

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 678 454 A1

(12)

EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:

08.07.2020 Bulletin 2020/28

(51) Int Cl.:

H05B 6/44 (2006.01)

H05B 6/06 (2006.01)

H05B 1/02 (2006.01)

(21) Application number: 18885968.0

(86) International application number:

PCT/CN2018/085002

(22) Date of filing: 28.04.2018

(87) International publication number:

WO 2019/109586 (13.06.2019 Gazette 2019/24)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 08.12.2017 CN 201711297137

(71) Applicants:

- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd.
Foshan, Guangdong 528311 (CN)

• Midea Group Co., Ltd.

Foshan, Guangdong 528311 (CN)

(72) Inventors:

• ZENG, Xianguang

ShunDe, Guangdong 528311 (CN)

• ZHANG, Youzhi

ShunDe, Guangdong 528311 (CN)

(74) Representative: RGTH

Patentanwälte PartGmbB

Neuer Wall 10

20354 Hamburg (DE)

(54) HEATING CONTROL CIRCUIT FOR INDUCTION COOKING APPLIANCE, AND INDUCTION COOKING APPLIANCE

(57) Embodiments of the present invention provide a heating control circuit for an induction cooking appliance, and an induction cooking appliance, pertaining to the field of electronic appliances. The heating control circuit comprises two or more control circuits, wherein one of the two or more control circuits comprises two or more coil plates, while each of the other control circuits, excluding the aforementioned one control circuit, each comprise one or more coil plates, and each of the control circuits respectively comprises a voltage source, a power switch transistor, and a capacitor; one or more switches connected within the two or more control circuits and between the two or more control circuits; and a controller configured to control the power switch transistor and the one or more switches in each of the control circuits, so as to provide heating using a series-connected combination consisting of any two or more of the coil plates in the two or more control circuits. The invention achieves precision control of different heating positions in the same region.

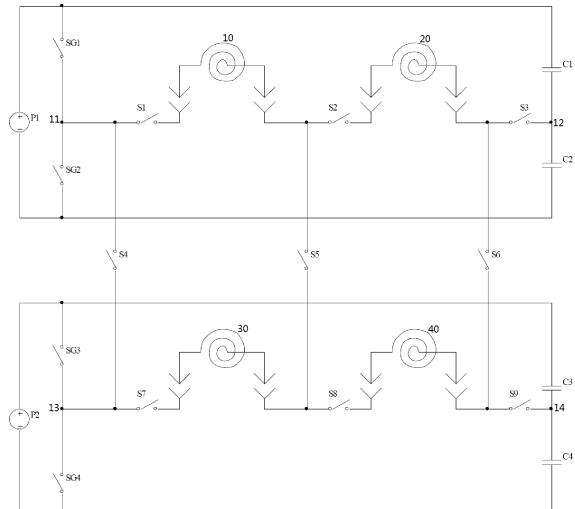


Fig. 2

Description**Field of the Invention**

[0001] The present invention relates to the field of electrical appliances and specifically relates to a heating control circuit for an electromagnetic cooking appliance and an electromagnetic cooking appliance.

Background of the Invention

[0002] An electromagnetic oven achieves a heating aim in a way that a high-power switch device (such as an IGBT (Insulated Gate Bipolar Transistor) drives a coil panel to generate an alternating magnetic field to heat a cooker in the alternating magnetic field.

[0003] In correlated technologies, one or two switch devices are adopted to control one coil panel to heat in a heating circuit, the inventor of the present invention finds that hardware (such as a resonant capacitor, a coil panel, a switch device and so on) in a circuit is not utilized to the maximum extent in such a control way.

Summary of the Invention

[0004] Embodiments of the present invention aim at providing a heating control circuit for an electromagnetic cooking appliance and an electromagnetic cooking appliance in order to solve or partially solve the above-mentioned technical problem.

[0005] In order to achieve the above-mentioned aim, an embodiment of the present invention provides a heating control circuit for an electromagnetic cooking appliance. The heating control circuit includes two or more control circuits, one control circuit of the two or more control circuits including two or more coil panels, each of other control circuits except the one control circuit in the two or more control circuits including one or more coil panels, and each of the two or more control circuits including a voltage source, power switch tubes and capacitors; one or more switches connected to insides of the two or more control circuits and between the two or more control circuits; and a controller configured to realize heating carried out by a combination of any at least two coil panels connected in series in the at least two control circuits by controlling the power switch tube and the switch.

[0006] Accordingly, an embodiment of the present invention further provides an electromagnetic cooking appliance including the above-mentioned heating control circuit.

[0007] Due to adoption of the above-mentioned technical solution, coil panels in different control circuits may be connected in series, so that precise control on different heating positions in a same region may be realized. Meanwhile, hardware in the circuits may be sufficiently utilized, and the power output performance of an electromagnetic oven is improved.

[0008] Other characteristics and advantages of the embodiments of the present invention will be described in detail in subsequent implementation ways.

5 Brief Description of Drawings

[0009] Accompanying drawings are provided for further understanding of the embodiments of the present invention, and constitute one part of the specification.

10 The accompanying drawings serve to explain the embodiments of the present invention in combination with the following specific implementation ways, but do not limit the embodiments of the present invention. In the accompanying drawings:

15 Fig. 1 shows a schematic diagram of a combination of four coil panels;

20 Fig. 2 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention;

25 Fig. 3 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention;

30 Fig. 4 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention; and

35 Fig. 5 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention.

Detailed Description of the Embodiments

[010] The specific implementation ways of the embodiments of the present invention are described in detail below in combination with the accompanying drawings. It should be understood that the specific implementation ways described herein are only intended to describe and explain the embodiments of the present invention, but do not limit the embodiments of the present invention. Terms such as "first", "second", "third",.....,"ninth" in the present invention are only used for illustration, rather than restrictive description.

[011] An embodiment of the present invention provides a heating control circuit for an electromagnetic cooking appliance. The heating control circuit may include two or more control circuits, one control circuit of the two or more control circuits including two or more coil panels, each of other control circuit(s) except the one control circuit in the two or more control circuits including one or more coil panels, and each of the two or more control circuits including a voltage source, power switch tubes and capacitors; one or more switches connected to insides of the two or more control circuits and between the two or more control circuits; and a controller configured to realize heating carried out by a combination of any at least two coil panels connected in series in the at least two control circuits by controlling the power switch tube and the switch. The heating control circuit provided

by the embodiment of the present invention can perform serial combination control on at least two coil panels at different positions in the same region, so that heating positions are precisely controlled. Optionally, the voltage source included in each of the two or more control circuits may be a same voltage source, wherein a negative electrode of each voltage source may be connected to a common ground wire. Optionally, the voltage source may be a single-phase voltage source or a multi-phase voltage source.

[0012] Optionally, each control circuit may include two power switch tubes and two capacitors, wherein the two power switch tubes are connected in parallel to two ends of the voltage source after being connected in series, and the two capacitors are connected in parallel to two ends of the voltage source after being connected in series. Coil panels in each control circuit are connected in series, one end of the serially connected coil panels is connected to an end point between the two power switch tubes, and the other end of the serially connected coil panels is connected to an end point between the two capacitors.

