Arg	Gln	Pro 185	Val	Phe	Pro	Leu	Pro 190	Glu	Arg
	Ala	Arg	Val 195	Pro	Glu	Leu	Tyr	Glu 200	Thr	Asp	Val	Pro	Pro 205	Arg	Arg	Arg
55	Gly	Ala 210	Lys	Gly	Gly	Gly	Gly 215	Trp	Ile	Phe	Asp	Ala 220	Leu	Asp	Arg	Ala

	Leu 225	His	Gly	Tyr	Gln	Lys 230	Leu	Ser	Val	His	Pro 235	Phe	Arg	Arg	Ala	Ala 240
5	Glu	Ile	Arg	Ala	Leu 245	Asp	Trp	Leu	Leu	Glu 250	Arg	Gln	Ala	Gly	Asp 255	Gly
10	Ser	Trp	Gly	Gly 260	Ile	Gln	Pro	Pro	Trp 265	Phe	Tyr	Ala	Leu	Ile 270	Ala	Leu
45	Lys	Ile	Leu 275	Asp	Met	Thr	Gln	His 280	Pro	Ala	Phe	Ile	Lys 285	Gly	Trp	Glu
15	Gly	Leu 290	Glu	Leu	Tyr	Gly	Val 295	Glu	Leu	Asp	Tyr	Gly 300	Gly	Trp	Met	Phe
20	Gln 305	Ala	Ser	Ile	Ser	Pro 310	Val	Trp	Asp	Thr	Gly 315	Leu	Ala	Val	Leu	Ala 320
25	Leu	Arg	Ala	Ala	Gly 325	Leu	Pro	Ala	Asp	His 330	Asp	Arg	Leu	Val	Lys 335	Ala
	Gly	Glu	Trp	Leu 340	Leu	Asp	Arg	Gln	Ile 345	Thr	Val	Pro	Gly	Asp 350	Trp	Ala
30	Val	Lys	Arg 355	Pro	Asn	Leu	Lys	Pro 360	Gly	Gly	Phe	Ala	Phe 365	Gln	Phe	Asp
35	Asn	Val 370	Tyr	Tyr	Pro	Asp	Val 375	Asp	Asp	Thr	Ala	Val 380	Val	Val	Trp	Ala
40	Le u 385	Asn	Thr	Leu	Arg	Leu 390	Pro	Asp	Glu	Arg	A rg 395	Arg	Arg	Asp	Ala	Met 400
	Thr	Lys	Gly	Phe	Arg 405	Trp	Ile	Val	Gly	Met 410	Gln	Ser	Ser	Asn	Gly 415	Gly
45	Trp	Gly	Ala	Tyr 420	Asp	Val	Asp	Asn	Thr 425	Ser	Asp	Leu	Pro	Asn 430	His	Ile
50	Pro	Phe	Cys 435	Asp	Phe	Gly	Glu	Val 440	Thr	Asp	Pro	Pro	Ser 445	Glu	Asp	Val
55	Thr	Ala 4 50	His	Val	Leu	Glu	Cys 455	Phe	Gly	Ser	Phe	Gly 460	Tyr	Asp	Asp	Ala
33	Trp	Lys	Val	Ile	Arg	Arg	Ala	Val	Glu	Tyr	Leu	Lys	Arg	Glu	Gln	Lys

	465	470	475 480
5	Pro Asp Gly Ser Trp 485		Val Asn Tyr Leu Tyr Gly 495
	Thr Gly Ala Val Val	Ser Ala Leu Lys Ala	Val Gly Ile Asp Thr Arg
	500	505	510
10	Glu Pro Tyr Ile Gln	Lys Ala Leu Asp Trp	Val Glu Gln His Gln Asn
	515	520	525
15	Pro Asp Gly Gly Trp	Gly Glu Asp Cys Arg	Ser Tyr Glu Asp Pro Ala
	530	535	540
20	Tyr Ala Gly Lys Gly	Ala Ser Thr Pro Ser	Gln Thr Ala Trp Ala Leu
	545	550	555 560
	Met Ala Leu Ile Ala 565		Ser Glu Ala Ala Arg Arg 575
25	Gly Val Gln Tyr Leu	Val Glu Thr Gln Arg	Pro Asp Gly Gly Trp Asp
	580	585	590
30	Glu Pro Tyr Tyr Thr	Gly Thr Gly Phe Pro	Gly Asp Phe Tyr Leu Gly
	595	600	605
	Tyr Thr Met Tyr Arg	His Val Phe Pro Thr	Leu Ala Leu Gly Arg Tyr
	610	615	620
35	Lys Gln Ala Ile Glu 625	Arg Arg 630	
40	<210> 5 <211> 625 <212> PRT <213> Bacillus meg	aterium	
_	<400> 5		
45	Met Ile Ile Leu Leu	Lys Glu Val Gln Leu	Glu Ile Gln Arg Arg Ile
	1 5	10	15
50	Ala Tyr Leu Arg Pro	Thr Gln Lys Asn Asp	Gly Ser Phe Arg Tyr Cys
	20	25	30
55	Phe Glu Thr Gly Val	Met Pro Asp Ala Phe 40	Leu Ile Met Leu Leu Arg 45
	Thr Phe Asp Leu Asp	Lys Glu Val Leu Ile	Lys Gln Leu Thr Glu Arg

5	Ile 65	Val	Ser	Leu	Gln	Asn 70	Glu	Asp	Gly	Leu	Trp 75	Thr	Leu	Phe	Asp	Asp 80
10	Glu	Glu	His	Asn	Leu 85	Ser	Ala	Thr	Ile	Gln 90	Ala	Tyr	Thr	Ala	Leu 95	Leu
	Tyr	Ser	Gly	Туг 100	Tyr	Gln	Lys	Asn	Asp 105	Arg	Ile	Leu	Arg	Lys 110	Ala	Glu
15	Arg	Tyr	Ile 115	Ile	Asp	Ser	Gly	Gly 120	Ile	Ser	Arg	Ala	His 125	Phe	Leu	Thr
20	Arg	Trp 130	Met	Leu	Ser	Val	Asn 135	Gly	Leu	Tyr	Glu	Trp 140	Pro	Lys	Leu	Phe
25	Tyr 145	Leu	Pro	Leu	Ser	Leu 150	Leu	Leu	Val	Pro	Thr 155	Tyr	Val	Pro	Leu	Asn 160
25	Phe	Tyr	Glu	Leu	Ser 165	Thr	Ala	Ala	Arg	Ile 170	His	Phe	Val	Pro	Met 175	Met
30	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Leu 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
35	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
40	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
45	Glu	Arg	Tyr	Met	Leu 245	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser
50	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	Ile 265	Tyr	Gly	Leu	Leu	A la 270	Leu	Gly
	Tyr	Lys	Lys 275	Asp	Ser	Phe	Val	Ile 280	Gln	Lys	Ala	Ile	Asp 285	Gly	Ile	Cys
55	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr

	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
5	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
10	Lys	Lys	Arg	Gln 340	His	Thr	Lys	Leu	Gly 345	Asp	Trp	Gln	Phe	His 350	Asn	Pro
	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	As n 365	Thr	Asn	Asn
15	Pro	Asp 370	Leu	Asp	Cys	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
20	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400
25	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu
	Lys	Asn	Thr	Asp 420	Ser	Ile	Leu	Phe	Thr 425	Tyr	Leu	Pro	Leu	Glu 430	Asn	Ala
30	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
35	Leu	Glu 4 50	Cys	Leu	Gly	Asn	Phe 455	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 475	Gln	Leu	Asp	Asn	Gly 480
40	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
45	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	Asp 510	Pro	Arg
50	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly
	Gly	Phe 530	Gly	Glu	Ser	Cys	Tyr 535	Ser	Ala	Ser	Leu	Lys 540	Lys	Tyr	Val	Pro
55	Leu 545	Ser	Phe	Ser	Thr	Pro 550	Ser	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560

	Met	Thr	Ile	Cys	565	Leu	Lys	Asp	GIn	570	Val	Glu	Lys	СТĀ	575	Lys
5	Phe	Leu	Leu	A sn 580	Pro	Asn	Leu	Thr	Glu 585	Gln	Gln	Thr	His	Tyr 590	Pro	Thr
10	Gly	Ile	Gly 595	Leu	Pro	Gly	Gln	Phe 600	Tyr	Ile	Gln	Tyr	His 605	Ser	Tyr	Asn
	Asp	Ile 610	Phe	Pro	Leu	Leu	Ala 615	Leu	Ala	His	Tyr	Ala 620	Lys	Lys	His	Ser
15	Ser 625															
20	<210 <211 <212 <213	L> 6 2> E	5 25 PRT Bacil	llus	mega	nteri	Lum									
25	<400			•	•	•	01	**- 7	61	•	01	-1 -	01			-1 -
	Met 1	Ile	116	Leu	5	гÀг	GIU	Val	GIN	10	GIU	116	GIN	Arg	15	тте
30	Ala	Tyr	Leu	Arg 20	Pro	Thr	Gln	Lys	Asn 25	Asp	Gly	Ser	Phe	Arg 30	Tyr	Cys
35	Phe	Glu	Thr 35	Gly	Val	Met	Pro	Asp 40	Ala	Phe	Leu	Ile	Met 45	Leu	Leu	Arg
	Thr	Phe 50	Asp	Leu	Asp	Lys	G1u 55	Val	Leu	Ile	Lys	Gln 60	Leu	Thr	Glu	Arg
40	Ile 65	Val	Ser	Leu	Gln	Asn 70	Glu	Asp	Gly	Leu	Trp 75	Thr	Leu	Phe	Asp	Asp 80
45	Glu	Glu	His	Asn	Leu 85	Ser	Ala	Thr	Ile	Gln 90	Ala	туг	Thr	Ala	Leu 95	Leu
50	Tyr	Ser	Gly	Туг 100	Tyr	Gln	Lys	Asn	Asp 105	Arg	Ile	Leu	Arg	Lys 110	Ala	Glu
	Arg	Tyr	Ile 115	Ile	Asp	Ser	Gly	Gly 120	Ile	Ser	Arg	Ala	His 125	Phe	Leu	Thr
55	Arg	Trp 130	Met	Leu	Ser	Val	Asn 135	Gly	Leu	Tyr	Glu	Trp 140	Pro	Lys	Leu	Phe

