

(19)

(11)

EP 3 680 246 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
15.07.2020 Bulletin 2020/29

(51) Int Cl.:
C07F 9/10 (2006.01)

(21) Application number: **20156082.8**

(22) Date of filing: **10.05.2012**

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **10.05.2011 US 201161484293 P**

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
12782810.1 / 2 706 977

(71) Applicant: **Archer Daniels Midland Company
Decatur, Illinois 62526 (US)**

(72) Inventors:
• **Baseeth, Shireen S.
Decatur, IL Illinois 62526 (US)**

• **Tabuena-Salyers, Teodora R.
Decatur, IL Illinois 62521 (US)**
• **Sebree, Bruce R.
Oakley, IL Illinois 62501 (US)**

(74) Representative: **dompatent von Kreisler Selting
Werner -
Partnerschaft von Patent- und Rechtsanwälten
mbB
Deichmannhaus am Dom
Bahnhofsvorplatz 1
50667 Köln (DE)**

Remarks:

This application was filed on 07-02-2020 as a divisional application to the application mentioned under INID code 62.

(54) DISPERSANTS HAVING BIOBASED COMPOUNDS

(57) The present invention is directed towards the use of a composition as a dispersion aid, wherein said composition is in the form of a nano-dispersion and comprises

- (i) a lecithin;
- (ii) an acid; and
- (iii) water.

Description**TECHNICAL FIELD**

5 **[0001]** The present disclosure is directed to dispersants comprising lecithin and uses thereof. The present disclosure is also directed to methods for the preparation of such dispersants and uses of the dispersants.

BACKGROUND

10 **[0002]** Dispersants and latexes have utility in applications such as paper coatings, colors, paints, and adhesives, as well as coatings for paper, metal, and the pharmaceutical industry. Although dispersants account for only a few percent of the total composition of paints and coating formulations, the dispersants play a critical role in the performance of such paints and coating formulations. The dispersants provide color stability and maximize pigment opacity by increasing the exposed surface area of the pigment particles, thus increasing coverage while reducing costs.

15 **[0003]** Dispersion is a complex process which involves variables including the chemistries of the solvent, resin, and pigments involved. Changes in these chemistries are associated with changes in the rheology and the resultant dispersant technology. Steric and electrostatic forces can stabilize pigment dispersions and are often accomplished with anionic and nonionic surfactants and their resulting effects on the pigment surface. These surfactants are easy to use, inexpensive, and effective at low concentrations. But, anionic surfactants are pH and salt sensitive. Adsorption of non-ionic

20 surfactants is pH and salt insensitive, but such non-ionic surfactants need to be used in large amounts to be effective. **[0004]** Other dispersant technologies use hyperdispersants which have higher molecular weights than traditional, surfactant-like dispersants. One type of such hyperdispersants are polymeric dispersants which have an anchoring group in their molecule that absorbs at the surface of the pigments and a polymeric chain that provides a steric stabilization barrier around the pigment particle. Although the polymeric dispersants absorb onto the dispersed pigments, such dispersants provide little wetting and emulsifying properties. Such dispersants are attractive in some water based-formulations because less foaming often results as compared to the surfactant-like dispersants.

25 **[0005]** Phosphate esters are often used in conjunction with dispersant technologies and are considered auxiliary dispersants since such phosphate esters are not used by themselves. The phosphate esters provide assistance with stabilization through steric interactions with the pigment particles.

30 **[0006]** Apart from the abilities of wetting and dispersing, dispersants also need to stabilize the suspended particles or the suspended particles will re-agglomerate. This stabilization is critical and difficult to accomplish, but when achieved, provides a colorant with a longer shelf life, improved color, gloss, and color compatibility.

35 **[0007]** One surfactant that exhibits these desirable dispersant properties is anionic phosphate esters which have a phosphate moiety as a head group. The anionic phosphate esters are synthesized with phosphoric acid derivatives and alcohol and have some residual phosphoric acid resulting in a pH as low as two. Anionic phosphate esters are often available in free acid form. The presence of the phosphate group in a formulation for a wetting or dispersing agent enhances the gloss and color acceptance property of a pigment in paint, reduces a viscosity increase due to aging of the paint, improves surface wetting, and provides a stable dispersion.

40 **[0008]** With the growing need for more biobased additives that can replace petroleum based products based on the desire for "greener" products, a need exists for biobased products that can be used in dispersants, coatings, and latex type products where the biobased products fulfill all the desired characteristics of the petroleum based counterparts.

SUMMARY

45 **[0009]** In each of its various embodiments, the present invention fulfills these needs and discloses a biobased product that can be used as a dispersant.

[0010] In one embodiment, a composition in the form of a nano-dispersion, comprises a lecithin, an acid, and water.

[0011] In another embodiment, a dispersant composition in the form of a nano-emulsion comprises an organic solvent having a dielectric constant of between 2 and 35, lecithin, and water.

50 **[0012]** In a further embodiment, a process for producing a product in the form of a nano-dispersion comprises mixing lecithin with an organic solvent having a dielectric constant of between 2 and 35, and mixing water with the organic solvent and the lecithin.

[0013] In other embodiments, uses of the compositions of the present invention as dispersants and methods of dispersing compounds are also disclosed.

55 **[0014]** It should be understood that this disclosure is not limited to the embodiments disclosed in this Summary, and it is intended to cover modifications that are within the spirit and scope of the invention, as defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The characteristics and advantages of the present disclosure may be better understood by reference to the accompanying figures, in which:

5 Figure 1 shows the densities of dispersants of various embodiments of the present invention.

10 Figure 2 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

15 Figure 3 shows the color of paint produced using various embodiments of dispersants of the present invention.

20 Figure 4 shows a color comparison of a paint produced with one embodiment of a dispersant of the present invention as compared to paints produced with other dispersants.

25 Figure 5 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

30 Figure 6 shows the color of paint produced using various embodiments of dispersants of the present invention.

35 Figure 7 shows the color of paint produced using various embodiments of dispersants of the present invention.

40 Figure 8 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

45 Figure 9 shows the color of paint produced using various embodiments of dispersants of the present invention.

50 Figure 10 shows the color of paint produced using various embodiments of dispersants of the present invention.

55 Figure 11 shows the color of paint produced using various embodiments of dispersants of the present invention.

Figure 12 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

60 Figure 13 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

65 Figure 14 shows the color of paint produced using various embodiments of dispersants of the present invention.

70 Figure 15 is a graphical representation of properties of paint produced using an embodiment of a dispersant of the present invention.

75 Figure 16 shows the color of paint produced using various embodiments of dispersants of the present invention.

45 DETAILED DESCRIPTION

[0016] In the present application, including the claims, other than in the operating examples or where otherwise indicated, all numbers expressing quantities or characteristics are to be understood as being modified in all instances by the term "about". Unless indicated to the contrary, any numerical parameters set forth in the following description may vary depending on the desired properties in the compositions and methods according to the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described in the present description should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[0017] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, the disclosure set forth herein supersedes any conflicting material incorporated herein by reference.

[0018] The embodiments disclosed herein are directed to compositions and methods that comprise a composition

comprising a lecithin and an organic solvent that forms a nano-dispersion. In one embodiment, the nano-dispersions described herein self-assemble, are thermodynamically stable, and may have a mean particle size of less than one micron. In various embodiments, the composition is a blend of lecithin in amounts ranging from 5% to 95% by weight of the disclosed compositions, and in certain embodiments from 70% to 95%; and the organic solvent in amounts ranging from 5% to 95% by weight of the disclosed compositions, and in certain embodiments from 5% to 30%.

[0019] Lecithin is a lipid substance found in animal and plant tissues such as, for example, egg yolk, soybean, and canola or rapeseed. Lecithin includes various constituents including, but not limited to, phospholipids, such as, for example, phosphatidyl choline ("PC"), phosphatidyl inositol ("PI"), and phosphatidyl ethanolamine ("PE"). The amphiphilic properties of lecithin makes it an effective processing aid, emulsifier, dispersant and/or surfactant. Lecithin is also a natural ingredient than can form nanodispersions in aqueous mediums and carry high loads of actives. But, in such aqueous mediums, lecithin tends to have limited tolerance to pH and electrolytes.

[0020] Lecithin may be used in applications where modification of the boundary layer between substances is desirable. In the presence of immiscible liquid phase, lecithin can reduce the interfacial surface tension and function as an emulsifier. When used with two or more solid phases, lecithin can function as a lubricant and/or release agent.

[0021] In one embodiment, a lecithin based product of the present invention has utility in a dispersant formulation is stable at a low pH, such as down to two, and when used in an aqueous dispersion, the lecithin based product remains stable up to a pH of ten, and also remains stable in high amounts of silicates and electrolytes (up to 40% calcium chloride) without breaking the emulsion.