[0013] Optionally, the heating control circuit for the electromagnetic cooking appliance, provided by the embodiment of the present invention, may include a first control circuit and a second control circuit, and each of the first control circuit and the second control circuit may include two coil panels. Fig. 1 shows a schematic diagram of a combination of four coil panels. As shown in Fig. 1, the heating control circuit provided by the embodiment of the present invention may realize carried out by a combination of any two or three coil panels connected in series and may also realize heating carried out by a combination of four coil panels connected in series. For example, heating of any one combination may be realized as follows: heating of a combination of a coil panel 10 and a coil panel 20; heating of a combination of the coil panel 20 and a coil panel 30; heating of a combination of the coil panel 10 and a coil panel 40; heating of a combination of the coil panel 30 and the coil panel 40; heating of a combination of the coil panel 10, the coil panel 20 and the coil panel 30; heating of a combination of the coil panel 20, the coil panel 30 and the coil panel 40; heating of a combination of the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40 and the like. It should be understood that the embodiment of the present invention is not limited herein, and each of the first control circuit and the second control circuit may include any number of coil panels according to a control demand.

[0014] The embodiment of the present invention will be further described below by taking the heating control circuit for the electromagnetic cooking appliance, which includes two control circuits respectively including two coil panels, as an example. Embodiments in which more control circuits and/or more coil panels are included may be realized by reasonable modification on the basis of the embodiments described as below, for example, the embodiments are realized in a way of reasonably in-

creasing the number of the control circuits and/or increasing the number of the switches, reducing the number of the switches or modifying connection relationships of the switches.

5 **[0015]** Fig. 2 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention. As shown in Fig. 2, the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit and a controller (unshown in the figure), wherein the first control circuit may include a power switch tube SG1, a power switch tube SG2, a coil panel 10, a coil panel 20, a capacitor C1, a capacitor C2 and a voltage source P1; and the second control circuit may 10 include a power switch tube SG3, a power switch tube SG4, a coil panel 30, a coil panel 40, a capacitor C3, a capacitor C4 and a voltage source P2. The voltage source P1 and the voltage source P2 may be same alternating voltage sources, and negative electrodes of the 15 voltage source P1 and the voltage source P2 are both connected to a common ground wire. Optionally, the voltage source P1 and the voltage source P2 may be single-phase voltage sources or multi-phase voltage sources. 20 **[0016]** In the first control circuit, the power switch tube SG1 and the power switch tube SG2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the capacitor C1 and the capacitor C2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the coil panel 25 10 and the coil panel 20 are connected in series, one end of the serially connected coil panel 10 and coil panel 20 is connected to an end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end of the serially connected coil panel 10 and coil panel 30 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 1001

end of the serially connected coil panel 30 and coil panel 40 is connected to an end point 14 between the capacitor C3 and the capacitor C4, wherein one end of the coil panel 30 is connected to the end point 13, the other end of the coil panel 30 is connected to one end of the coil panel 40, and the other end of the coil panel 40 is connected to the end point 14.

[0019] The second control circuit may further include a switch S7 connected in series between the end point 13 and one end of the serially connected coil panel 30 and coil panel 40; a switch S8 connected in series between the coil panel 30 and the coil panel 40; and a switch S9 connected in series between the end point 14 and the other end of the serially connected coil panel 30 and coil panel 40.

[0020] The heating control circuit as shown in Fig. 2 may further include a switch S4 with one end being connected between the end point 11 and the switch S1 and the other end being connected between the end point 13 and the switch S7; a switch S5 with one end being connected between the other end of the coil panel 10 and the switch S2 and the other end being connected between the other end of the coil panel 30 and the switch S8; and a switch S6 with one end being connected between the other end of the coil panel 20 and the switch S3 and the other end being connected between the other end of the coil panel 40 and the switch S9.

[0021] The controller may realize heating carried out by a combination of the coil panels 10-40 by controlling the power switch tubes SG1-SG4 and the switches S1-S9.

[0022] The power switch tubes used in the embodiment of the present invention may be high-power switch devices such as an IGBT or a high-power relay. Optionally, the power switch tubes are unidirectional conducting devices.

[0023] The controller may control the power switch tubes SG1-SG4 and the switches S7-S9 to be turned on or turned off to enable the coil panel 10 in the first control circuit and the coil panel 40 in the second control circuit to be connected in series so as to realize heating carried out by a combination of the coil panel 10 and the coil panel 40, or to enable the coil panel 20 in the first control circuit and the coil panel 30 in the second control circuit to be connected in series so as to realize heating carried out by a combination of the coil panel 20 and the coil panel 30.

[0024] The controller may control the power switch tubes SG1-SG4 and the switches S7-S9 to be turned on or turned off so as to realize heating carried out by a combination of the coil panel 10 and the coil panel 20 in the first control circuit, and/or realize heating carried out by a combination of the coil panel 30 and the coil panel 40 in the second control circuit.

[0025] Specifically, the controller may control the heating of the combination of the coil panel 20 and the coil panel 30. In this case, within the first half cycle of one cycle of an alternating voltage, the controller may control

the switch S7, the switch S5, the switch S2, the switch S3 and the power switch tube SG3 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 20, the coil panel 30, the power switch tube SG3 and the capacitor C2 are connected in series to form a resonant circuit, and then, the flow direction of a current in the first half cycle is from a positive electrode of the voltage source P2 to the power switch tube SG3 to the switch S7 to the coil panel 30 to the switch S5 to the switch S2 to the coil panel 20 to the switch S3 to the capacitor C2 to a negative electrode of the voltage source P1. Or, optionally, within the first half cycle of one cycle of the alternating voltage, the controller may control the switch S7, the switch S5, the switch S2, the switch S6, the switch S9 and the power switch tube SG3 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 20, the coil panel 30, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit, and then, the flow direction of the current in the first half cycle is from the positive electrode of the voltage source P2 to the power switch tube SG3 to the switch S7 to the coil panel 30 to the switch S5 to the switch S2 to the coil panel 20 to the switch S6 to the switch S9 to the capacitor C4 to the negative electrode of the voltage source P2. Within the second half cycle of one cycle of the alternating voltage, the controller may control the switch S9, the switch S6, the switch S2, the switch S5, the switch S7, the switch S4 and the power switch tube SG2 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 20, the coil panel 30, the power switch tube SG2 and the capacitor C3 are connected in series to form a resonant circuit, and then, the flow direction of a current in the second half cycle is from the positive electrode of the voltage source P2 to the capacitor C3 to the switch S9 to the switch S6 to the coil panel 20 to the switch S2 to the switch S5 to the coil panel 30 to the switch S7 to the switch S4 to the power switch tube SG2 to the negative electrode of the voltage source P1. Or, within the second half cycle of one cycle of the alternating voltage, the controller may control the switch S9, the switch S6, the switch S2, the switch S5, the switch S7 and the power switch tube SG4 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 20, the coil panel 30, the power switch tube SG4 and the capacitor C3 are connected in series to form a resonant circuit, and then, the flow direction of the current in the second half cycle is from the positive electrode of the voltage source P2 to the capacitor C3 to the switch S9 to the switch S6 to the coil panel 20 to the switch S2 to the switch S5 to the coil panel 30 to the switch S7 to the power switch tube SG4 to the negative electrode of the voltage source P2.