	Tyr 145	Leu	Pro	Leu	Ser	Leu 150	Leu	Leu	Val	Pro	Thr 155	Tyr	Val	Pro	Leu	Asn 160
5	Phe	Tyr	Glu	Leu	Ser 165	Thr	Tyr	Ala	Arg	Ile 170	His	Phe	Val	Pro	Met 175	Met
10	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Leu 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
15	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
20	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
25	Glu	Arg	Tyr	Met	Leu 2 4 5	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser
	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	Ile 265	Tyr	Gly	Leu	Leu	Ala 270	Leu	Gly
30	Tyr	Lys	Lys 275	Asp	Ser	Phe	Val	Ile 280	Gln	Lys	Ala	Ile	Asp 285	Gly	Ile	Cys
35	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr
40	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
70	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
45	Lys	Lys	Arg	Gln 3 4 0	His	Thr	Lys	Leu	Gly 3 4 5	Asp	Trp	Gln	Phe	His 350	Asn	Pro
50	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	Asn 365	Thr	Asn	Asn
	Pro	Asp 370	Leu	Asp	Cys	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
55	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400

	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu
5	Lys	Asn	Thr	Asp 420	Ser	Ile	Leu	Phe	Thr 425	Tyr	Leu	Pro	Leu	Glu 430	Asn	Ala
10	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
	Leu	Glu 450	Cys	Leu	Gly	Asn	Phe 455	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
15	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 4 75	Gln	Leu	Asp	Asn	Gly 480
20	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
25	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	A sp 510	Pro	Arg
	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly
30	Gly	Phe 530	Gly	Glu	Ser	Cys	Tyr 535	Ser	Ala	Ser	Leu	Lys 540	Lys	Tyr	Val	Pro
35	Leu 545	Ser	Phe	Ser	Thr	Pro 550	Ser	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560
40	Met	Thr	Ile	Cys	Pro 565		Lys	Asp		Ser 570		Glu	Lys	Gly	Ile 575	
	Phe	Leu	Leu	As n 580	Pro	Asn	Leu	Thr	Glu 585	Gln	Gln	Thr	His	Tyr 590	Pro	Thr
45	Gly	Ile	Gly 595	Ala	Pro	Gly	Gln	Phe 600	Tyr	Ile	Gln	Tyr	His 605	Ser	Tyr	Asn
50	Asp	Ile 610	Phe	Pro	Leu	Leu	A la 615	Leu	Ala	His	Tyr	Ala 620	Lys	Lys	His	Ser
	Ser 625															
55	<210)> 7	7													

<211> 1878

<212> DNA

<400> 7

<213> Bacillus megaterium

5 60 gtgattattc tgctgaaaga ggttcagctg gagatccagc gtcgcatcgc ctatttacgc 120 ccgacccaga aaaatgacgg cagtttccgc tactgcttcg agaccggcgt gatgccggac gcctttctga ttatgctgct gcgtaccttc gacctggaca aagaagttct gattaagcag 180 10 ttaaccqaqc qcattqtqaq cctqcaqaac qaaqatqqtc tqtqqacact qtttqacqat 240 300 gaggagcaca acctgagtgc cacaatccag gcctataccg ccctgctgta cagcggctat taccagaaaa atgaccgcat cttacgtaag gccgaacgct acattatcga tagcggcggc 360 15 atcagccgtg cacatttcct gacccgttgg atgctgagcg ttaatggcct gtacgaatgg 420 ccgaagctgt tctacctgcc gttaagcctg ctgctggttc cgacctacgt gccgctgaac 480 20 ttttatgagc tgagcaccgc agcccgtatt cactttgttc cgatgatggt ggccggtaat 540 600 aaaaaattca gcttaaccag ccgccatacc cctagtctga gccacctgga tgtgcgtgaa 660 caaaaacagg agagtgaaga aaccacccag gagagccgcg caagcatctt cttagtggat 25 720 catctgaaac agctggccag cctgccgagt tacattcata agctgggcta ccaggcagca gaacgctata tgctggaacg catcgaaaag gacggcacac tgtacagtta cgccaccagc 780 acctttttta tgatttacgg cctgctggcc ctgggctaca aaaaggatag ctttgtgatt 840 30 900 cagaaagcaa ttgatggcat ttgtagtctg ctgagtacat gcagcggtca cgtgcacgtt gaaaacagta ccagcaccgt ttgggacacc gcactgctga gctatgccct gcaagaagca 960 1020 ggcgtgccgc agcaggaccc gatgattaag ggtaccaccc gttatctgaa gaaacgccag 35 catacaaaac tgggcgactg gcagtttcac aatccgaaca ccgcaccggg cggttggggc 1080 tttagcgaca ttaacaccaa caatcctgat ctggattgca ccagcgccgc aattcgtgca 1140 40 1200 ttaagccgcc gcgcccagac cgacacagat tacctggaaa gctggcagcg cggcatcaat 1260 tggctgctga gcatgcagaa caaggacggc ggctttgccg catttgaaaa gaacaccgat 1320 agtatectgt teacetacet geetetggaa aatgeaaagg atgeegeaac egateeggee 45 accgccgatt taaccggccg cqttttagaa tgcctgggta acttcgccgg catgaacaaa 1380 agccatccga gcattaaagc cgccgtgaaa tggctgttcg accaccagct ggataacggt 1440 agctqqtacq qtcqttqqqq cqtqtqctat atttacqqca cctqqqccqc aatcacaqqt 1500 50 ctgcgcgccg tgggtgttag tgccagcgat ccgcgtatca tcaaggcaat caactggctg 1560 aaaagcattc agcaagaaga tggtggcttt ggcgaaagct gctacagcgc cagcctgaaa 1620 aagtatgttc cgctgagttt cagcaccccg agtcagacag cctgggcact ggacgccctg 1680 55 atgaccattt gcccgttaaa ggatcagagc gttgaaaagg gcattaaatt cctgctgaat 1740

	ccgaacctga	cagagcaaca	gacacactat	ccgacaggca	ttggtctgcc	gggccagttc	1800
	tatattcagt	accacagcta	caatgatatc	tttcctttac	tggccctggc	ccactacgca	1860
5	aaaaagcata	gtagctaa					1878
10	<210> 8 <211> 1878 <212> DNA <213> Bacs	3 illus megate	erium				
	<400> 8	tgctgaaaga	ggttcagctg	gagatccagc	at cacat cac	ctatttaccc	60
		aaaatgacgg					120
15							180
		ttatgctgct					240
20		gcattgtgag					
		acctgagtgc					300
		atgaccgcat					360
25		cacatttcct					420
	ccgaagctgt	tctacctgcc	gttaagcctg	ctgctggttc	cgacctacgt	gccgctgaac	480
	ttttatgagc	tgagcaccta	tgcccgtatt	cactttgttc	cgatgatggt	ggccggtaat	540
30	aaaaaattca	gcttaaccag	ccgccatacc	cctagtctga	gccacctgga	tgtgcgtgaa	600
	caaaaacagg	agagtgaaga	aaccacccag	gagagccgcg	caagcatctt	cttagtggat	660
	catctgaaac	agctggccag	cctgccgagt	tacattcata	agctgggcta	ccaggcagca	720
35	gaacgctata	tgctggaacg	catcgaaaag	gacggcacac	tgtacagtta	cgccaccagc	780
	accttttta	tgatttacgg	cctgctggcc	ctgggctaca	aaaaggatag	ctttgtgatt	840
	cagaaagcaa	ttgatggcat	ttgtagtctg	ctgagtacat	gcagcggtca	cgtgcacgtt	900
40	gaaaacagta	ccagcaccgt	ttgggacacc	gcactgctga	gctatgccct	gcaagaagca	960
	ggcgtgccgc	agcaggaccc	gatgattaag	ggtaccaccc	gttatctgaa	gaaacgccag	1020
	catacaaaac	tgggcgactg	gcagtttcac	aatccgaaca	ccgcaccggg	cggttggggc	1080
45	tttagcgaca	ttaacaccaa	caatcctgat	ctggattgta	ccagcgccgc	aattcgtgca	1140
	ttaagccgcc	gcgcccagac	cgacacagat	tacctggaaa	gctggcagcg	cggcatcaat	1200
	tggctgctga	gcatgcagaa	caaggacggc	ggctttgccg	catttgaaaa	gaacaccgat	1260
50	agtatcctgt	tcacctacct	gcctctggaa	aatgcaaagg	atgccgcaac	cgatccggcc	1320
	accgccgatt	taaccggccg	cgttttagaa	tgcctgggta	acttcgccgg	catgaacaaa	1380
55	agccatccga	gcattaaagc	cgccgtgaaa	tggctgttcg	accaccagct	ggataacggt	1440
	agctggtacg	gtcgttgggg	cgtgtgctat	atttacggca	cctgggccgc	aatcacaggt	1500