[0022] It has been found that the combination of lecithin and one or more organic solvents results in aqueous compositions having reduced viscosity as compared to conventional lecithin. The reduction in viscosity allows for increased applicability of lecithin as a dispersant in aqueous and non-aqueous systems. The disclosed lecithin- organic solvent compositions may be formulated to provide a desirable viscosity profile for numerous applications, such as, for example, pigment dispersion vehicles in paints, inks, and other coatings. In various embodiments, the disclosed lecithin-acidifier compositions have a viscosity of less than 1500 centipoise. In other embodiments, the disclosed lecithin-acidifier compositions have a viscosity of less than 1200 centipoise, less than 500 centipoise, or less than 100 centipoise.

[0023] Lecithins suitable for use in the disclosed compositions and methods include, but are not limited to, crude filtered lecithin, fluid lecithin, de-oiled lecithin, chemically and/or enzymatically modified lecithin, standardized lecithin, and blends of any thereof. Lecithins employed in the present disclosure generally tend to have a hydrophilic-lipophilic balance ("HLB") value ranging from 1.0 to 10.0 depending on the processing conditions and additives used to obtain and produce the lecithin product. For example, crude filtered lecithin has an HLB value of approximately 4.0 and favors the formation of water-in-oil emulsions. Standardized lecithin includes co-emulsifiers having HLB values ranging from 10.0 to 24.0, which results in lecithin compositions having HLB values of 7.0 to 12.0 and favoring oil-in-water emulsions. Any lecithin or combinations of lecithins are suitable for use in the disclosed compositions and methods regardless of the initial HLB value of the lecithin. Lecithins useful in the disclosed compositions and methods may comprise co-emulsifiers having a hydrophilic-lipophilic balance value ranging from 10.0 to 24.0, and in certain embodiments 10.0 to 18.0.

[0024] The emulsifier and/or surfactant properties of an amphiphilic substance such as lecithin, for example, may be predicted at least in part by the hydrophilic-lipophilic balance ("HLB") value of the substance. The HLB value may function as an index of the relative preference of an amphiphilic substance for oil or water - the higher the HLB value, the more hydrophilic the molecule; the lower the HLB value, the more hydrophobic the molecule. A description of HLB values is provided in U.S. Pat. No., 6,677,327, which is incorporated by reference herein in its entirety. HLB is also described in Griffin, "Classification of Surface-Active Agents by 'HLB,'" J. Soc. Cosmetic Chemists 1 (1949); Griffin, "Calculation of HLB Values of Non-Ionic Surfactants," J. Soc. Cosmetic Chemists 5 (1954); Davies, "A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent," Gas/Liquid and Liquid/Liquid Interfaces, Proceedings of the 2d International Congress on Surface Activity (1957); and Schick, "Nonionic Surfactants: Physical Chemistry", Marcel Dekker, Inc., New York, N.Y., pp. 439-47 (1987), each of which is incorporated by reference herein in its entirety.

[0025] In various embodiments, the organic solvent used in the disclosed compositions and methods may be selected from the group of acidifiers consisting of a lactic acid, propionic acid, methyl acetic acid, acetic acid, fumaric acid, citric acid, ascorbic acid, gluconic acid, gluconic delta lactone acid, adipic acid, malic acid, tartaric acid, a hydroxy acid, salts of any thereof, esters of any thereof, or combinations of any thereof. In another embodiment, the organic solvent is selected from lactic acid, sodium lactate, ethyl lactate, or combinations of any thereof. The acidifier may also be a bio-derived acid, an organic acid, or a combination thereof. In another embodiment, a pH of the composition may be below 6, below 5, or below 4.

[0026] Substances of a bio-derived origin are derived from biological materials as opposed to being derived from petrochemical sources. Bio-derived substances may be differentiated from petroleum derived substances by their carbon isotope ratios using ASTM International Radioisotope Standard Method D 6866. As used herein, the term "bio-derived" refers to being derived from or synthesized by a renewable biological feedstock, such as, for example, an agricultural, forestry, plant, fungal, bacterial, or animal feedstock.

[0027] Various agencies have established certification requirements for determining bio-derived content. These methods require the measurement of variations in isotopic abundance between bio-derived products and petroleum derived products, for example, by liquid scintillation counting, accelerator mass spectrometry, or high precision isotope ratio mass spectrometry. Isotopic ratios of the isotopes of carbon, such as the $^{13}\text{C}/^{12}\text{C}$ carbon isotopic ratio or the $^{14}\text{C}/^{12}\text{C}$ carbon isotopic ratio, can be determined using isotope ratio mass spectrometry with a high degree of precision. Studies have shown that isotopic fractionation due to physiological processes, such as, for example, CO_2 transport within plants during photosynthesis, leads to specific isotopic ratios in natural or bio-derived compounds. Petroleum and petroleum derived products have a different $^{13}\text{C}/^{12}\text{C}$ carbon isotopic ratio due to different chemical processes and isotopic fractionation during the generation of petroleum. In addition, radioactive decay of the unstable ^{14}C carbon radioisotope leads to different isotope ratios in bio-derived products compared to petroleum products. Bio-derived content of a product may be verified by ASTM International Radioisotope Standard Method D 6866. ASTM International Radioisotope Standard Method D 6866 determines bio-derived content of a material based on the amount of bio-derived carbon in the material or product as a percent of the weight (mass) of the total organic carbon in the material or product. Bio-derived products will have a carbon isotope ratio characteristic of a biologically derived composition.

[0028] Bio-derived materials offer an attractive alternative for industrial manufacturers looking to reduce or replace their reliance on petrochemicals and petroleum derived products. The replacement of petrochemicals and petroleum derived products with products and/or feed stocks derived from biological sources (i.e., bio-based products) offer many advantages. For example, products and feed stocks from biological sources are typically a renewable resource. In most instances, bio-derived chemicals and products formed therefrom are less burdensome on the environment than petrochemicals and products formed from petrochemicals. As the supply of easily extracted petrochemicals continues to be depleted, the economics of petrochemical production will likely force the cost of the petrochemicals and petroleum derived products to be higher compared to bio-based products. In addition, companies may benefit from the marketing advantages associated with bio-derived products from renewable resources in the view of a public becoming more concerned with the supply of petrochemicals.

[0029] In various embodiments, the disclosed compositions may also comprise one or more co-surfactants. The one or more co-surfactants may comprise one or more anionic surfactants, one or more non-ionic surfactants, or combinations of one or more anionic surfactants and one or more non-ionic surfactants. In various embodiments, the co-surfactant or co-surfactant combinations may have a hydrophilic-lipophilic balance ranging from 10.0 to 24.0, and in some embodiments from 10.0 to 18.0.

[0030] In various embodiments, the lecithin may comprise from 5% to 95% by weight of the disclosed composition, in some embodiments from 60% to 90%, and in other embodiments from 30% to 80%; the organic solvent may comprise from 5% to 60% by weight of the disclosed composition, in some embodiments from 10% to 50%, and in other embodiments from 15% to 55%; and the water may comprise from 5% to 40% by weight of the composition, and in some embodiments from 10% to 30%.

[0031] Anionic surfactants suitable for use in the disclosed compositions and methods include, but are not limited to, sodium and potassium salts of straight-chain fatty acids, polyoxyethylenated fatty alcohol carboxylates, linear alkyl benzene sulfonates, alpha olefin sulfonates, sulfonated fatty acid methyl ester, arylalkanesulfonates, sulfosuccinate esters, alkylidiphenylether(di)sulfonates, alkylnaphthalenesulfonates, isoethionates, alkylether sulfates, sulfonated oils, fatty acid monoethanolamide sulfates, polyoxyethylene fatty acid monoethanolamide sulfates, aliphatic phosphate esters, nonylphenolphosphate esters, sarcosinates, fluorinated anionics, anionic surfactants derived from oleochemicals, and combinations of any thereof. In various embodiments, the surfactant comprises an anionic surfactant, such as, for example, a phosphate ester.