[0026] The controller may further control the heating of the combination of the coil panel 10 and the coil panel 40. In this case, within the first half cycle of one cycle of an alternating voltage, the controller may control the

switch S1, the switch S5, the switch S8, the switch S9 and the power switch tube SG1 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 10, the coil panel 40, the power switch tube SG1 and the capacitor C4 are connected in series to form a resonant circuit, and then, the flow direction of a current in the first half cycle is from the positive electrode of the voltage source P1 to the power switch tube SG1 to the switch S1 to the coil panel 10 to the switch S5 to the switch S8 to the coil panel 40 to the switch S9 to the capacitor C4 to the negative electrode of the voltage source P2. Within the second half cycle of one cycle of the alternating voltage, the controller may control the switch S3, the switch S6, the switch S8, the switch S5, the switch S1, the switch S4 and the power switch tube SG4 to be turned on and control the other switches and power switch tubes to be turned off so that the coil panel 10, the coil panel 40, the power switch tube SG4 and the capacitor C1 are connected in series to form a resonant circuit, and then, the flow direction of the current in the second half cycle is from the positive electrode of the voltage source P1 to the capacitor C1 to the switch S3 to the switch S6 to the coil panel 40 to the switch S8 to the switch S5 to the coil panel 10 to the switch S1 to the switch S4 to the power switch tube SG4.

[0027] The controller may control heating of the combination of the coil panel 10 and the coil panel 20. In this case, the controller may control the switches S1-S3 to be turned on and control the switches S4-S9 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG1 and the capacitor C2 are connected in series to form a resonant circuit, and then, the flow direction of a current in the first half cycle is from the positive electrode of the voltage source P1 to the power switch tube SG1 to the switch S1 to the coil panel 10 to the switch S2 to the coil panel 20 to the switch S3 to the capacitor C2 to the negative electrode of the voltage source P1. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG2 and the capacitor C1 are connected in series to form a resonant circuit, and then, the flow direction of the current in the second half cycle is from the positive electrode of the voltage source P1 to the capacitor C1 to the switch S3 to the coil panel 20 to the switch S2 to the coil panel 10 to the switch S1 to the power switch tube SG2 to the negative electrode of the voltage source P1.

[0028] The controller may control the heating of the combination of the coil panel 30 and the coil panel 40. In this case, the controller may control the switches S7-S9 to be turned on and control the switches S1-S6 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG3 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG3 and the

capacitor C4 are connected in series to form a resonant circuit, and then, the flow direction of a current in the first half cycle is from the positive electrode of the voltage source P2 to the power switch tube SG3 to the switch S7 to the coil panel 30 to the switch S8 to the coil panel 40 to the switch S9 to the capacitor C4 to the negative electrode of the voltage source P2. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG4 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG4 and the capacitor C3 are connected in series to form a resonant circuit, and then, the flow direction of the current in the second half cycle is from the positive electrode of the voltage source P2 to the capacitor C3 to the switch S9 to the coil panel 40 to the switch S8 to the coil panel 30 to the switch S7 to the power switch tube SG4 to the negative electrode of the voltage source P2.

[0029] The controller may further realize the heating of the combination of the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40. For example, the controller may control the switches S4-S6 to be turned off and control the switches S1-S3 and the switches S7-S9 to be turned on. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 and the power switch tube SG3 to be turned on and control the power switch tube SG2 and the power switch tube SG4 to be turned off. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 and the power switch tube SG4 to be turned on and control the power switch tube SG1 and the power switch tube SG3 to be turned off, so that all the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40 may work at the same time.

[0030] It should be understood that those skilled in the art may perform simple modification or modify the control way of the controller on the basis of a circuit diagram as shown in Fig. 2, for example, the number of the coil panels in the heating control circuit may be increased or reduced or the number of the switches in the heating control circuit may be increased or reduced, so that heating of a serial combination formed by any two coil panels or any more coil panels in the heating control circuit is realized.

[0031] By means of control on heating of the combinations in various serial connection ways among the coil panels 10-40 in the above-mentioned embodiment, heating positions may be precisely controlled, and hardware in the circuit is sufficiently utilized.

[0032] Fig. 3 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention. As shown in Fig. 3, the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit and a controller (unshown in the figure), wherein the first control circuit may include a power switch tube SG1, a power switch tube SG2, a coil panel 10, a coil panel 20, a capacitor C1, a capacitor C2 and

a voltage source P1; and the second control circuit may include a power switch tube SG3, a power switch tube SG4, a coil panel 30, a coil panel 40, a capacitor C3, a capacitor C4 and a voltage source P2. The voltage source P1 and the voltage source P2 may be simultaneous alternating voltage sources, and negative electrodes of the voltage source P1 and the voltage source P2 are both connected to a common ground wire. Optionally, the voltage source P1 and the voltage source P2 may be single-phase voltage sources or multi-phase voltage sources.

[0033] In the first control circuit, the power switch tube SG1 and the power switch tube SG2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the capacitor C1 and the capacitor C2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the coil panel 10 and the coil panel 20 are connected in series, one end of the serially connected coil panel 10 and coil panel 20 is connected to an end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end of the serially connected coil panel 10 and coil panel 20 is connected to an end point 12 between the capacitor C1 and the capacitor C2, wherein one end of the coil panel 10 is connected to the end point 11, the other end of the coil panel 10 is connected to one end of the coil panel 20, and the other end of the coil panel 20 is connected to the end point 12.

[0034] In the second control circuit, the power switch tube SG3 and the power switch tube SG4 are connected in parallel to two ends of the voltage source P2 after being connected in series, the capacitor C3 and the capacitor C4 are connected in parallel to two ends of the voltage source P2 after being connected in series, the coil panel 30 and the coil panel 40 are connected in series, one end of the serially connected coil panel 30 and coil panel 40 is connected to an end point 13 between the power switch tube SG3 and the power switch tube SG4, and the other end of the serially connected coil panel 30 and coil panel 40 is connected to an end point 14 between the capacitor C3 and the capacitor C4, wherein one end of the coil panel 30 is connected to the end point 13, the other end of the coil panel 30 is connected to one end of the coil panel 40, and the other end of the coil panel 40 is connected to the end point 14.

[0035] The heating control circuit as shown in Fig. 3 may further include a single-pole double-throw switch S31 and a single-pole double-throw switch S32. The single-pole double-throw switch S31 is connected in series between the end point 11 and one end of the serially connected coil panel 10 and coil panel 20, wherein a free end a of the single-pole double-throw switch S31 is connected to the end point 11, one fixed end b of the single-pole double-throw switch S31 is connected to one end of the serially connected coil panel 10 and coil panel 20, and the other fixed end c of the single-pole double-throw switch S31 is connected between the end point 13 and one end of the serially connected coil panel 30 and coil

panel 40. The single-pole double-throw switch S32 is connected in series between the coil panel 30 and the coil panel 40, wherein a free end a of the single-pole double-throw switch S32 is connected to the coil panel 30, one fixed end b of the single-pole double-throw switch S32 is connected to the coil panel 40, and the other fixed end c of the single-pole double-throw switch S32 is connected between the coil panel 10 and the coil panel 20. The controller may realize heating carried out by a combination of the coil panels 10-40 by controlling the power switch tubes SG1-SG4 as well as the switches S31 and the switch S32.