	ctgcgcgccg	tgggtgttag t	gccagcgat ccgc	gtatca tcaaggo	eaat caactggctg 1560
	aaaagcattc	agcaagaaga t	ggtggcttt ggcg	gaaaget getacag	rege cageetgaaa 1620
5	aagtatgttc	cgctgagttt c	agcaccccg agto	agacag cctgggd	act ggacgccctg 1680
	atgaccattt	gcccgttaaa g	gatcagagc gttg	gaaaagg gcattaa	att cctgctgaat 1740
	ccgaacctga	cagagcaaca g	acacactat ccga	caggca ttggtgo	acc gggccagttc 1800
10	tatattcagt	accacagcta c	aatgatatc tttc	ctttac tggccct	ggc ccactacgca 1860
	aaaaagcata	gtagctaa			1878
15	<210> 9 <211> 625 <212> PRT <213> Baci	illus megater	ium		
00	<400> 9				
20	Met Ile Ile 1	e Leu Leu Lys 5		eu Glu Ile Glr .0	Arg Arg Ile 15
25	Ala Tyr Leu	a Arg Pro Thr 20	Gln Lys Asn A 25	asp Gly Ser Phe	Arg Tyr Cys 30
30	Phe Glu Thi	r Gly Val Met	Pro Asp Ala P	he Leu Ile Met 45	Leu Leu Arg
30	Thr Phe Asp	o Leu Asp Lys	Glu Val Leu I 55	le Lys Gln Leu 60	Thr Glu Arg
35	Ile Val Sei 65	r Leu Gln Asn 70	Glu Asp Gly I	eu Trp Thr Leu 75	Phe Asp Asp 80
40	Glu Glu His	s Asn Leu Ser 85		Sln Ala Tyr Thr 90	Ala Leu Leu 95
	Tyr Ser Gly	y Tyr Tyr Gln 100	Lys Asn Asp A	arg Ile Leu Arg	Lys Ala Glu 110
45	Arg Tyr Ile	-	Gly Gly Ile S	Ser Arg Ala His 125	
50	Arg Trp Met	: Leu Ser Val	Asn Gly Leu T 135	yr Glu Trp Pro	Lys Leu Phe
55	Tyr Leu Pro	o Leu Ser Leu 150		ro Thr Tyr Val	. Pro Leu Asn 160
55	Phe Tyr Glu	ı Leu Ser Thr	Tyr Ala Arg I	le His Phe Val	. Pro Met Met

					165					170					175	
5	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Le u 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
10	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
15	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
20	Glu	Arg	Tyr	Met	Leu 245	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser
0.5	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	Ile 265	Tyr	Gly	Leu	Leu	Ala 270	Leu	Gly
25	Tyr	Lys	Lys 275	Asp	Ser	Phe	Val	Ile 280	Gln	Lys	Ala	Ile	Asp 285	Gly	Ile	Cys
30	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr
35	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
40	Lys	Lys	Arg	Gln 340	His	Thr	Lys	Leu	Gly 345	Asp	Trp	Gln	Phe	His 350	Asn	Pro
45	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	Asn 365	Thr	Asn	Asn
50	Pro	Asp 370	Leu	Asp	Asp	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400
55	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu

	Lys	Asn	Thr	420	Ser	Ile	Leu	Phe	425	Tyr	Leu	Pro	Leu	430	Asn	Ala
5	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
10	Leu	Glu 4 50	Cys	Leu	Gly	Asn	Phe 455	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 475	Gln	Leu	Asp	Asn	Gly 480
15	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
20	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	Asp 510	Pro	Arg
25	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly
	Gly	Phe 530	Gly	Glu	Ser	Cys	Tyr 535	Ser	Ala	Ser	Leu	Lys 540	Lys	Tyr	Val	Pro
30	Leu 545	Ser	Phe	Ser	Thr	Pro 550	Ser	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560
35	Met	Thr	Ile	Cys	Pro 565	Leu	Lys	Asp	Gln	Ser 570	Val	Glu	Lys	Gly	Ile 575	Lys
40	Phe	Leu	Leu	A sn 580	Pro	Asn	Leu	Thr	Glu 585	Gln	Gln	Thr	His	Tyr 590	Pro	Thr
40	Gly	Ile	Gly 595	Ala	Pro	Gly	Gln	Phe 600	Tyr	Ile	Gln	Tyr	His 605	Ser	Tyr	Asn
45	Asp	Ile 610	Phe	Pro	Leu	Leu	Ala 615	Leu	Ala	His	Tyr	Ala 620	Lys	Lys	His	Ser
50	Ser 625															
	<210 <211 <212	.> 6 ?> E	.0 525 PRT	1		. a. •										
55	<213		.0	LIUS	mega	.cer1	. uiii									

	Met 1	Ile	Ile	Leu	Leu 5	Lys	Glu	Val	Gln	Leu 10	Glu	Ile	Gln	Arg	Arg 15	Ile
5	Ala	Tyr	Leu	Arg 20	Pro	Thr	Gln	Lys	Asn 25	Asp	Gly	Ser	Phe	Arg 30	Tyr	Cys
10	Phe	Glu	Thr 35	Gly	Val	Met	Pro	Asp 40	Ala	Phe	Leu	Ile	Met 45	Leu	Leu	Arg
	Thr	Phe 50	Asp	Leu	Asp	Lys	Glu 55	Val	Leu	Ile	Lys	Gln 60	Leu	Thr	Glu	Arg
15	Ile 65	Val	Ser	Leu	Gln	Asn 70	Glu	Asp	Gly	Leu	Trp 75	Thr	Leu	Phe	Asp	Asp 80
20	Glu	Glu	His	Asn	Leu 85	Ser	Ala	Thr	Ile	Gln 90	Ala	Tyr	Thr	Ala	Leu 95	Leu
25	Tyr	Ser	Gly	Tyr 100	Tyr	Gln	Lys	Asn	Asp 105	Arg	Ile	Leu	Arg	Lys 110	Ala	Glu
	Arg	Tyr	Ile 115	Ile	Asp	Ser	Gly	Gly 120	Ile	Ser	Arg	Ala	His 125	Phe	Leu	Thr
30	Arg	Trp 130	Met	Leu	Ser	Val	Asn 135	Gly	Leu	Tyr	Glu	Trp 140	Pro	Lys	Leu	Phe
35	Tyr 145	Leu	Pro	Leu	Ser	Leu 150	Leu	Leu	Val	Pro	Thr 155	Tyr	Val	Pro	Leu	Asn 160
40	Phe	Tyr	Glu	Leu	Ser 165	Thr	Tyr	Ala	Arg	Ile 170	His	Phe	Val	Pro	Met 175	Met
70	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Leu 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
45	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
50	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
55	Glu	Arg	Tyr	Met	Leu 2 4 5	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser

	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	Ile 265	Tyr	Gly	Leu	Leu	Ala 270	Leu	Gly
5	Tyr	Lys	Lys 275	Asp	Ser	Phe	Val	Ile 280	Gln	Lys	Ala	Ile	Asp 285	Gly	Ile	Cys
10	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr
	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
15	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
20	Lys	Lys	Arg	Gln 340	His	Thr	Lys	Leu	Gly 345	Asp	Trp	Gln	Phe	His 350	Asn	Pro
25	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	Asn 365	Thr	Asn	Asn
	Pro	Asp 370	Leu	Asp	Asp	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
30	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400
35	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu
40	Lys	Asn	Thr	Asp 420	Ser	Ile	Leu	Phe	Thr 425	Tyr	Leu	Pro	Leu	Glu 430	Asn	Ala
40	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
45	Leu	Glu 450	Cys	Leu	Gly	Asn	Phe 455	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
50	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 475	Gln	Leu	Asp	Asn	Gly 480
	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
55	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	Asp 510	Pro	Arg

	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly		
5	Gly	Phe 530	Gly	Glu	Ser	Cys	Tyr 535	Ser	Ala	Ser	Leu	Lys 540	Lys	Tyr	Val	Pro		
10	Leu 545	Ser	Phe	Ser	Thr	Pro 550	Ser	Gln	Thr	Ala	Trp 555	Ala	Leu	Asp	Ala	Leu 560		
	Met	Thr	Ile	Cys	Pro 565	Leu	Lys	Asp	Gln	Ser 570	Val	Glu	Lys	Gly	Ile 575	Lys		
15	Phe	Leu	Leu	A sn 580	Pro	Asn	Leu	Thr	Glu 585	Gln	Gln	Thr	His	Tyr 590	Pro	Thr		
20	Gly	Ile	Gly 595	Phe	Pro	Gly	Gln	Phe 600	Tyr	Ile	Gln	Tyr	His 605	Ser	Tyr	Asn		
25	Asp	Ile 610	Phe	Pro	Leu	Leu	A la 615	Leu	Ala	His	Tyr	Ala 620	Lys	Lys	His	Ser		
	Ser 625																	
30	<210 <211 <212 <213	L> 1 2> I	11 1878 ONA Baci	llus	mega	nteri	Lum											
35	<400 gtga		11 tc 1	tgcto	gaaag	ja go	gttca	ıgcto	g gag	gated	cagc	gtc	gcato	ege (ctatt	tacgc		60
	ccga	accca	aga a	aaaat	gaco	g ca	agttt	ccg	tac	etget	tcg	agad	ccggo	gt (gatgo	cggac	1	20
40	gcct	ttct	ga 1	ttato	getge	t go	gtac	ectto	gad	ectgo	gaca	aaga	aagtt	ct (gatta	agcag	1	80
	ttaa	accga	agc (gcatt	gtga	g co	etgea	agaad	gaa	agato	ggtc	tgtg	ggaca	act q	gttt	gacgat	2	40
	gag	gagca	aca a	accto	gagto	ic ca	caat	ccag	g gcc	ctata	accg	ccct	gcto	gta d	cagco	gctat	3	00
45	taco	cagaa	aaa a	atgad	ccgca	ıt ct	tace	gtaag	g gcc	cgaac	egct	acat	tato	ega 1	tagco	igegge	3	60
	atca	agcc	gtg (cacat	ttcc	et ga	cccg	gttgg	, ato	gctga	agcg	ttaa	atggo	ect o	gtacq	gaatgg	4	20
	ccga	aagct	igt 1	tctac	cctgo	ec gt	taaç	geete	gcto	getge	gttc	cgad	cctac	gt q	gccg	tgaac	4	80
50	tttt	atga	agc 1	tgago	cacct	a to	jecec	gtatt	cac	ettte	gttc	cgat	gato	gt d	ggcc	gtaat	5	40
	aaaa	aaatt	ca (gctta	aacca	ig co	gcca	ataco	cct	agto	ctga	gcca	accto	gga 1	tgtgd	gtgaa	6	00
55	caaa	aaaca	agg a	agagt	gaag	ja aa	accad	ccaç	g gag	gaged	egeg	caaç	gcato	ett d	cttag	gtggat	6	60
	cato	ctgaa	aac a	agcto	ggcca	g co	etgeo	gagt	tac	catto	cata	agct	ggg	ta d	ccago	gcagca	7	20