[0032] Non-ionic surfactants suitable for use in the disclosed compositions and methods include, but are not limited to, sorbitan monostearate, polyoxyethylene ester of rosin, polyoxyethylene dodecyl mono ether, polyoxyethylene-polyoxypropylene block copolymer, polyoxyethylene monolaurate, polyoxyethylene monohexadecyl ether, polyoxyethylene monooleate, polyoxyethylene mono(cis-9-octadecenyl)ether, polyoxyethylene monostearate, polyoxyethylene mono-octadecyl ether, polyoxyethylene dioleate, polyoxyethylene distearate, polyoxyethylene sorbitan monolaurate polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, polyglycerol ester of oleic acid, polyoxyethylene sorbitol hexastearate, polyoxyethylene monotetradecyl ether, polyoxyethylene sorbitol hexaoleate, fatty acids, tall-oil, sorbitol hexaesters, ethoxylated castor oil, ethoxylated soybean oil, rapeseed oil ethoxylate, ethoxylated fatty acids, ethoxylated fatty alcohols, ethoxylated polyoxyethylene sorbitol tetraoleate, glycerol and polyethylene glycol mixed esters, alcohols, polyglycerol esters, monoglycerides, sucrose esters, alkyl polyglycosides, polysorbates, fatty alkanolamides, polyglycol ethers, derivatives of any thereof, and combinations of any thereof. In various embodiments, the surfactant comprises a non-ionic surfactant, such as, for example, a fatty acid ethoxylate.

[0033] In various embodiments, the disclosed compositions and methods may comprise lecithin, an organic solvent, and a co-surfactant, such as an anionic surfactant or a non-ionic surfactant. The organic solvent may have a dielectric constant of between 2 and 35.

[0034] The combination of lecithin and an organic solvent results in a composition having reduced viscosity as compared to conventional lecithin. The reduction in viscosity increases the applicability of the composition as a processing aid, emulsifier, dispersant and/or surfactant in various applications, such as, for example, in paints, inks, and other coating compositions. Embodiments comprising lecithin and an organic solvent find utility in aqueous systems, where the low viscosity composition is water dispersible.

[0035] In various embodiments, the disclosed water dispersible lecithin-acidifier compositions find utility in water-based coatings, including, but not limited to, latex paints. In various embodiments, the disclosed compositions may be used as dispersion vehicles for pigments in paint and ink formulations. In various embodiments, the disclosed compositions aid in pigment processing, including, but not limited to, grinding, milling and release aids, which may contribute to improved gloss, colorant, and body in pigmented formulations. The low viscosity of the disclosed compositions provides improved coating uniformity to pigments and other particulates in dispersions. Thus, the disclosed compositions provide improved dispersant, wetting agent, and/or stabilizer properties and performance.

[0036] In other embodiments, the disclosed compositions may be used in magnetic fluid applications. In one embodiment, the disclosed compositions may be used to stabilize magnetic particles in a solvent base, including, but not limited to, a mixture of a base oil and an ester compound. The improved wetting and dispersant properties of the disclosed compositions result in reduced agglomeration of the suspended particles in magnetic fluids without resulting in adverse effects on the viscosity of the fluid.

[0037] The disclosed compositions may also be used in nanotechnology applications. In one embodiment, the disclosed compositions may be used as a dispersant, wetting agent, solubilizer, and/or stabilizer in nanoparticle suspensions. Additional applications for the disclosed compositions and methods include, but are not limited to, use in fiberglass, concrete, ceramics, plastics, and composites. Additional uses of the disclosed compositions include, but are not limited to, uses as textile auxiliary agents, leather finishing agents, plastic compounding agents, lubricants, oilfield drilling additives, emollients, film-formers, and mold release agents.

[0038] In addition to the multiple functionalities of the disclosed compositions as a dispersant, wetting agent, solubilizer, and/or stabilizer in various applications, the disclosed compositions also contain low or no volatile organic compounds ("VOCs"). Low VOC paints, inks, and other surface coatings may use water as a carrier instead of petroleum-based solvents. As such, the levels of harmful emissions are lower than solvent-borne surface coatings. However, dispersion of pigments and other colorants may be more difficult in aqueous-based coating systems as compared to petroleum-based systems. The disclosed compositions, therefore, may be used in low VOC coating formulations to improve pigment and colorant dispersion without contributing undesirable VOCs to the compositions.

[0039] In order to meet EPA standards, paints, inks and other surface coatings must not contain VOCs in excess of 200 grams per liter. Generally, low VOC surface coatings usually meet a 50 g/L VOC threshold. For example, paints with the Green Seal Standard (GS-11) mark are certified lower than 50 g/L (for flat sheen) or 150 g/L (for non-flat sheen). Surface coatings containing VOCs in the range of 5 g/L or less according to the EPA Reference Test Method 24 may be called "Zero VOC."

[0040] In various embodiments, the compositions disclosed herein have less than 25 grams of VOCs per liter of composition. In various embodiments, the compositions disclosed herein have VOC levels of less than 5 g/L, less than 1 g/L, or less than 0.5 g/L. In various embodiments, the compositions disclosed herein may be used as low-VOC bio-derived dispersants, wetting agents, solubilizers, and/or stabilizers.

[0041] In another embodiment, the compositions of the present invention may be food grade and include a food grade surfactant such as, for example, a polysorbate.

[0042] The embodiments disclosed herein are also directed to methods of preparing the disclosed compositions. In various embodiments, lecithin is heated to a temperature above ambient temperature, an organic solvent is added to the lecithin at the elevated temperature, and the organic solvent and lecithin are mixed together to form a lecithin-organic solvent blend. The blend is cooled to ambient temperature. The resulting blend has a viscosity lower than the lecithin ingredient alone, which may be less than 3000 cP. In various embodiments, the viscosity of the lecithin-organic solvent blend may be less than 2000 cP, less than 500 cP, or less than 100 cP. In various other embodiments, one or more co-surfactants may be added to the lecithin either before or simultaneously with one or more organic solvents. The one or more co-surfactants may alternatively be added to the blend of the lecithin and the one or more organic solvents.

[0043] The embodiments disclosed herein are also directed to methods of using the disclosed compositions. In various embodiments, the disclosed compositions are used to aid in the dispersion or wetting of an ingredient in a formulation such as, for example, concrete, ceramic, fiberglass, plastic, ink, paint, or other coating. The disclosed compositions are mixed into the formulation to disperse or wet at least one ingredient, such as, for example, a pigment. In various embodiments, the disclosed compositions comprise low-VOC bio-derived additives for use in a variety of formulations.

[0044] As described herein, the disclosed compositions are suitable for formulating solvent and water based paints, inks, and other coating systems. The amphiphilic properties of the disclosed compositions allows for their use as good wetting and stabilizing agents for organic pigments, inorganic pigments, carbon black, or titanium dioxide. The disclosed compositions are also suitable for a wide variety of pigment concentrates. In various embodiments, as illustrated herein,

the disclosed compositions are added as a grinding aid in pigment dispersion processes during formulation of paints, inks and other coating systems.

[0045] In various embodiments, as illustrated herein, the disclosed compositions may function as low-VOC dispersants exhibiting low-grind viscosity, high pigment load, low foam, high color development, and fast dispersion/wetting. In various embodiments, the disclosed compositions may comprise an emulsifier blend free of alkyl phenol ethoxylates.

EXAMPLES

[0046] The following exemplary, non-limiting examples are provided to further describe the embodiments presented herein. Those having ordinary skill in the art will appreciate that variations of these Examples are possible within the scope of the invention.

Example 1.

[0047] This example describes a method of making a lecithin concentrate that is water dispersible. A lecithin-cosurfactant blend was prepared by mixing: lecithin (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 73 percent by weight; tall fatty acid ethoxylate (available from Stepan, Northfield, IL) in an amount of 20 percent by weight; and soy fatty acid in an amount of 7 percent by weight. The components were mixed at 50°C under constant stirring for between 30 minutes to 60 minutes, thus producing an amber, transparent lecithin-cosurfactant blend.

Example 2.

[0048] The lecithin-cosurfactant blend from Example 1 was mixed in an amount of 65 percent by weight with lactic acid of 88% strength (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 35 percent by weight, at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water.

Example 3.

[0049] The blend from Example 1 was mixed in an amount of 65 percent by weight with ethyl lactate (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 4 percent by weight, followed by the addition of water in an amount of 7 percent by weight at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water. The pH of this blend is 2.0.

Example 4.

[0050] The lecithin-cosurfactant blend from Example 1 was mixed in an amount of 58 percent by weight with sodium lactate of 60% strength (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 22 percent by weight, followed by 9% lactic acid of 88% strength (available from Archer-Daniels-Midland Company of, Decatur, IL). To this blend, ethyl lactate (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 4 percent by weight, followed by the addition of water in an amount of 7 percent by weight at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water. The pH of this blend is 4.5. The composition produced by this Example is referred to as ADM 6200.

Example 5.