[0036] The power switch tubes used in the embodiment of the present invention may be high-power switch devices such as an IGBT or a high-power relay. Optionally, the power switch tubes are unidirectional conducting devices.

[0037] The controller may realize heating carried out by a combination of the coil panel 20 and the coil panel 30. In this case, the controller may control the free end a of the single-pole double-throw switch S31 to be connected to the fixed end c and control the free end a of the single-pole double-throw switch S32 to be connected to the fixed end b. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 30, the coil panel 20, the power switch tube SG1 and the capacitor C2 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 30, the coil panel 20, the power switch tube SG2 and the capacitor C1 are connected in series to form a resonant circuit.

[0038] The controller may further realize heating carried out by a combination of the coil panel 10 and the coil panel 20. In this case, the controller may control the free end a of the single-pole double-throw switch S31 to be connected to the fixed end b. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG1 and the capacitor C2 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG2 and the capacitor C1 are connected in series to form a resonant circuit.

[0039] The controller may further realize heating carried out by a combination of the coil panel 30 and the coil panel 40. In this case, the controller may control the free end a of the single-pole double-throw switch S32 to be connected to the fixed end c. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG3 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG3 and the capacitor C4 are connected in series

to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG4 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG4 and the capacitor C3 are connected in series to form a resonant circuit.

[0040] The controller may further realize heating carried out by a combination of the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40. For example, the controller may control the free end *a* of the single-pole double-throw switch S31 to be connected to the fixed end *b* and control the free end *a* of the single-pole double-throw switch S32 to be connected to the fixed end *c*. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 and the power switch tube SG3 to be turned on and control the power switch tube SG2 and the power switch tube SG4 to be turned off. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 and the power switch tube SG4 to be turned on and control the power switch tube SG1 and the power switch tube SG3 to be turned off, so that all the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40 work at the same time.

[0041] It should be understood that those skilled in the art may perform simple modification or modify the control way of the controller on the basis of a circuit diagram as shown in Fig. 3, for example, the coil panels in the heating control circuit may be increased or reduced or the switches in the heating control circuit may be increased or reduced, so that the heating of a serial combination formed by any two coil panels or any more coil panels in the heating control circuit is realized.

[0042] By means of control on heating of the combinations in various serial connection ways among the coil panels 10-40 in the above-mentioned embodiment, heating positions may be precisely controlled, the number of the switch devices in the circuit is reduced, and the cost is reduced while the circuit is optimized.

[0043] Fig. 4 shows a heating control circuit for an electromagnetic cooking appliance according to an embodiment of the present invention. As shown in Fig. 4, the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit and a controller (unshown in the figure), wherein the first control circuit may include a power switch tube SG1, a power switch tube SG2, a coil panel 10, a coil panel 20, a capacitor C1, a capacitor C2 and a voltage source P1; and the second control circuit may include a power switch tube SG3, a power switch tube SG4, a coil panel 30, a coil panel 40, a capacitor C3, a capacitor C4 and a voltage source P2. The voltage source P1 and the voltage source P2 may be simultaneous alternating voltage sources, and negative electrodes of the voltage source P1 and the voltage source P2 are both connected to a common ground wire. Optionally, the voltage source P1 and the voltage source P2 may be

single-phase voltage sources or multi-phase voltage sources.

[0044] In the first control circuit, the power switch tube SG1 and the power switch tube SG2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the capacitor C1 and the capacitor C2 are connected in parallel to two ends of the voltage source P1 after being connected in series, the coil panel 10 and the coil panel 20 are connected in series, one end of the serially connected coil panel 10 and coil panel 20 is connected to an end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end of the serially connected coil panel 10 and coil panel 20 is connected to an end point 12 between the capacitor C1 and the capacitor C2, wherein one end of the coil panel 20 is connected to the end point 11, the other end of the coil panel 20 is connected to one end of the coil panel 10, and the other end of the coil panel 10 is connected to the end point 12.

[0045] In the second control circuit, the power switch tube SG3 and the power switch tube SG4 are connected in parallel to two ends of the voltage source P2 after being connected in series, the capacitor C3 and the capacitor C4 are connected in parallel to two ends of the voltage source P2 after being connected in series, the coil panel 30 and the coil panel 40 are connected in series, one end of the serially connected coil panel 30 and coil panel 40 is connected to an end point 13 between the power switch tube SG3 and the power switch tube SG4, and the other end of the serially connected coil panel 30 and coil panel 40 is connected to an end point 14 between the capacitor C3 and the capacitor C4, wherein one end of the coil panel 40 is connected to the end point 13, the other end of the coil panel 40 is connected to one end of the coil panel 30, and the other end of the coil panel 30 is connected to the end point 14.

[0046] As shown in Fig. 4, the heating control circuit may further include switches S1-S4, wherein the switch S1 is connected in series between the coil panel 10 and the coil panel 20; one end of the switch S2 is connected between the switch S1 and the coil panel 20, and the other end of the switch S2 is connected between the coil panel 30 and the coil panel 40; one end of the switch S3 is connected between the other end of the coil panel 10 and the end point 12, and the other end of the switch S3 is connected between the other end of the coil panel 30 and the switch S4; and the switch S4 is connected in series between the other end of the serially connected coil panel 30 and coil panel 40 and the end point 14.

[0047] The controller may control heating of a combination of the coil panel 20 and the coil panel 30. In this case, the controller may control the switch S2 and the switch S3 to be turned on and control the switch S1 and the switch S4 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 30, the coil panel 20, the power switch tube SG1 and the capacitor C2 are connected in series

to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 30, the coil panel 20, the power switch tube SG2 and the capacitor C1 are connected in series to form a resonant circuit. The controller may further control heating of a combination of the coil panel 10 and the coil panel 20. In this case, the controller may control the switch S1 to be turned on and control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG1 and the capacitor C2 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG2 and the capacitor C1 are connected in series to form a resonant circuit.

[0048] The controller may further control heating of a combination of the coil panel 30 and the coil panel 40. In this case, the controller may control the switch S4 to be turned on and control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG3 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG4 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG4 and the capacitor C3 are connected in series to form a resonant circuit.

[0049] The controller may further realize heating carried out by a combination of the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40. For example, the controller may control the switch S1 and the switch S4 to be turned on and control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 and the power switch tube SG3 to be turned on and control the power switch tube SG2 and the power switch tube SG4 to be turned off. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 and the power switch tube SG4 to be turned on and control the power switch tube SG1 and the power switch tube SG3 to be turned off, so that all the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40 may work at the same time.

[0050] By means of control on heating of the combinations in various serial connection ways among the coil panels 10-40 in the above-mentioned embodiment, heating positions may be precisely controlled, the number of the switch devices in the circuit is reduced, and the cost is reduced while the circuit is optimized.

[0051] It should be understood that those skilled in the art may perform simple modification or modify the control way of the controller on the basis of a circuit diagram as shown in Fig. 4, for example, the coil panels in the heating control circuit may be increased or reduced or the switches in the heating control circuit may be increased or reduced, so that heating of a serial combination formed by any two coil panels or any more coil panels in the heating control circuit is realized.