	gaacgctata	tgctggaacg	catcgaaaag	gacggcacac	tgtacagtta	cgccaccagc	780
	accttttta	tgatttacgg	cctgctggcc	ctgggctaca	aaaaggatag	ctttgtgatt	840
5	cagaaagcaa	ttgatggcat	ttgtagtctg	ctgagtacat	gcagcggtca	cgtgcacgtt	900
	gaaaacagta	ccagcaccgt	ttgggacacc	gcactgctga	gctatgccct	gcaagaagca	960
	ggcgtgccgc	agcaggaccc	gatgattaag	ggtaccaccc	gttatctgaa	gaaacgccag	1020
10	catacaaaac	tgggcgactg	gcagtttcac	aatccgaaca	ccgcaccggg	cggttggggc	1080
	tttagcgaca	ttaacaccaa	caatcctgat	ctggatgata	ccagcgccgc	aattcgtgca	1140
4.5	ttaagccgcc	gcgcccagac	cgacacagat	tacctggaaa	gctggcagcg	cggcatcaat	1200
15	tggctgctga	gcatgcagaa	caaggacggc	ggctttgccg	catttgaaaa	gaacaccgat	1260
	agtatcctgt	tcacctacct	gcctctggaa	aatgcaaagg	atgccgcaac	cgatccggcc	1320
20	accgccgatt	taaccggccg	cgttttagaa	tgcctgggta	acttcgccgg	catgaacaaa	1380
	agccatccga	gcattaaagc	cgccgtgaaa	tggctgttcg	accaccagct	ggataacggt	1440
	agctggtacg	gtcgttgggg	cgtgtgctat	atttacggca	cctgggccgc	aatcacaggt	1500
25	ctgcgcgccg	tgggtgttag	tgccagcgat	ccgcgtatca	tcaaggcaat	caactggctg	1560
	aaaagcattc	agcaagaaga	tggtggcttt	ggcgaaagct	gctacagcgc	cagcctgaaa	1620
	aagtatgttc	cgctgagttt	cagcaccccg	agtcagacag	cctgggcact	ggacgccctg	1680
30	atgaccattt	gcccgttaaa	ggatcagagc	gttgaaaagg	gcattaaatt	cctgctgaat	1740
	ccgaacctga	cagagcaaca	gacacactat	ccgacaggca	ttggtgcacc	gggccagttc	1800
	tatattcagt	accacagcta	caatgatatc	tttcctttac	tggccctggc	ccactacgca	1860
35	aaaaagcata	gtagctaa					1878
40	<210> 12 <211> 1878 <212> DNA <213> Baci	3 illus megate	erium				
	<400> 12	tactassas	aatt caacta	gagatccagc	at cacet cac	ctatttaccc	60
45						gatgccggac	120
						gattaagcag	180
				gaagatggtc			240
50				gcctataccg			300
							360
				atgctgagcg		tagcggcggc	420
55						qccqctqaac	480

	ttttatgagc	tgagcaccta	tgcccgtatt	cactttgttc	cgatgatggt	ggccggtaat	540
	aaaaaattca	gcttaaccag	ccgccatacc	cctagtctga	gccacctgga	tgtgcgtgaa	600
5	caaaaacagg	agagtgaaga	aaccacccag	gagagccgcg	caagcatctt	cttagtggat	660
	catctgaaac	agctggccag	cctgccgagt	tacattcata	agctgggcta	ccaggcagca	720
	gaacgctata	tgctggaacg	catcgaaaag	gacggcacac	tgtacagtta	cgccaccagc	780
10	accttttta	tgatttacgg	cctgctggcc	ctgggctaca	aaaaggatag	ctttgtgatt	840
	cagaaagcaa	ttgatggcat	ttgtagtctg	ctgagtacat	gcagcggtca	cgtgcacgtt	900
15	gaaaacagta	ccagcaccgt	ttgggacacc	gcactgctga	gctatgccct	gcaagaagca	960
.5	ggcgtgccgc	agcaggaccc	gatgattaag	ggtaccaccc	gttatctgaa	gaaacgccag	1020
	catacaaaac	tgggcgactg	gcagtttcac	aatccgaaca	ccgcaccggg	cggttggggc	1080
20	tttagcgaca	ttaacaccaa	caatcctgat	ctggatgata	ccagcgccgc	aattcgtgca	1140
	ttaagccgcc	gcgcccagac	cgacacagat	tacctggaaa	gctggcagcg	cggcatcaat	1200
	tggctgctga	gcatgcagaa	caaggacggc	ggctttgccg	catttgaaaa	gaacaccgat	1260
25	agtatcctgt	tcacctacct	gcctctggaa	aatgcaaagg	atgccgcaac	cgatccggcc	1320
	accgccgatt	taaccggccg	cgttttagaa	tgcctgggta	acttcgccgg	catgaacaaa	1380
	agccatccga	gcattaaagc	cgccgtgaaa	tggctgttcg	accaccaget	ggataacggt	1440
30	agctggtacg	gtcgttgggg	cgtgtgctat	atttacggca	cctgggccgc	aatcacaggt	1500
	ctgcgcgccg	tgggtgttag	tgccagcgat	ccgcgtatca	tcaaggcaat	caactggctg	1560
35	aaaagcattc	agcaagaaga	tggtggcttt	ggcgaaagct	gctacagcgc	cagcctgaaa	1620
,5	aagtatgttc	cgctgagttt	cagcaccccg	agtcagacag	cctgggcact	ggacgccctg	1680
	atgaccattt	gcccgttaaa	ggatcagagc	gttgaaaagg	gcattaaatt	cctgctgaat	1740
10	ccgaacctga	cagagcaaca	gacacactat	ccgacaggca	ttggttttcc	gggccagttc	1800
	tatattcagt	accacagcta	caatgatatc	tttcctttac	tggccctggc	ccactacgca	1860
	aaaaagcata	gtagctaa					1878

<210> 13 <211> 625 <212> PRT <213> Bacillus megaterium

50 <400> 13

Met Ile Ile Leu Leu Lys Glu Val Gln Leu Glu Ile Gln Arg Arg Ile

55 Ala Tyr Leu Arg Pro Thr Gln Lys Asn Asp Gly Ser Phe Arg Tyr Cys 20 25 30

	Pne	GIU	35	GIY	vai	Met	PIO	40	Ald	Pne	Leu	116	45	Leu	reu	Arg
5	Thr	Phe 50	Asp	Leu	Asp	Lys	Glu 55	Val	Leu	Ile	Lys	Gln 60	Leu	Thr	Glu	Arg
10	Ile 65	Val	Ser	Leu	Gln	Asn 70	Glu	Asp	Gly	Leu	Trp 75	Thr	Leu	Phe	Asp	As p 80
	Glu	Glu	His	Asn	Leu 85	Ser	Ala	Thr	Ile	Gln 90	Ala	Tyr	Thr	Ala	Leu 95	Leu
15	Tyr	Ser	Gly	Tyr 100	Tyr	Gln	Lys	Asn	Asp 105	Arg	Ile	Leu	Arg	Lys 110	Ala	Glu
20	Arg	Tyr	Ile 115	Ile	Asp	Ser	Gly	Gly 120	Ile	Ser	Arg	Ala	His 125	Phe	Leu	Thr
25	Arg	Trp 130	Met	Leu	Ser	Val	Asn 135	Gly	Leu	Tyr	Glu	Trp 140	Pro	Lys	Leu	Phe
	Tyr 145	Leu	Pro	Leu	Ser	Leu 150	Leu	Leu	Val	Pro	Thr 155	Tyr	Val	Pro	Leu	Asn 160
30	Phe	Tyr	Glu	Leu	Ser 165	Thr	Tyr	Ala	Arg	Ile 170	His	Phe	Val	Pro	Met 175	Met
35	Val	Ala	Gly	Asn 180	Lys	Lys	Phe	Ser	Leu 185	Thr	Ser	Arg	His	Thr 190	Pro	Ser
40	Leu	Ser	His 195	Leu	Asp	Val	Arg	Glu 200	Gln	Lys	Gln	Glu	Ser 205	Glu	Glu	Thr
	Thr	Gln 210	Glu	Ser	Arg	Ala	Ser 215	Ile	Phe	Leu	Val	Asp 220	His	Leu	Lys	Gln
45	Leu 225	Ala	Ser	Leu	Pro	Ser 230	Tyr	Ile	His	Lys	Leu 235	Gly	Tyr	Gln	Ala	Ala 240
50	Glu	Arg	Tyr	Met	Leu 245	Glu	Arg	Ile	Glu	Lys 250	Asp	Gly	Thr	Leu	Tyr 255	Ser
55	Tyr	Ala	Thr	Ser 260	Thr	Phe	Phe	Met	11e 265	Tyr	Gly	Leu	Leu	Ala 270	Leu	Gly
.	Tyr	Lys	Lys	Asp	Ser	Phe	Val	Ile	Gln	Lys	Ala	Ile	Asp	Gly	Ile	Cys