[0051] The lecithin-cosurfactant blend from Example 1 was mixed in an amount of 56 percent by weight with sodium lactate of 60% strength (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 22 percent by weight, followed by 9% lactic acid of 88% strength (available from Archer-Daniels-Midland Company of, Decatur, IL). To this blend, ethyl lactate (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 4 percent by weight, followed by the addition of Tergitol L-62, a polyether polyol, nonionic surfactant having an HLB value of about 7, (available from DOW Chemical Company, Midland, Michigan) in an amount of 9 percent by weight at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water. The pH of this blend is 4.5.

Example 6.

[0052] The lecithin-cosurfactant blend from Example 1 was mixed in an amount of 56 percent by weight with sodium

lactate of 60% strength (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 22 percent by weight, followed by 9% lactic acid of 88% strength (available from Archer-Daniels-Midland Company of, Decatur, IL). To this blend, ethyl lactate (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 4 percent by weight, followed by the addition of propylene glycol (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 9 percent by weight at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water. The pH of this blend is at 4.5.

5 Example 7.

10 [0053] This Example describes a method of making a lecithin concentrate that is water dispersible. A lecithin-cosurfactant blend was prepared by mixing: lecithin (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 73 percent by weight; a blend of Polyoxyethylene (20) monooleate, Polysorbate 80 (available from BASF, Florham, NJ) in an amount of 20 percent by weight; and soy fatty acid in an amount of 7 percent by weight. The components were mixed at 50°C under constant stirring for between 30 minutes to 60 minutes, thus producing an amber, 15 transparent lecithin-cosurfactant blend.

Example 8.

20 [0054] The lecithin-cosurfactant blend from Example 7 was mixed in an amount of 58 percent by weight with sodium lactate of 60% strength (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 22 percent by weight, followed by 9% lactic acid of 88% strength (available from Archer-Daniels-Midland Company of, Decatur, IL). To this blend, ethyl lactate (available from Archer-Daniels-Midland Company of, Decatur, IL) in an amount of 4 percent by weight, followed by the addition of water in an amount of 7 percent by weight at room temperature with constant stirring for thirty minutes to obtain a clear system that easily forms a stable milky dispersion in water. The pH of this 25 blend is 4.5. The composition of this Example is referred to as ADM 6400 and is food grade.

Example 9.

30 [0055] Pigment dispersions were prepared according to formulations shown on Table 1. The composition produced in Example 4, referred to herein as ADM 6200, was compared to ADM 3200 (produced in accordance with Example 8 of US Patent Application Serial No. 12/993,282, filed November 18, 2010) as a standard or reference. Pigments were ground using cowles blade and glass beads to simulate bead mill for 45 minutes at 1300 rpm. Color development was evaluated at 1% pigmentation with Sherwin-Williams Gloss blue tint base. Paint mixtures were applied on white Leneta paper and dried overnight under normal laboratory condition. Color properties were determined by Spectro-guide.

35

Table 1. Formulations of ADM 6200 and the reference ADM 3200.

	ADM 6200		ADM 3200
	Trial 1	Trial 2	
40	Grind		
45	Water	69.00	69.00
50	ADM 3200		18.00
55	ADM 6200	18.00	18.00
	Tergitol L-62	7.50	5.00
	AMP-95	2.25	2.25
	Byk 024	1.50	1.50
	Hostaperm Yellow H3G (%Pigment = 30.00%)	45.00	45.00
	Add after pigment grind		
	Water	6.75	9.25
	Total(grams)	150.00	150.00

[0056] Table 2 shows the pigment dispersion and paint film properties. Replacing ADM 3200 with ADM 6200 (Trial 1)

increased the paint film gloss with a very minimal increase in color development as shown by increased color strength, but very minimal color difference (ΔE^*). However, the pigment dispersion of ADM 6200 showed some foam development as shown by ADM 6200's lower density than ADM 3200. Reducing the amount of Tergitol L-62 by 33% (Trial 2) decreased the paint film gloss, and resulted in a very minimal increase in color development as shown by increased color strength, but very minimal difference in color (ΔE^*). However, the pigment dispersion of Trial 2 showed more foam development as shown by Trial 2's lower density than Trial 1 and ADM 3200 as shown in Figure 1.

Table 2. Paint film properties of ADM 6200 and the reference ADM 3200.

	ADM 6200		ADM 3200
	Trial 1	Trial 2	
Dispersion Properties			
Brookfield Visco (p)	0.446	0.413	0.467
Density (#/gal)	8.94	8.81	9.09
Fineness of Grind (FOG) μ	0	0	0
Paint Film Properties			
$L^* = 100$ (lightness)	82.77	82.77	82.83
- a^* (greenness)	-18.06	-18.60	-18.08
+ b^* (yellowness)	22.14	22.10	22.13
ΔE^*	0.06	0.06	Std
Gloss	40.10	37.90	39.10
Color Strength	100.20	100.18	100.00%
$\Delta E^* = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$			

[0057] A graphical presentation of the paint film properties is shown in Figure 2 and the color is shown in Figure 3.

[0058] The ADM 6200 dispersant showed equal color development as ADM 3200 and having a little increase in gloss.

Example 10.

[0059] The pigment dispersions of Example 9 (ADM 6200 Trials 1 and 2, and ADM 3200) and the commercially available dispersant, Disperbyk from BYK, USA, were mixed with Sherwin-Williams Gloss blue tint base for color development and applied on white Leneta paper and dried overnight under laboratory conditions. Color properties were determined by Spectro-guide.

[0060] Table 3 shows the CIELab comparison of ADM 6200 (Trial 1) and ADM 3200 with Disperbyk that were applied on the same day and the color comparisons are shown in Figure 4. Table 4 shows the CIELab of ADM 6200 (Trial 1) in comparison with ADM 3200 and Disperbyk. From the b^* values that in Tables 3 and 4, there was not much color difference between the ADM 6200, ADM 3200, and Disperbyk dispersants.

Table 3. CIELab Comparison.

	ADM 6200 Trial 1	ADM 3200	Disperbyk
L^*	82.87	83.02	82.94
a^*	-18.15	-18.16	-18.19
b^*	22.25	22.26	22.38
ΔE^*	0.17	0.24	Standard

Table 4. CIELab Comparison.

	ADM 6200 Trial 1	ADM 3200	Disperbyk
L*	82.57	82.93	82.91
a*	-18.15	-18.14	-18.15
b*	22.25	22.34	22.36
ΔE*	0.12	0.02	Standard

10 Example 11.

5 [0061] Pigment dispersions were prepared according to the formulations of Table 5. ADM 6200 was evaluated and compared to ADM 3100 (produced in accordance with Example 4 of US Patent Application Serial No. 12/993,282, filed November 18, 2010) as a standard. Pigments were ground using cowles blade and glass beads to simulate bead mill for 45 minutes at 1200 rpm. Color development was evaluated at 1% pigmentation with Sherwin-Williams Gloss White Base. Paint mixtures were applied on white Leneta paper and dried overnight under normal laboratory condition. Color properties were determined by Spectro-guide.

Table 5.

	ADM 6200	Standard ADM 3100
Grind		
Water	62.10	62.10
ADM 3100	---	18.40
ADM 6200	18.40	---
Tergitol L-62	4.60	9.20
Drewplus L-475	2.30	2.30
Bayferrox 130M (% Pigment)	138.00 (61.22%)	138.00 (60.00%)
Add after pigment grind		
Water	---	---
Total (grams)	225.40	230.00

20 [0062] Table 6 shows the pigment dispersion and paint film properties. Reducing the amount of Tergitol L-62 by 50% in the ADM 6200 formulation decreased the foam development in the dispersion as shown by its high density and low viscosity (Figure 5). The color development for ADM 6200 was slightly improved as compared to ADM 3100 as shown by the CIELab L* and +b* values and color strength, and the gloss of the paint having ADM 6200 was improved as compared to ADM 3100.

Table 6.

	ADM 6200	ADM 3100
Brookfield Visco (p)	0.458	0.825
Density (#/gal)	16.85	16.18
Fineness of Grind (FOG) μ	10	10
L* (= 100 lighter)	72.35	72.52
+ a* (redness)	16.77	16.61
+ b*(yellowness)	5.73	5.66
ΔE*	0.25	Standard

(continued)

	ADM 6200	ADM 3100
Gloss	41.7	40.6
Color Strength	100.67%	100.00%

[0063] A graphical presentation of the paint film properties is shown in Figure 5 and the color is shown in Figure 6.

10 Example 12.

[0064] Pigment dispersions were mixed with Sherwin-Williams Gloss white base for color development using ADM 6200, ADM 3100, Nuosperse, and Disperbyk were applied on white Leneta paper and dried overnight under laboratory condition. Color properties were determined by Spectro-guide.