[0052] Optionally, in a minimum system circuit, the switch S4 in the circuit as shown in Fig. 4 may also be replaced with a conducting wire. Compared with the un-replaced circuit as shown in Fig. 4, the replaced circuit is characterized in that one end of the switch S3 is connected between the other end of the coil panel 10 and the end point 12, and the other end of the switch S3 is connected between the other end of the coil panel 30 and the end point 14, as shown in Fig. 5.

[0053] In a heating control circuit as shown in Fig. 5, a controller may control heating of a combination of a coil panel 20 and a coil panel 30. In this case, the controller may control a switch S2 to be turned on and control a switch S1, a switch S3 and a switch S4 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control a power switch tube SG1 to be turned on so that the coil panel 20, the coil panel 30, the power switch tube SG1 and a capacitor C4 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control a power switch tube SG2 to be turned on so that the coil panel 30, the coil panel 20, the power switch tube SG2 and a capacitor C3 are connected in series to form a resonant circuit.

[0054] The controller may further control heating of a combination of a coil panel 10 and the coil panel 20. In this case, the controller may control the switch S1 to be turned on and control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG1 and a capacitor C2 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 to be turned on so that the coil panel 10, the coil panel 20, the power switch tube SG2 and a capacitor C1 are connected in series to form a resonant circuit.

[0055] The controller may further control heating of a combination of the coil panel 30 and a coil panel 40. In this case, the controller may control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control a power switch tube SG3 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit. Within the second half cycle of one cycle of the alternating voltage, the controller may control

a power switch tube SG4 to be turned on so that the coil panel 30, the coil panel 40, the power switch tube SG4 and the capacitor C3 are connected in series to form a resonant circuit.

[0056] The controller may further realize heating carried out by a combination of the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40. For example, the controller may control the switch S1 to be turned on and control the switch S2 and the switch S3 to be turned off. Within the first half cycle of one cycle of an alternating voltage, the controller may control the power switch tube SG1 and the power switch tube SG3 to be turned on and control the power switch tube SG2 and the power switch tube SG4 to be turned off. Within the second half cycle of one cycle of the alternating voltage, the controller may control the power switch tube SG2 and the power switch tube SG4 to be turned on and control the power switch tube SG1 and the power switch tube SG3 to be turned off, so that all the coil panel 10, the coil panel 20, the coil panel 30 and the coil panel 40 may work.

[0057] By means of control on heating of the combinations in various serial connection ways among the coil panels 10-40 in the above-mentioned embodiment, heating positions may be precisely controlled, the number of the switch devices in the circuit is reduced, and the cost is reduced while the circuit is optimized.

[0058] It should be understood that those skilled in the art may perform simple modification or modify the control way of the controller on the basis of a circuit diagram as shown in Fig. 5, for example, the number of the coil panels in the heating control circuit may be increased or reduced or the number of the switches in the heating control circuit may be increased or reduced, so that heating of a serial combination formed by any two coil panels or any more coil panels in the heating control circuit is realized.

[0059] Accordingly, an embodiment of the present invention further provides an electromagnetic cooking appliance which may be, for example, an electromagnetic oven, and the electromagnetic cooking appliance may include the heating control circuit in any one embodiment of the present invention. The electromagnetic cooking appliance may realize precise control on heating positions.

[0060] Optional implementation ways of the embodiments of the present invention are described in detail above in combination with the accompanying drawings, however, the embodiments of the present invention are not limited to specific details in the above-mentioned implementation ways, technical solutions of the embodiments of the present invention may be subjected to various simple modifications within the scope of technical conceptions of the embodiments of the present invention, and these simple modifications belong to the protective scopes of the embodiments of the present invention.

[0061] In addition, it should be noted that all the specific technical features described in the above-mentioned specific implementation ways may be combined in any appropriate ways under the condition that no conflicts

exist. In order to avoid unnecessary repetition, various possible combination ways are not additionally described in the embodiments of the present invention.

[0062] Those skilled in the art may understand that all or parts of steps in methods in the above-mentioned embodiments may be completed by relevant hardware instructed by a program, the program is stored in a storage medium and includes a plurality of instructions for making a single chip microcomputer, a chip or a processor execute all or parts of steps of the method in each embodiment of the application. The aforesaid storage medium includes various media capable of storing program codes, such as a USB disk, a mobile hard disk, an ROM (Read-Only Memory), an RAM (Random Access Memory), a diskette, an optical disc and so on.

[0063] In addition, various different implementation ways of the embodiments of the present invention may also be optionally combined, and any one without departing from the concepts of the embodiments of the present invention should be regarded as the content disclosed by the embodiments of the present invention.

Claims

1. A heating control circuit for an electromagnetic cooking appliance, **characterized by** comprising:

at least two control circuits, wherein each of the at least two control circuits comprises at least one coil panel, and each of the at least two control circuits comprises a voltage source, at least one power switch tube and at least one capacitor;

at least one switch provided in the at least two control circuits and/or between the at least two control circuits; and

a controller configured to realize heating carried out by a combination of any at least two coil panels connected in series in the at least two control circuits by controlling the power switch tube in each of the two or more control circuits and the switch.

2. The heating control circuit according to claim 1, **characterized in that** the at least two control circuits comprise a first control circuit and a second control circuit, wherein

the first control circuit comprises a first voltage source, a first coil panel, a second coil panel, a first power switch tube, a second power switch tube, a first capacitor and a second capacitor, wherein the first power switch tube and the second power switch tube are connected in parallel to two ends of the first voltage source after being connected in series, the first capacitor and the second capacitor are connected in parallel to the two ends of the first voltage source after being connected in series, the first coil

panel and the second coil panel are connected in series, one end of the serially connected first coil panel and second coil panel is connected to a first end point between the first power switch tube and the second power switch tube, and the other end of the serially connected first coil panel and second coil panel is connected to a second end point between the first capacitor and the second capacitor; and the second control circuit comprises a second voltage source, a third coil panel, a fourth coil panel, a third power switch tube, a fourth power switch tube, a third capacitor and a fourth capacitor, wherein the third power switch tube and the fourth power switch tube are connected in parallel to two ends of the second voltage source after being connected in series, the third capacitor and the fourth capacitor are connected in parallel to two ends of the second voltage source after being connected in series, the third coil panel and the fourth coil panel are connected in series, one end of the serially connected third coil panel and fourth coil panel is connected to a third end point between the third power switch tube and the fourth power switch tube, and the other end of the serially connected third coil panel and fourth coil panel is connected to a fourth end point between the third capacitor and the fourth capacitor.

5

3. The heating control circuit according to claim 2, **characterized in that** one end of the first coil panel is connected to the first end point, the other end of the first coil panel is connected to one end of the second coil panel, and the other end of the second coil panel is connected to the second end point; and one end of the third coil panel is connected to the third end point, the other end of the third coil panel is connected to one end of the fourth coil panel, and the other end of the fourth coil panel is connected to the fourth end point.