5	Ser	Leu 290	Leu	Ser	Thr	Cys	Ser 295	Gly	His	Val	His	Val 300	Glu	Asn	Ser	Thr
10	Ser 305	Thr	Val	Trp	Asp	Thr 310	Ala	Leu	Leu	Ser	Tyr 315	Ala	Leu	Gln	Glu	Ala 320
	Gly	Val	Pro	Gln	Gln 325	Asp	Pro	Met	Ile	Lys 330	Gly	Thr	Thr	Arg	Tyr 335	Leu
15	Lys	Lys	Arg	Gln 340	His	Thr	Lys	Leu	Gly 3 4 5	Asp	Trp	Gln	Phe	His 350	Asn	Pro
20	Asn	Thr	Ala 355	Pro	Gly	Gly	Trp	Gly 360	Phe	Ser	Asp	Ile	As n 365	Thr	Asn	Asn
25	Pro	Asp 370	Leu	Asp	Asp	Thr	Ser 375	Ala	Ala	Ile	Arg	Ala 380	Leu	Ser	Arg	Arg
20	Ala 385	Gln	Thr	Asp	Thr	Asp 390	Tyr	Leu	Glu	Ser	Trp 395	Gln	Arg	Gly	Ile	Asn 400
30	Trp	Leu	Leu	Ser	Met 405	Gln	Asn	Lys	Asp	Gly 410	Gly	Phe	Ala	Ala	Phe 415	Glu
35	Lys	Asn	Thr	Asp 420	Ser	Ile	Leu	Phe	Thr 425	Tyr	Leu	Pro	Leu	Glu 430	Asn	Ala
40	Lys	Asp	Ala 435	Ala	Thr	Asp	Pro	Ala 440	Thr	Ala	Asp	Leu	Thr 445	Gly	Arg	Val
40	Leu	Glu 450	Cys	Leu	Gly	Asn	Phe 455	Ala	Gly	Met	Asn	Lys 460	Ser	His	Pro	Ser
45	Ile 465	Lys	Ala	Ala	Val	Lys 470	Trp	Leu	Phe	Asp	His 475	Gln	Leu	Asp	Asn	Gly 480
50	Ser	Trp	Tyr	Gly	Arg 485	Trp	Gly	Val	Cys	Tyr 490	Ile	Tyr	Gly	Thr	Trp 495	Ala
	Ala	Ile	Thr	Gly 500	Leu	Arg	Ala	Val	Gly 505	Val	Ser	Ala	Ser	Asp 510	Pro	Arg
55	Ile	Ile	Lys 515	Ala	Ile	Asn	Trp	Leu 520	Lys	Ser	Ile	Gln	Gln 525	Glu	Asp	Gly

	Gly Phe Gly Glu Ser Cys Tyr Ser Ala Ser Leu Lys 530 535 540	
5	Leu Ser Phe Ser Thr Pro Ser Gln Thr Ala Trp Ala 545 555	a Leu Asp Ala Leu 560
10	Met Thr Ile Cys Pro Leu Lys Asp Gln Ser Val Glu 565 570	u Lys Gly Ile Lys 575
	Phe Leu Leu Asn Pro Asn Leu Thr Glu Gln Gln Thi 580 585	r His Tyr Pro Thr 590
15	Gly Ile Gly Val Pro Gly Gln Phe Tyr Ile Gln Tyr 595 600	r His Ser Tyr Asn 605
20	Asp Ile Phe Pro Leu Leu Ala Leu Ala His Tyr Ala 610 615 620	
	Ser 625	
25	<210> 14 <211> 1878 <212> DNA <213> Bacillus megaterium	
30	<400> 14 gtgattattc tgctgaaaga ggttcagctg gagatccagc gto	cgcatcgc ctatttacgc 60
	ccgacccaga aaaatgacgg cagtttccgc tactgcttcg aga	accggcgt gatgccggac 120
35	geetttetga ttatgetget gegtaeette gaeetggaea aag	gaagttct gattaagcag 180
	ttaaccgagc gcattgtgag cctgcagaac gaagatggtc tgt	tggacact gtttgacgat 240
	gaggagcaca acctgagtgc cacaatccag gcctataccg ccc	ctgctgta cagcggctat 300
40	taccagaaaa atgaccgcat cttacgtaag gccgaacgct aca	attatcga tagcggcggc 360
	atcagccgtg cacatttcct gacccgttgg atgctgagcg tta	aatggcct gtacgaatgg 420
45	ccgaagctgt tctacctgcc gttaagcctg ctgctggttc cga	acctacgt gccgctgaac 480
	ttttatgagc tgagcaccta tgcccgtatt cactttgttc cga	atgatggt ggccggtaat 540
	aaaaaattca gcttaaccag ccgccatacc cctagtctga gcc	cacctgga tgtgcgtgaa 600
50	caaaaacagg agagtgaaga aaccacccag gagagccgcg caa	
	catctgaaac agctggccag cctgccgagt tacattcata ago	
	gaacgctata tgctggaacg catcgaaaag gacggcacac tgt	
55	accttttta tgatttacgg cctgctggcc ctgggctaca aaa	
	cagaaagcaa ttgatggcat ttgtagtctg ctgagtacat gca	agcggtca cgtgcacgtt 900

	gaaaacagta	ccagcaccgt	ttgggacacc	gcactgctga	gctatgccct	gcaagaagca	960
	ggcgtgccgc	agcaggaccc	gatgattaag	ggtaccaccc	gttatctgaa	gaaacgccag	1020
5	catacaaaac	tgggcgactg	gcagtttcac	aatccgaaca	ccgcaccggg	cggttggggc	1080
	tttagcgaca	ttaacaccaa	caatcctgat	ctggatgata	ccagcgccgc	aattcgtgca	1140
10	ttaagccgcc	gcgcccagac	cgacacagat	tacctggaaa	gctggcagcg	cggcatcaat	1200
	tggctgctga	gcatgcagaa	caaggacggc	ggctttgccg	catttgaaaa	gaacaccgat	1260
	agtatcctgt	tcacctacct	gcctctggaa	aatgcaaagg	atgccgcaac	cgatccggcc	1320
15	accgccgatt	taaccggccg	cgttttagaa	tgcctgggta	acttcgccgg	catgaacaaa	1380
	agccatccga	gcattaaagc	cgccgtgaaa	tggctgttcg	accaccagct	ggataacggt	1440
	agctggtacg	gtcgttgggg	cgtgtgctat	atttacggca	cctgggccgc	aatcacaggt	1500
20	ctgcgcgccg	tgggtgttag	tgccagcgat	ccgcgtatca	tcaaggcaat	caactggctg	1560
	aaaagcattc	agcaagaaga	tggtggcttt	ggcgaaagct	gctacagcgc	cagcctgaaa	1620
25	aagtatgttc	cgctgagttt	cagcaccccg	agtcagacag	cctgggcact	ggacgccctg	1680
	atgaccattt	gcccgttaaa	ggatcagagc	gttgaaaagg	gcattaaatt	cctgctgaat	1740
	ccgaacctga	cagagcaaca	gacacactat	ccgacaggca	ttggtgttcc	gggccagttc	1800
30	tatattcagt	accacagcta	caatgatatc	tttcctttac	tggccctggc	ccactacgca	1860
	aaaaagcata	gtagctaa					1878

Claims

35

40

45

50

- **1.** A mutated tetraprenyl-β-curcumene cyclase wherein
 - (1) a 4th amino acid residue of a DXDD motif, aspartic acid, is substituted with an amino acid other than aspartic acid, and
 - (2) an amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with an amino acid other than tyrosine, or a 4th amino acid of the GXGX(G/A/P) motif is substituted with an amino acid other than leucine.
 - (a) having a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, an (A/S/G)RX(H/N)XXP motif at a position separated by 180 to 250 amino acid residues on the N-terminal side, a QXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif,
 - (b) having 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and
 - (c) exhibiting ambrein production activity using squalene as a substrate.
- **2.** The mutated tetraprenyl-β-curcumene cyclase according to claim 1, not having a QXXXGXW motif at a position separated by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif.

3. The mutated tetraprenyl-β-curcumene cyclase according to claim 1 or 2, wherein a polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase is

5

10

15

20

25

30

35

40

45

50

- (1) a polypeptide wherein aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine,
- (2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate.
- (3) a polypeptide having 40% or more identity with the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate,
- (4) a polypeptide comprising the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate,
- (5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate, or
- (6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acids sequence in which aspartic acid at position 373 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than aspartic acid; and tyrosine at position 167 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than tyrosine, or leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using squalene as a substrate.
- **4.** The mutated tetraprenyl-β-curcumene cyclase according to any one of claims 1 to 3, wherein the 4th amino acid residue of a DXDD motif is substituted with cysteine or glycine from aspartic acid, and the amino acid adjacent to the N-terminus of an (A/S/G)RX(H/N)XXP motif is substituted with alanine or glycine from tyrosine, or the 4th amino acid of the GXGX(G/A/P) motif is substituted with alanine or phenylalanine from leucine.
- **5.** A mutated tetraprenyl-β-curcumene cyclase having DXDD motif wherein a 4th amino acid of the GXGX(G/A/P) motif is an amino acid other than leucine, glycine or proline,
 - (a) having a QXXXGX(W/F) motif at a position separated by 100 amino acid residues or more on the N-terminal side, a QXXXXX(G/A/S)X(F/W/Y) motif at a position separated by 10 to 50 amino acids residues on the N-terminal side, a QXXXGX(F/W/Y) motif at a position separated by 20 to 50 amino acid residues on the C-terminal side, a QXXXGXW motif at a position separated by 50 to 120 amino acid residues on the C-terminal side, a QXXXGX(F/W) motif at a position separated by 120 to 170 amino acid residues on the C-terminal side, and a GXGX(G/A/P) motif at a position separated by 180 to 250 amino acid residues on the C-terminal side, with respect to the DXDD motif,
 - (b) having 40% or more identity with the amino acid sequence of SEQ ID NO: 1, and
 - (c) exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate.