15 [0065] Table 7 shows the CIELab comparison of ADM 6200 and ADM 3100 in comparison with the commercially available dispersants Nuosperse and Disperbyk from BYK, USA, and color comparisons are shown in Figure 7. Table 8 shows the CIELab of Lactic Blend B in comparison with ADM 3100P, Nuosperse, and Disperbyk. From the CIELab a* value, Lactic Blend B was comparable with Nuosperse and Disperbyk.

20 Table 7.

	ADM 6200	ADM 3100	Nuosperse	Disperbyk
L*	72.24	72.43	72.08	71.82
a*	16.62	16.43	16.59	16.70
b*	5.33	5.57	5.43	5.52
ΔE*	0.46	0.69	0.28	Standard
ΔE*	0.17	0.40	Standard	0.28

30

Table 8.

	ADM 6200	ADM 3100	Nuosperse	Disperbyk
L*	72.24	71.50	72.22	72.15
a*	16.62	17.31	16.72	16.70
b*	5.33	6.09	5.48	5.42
ΔE*	0.10	1.47	0.07	Standard
ΔE*	0.05	1.44	Standard	0.07

Example 13.

45 [0066] Pigment dispersions were prepared according to the formulations of Table 9. ADM 6200 was evaluated with ADM 3200 as a standard. Pigments were ground using cowles blade and glass beads to simulate bead mill for 45 minutes at 1300 rpm. Color development was evaluated at 1.56% pigmentation with Sherwin-Williams Gloss white base. Paint mixtures were applied on white Leneta paper and color properties were determined by Spectro-guide.

50 Table 9.

	ADM 6200	Standard ADM 3200
Blend to disperse		
Water	69.00	69.00
ADM 3200		18.00
ADM 6200	18.00	

(continued)

		ADM 6200	Standard ADM 3200
Blend to disperse			
5	Tergitol L-62	7.50	7.50
10	AMP-95	2.25	2.25
15	Byk 024	1.50	1.50
Hostaperm Green GNX (%Pigment = 31.41%)		45.00	45.00
Add after pigment dispersion			
20	Water	---	---
25	Total(grams)	143.25	143.25

[0067] ADM 6200 was compared to ADM 3200. 6.75 g of water was withheld in both formulations. ADM 6200 showed less foam development during grinding than ADM 3200 as shown by higher viscosity and density compared with ADM 3200, and ADM 6200 showed an increase in gloss and comparable color development as compared to ADM 3200 as shown in Table 10.

Table 10.

	ADM 6200	Standard ADM 3200
25	Brookfield Visco (p)	0.529
30	Density (#/gal)	10.17
35	Fineness of Grind (FOG) μ	0
40	L* (= 100 lightness)	67.96
45	- a* (greenness)	-43.30
50	+ b* (yellowness)	1.07
55	ΔE^*	0.39
Gloss		Standard
Color Strength		35.90
		99.95
		100.00%

[0068] A graphical presentation of the paint film properties are shown in Figure 8 and the color is shown in Figure 9.

40 Example 14.

[0069] Pigment dispersions that were mixed with Sherwin-Williams Extra White Gloss base for color development included ADM 6200 (Trial 5), ADM 3200, and Disperbyk. The different pigment dispersions were applied on white Leneta paper and dried overnight under laboratory condition. Color properties were determined by Spectro-guide.

[0070] Table 11 shows the CIELab comparison of ADM 6200, ADM 3200, and Disperbyk. The color comparisons are shown in Figure 10. Table 12 shows the CIELab comparison of ADM 6200 with Disperbyk and ADM 3200, and color comparisons are shown in Figure 11.

Table 11.

	ADM 6200 Trial 5	ADM 3200	ADM 3200	Disperbyk
50	L*	43.57	43.83	43.90
55	a*	-0.59	-0.59	-0.66
b*		-2.59	-2.44	-2.58
ΔE^*		8.93	8.57	8.56
				Standard

Table 12.

	ADM 6200 Trial 5	ADM 3200	Disperbyk
L*	43.57	44.19	46.11
a*	-0.59	-0.55	-0.65
b*	-2.59	-2.41	-2.48
ΔE*	2.56	1.94	Standard

[0071] From the CIELab L* values in Tables 11 and 12, ADM 6200 showed better color development than Disperbyk (the lower the value, the darker the color). Disperbyk showed color instability on storage at room temperature. This is shown on the change of color as shown in Figure 11. Figure 12 shows the graphical comparison of the L* values.

Example 15. Dispersion of pigment black.

[0072] Pigment dispersions were prepared according to formulations of Table 13. Various trials were made to compare to the standard ADM 3200 formulation. Pigments were ground using cowles blade and glass beads to simulate bead mill for 60 minutes at 1200 rpm. Color development was evaluated at 1% pigmentation with Sherwin-Williams Gloss white base. Paint mixtures were applied on white Leneta paper and dried overnight under normal laboratory condition. Color properties were determined by Spectro-guide.

Table 13. Formulations of ADM 6200 and the reference ADM 3200.

	ADM 6200 Trial 5	ADM 3200
Blend to disperse		
Water	78.00	78.00
ADM 3200	---	17.70
ADM 6200	17.70	---
Tergitol L-62	15.00	15.00
AMP-95	2.60	1.20
Drewplus L-475		2.40
Byk 021	1.45	
Monarch 1100 (%Pigment)	30.00 (20.00)	35.70 (23.80)
Water	5.25	---
Total (grams)	150.00	150.00

[0073] A lb-lb substitution of ADM 3200 with ADM 6200 in the standard formulation showed an increase in viscosity during grinding, development of excess foam, and lighter color development. Several trials on reduction of Tergitol L-62 or increasing ADM 6200 did not decrease the foam formation and improve the color development. Replacing the defoamer Drewplus L475 with Byk 021 (Trial 4) improved the color development, however, the viscosity of the millbase increased after 60 minutes of grinding, but was still able to be filtered. Decreasing the pigmentation to about 20% (Trial 5) improved the foaming property. There was no increase in mill base viscosity in the entire 60 minutes pf grinding and color development was better than ADM 3200.

[0074] Table 14 shows the dispersion and paint film properties. ADM 6200 (Trial 5) showed lower viscosity, better color development and higher color strength as shown by the CIELab values.

Table 14. Paint film properties of ADM 6200 and the reference ADM 3200.

	ADM 6200 Trial 5	ADM 3200
Brookfield Visco (p)	0.417	0.579

(continued)

	ADM 6200 Trial 5	ADM 3200	
5	Density (#/gal)	8.93	8.90
10	Fineness of Grind (FOG) μ	5	5
15	$L^* = 0$ (darkness)	43.42	43.81
	- a^* (greenness)	-0.58	-0.59
	- b^* (blueness)	-2.52	-2.37
	ΔE^*	0.41	Standard
	Gloss	36.50	37.20
	Color Strength	101.82	100.00%

[0075] A graphical representation of the paint film properties is shown in Figure 13 and color is shown in Figure 14.

[0076] The ADM 6200 dispersant showed better color development than ADM 3200, even at a lower pigment loading. ADM 6200 also improved foam development.

20 Example 16. Dispersion of Titanium dioxide.

[0077] Pigment dispersions were prepared according to the formulations of Table 15. ADM 6200 was evaluated with ADM 3100 as a standard. Pigments were dispersed under high speed dispersion for 45 minutes at 1600 rpm. Color development was evaluated at 1.5% in Sherwin-Williams Gloss Blue Tint Base. Paint mixtures were applied on white Leneta paper and dried overnight under normal laboratory condition. Color properties were determined by Spectro-guide.

Table 15. Formulations of ADM 6200 and the reference ADM 3100.

	ADM 6200	ADM 3100	
30	Blend to disperse		
35	Water	53.66	53.66
40	ADM 3100	---	21.60
45	ADM 6200	21.60	---
	Tergitol L-62	7.21	7.21
	Byk 021	3.60	3.60
	Titanium Dioxide R902P (% Pigment)	252.00 (74.54%)	252.00 (73.43%)
	Water	---	5.11
	Total(grams)	338.07	343.18

[0078] A lb-lb substitution of ADM 3100 with ADM 6200 in the White dispersion formulation was evaluated. No additional water was added to the sample after addition of the pigment since the millbase viscosity was already low, thus increasing the pigmentation by at least 1%. Table 16 shows the dispersion and paint film properties. Both dispersants showed good dispersing property as shown by the Fineness of Grind and color development with a very minimal color difference. Pigment dispersion with ADM 6200 resulted in lower viscosity, slightly higher pigment loading, and minimal foam development as shown by its high density.

Table 16. Paint film properties of ADM 6200 and the reference ADM 3100.