10

4. The heating control circuit according to claim 3, wherein the at least one switch comprises nine switches, wherein a first switch is connected in series between the first end point and one end of the serially connected first coil panel and second coil panel; a second switch is connected in series between the first coil panel and the second coil panel; a third switch is connected in series between the second end point and the other end of the serially connected first coil panel and second coil panel; one end of a fourth switch is connected between the first end point and one end of the first switch, and the other end of the fourth switch is connected between the third end point and the seventh switch; one end of a fifth switch is connected between the other end of the first coil panel and the second switch, and the other end of the fifth switch is connected

15

20

25

30

35

40

45

50

55

between the other end of the third coil panel and the eighth switch; one end of a sixth switch is connected between the other end of the second coil panel and the third switch, and the other end of the sixth switch is connected between the other end of the fourth coil panel and the ninth switch; a seventh switch is connected in series between the third end point and one end of the serially connected third coil panel and fourth coil panel; a eighth switch is connected in series between the third coil panel and the fourth coil panel; and a ninth switch is connected in series between the fourth end point and the other end of the serially connected third coil panel and fourth coil panel.

5. The heating control circuit according to claim 3, **characterized in that** the at least one switch comprises: a first single-pole double-throw switch connected in series between the first end point and one end of the serially connected first coil panel and second coil panel, wherein a free end of the first single-pole double-throw switch is connected to the first end point, one fixed end of the first single-pole double-throw switch is connected to one end of the serially connected first coil panel and second coil panel, and the other fixed end of the first single-pole double-throw switch is connected between the third end point and one end of the serially connected third coil panel and fourth coil panel; and a second single-pole double-throw switch connected in series between the third coil panel and the fourth coil panel, wherein a free end of the second single-pole double-throw switch is connected to the third coil panel, one fixed end of the second single-pole double-throw switch is connected to the fourth coil panel, and the other fixed end of the second single-pole double-throw switch is connected between the first coil panel and the second coil panel.

6. The heating control circuit according to claim 2, **characterized in that** one end of the second coil panel is connected to the first end point, the other end of the second coil panel is connected to one end of the first coil panel, and the other end of the first coil panel is connected to the second end point; and one end of the fourth coil panel is connected to the third end point, the other end of the fourth coil panel is connected to one end of the third coil panel, and the other end of the third coil panel is connected to the fourth end point.

7. The heating control circuit according to claim 6, **char-**

acterized in that the one or more switches comprise four switches, wherein a first switch is connected in series between the first coil panel and the second coil panel; one end of a second switch is connected between the first switch and the second coil panel, and the other end of the second switch is connected between the third coil panel and the fourth coil panel; one end of a third switch is connected between the other end of the first coil panel and the second end point, and the other end of the third switch is connected between the other end of the third coil panel and the fourth switch; and a fourth switch is connected in series between the other end of the serially connected third coil panel and fourth coil panel and the fourth end point.

8. The heating control circuit according to claim 6, **characterized in that** the one or more switches comprise:

a first switch connected in series between the first coil panel and the second coil panel; a second switch, one end of the second switch being connected between the first switch and the second coil panel, and the other end of the second switch being connected between the third coil panel and the fourth coil panel; and a third switch, one end of the third switch being connected between the other end of the first coil panel and the second end point, and the other end of the third switch being connected between the other end of the third coil panel and the fourth end point.

35

9. The heating control circuit according to claim 1, **characterized in that** the first voltage source and the second voltage source are from a same voltage source.

40

10. An electromagnetic cooking appliance, **characterized by** comprising the heating control circuit according to any one of claims 1-9.