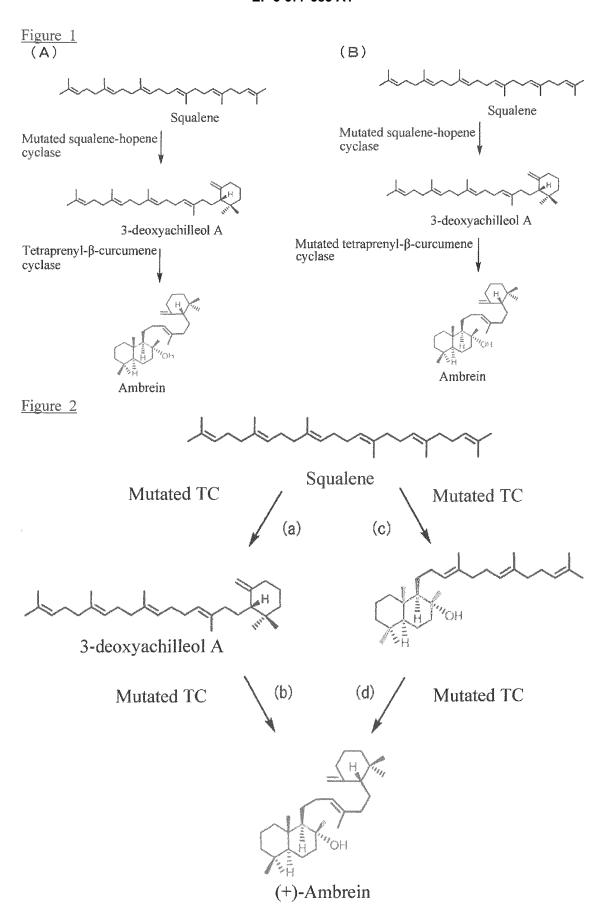
- **6.** The mutated tetraprenyl-β-curcumene cyclase according to claim 5, not having a QXXXGXW motif at a position separated by 170 amino acid residues or more on the C-terminal side, with respect to the DXDD motif.
- **7.** The mutated tetraprenyl-β-curcumene cyclase according to claim 5 or 6, wherein a polypeptide constituting the mutated tetraprenyl-β-curcumene cyclase is
 - (1) a polypeptide wherein leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine,
 - (2) a polypeptide wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,
 - (3) a polypeptide having 40% or more identity with the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,
 - (4) a polypeptide comprising the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate,
 - (5) a polypeptide comprising the amino acid sequence wherein one or plural amino acids are deleted, substituted, inserted and/or added in the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate, or
 - (6) a polypeptide comprising an amino acid sequence having 40% or more identity with the amino acid sequence in which leucine at position 596 from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than leucine, and exhibiting ambrein production activity using 3-deoxyachilleol A as a substrate.
 - **8.** The mutated tetraprenyl-β-curcumene cyclase according to any one of claims 5 to 7, wherein the 4th amino acid of the GXGX(G/A/P) motif is alanine or phenylalanine.
 - 9. A polynucleotide encoding the mutated tetraprenyl-β-curcumene cyclase according to any one of claims 1 to 8.
 - 10. A microorganism having the polynucleotide according to claim 9.
- 11. A vector comprising a DNA having the polynucleotide according to claim 9.
 - **12.** A transformant having the vector according to claim 11.

5

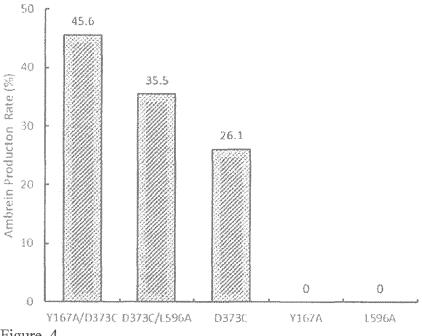
10

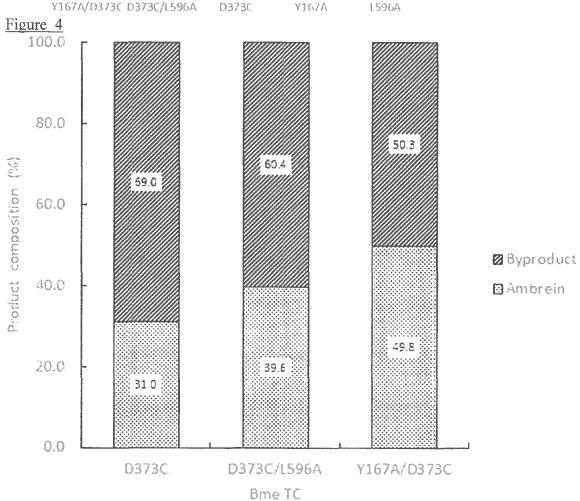
15

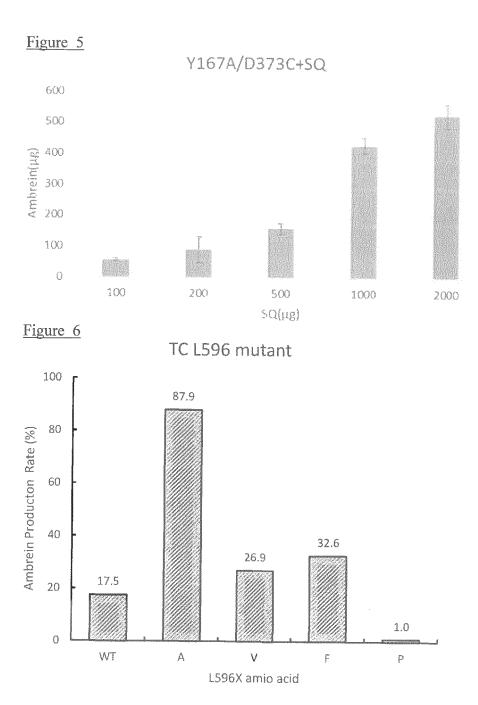
20


25

30


50


55


- **13.** A method for preparing ambrein **characterized by** bringing into contact the mutated tetraprenyl-β-curcumene cyclase according to any one of claims 1 to 4 with squalene, to obtain ambrein.
 - **14.** A method for preparing ambrein **characterized by** bringing into contact the mutated tetraprenyl-β-curcumene cyclase according to any one of claims 5 to 8 with 3-deoxyachilleol A, to obtain ambrein.
- **15.** A method for preparing ambrein **characterized by** culturing the microorganism according claim 10, or the transformant according to claim 12.

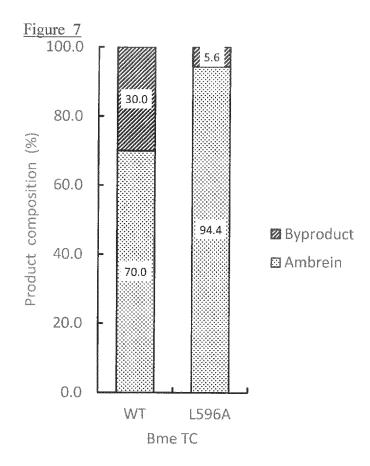


Figure 8								
WildType	1	MIILLKEVQL	EIQRRIAYLR	PTQKNDGSFR	YCFETGVMPD	AFLIMLLRTF	DLDKEVLIKQ	60
Y167A/D373C	1	MIILLKEVQL	EIQRRIAYLR	PTQKNDGSFR	YCFETGVMPD	AFLIMLLRTF	DLDKEVLIKQ	60
D373C/L596A	1	MIILLKEVOL	EIQRRIAYLR	PTQKNDGSFR	YCFETGVMPD	AFLIMLLRTF	DLDKEVLIKQ	60
WildType							AERYIIDSGG	
Y167A/D373C							AERYIIDSGG	
D373C/L596A	61	LTERIVSLQN	EDGLWTLFDD	EEHNLSATIQ	AYTALLYSGY	YQKNDRILRK	AERY I I DSGG	120
						para l		
WildType							HFVPMMVAGN	
Y167A/D373C						kond		
D373C/L596A	121	ISRAHFLTRW	MLSVNGLYEW	PKLFYLPLSL	LLVPTYVPLN	FYELSTYARI	HFVPMMVAGN	180
WildType								
Y167A/D373C								
D373C/L596A	181	KKFSLTSRHT	PSLSHLDVRE	QKQESEETTQ	ESRASIFLVD	HLKQLASLPS	YIHKLGYQAA	240
WildType							LSTCSGHVHV	
Y167A/D373C								
D373C/L596A	241	ERYMLERIEK	DGTLYSYATS	TFFMIYGLLA	LGYKKDSFVI	QKAIDGICSL	LSTCSGHVHV	300
tar * e ***	004	FLIATATIMAT	41100411054	01/2002224	ATTOWN 1/1/0A	UTIVI ABWACII	NONE ADOQUIA	0.00
WildType							NPNTAPGGWG	
Y167A/D373C								
D373C/L596A	301	EM2121AMD1	ALLSTALUEA	GVPQQDPMIK	GIIKTLKKKU	HIVEONMALU	NENTAPadwa	300
WildTune	261	COLLITATION	DOTCALIDA	LCDDAOTDTD	VIECHODOTAL	MILL CHONINDS	GFAAFEKNTD	420
WildType			lored					
Y167A/D373C								
D373C/L596A	301	FSDININNPD	LDGISAAIRA	LSKRAQIDID	YLESWURGIN	WLLSMUNKUG	GFAAFEKNID	420
W: Latt	401	CHETVIDLE	MANDAATODA	TADI TODULE	OL CHE LOWNIN	CHDCINAAVIN	WI EDILOI DAIO	400
WildType Y167A/D373C							WLFDHQLDNG	
D373C/L596A						-		
D3/36/E390A	421	SILFITLE	NANDAATDEA	IAULIGRALE	OLUNFAUMIN	SULSTRWAN	MELDUGEDING	40V
WildType	1 21	CMACDMCACA	IVGTWAAITG	LDAVGVSASD	DDITKATNWI	KSIONEDGGE	GEGGAGYGI K	5/0
Y167A/D373C								
D373C/L596A								
50100, E000II	101	on rannaro.	2 1 43 111 11 14 1 14	21017 0107100	1 114 414 42 1811	ito i dalpadi	acoo. Onoci	010
WildType	541	KYVPLSFSTP	SQTAWAL DAI	MTICPLKDOS	VEKGIKFLI N	PNLTEOOTHY	PTG1G PGOF	600
Y167A/D373C							Second	
D373C/L596A							i	
	U 11	and and make		a wr this way	* no. 1 *** 5 * 5 * 5 * 5 * 5 * 6 * 6 * 6 * 6 *	2 - 15m 1 5m VENT 1 8 1 1		000
WildType	601	YIQYHSYNDI	FPLLALAHYA	KKHSS				625
Y167A/D373C								625
D373C/L596A								625
,								