	ADM 6200	ADM 3100	
55	Dispersion Properties		
	Density (#/gal)	18.95	18.02

(continued)

	ADM 6200	ADM 3100
5	Dispersion Properties	
	Fineness of Grind (FOG) μ	0
10	Viscosity @ 30 rpm (cps)	3563
	Paint Film Properties	
	L^* (= 100 lightness)	86.57
	- a^* (greenness)	-11.81
15	- b^* (blueness)	-10.78
	ΔE^*	0.04
	Gloss	39.30
20	Color Strength	100.11%
		100.00%

[0079] A graphical representation of the paint film properties is shown in Figure 15 and color is shown in Figure 16.

[0080] ADM 6200 dispersant showed equal color development with ADM 3100, decreased foam development of the millibase, and increased pigment loading.

Example 17.

[0081] The following Table 17 shows the effect of ADM 6400 being effective in increasing the pigment loading, while being able to lower viscosity with no compromise on color. As shown by the Standard ADM 3200, the pigment loading is very limited and an upper limit is reached with respect to viscosity. With ADM 6400, a good synergy is seen with dispersing action and pigment loading where pigment loading may even reach 42%. Similar results were obtained with organic pigments.

Table 17. Pigment Blue Dispersion

	ADM 6400	ADM 3200	ADM 3200/ADM 6400
35	Blend to disperse		
	Water	42.14	52.7
	ADM 3200	---	11
40	ADM 6400	11.6	4.74
	Tergitol L-62	2.1	5.8
	AMP-95	1.3	0.75
45	Byk 021	1.05	0.75
	Pigment Blue (15:3) Lansco 5576 C	41.8	29
			41.98
	Total	100	100
			100

50 [0082] This disclosure has been described with reference to certain exemplary embodiments, compositions and uses thereof. However, it will be recognized by those of ordinary skill in the art that various substitutions, modifications or combinations of any of the exemplary embodiments may be made without departing from the spirit and scope of the disclosure. Thus, the disclosure is not limited by the description of the exemplary embodiments, but rather by the appended claims as originally filed.

55 ITEMS:

[0083]

1. A composition in the form of a nano-dispersion, comprising:

5 a lecithin;
 an acid; and
 water.

2. The composition of item 1, wherein the acid is an organic acid.

3. The composition of item 1, wherein the acid is selected from the lactic acid, ethyl lactate, sodium lactate, and combinations of any thereof.

10 4. The composition of item 1, wherein the acid is selected from the group consisting of lactic acid, propionic acid, methyl acetic acid, acetic acid, fumaric acid, citric acid, ascorbic acid, gluconic acid, gluconic delta lactone acid, adipic acid, malic acid, tartaric acid, a hydroxyl acid, salts of any thereof, esters of any thereof, and combinations of any thereof.

15 5. The composition of any one of items 1-4, wherein the lecithin is selected from the group consisting of crude filtered lecithin, de-oiled lecithin, chemically modified lecithin, enzymatically modified lecithin, standardized lecithin, and combinations of any thereof.

6. The composition of any one of items 1-5, comprising:

20 the lecithin from 30% to 80% by weight of the composition;
 the acid from 10% to 50% by weight of the composition; and
 the water from 10% to 30% by weight of the composition.

7. The composition of any one of items 1-6, comprising less than 5 g/L of volatile organic compounds.

25 8. The composition of any of items 1-7, further comprising a surfactant selected from the group consisting of an anionic surfactant, a non-ionic surfactant and combinations of any thereof.

9. The composition of item 8, wherein the surfactant has a hydrophilic-lipophilic balance of between 10.0 and 24.0.

10. The composition of item 8 or item 9, wherein the non-ionic surfactant is selected from the group consisting of sorbitan monostearate, polyoxyethylene ester of rosin, polyoxyethylene dodecyl mono ether, polyoxyethylene-polyoxypropylene block copolymer, polyoxyethylene monolaurate, polyoxyethylene monohexadecyl ether, polyoxyethylene monooleate, polyoxyethylene mono(cis-9-octadecenyl)ether, polyoxyethylene monostearate, polyoxyethylene monooctadecyl ether, polyoxyethylene dioleate, polyoxyethylene distearate, polyoxyethylene sorbitan monolaurate polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, polyglycerol ester of oleic acid, polyoxyethylene sorbitol hexastearate, polyoxyethylene monotetradecyl ether, polyoxyethylene sorbitol hexaoleate, fatty acids, tall-oil, sorbitol hexaesters, ethoxylated castor oil, ethoxylated soybean oil, rapeseed oil ethoxylate, ethoxylated fatty acids, ethoxylated fatty alcohols, ethoxylated polyoxyethylene sorbitol tetraoleate, glycerol and polyethylene glycol mixed esters, alcohols, polyglycerol esters, monoglycerides, sucrose esters, alkyl polyglycosides, polysorbates, fatty alkanolamides, polyglycol ethers, derivatives of any thereof, and combinations of any thereof.

40 11. The composition of any one of items 8-10, wherein the anionic surfactant is selected from the group consisting of sodium and potassium salts of straight-chain fatty acids, polyoxyethylenated fatty alcohol carboxylates, linear alkyl benzene sulfonates, alpha olefin sulfonates, sulfonated fatty acid methyl ester, arylalkanesulfonates, sulfosuccinate esters, alkylidiphenylether(di)sulfonates, alkylphthalenesulfonates, isoethionates, alkylether sulfates, sulfonated oils, fatty acid monoethanolamide sulfates, polyoxyethylene fatty acid monoethanolamide sulfates, aliphatic phosphate esters, nonylphenolphosphate esters, fluorinated anionics, and combinations of any thereof.

45 12. The composition of any one of items 1-11, wherein the composition has a viscosity of 1,500 centipoise or less.

13. The composition of any one of items 1-12, further comprising propylene glycol.

14. A dispersant composition in the form of a nano-emulsion comprising:

50 an organic solvent having a dielectric constant of between 2 and 35;
 lecithin; and
 water.

55 15. The dispersant composition of item 14, wherein the acid is selected from the group consisting of lactic acid, propionic acid, methyl acetic acid, acetic acid, fumaric acid, citric acid, ascorbic acid, gluconic acid, gluconic delta lactone acid, adipic acid, malic acid, tartaric acid, a hydroxyl acid, salts of any thereof, esters of any thereof, and combinations of any thereof.

16. A product comprising the composition of any one of items 1-15.

17. The product of item 16, wherein the product is selected from the group consisting of a paint, an ink, a coating, a magnetic fluid, concrete, a ceramic, a textile auxiliary agent, an aid in leather finishing, a plastic compounding agent, a lubricant, an oilfield drilling additive, a mold release agent, and a cosmetic.

18. A process for producing a product in the form of a nanodispersion, the process comprising:

5

mixing lecithin with an organic solvent having a dielectric constant of between 2 and 35; and mixing water with the organic solvent and the lecithin.

10

19. The process of item 18, further comprising mixing a co-surfactant with the lecithin.

15

20. The process of item 19, further comprising heating the lecithin and the co-surfactant.

21. The process of any one of items 18-20, wherein the organic solvent is an organic acid.

20

22. The process of any one of items 19-21, wherein the co-surfactant is selected from the group consisting of an anionic surfactant, a non-ionic surfactant and a combination thereof.

23. The process of any one of items 18-22, further comprising mixing propylene glycol with the lecithin.

25

24. A product produced by the process of any one of items 18-23.

25. A method comprising use of the composition of any one of items 1-15 as a dispersion aid, a grinding aid, or a combination thereof.

26. A method of dispersing a compound in a solution comprising mixing the composition of any one of items 1-15 with the compound in the solution.

30

27. The method of item 26, wherein the compound is a pigment.

28. The method of item 27, wherein the pigment is selected from the group consisting of an organic pigment, an inorganic pigment, carbon black, and combinations of any thereof.

28. A food composition comprising the composition of any one of items 1-15.

35

29. The composition of any one of items 1-15, further comprising a pigment.

30. The composition of item 29, wherein the pigment is selected from the group consisting of an organic pigment, an inorganic pigment, carbon black, titanium dioxide, and combinations of any thereof.

31. The composition of any one of items 1-15, having a pH of less than 6.

32. Use of the composition of any one of items 1-15 as a dispersion aid, a grinding aid, or a combination thereof.

30

Claims

1. Use of a composition as a dispersion aid, wherein said composition is in the form of a nano-dispersion and comprises

35

- (i) a lecithin;
- (ii) an acid; and
- (iii) water.

40

2. Use according to claim 1, wherein said use comprises dispersing a compound in a solution, said dispersing a compound in solution comprising mixing said composition with the compound in the solution.