45

50

55

11

Fig. 1

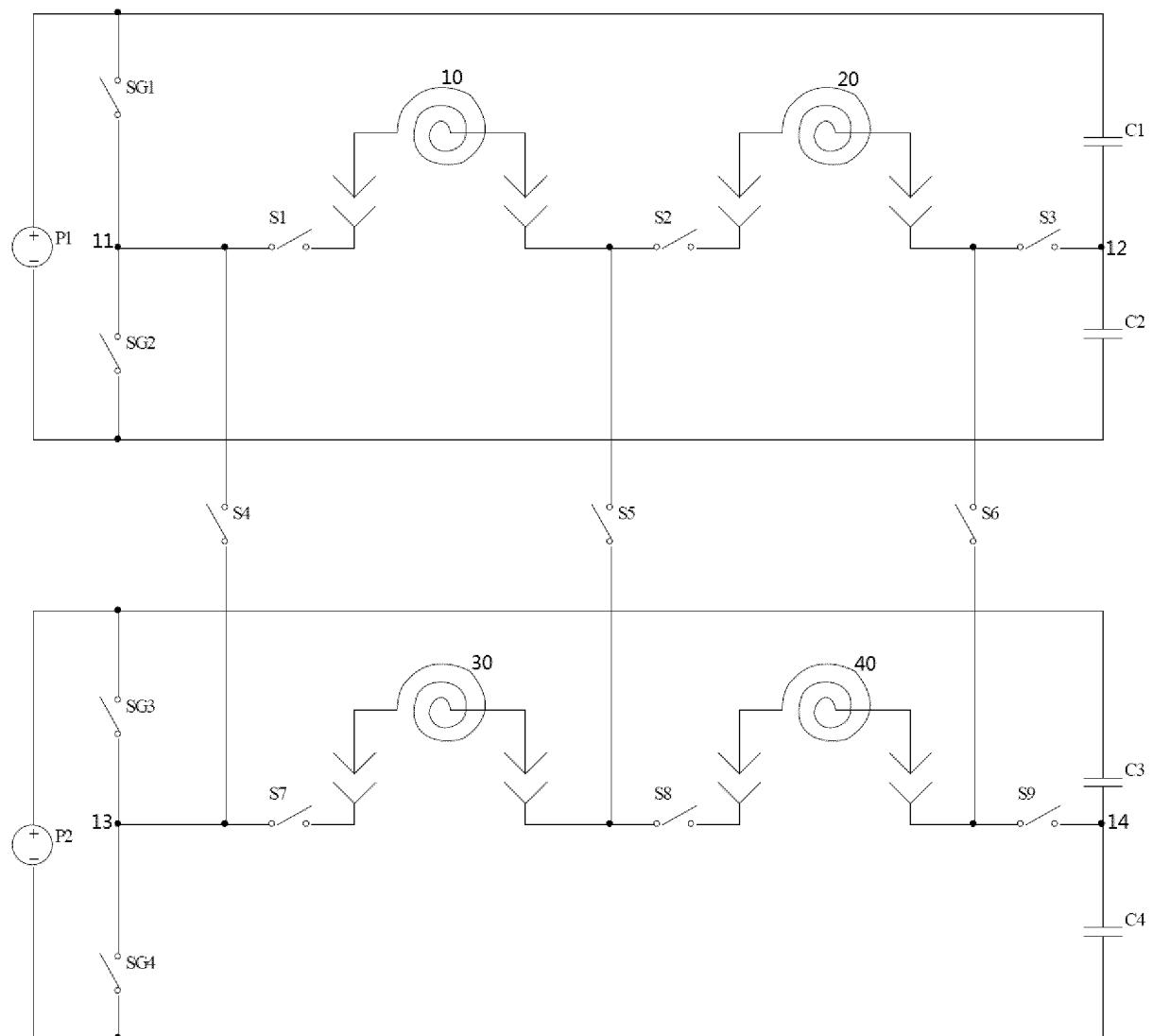


Fig. 2

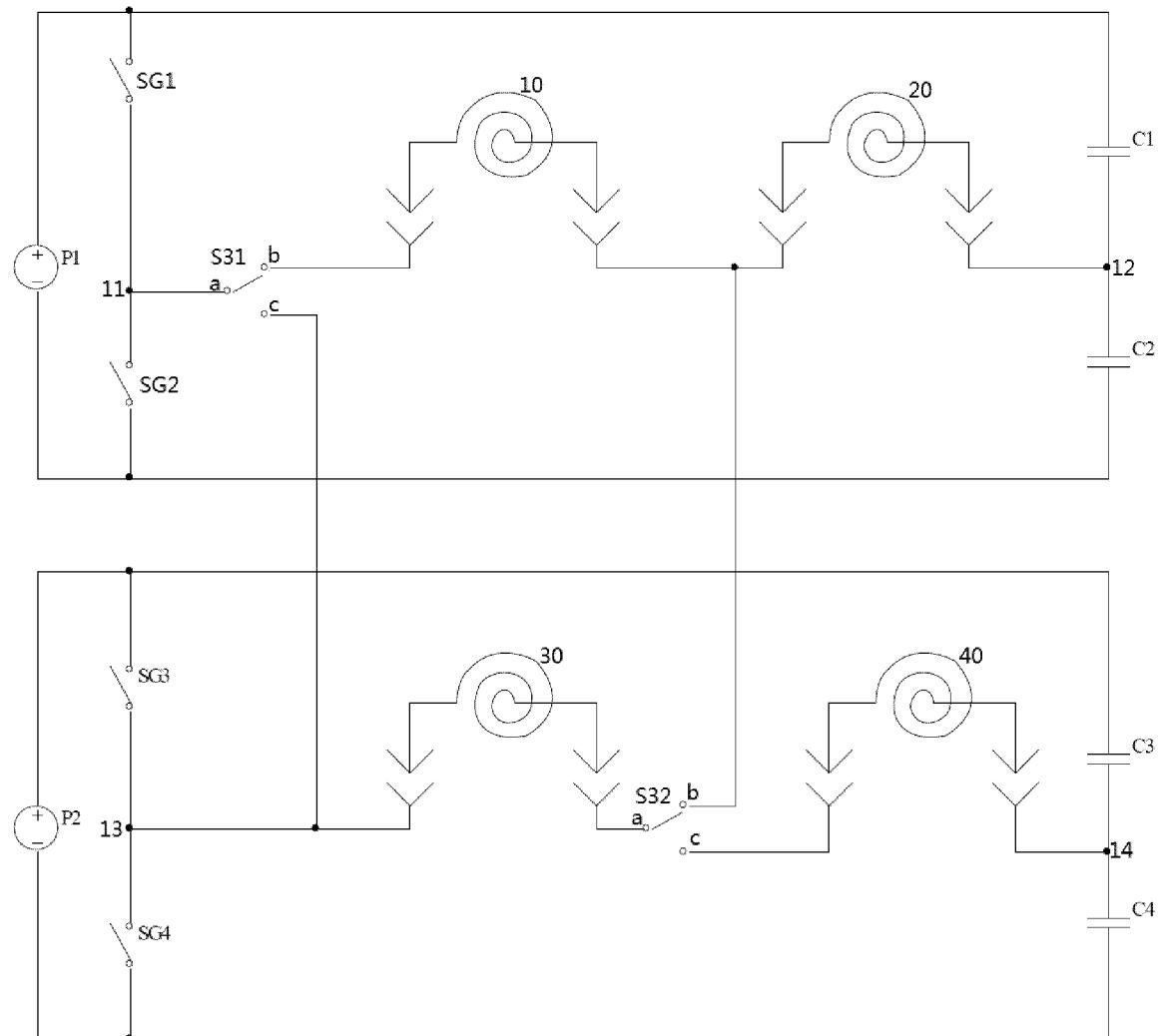


Fig. 3

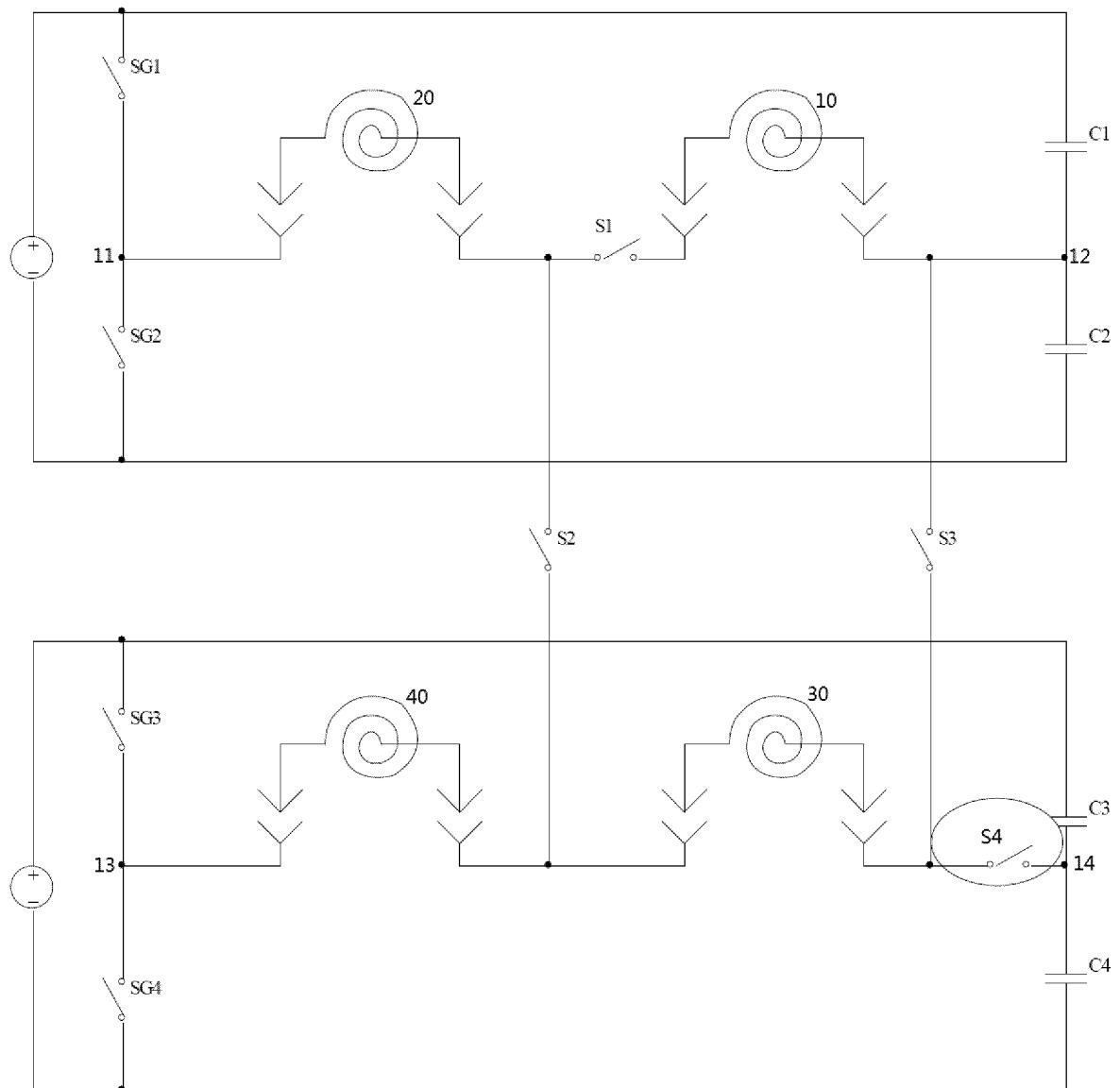


Fig. 4

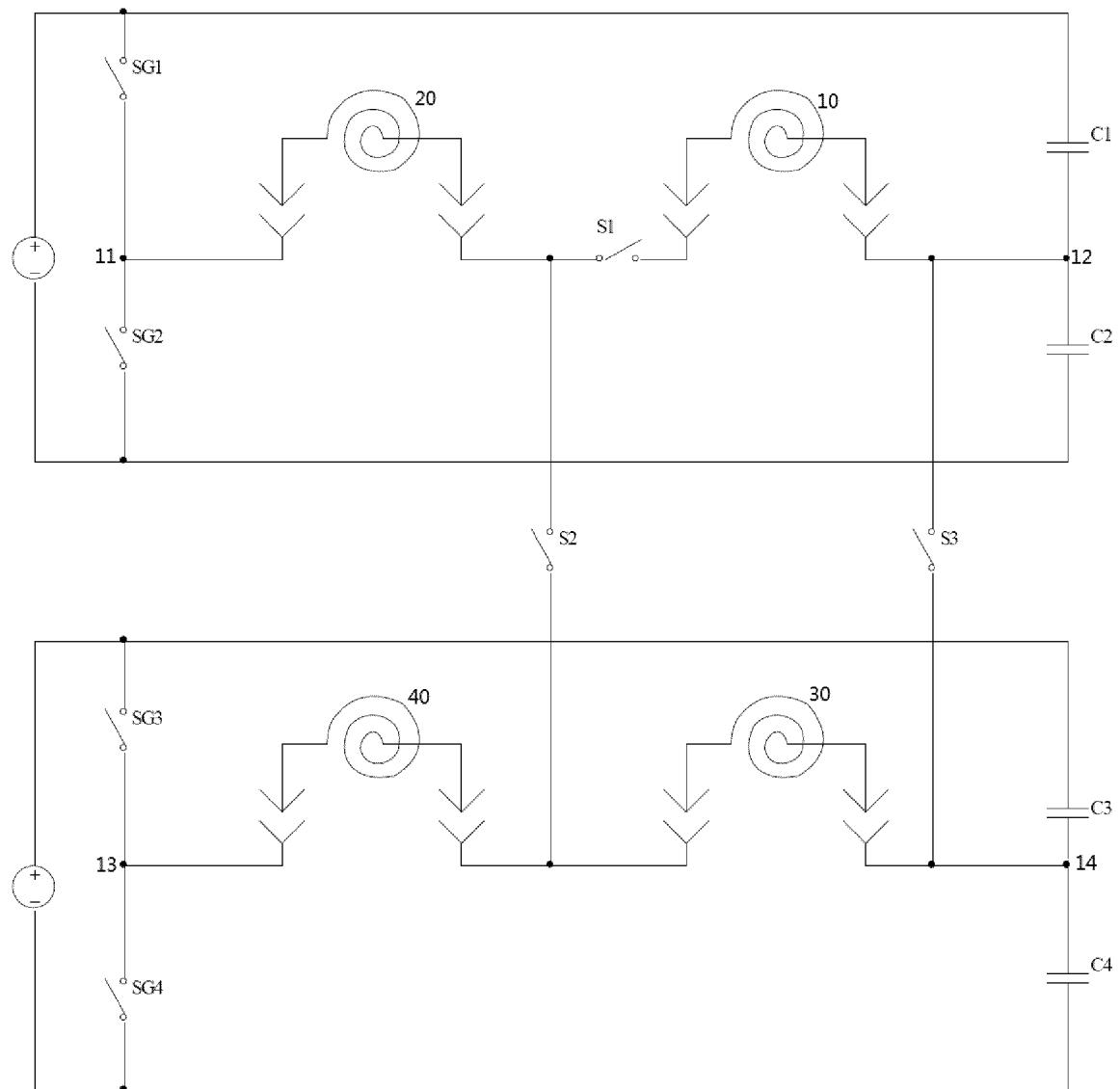


Fig. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2018/085002

A. CLASSIFICATION OF SUBJECT MATTER

H05B 6/44(2006.01)i; H05B 6/06(2006.01)i; H05B 1/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H05B; H02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS; CNTXT, DWPI, SIPOABS: 电容, 晶体管, 两个, 线圈, 三极管, 电磁, 加热, 线圈盘, 控制, 多个, IGBT, MOS, 开关, FET, 线盘, 场效应管, capacitor, transistor, triode, switch, coil, disk, panel, control, heat, electromagnet+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CN 106879095 A (FOSHAN SHUNDE MIDEA ELECTRICAL HEATING APPLIANCES MANUFACTURING CO., LTD.; MIDEA GROUP CO., LTD.) 20 June 2017 (2017-06-20) description, paragraphs 0026-0052, and figures 1-5	1, 9, 10
Y	CN 203775445 U (MIDEA GROUP CO., LTD.; FOSHAN SHUNDE MIDEA ELECTRICAL HEATING APPLIANCES MANUFACTURING CO., LTD.) 13 August 2014 (2014-08-13) description, paragraphs 0053-0058, and figure 2	1, 9, 10
A	CN 202818656 U (ZHANG, ZHENQIANG) 20 March 2013 (2013-03-20) entire document	1-10
A	CN 206506730 U (FOSHAN SHUNDE MIDEA ELECTRICAL HEATING APPLIANCES MANUFACTURING CO., LTD.) 19 September 2017 (2017-09-19) entire document	1-10