Figure 9)							
WildType	-	MIILLKEVQL	FIORRIAYIR	PTOKNOGSER	YCFETGVMPD	AFI IMILIRTE	DLDKEVLIKO	60
L596A		MIILLKEVQL						60
L596F		MIILLKEVQL						60
L596V		MIILLKEVQL						60
WildType	61	LTERIVSLQN	EDGLWTLFDD	EEHNLSATIQ	AYTALLYSGY	YQKNDRILRK	AERYIIDSGG	120
L596A		LTERIVSLON						
L596F		LTERIVSLON						
L596V	61	LTERIVSLON	EDGLWTLFDD	EEHNLSATIQ	AYTALLYSGY	YOKNDRILRK	AERYIIDSGG	120
W: LJT	101	ISRAHFLTRW	M COMOLVEN	DVI EVI DI CI	LLUDTVVDLM	EVELOTVADI	IITY/DUMN/A/M	100
L596A		ISRAHFLTRW						
L596F		ISRAHFLTRW						
L596V		ISRAHFLTRW						
20007		2 O 11 W 11 11 11 11 11 11 11 11 11 11 11 1	meo moe rem	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Laka II I I I I I I I I	1 1	111 11 111011111111	
WildType	181	KKFSLTSRHT	PSLSHLDVRE	QKQESEETTQ	ESRAS IFLVD	HLKQLASLPS	YIHKLGYQAA	240
L596A	181	KKFSLTSRHT	PSLSHLDVRE	QKQESEETTQ	ESRASIFLVD	HLKQLASLPS	YIHKLGYQAA	240
L596F	181	KKFSLTSRHT	PSLSHLDVRE	QKQESEETTQ	ESRASIFLVD	${\tt HLKQLASLPS}$	YIHKLGYQAA	240
L596V	181	KKFSLTSRHT	PSLSHLDVRE	QKQESEETTQ	ESRAS IFLVD	HLKQLASLPS	YIHKLGYQAA	240
	0.14		DOT: NOW. TO			01/44004004		
		ERYMLERIEK						
L596A		ERYMLERIEK ERYMLERIEK						
L596F L596V		ERYMLERIEK ERYMLERIEK						
L390V	241	EKIMIEKIEK	DUILISIMIS	IFFMIIGLLA	FRIKKDOLAT	UNATUGIOSE	LOTOGULATIA	300
WildType	301	ENSTSTVWDT	ALLSYALQEA	GVPQQDPMIK	GTTRYLKKRQ	HTKLGDWQFH	NPNTAPGGWG	360
L596A		ENSTSTVWDT						
L596F	301	ENSTSTVWDT	ALLSYALQEA	GVPQQDPMIK	GTTRYLKKRQ	HTKLGDWQFH	NPNTAPGGWG	360
L596V	301	ENSTSTYWDT	ALLSYALQEA	GVPQQDPMIK	GTTRYLKKRQ	HTKLGDWQFH	NPNTAPGGWG	360
_								
		FSD1NTNNPD						
L596A		FSDINTNNPD						
L596F L596V		FSDINTNNPD FSDINTNNPD						
F330A	301	LOUINIMED	LUUISAAIKA	LOUVARIDID	IFESARVATA	MLTOMAINUDA	GLYALEVIID	420
WildType	421	SILFTYLPLE	NAKDAATDPA	TADI TGRVI F	CI GNEAGMNK	SHPSIKAAVK	WI FDHOI DNG	480
L596A		SILFTYLPLE						
L596F		SILFTYLPLE						
L596V	421	SILFTYLPLE	NAKDAATDPA	TADLTGRVLE	CLGNFAGMNK	SHPSIKAAVK	WLFDHQLDNG	480
		SWYGRWGVCY						
L596A		SWYGRWGVCY						
L596F		SWYGRWGVCY						
L596V	481	SWYGRWGVCY	TYGIWAATIG	LKAVGVSASD	PRIIKAINWL	KSTUQEDGGF	GESCYSASLK	540
WildTyne	5/1	KYVPLSFSTP	SOTAWAI DAI	MITICAL KUUS	VEKGIKELLN	PNI TEONTHY	PTGIGEPGOF	600
L596A		KYVPLSFSTP						
L596F		KYVPLSFSTP					jeend.	
L596V		KYVPLSFSTP					hand	
LOUGE	U-11	NITI LUI UII	OGIANALVAL	miivi Livudo	ATINITIA TTIA	3 24TT TOTAL	u. u. u. u. u.	UUU
WildType	601	YIQYHSYNDI	FPLLALAHYA	KKHSS				625
L596A		YIQYHSYNDI						625
L596F	601	YIQYHSYNDI	FPLLALAHYA	KKHSS				625
L596V	601	YIQYHSYNDI	FPLLALAHYA	KKHSS				625

Elauma 1	Λ 1							
Figure 1 ADF38987		MIILLKE	VQLEIQRRIA	YLRPTOKNOG	SFRYCFETGV	MPDAFL IMLL	RTFDLDKE	55
AB618206	1	MGTLQEK	VRRYQKKTIA	ELKNRONADG	SWTFCFEGPI	MTNSFFILLL	TSLDEGENEK	57
AAU41134	1	HOLEST VICENTIA BOOM AND AND STREET AND	enony state announces state, 400% 100m hitor Johns spran page	18868 99800 passes steam and passes representation or operation	2002 ACMS 10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000	MTDSFFILML	TSLGDQDS	18
AB007002	1	MAEQLVEAPA	YARTLDRAVE	YLLSCQKDEG	YWWGPLLSNV	TMEAEYVLLC	HILD-RVDR	58
			QXXXGX (W/F) motif				
ADF38987	56	VLIKQLTERI	VSLONEDGLW	TLFDDE-EHN	LSATIQAYTA	LLYSGYYQKN	DRILRKAERY	114
AB618206	58	ELISALAAGI	REKQQPDGTF	INYPDETSGN	ITATVQGYVG	MLASGCFHRS	DPHMRKAEQS	117
AAU41134	19	SLIASLAERI	RSRQSEDGAF	RNHPDERAGN	LTATVQGYTG	MLASGLYDRK	APHMQKAEAF	78
AB007002	59	DRMEKIRRYL	LHEGREDGTW	ALYPGGPP-D	LDTTIEAYVA	LKYIGMSRDE	EP-MQKALRF	116
							X (H/N) XXP m	
ADF38987	115	IIDSGGISRA	HFLTRWMLSV	NGLYEWPKLF	YLPLSLLLVP	TYVPLNFYEL	STYARIHEVP	174
AB618206			HFMTKWMLAV				Section 1	176
AAU41134	79	IKDAGGLKGV	HFMTKWMLAA	NGLYPWP-RA	YIPLSFLLIP	SYFPLHFYHF	STYARIHEVP	137
AB007002	117	IQSQGGIESS	RVFTRMWLAL	VGEYPWEKVP	MVPPEIMFLG	KRMPLNIYEF	GSWARATVVA	176
							LKQLASLPSY	
							WNRIFHAPFA	
							WKQLFQWPAY	
AB007002	177	LSIVMSRQPV	FPLPERAR	VPELYETDVP	PRRRGAKGGG	GWIFDALDRA	LHGYQKLSVH	234
1050000	000		property and property	DATI MAMILTO	TETHINAL	. AMARAMAN	01/11/201001	000
							OKAIDGICSL	
							KRAINGIKSL	
							KKAVSGIKSL	
AB00/002	235	PERRAAEIRA	LUWLLERUAG	DGSWGGTUPP	WFYALIALKI	LDMIUHPAFI	K-GWEGLELY	293
					4	NVVV / @ / & / @ '	X(F/W/Y) mo	.4:5
ADE20007	201	L STOSG_HVH	VENICTOTVWD	TALLSVALOE			OHTKLGDWQF	
							OHTKRADWSV	
							OHVKKADWAV	
							Q I TVPGDWAV	
10007002	207	U1 LLD I GGIIII	I WASTON VIID	IGENTERNETT	MULI MUNUME	**************************************	Part ti donna	000
			DXI	DD motif				
ADF38987	350	HNPNTAPGGW	GFSD INTNNP	DLDDTSAAIR	ALSRRAQTDT	DYL-ESWQRG	INWLLSKONK	408
							VSWLLSMONN	
				لتستا			LAWLLSMONK	
				bearing and the same and			FRWIVGMOSS	
							t	