45

3. Use according to claim 2, wherein said compound is a pigment.

50

4. Use according to claim 3, wherein said pigment is selected from the group consisting of an organic pigment, an inorganic pigment, carbon black, and combinations of any thereof.

5. Use according to any of claims 1 to 4, wherein the (ii) acid is an organic acid.

55

6. Use according to any of claims 1 to 4, wherein the (ii) acid is selected from the lactic acid, ethyl lactate, sodium lactate, and combinations of any thereof.

7. Use according to any of claims 1 to 4, wherein the (ii) acid is selected from the group consisting of lactic acid, propionic acid, methyl acetic acid, acetic acid, fumaric acid, citric acid, ascorbic acid, gluconic acid, gluconic delta lactone acid, adipic acid, malic acid, tartaric acid, a hydroxyl acid, salts of any thereof, esters of any thereof, and combinations of any thereof.

55

8. Use according to any of the preceding claims, wherein the (i) lecithin is selected from the group consisting of crude filtered lecithin, de-oiled lecithin, chemically modified lecithin, enzymatically modified lecithin, standardized lecithin,

and combinations of any thereof.

9. Use according to any of the preceding claims, wherein the composition comprises
5 the lecithin from 30% to 80% by weight of the composition;
the acid from 10% to 50% by weight of the composition; and
the water from 10% to 30% by weight of the composition.
10. Use according to any of the preceding claims, wherein the composition further comprises a surfactant selected from
10 the group consisting of an anionic surfactant, a non-ionic surfactant and combinations of any thereof.
11. Use according to claim 10, wherein the surfactant has a hydrophilic-lipophilic balance of between 10.0 and 24.0.
12. Use according to either of claims 10 or 11, wherein the non-ionic surfactant is selected from the group consisting of
15 sorbitan monostearate, polyoxyethylene ester of rosin, polyoxyethylene dodecyl mono ether, polyoxyethylene-polyoxypropylene block copolymer, polyoxyethylene monolaurate, polyoxyethylene monohexadecyl ether, polyoxyethylene monooleate, polyoxyethylene mono(cis-9-octadecenyl)ether, polyoxyethylene monostearate, polyoxyethylene monoctadecyl ether, polyoxyethylene dioleate, polyoxyethylene distearate, polyoxyethylene sorbitan monolaurate polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, polyglycerol ester of oleic
20 acid, polyoxyethylene sorbitol hexastearate, polyoxyethylene monotetradecyl ether, polyoxyethylene sorbitol hexaoleate, fatty acids, tall-oil, sorbitol hexaesters, ethoxylated castor oil, ethoxylated soybean oil, rapeseed oil ethoxylate, ethoxylated fatty acids, ethoxylated fatty alcohols, ethoxylated polyoxyethylene sorbitol tetraoleate, glycerol and polyethylene glycol mixed esters, alcohols, polyglycerol esters, monoglycerides, sucrose esters, alkyl polyglycosides, polysorbates, fatty alkanolamides, polyglycol ethers, derivatives of any thereof, and combinations of any
25 thereof.
13. Use according to any of claims 10 to 12, wherein the anionic surfactant is selected from the group consisting of
30 sodium and potassium salts of straight-chain fatty acids, polyoxyethylenated fatty alcohol carboxylates, linear alkyl benzene sulfonates, alpha olefin sulfonates, sulfonated fatty acid methyl ester, arylalkanesulfonates, sulfosuccinate esters, alkylidiphenylether(di)sulfonates, alkylnaphthalenesulfonates, isoethionates, alkylether sulfates, sulfonated oils, fatty acid monoethanolamide sulfates, polyoxyethylene fatty acid monoethanolamide sulfates, aliphatic phosphate esters, nonylphenolphosphate esters, fluorinated anionics, and combinations of any thereof.
14. Use according to any of the preceding claims, wherein the pH of the composition is below 6, below 5 or below 4.
35