A	CN 101715256 A (HITACHI APPLIANCES, INC.) 26 May 2010 (2010-05-26) entire document	1-10
A	CN 105530719 A (SHENZHEN CHK CO., LTD.) 27 April 2016 (2016-04-27) entire document	1-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search

27 July 2018

Date of mailing of the international search report

09 August 2018

Name and mailing address of the ISA/CN

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing
100088
China

Authorized officer

Facsimile No. (86-10)62019451

Telephone No.

INTERNATIONAL SEARCH REPORT Information on patent family members				International application No. PCT/CN2018/085002		
5	Patent document cited in search report	Publication date (day/month/year)	Patent family member(s)	Publication date (day/month/year)		
10	CN 106879095	A 20 June 2017	None			
	CN 203775445	U 13 August 2014	None			
	CN 202818656	U 20 March 2013	None			
	CN 206506730	U 19 September 2017	None			
	CN 101715256	26 May 2010	EP 2170010	A2	31 March 2010	
			EP 2170010	A3	18 December 2013	
			CN 101715256	B	05 September 2012	
			EP 2170010	B1	04 March 2015	
			JP 4909968	B2	04 April 2012	
	CN 105530719	27 April 2016	JP 2010080356	A	08 April 2010	
			None			
20						
25						
30						
35						
40						
45						
50						
55	Form PCT/ISA/210 (patent family annex) (January 2015)					