Figure 10-	· <u>2</u>						
	QXXXGX (F/W,	•					
ADF38987 4	09 DGGFAAFEKN	TDSILFTYLP	LENAKDAATD	PATADLTGRV	LECLGNFAGM	NKSHPS1KAA	468
AB618206 4	09 DGGFSAFEKN	VNHPL IRLLP	LESAEDAAVD	PSTADLTGRV	LHFLGEKAGF	TEKHQHIQRA	468
AAU41134 3	71 DGGFAAFEKD	VDHPLIRNLP	LESAAEAAVD	PSTADLTGRV	LHLLGLKGRF	TDNHPAVRRA	430
AB007002 4	14 NGGWGAYDVD	NTSDLPNHIP	FCDFG-EVTD	PPSEDVTAHV	LECFGSFG-Y	DDAWKVIRRA	471
	QXX	KGXW motif					
ADF38987 4	69 VKWLFDH <mark>QLD</mark>	NGSWYGRWGV	CYTYGTWAAI	TGLRAVGVSA	SDPRIIKAIN	WLKS I QQEDG	528
AB618206 4	69 VNWLFEHQEQ	NGSWYGRWGV	CYIYGTWAAL	TGMHACEVDR	KHPAIQKALR	WLKSIQHDDG	528
AAU41134 4	31 LRWLDHHQKA	DGSWYGRWGV	CFIYGTWAAL	TGMKAVGVSA	NQTSVKKAIS	WLKSIQREDG	490
AB007002 4	72 VEYLKREQKP	DGSWFGRWGV	NYLYGTGAVV	SALKAVGIDT	REPYIQKALD	WVEQHONPDG	531
Q	XXXGX (F/W) mo	tif					
ADF38987 5	29 GFGESCYSAS	LKKYVPLSFS	TPSQTAWALD	ALMTICPLKD	RSVEKGIKFL	LNPNLTEQ	586
AB618206 5	29 SWGESCNSAE	VKTYVPLHKG	TIVQTAWALD	ALLTYESSEH	PSVVKGMQYL	TDSSY-HGAD	587
AAU41134 4	91 SWGESCKSCE	AKRFVPLHFG	TVVQSSWALE	ALLQYERPDD	PQIIKGIRFL	IDEHE-SSRE	549
AB007002 5	32 GWGEDCRSYE	DPAYAGKGAS	TPSQTAWALM	ALIAGGRAES	EAARRGVQYL	VETORPDGGW	591
					QXX	XGXW motif	
	GXGX	(G/A/P) mot	if				
ADF38987 5	87 QTHYPTGIGL	PG0FY10YHS	YNDIFPLLAL	AHYAKKHSS-	AMAGE SPECIO MERRIL Indicor menusi		625
AB618206 5	88 SLAYPAGIGL	PKQFYIRYHS	YPYVFSLLAV	GKYLNSIEKE	TANET		632
AAU41134 5	50 RLEYPTGIGL	PNOFYIRYHS	YPFVFSLLAS	SAFIKKAEMR	ETY—		592
AB007002 5	92 DEPYYTGTGF	PGDFYLGYTM	YRHVFPTLAL	GRYKQAIERR	Many IPMF MINE MINE MINE		631
ADF38987 :	Bacillus mega	aterium DSM3	319_TC				
AB618206 :	Bacillus subt	<u>ilis</u> _TC					
AAU41134 :	Bacillus <u>lich</u>	<u>neniformis</u> D	SM13 (ATCC14	580) _TC			
	Alicyclobaci						

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2018/032418 A. CLASSIFICATION OF SUBJECT MATTER 5 Int.Cl. C12N15/61(2006.01)i, C12N1/15(2006.01)i, C12N1/19(2006.01)i, C12N1/21(2006.01)i, C12N9/90(2006.01)i, C12P7/02(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Int.Cl. C12N15/61, C12N1/15, C12N1/19, C12N1/21, C12N9/90, C12P7/02 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2018 Registered utility model specifications of Japan 1996-2018 15 Published registered utility model applications of Japan 1994-2018 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580 (JDreamIII), CAplus/MEDLINE/BIOSIS/WPIDS (STN) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. 上田大次郎、外,スクアレン-アンブレイン環化酵素の創出:アン Υ 1-4, 9-13, 15 Α 5-8, 14 ブレインはスクアレンから2つの経路を通して1つの酵素によって 合成できる、 日本生物工学会大会講演要旨集、 08 August 25 2017, vol. 69, p. 321, in particular, background, results, non-official translation (UEDA, Daijiro et al., "Creation of squalene-ambrein cyclase: ambrein can be synthesized from squalene by one enzyme through two paths", Lecture abstracts of the 30 conference of the Society for Biotechnology, Japan) 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents later document published after the international filing date or priority date and not in conflict with the application but cited to understand document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be 45 special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 22 November 2018 (22.11.2018) 04 December 2018 (04.12.2018) 50 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan Telephone No.

55

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2018/032418 5 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 村上瑞気、外、二環性トリテルペン/セスクアテルペン環化酵素の 触媒機構の解析、 日本農芸化学会 2017 年度大会講演要旨集(オン 10 ライン), 05 March 2017, lecture no.: 3C11p11, in particular, summary, non-official translation (MURAKAMI, Mizuki et al., "Analysis of catalytic mechanism in bicyclic triterpene/sesquiterpene cyclase", Lecture abstracts of the 2017 conference of JSBBA (online)) 15 Υ 1 - 1.5SATO, T., et al., "Functional analysis of the DXDDTA motif in squalene-hopene cyclase by sitedirected mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the 20 initially cyclized A-ring, Biosci"., Biotechnol. Biochem., December 1999, vol. 63, no. 12, pp. 2189-2198, in particular, fig. 1 Υ 1 - 15SATO, T., et al., "Catalytic function of the residues of phenylalanine and tyrosine conserved in 25 squalene-hopene cyclases", Biosci. Biotechnol. Biochem., October 2001, vol. 65, no. 10, pp. 2233-2242, in particular, scheme 1, fig. 1 5-12, 14-15 Υ UEDA, D., et al., "Cyclization of squalene from 1-4, 13 both termini: identification of an onoceroid 30 synthesis and enzymatic synthesis of ambrein", J. Am. Chem. Soc., 11 December 2013, vol. 135, no. 49, pp. 18335-18338, in particular, scheme 3 5-12, 14-15 Υ WO 2015/033746 A1 (NIIGATA UNIVERSITY) 12 March 1-4, 13 Α 2015, example 1 & US 2016/0304911 A1, example 1 & 35 EP 3042960 A1 40 45 50

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2018/032418

Box No. II Observations where certain claims were found unsearchable (Continuation	of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, name	.,,,,
2. Claims Nos.: because they relate to parts of the international application that do not comply with the percent that no meaningful international search can be carried out, specifically:	prescribed requirements to such an
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second an	nd third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of	first sheet)
This International Searching Authority found multiple inventions in this international application Document 1: 上田大次郎、外,スクアレン-アンブレイン環化酵素のンから 2 つの経路を通して 1 つの酵素によって 合成できる,日本August 2017, vol. 69, p. 321, in particular, be official translation (UEDA, Daijiro et al., "Creacyclase: ambrein can be synthesized from squalene b paths", Lecture abstracts of the conference of the S Japan)	D創出:アン ブレインはスクアレ 生物工学会大会講演要旨集, 08 ackground, results, non- tion of squalene-ambrein y one enzyme through two
Claims 1-14 disclose three types of var curcumene cyclases (variant-type TCs) of D373&Y16 However, the technical feature pertaining to the already well known as in the case of D373C in docum special technical feature. Accordingly, the three included in the claims.	7, D373&L596, and L596. ese variant-type TCs is ent 1, and thus is not a e inventions below are
(Invention 1) Claims 1-4, 9-13, and 15: Invention type TC of D373&Y167 (Invention 2) Claims 1-4, 9-13, and 15: Invention type TC of D373&L596 (Invention 3) Claims 5-12 and 14-15: Invention pert TC of L596	pertaining to a variant-
1. As all required additional search fees were timely paid by the applicant, this international claims.	al search report covers all searchable
2. As all searchable claims could be searched without effort justifying additional fees, this Au additional fees.	thority did not invite payment of
3. As only some of the required additional search fees were timely paid by the applicant, the only those claims for which fees were paid, specifically claims Nos.	nis international search report covers
4. No required additional search fees were timely paid by the applicant. Consequently, the restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	his international search report is
Remark on Protest The additional search fees were accompanied by the applican payment of a protest fee. The additional search fees were accompanied by the applican fee was not paid within the time limit specified in the invitation	t's protest but the applicable protest
No protest accompanied the payment of additional search fee	

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 10236996 [0007]
- WO 2015033746 A **[0007]**
- US 4686191 A [0071]

- US 4939094 A [0071]
- US 5160735 A [0071]
- JP 63233798 A [0071]

Non-patent literature cited in the description

- Tetrahedron Asymmetry, 2006, vol. 17, 30373rd045
 [0008]
- Biosci. Biotechnol. Biochem., 1999, vol. 63, 2189-2198 [0008]
- Biosci. Biotechnol. Biochem., 2001, vol. 65, 2233-2242 [0008]
- Biosci. Biotechnol. Biochem., 2002, vol. 66, 1660-167th0 [0008]
- J. Am. Chem. Soc., 2011, vol. 133, 17540-17543 [0008]
- J. Am. Chem. Soc., 2013, vol. 135, 18335-18338
 [0008]
- Agricultural Biological Chemistry, 1984, vol. 48, 669
 [0071]
- Agric. Biol. Chem., 1989, vol. 53, 277 [0071]
- Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 4306 [0071]
- Gene, 1985, vol. 33, 103 [0071]
- J. Bacteriol., 1990, vol. 172, 2392 [0071]