40

45

50

55

FIGURE 1

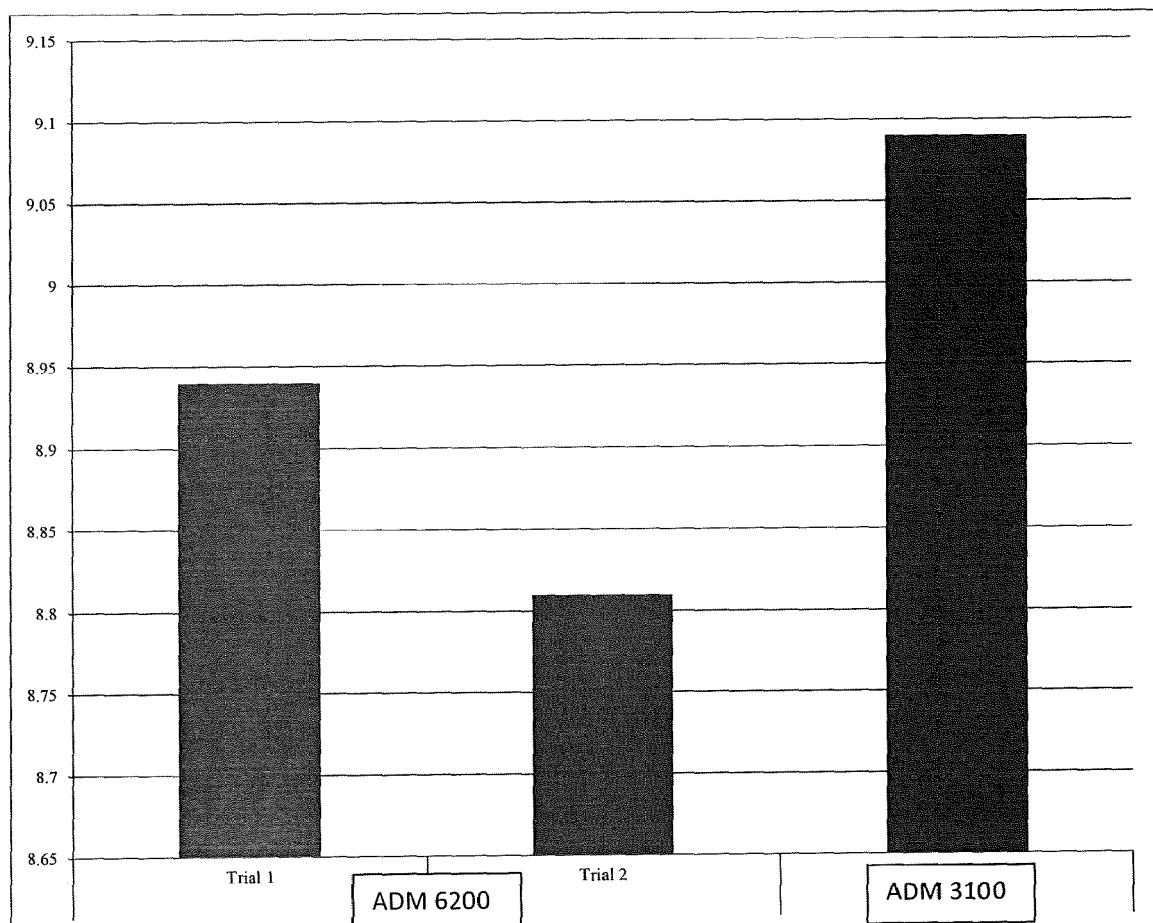


FIGURE 2

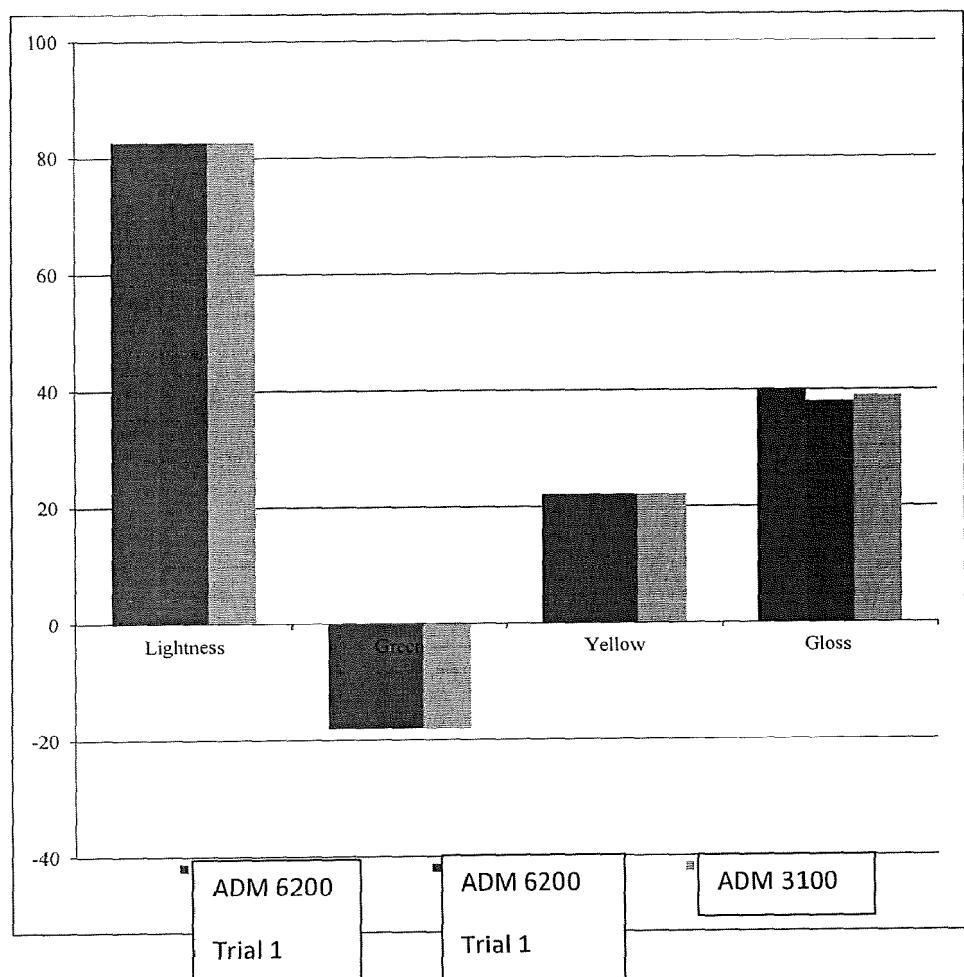


FIGURE 3

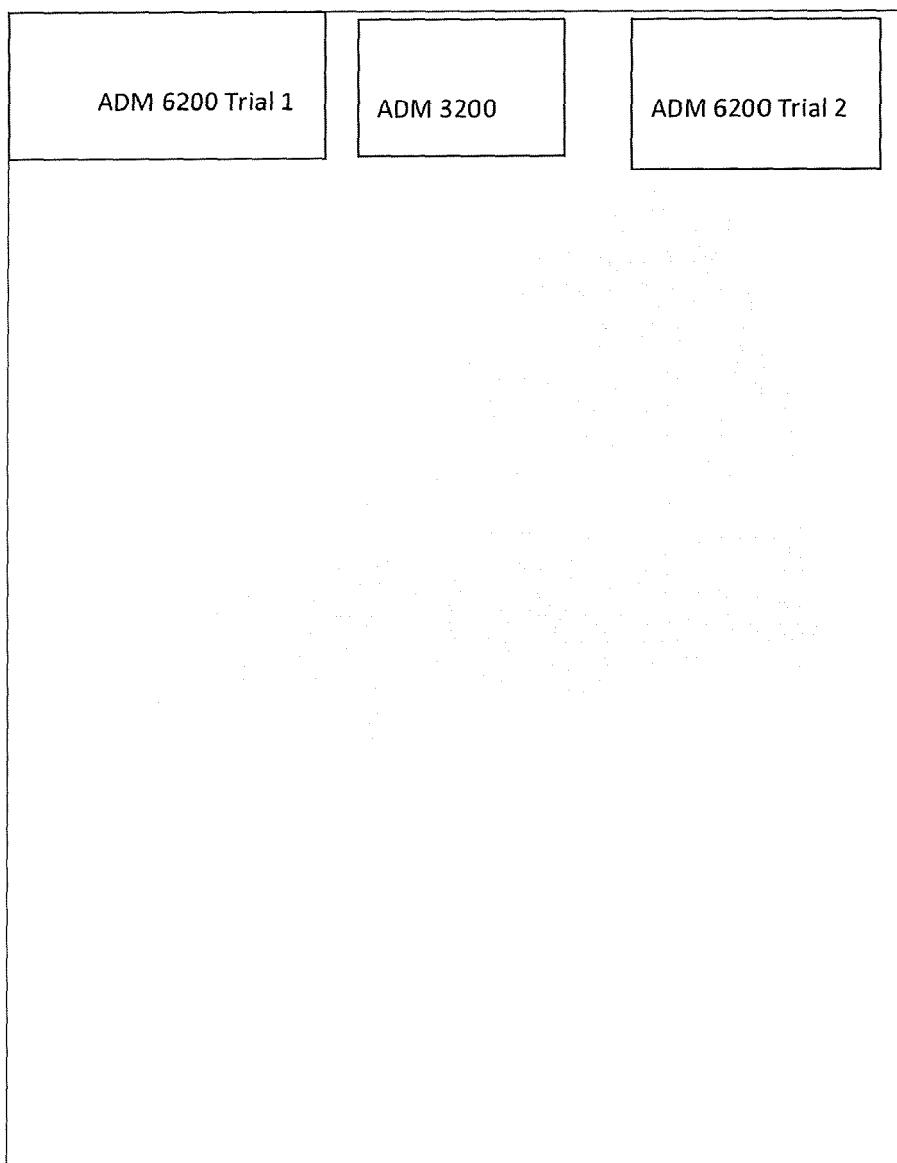


FIGURE 4

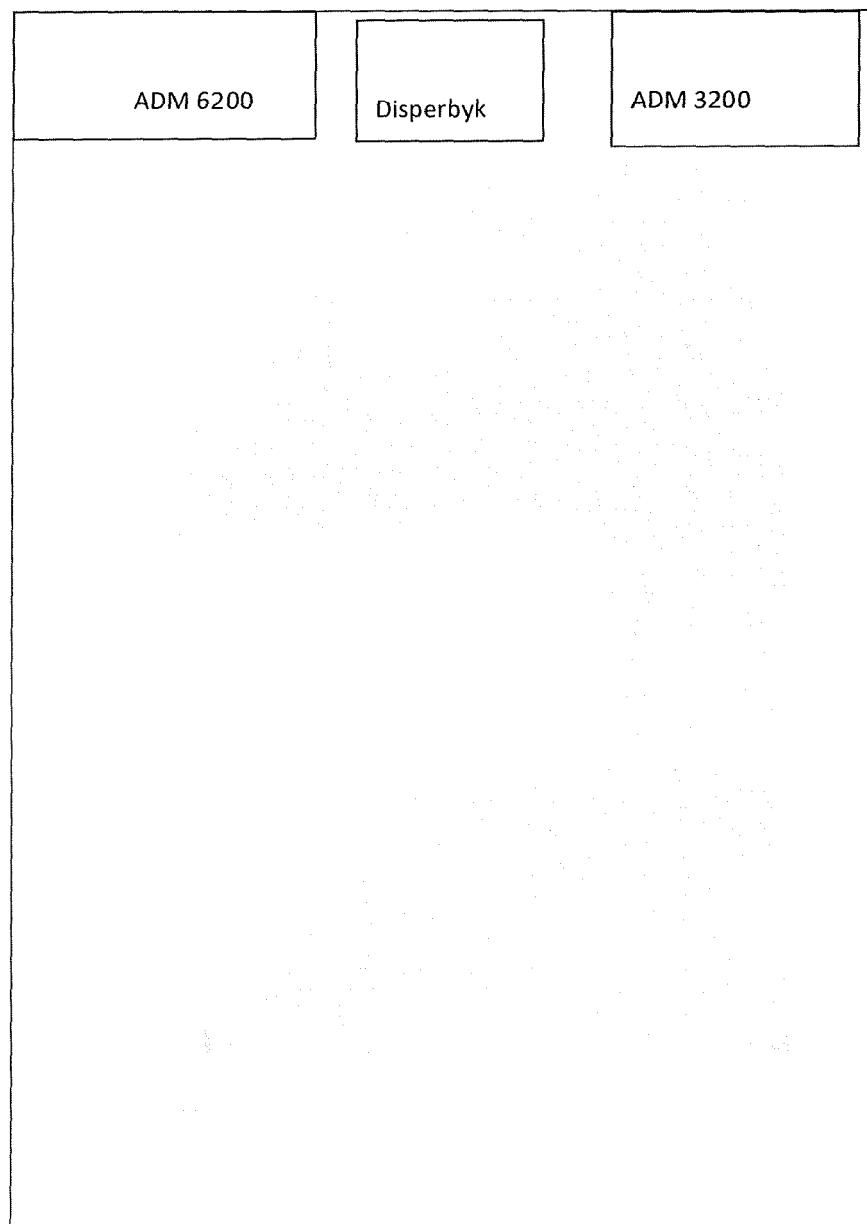


FIGURE 5

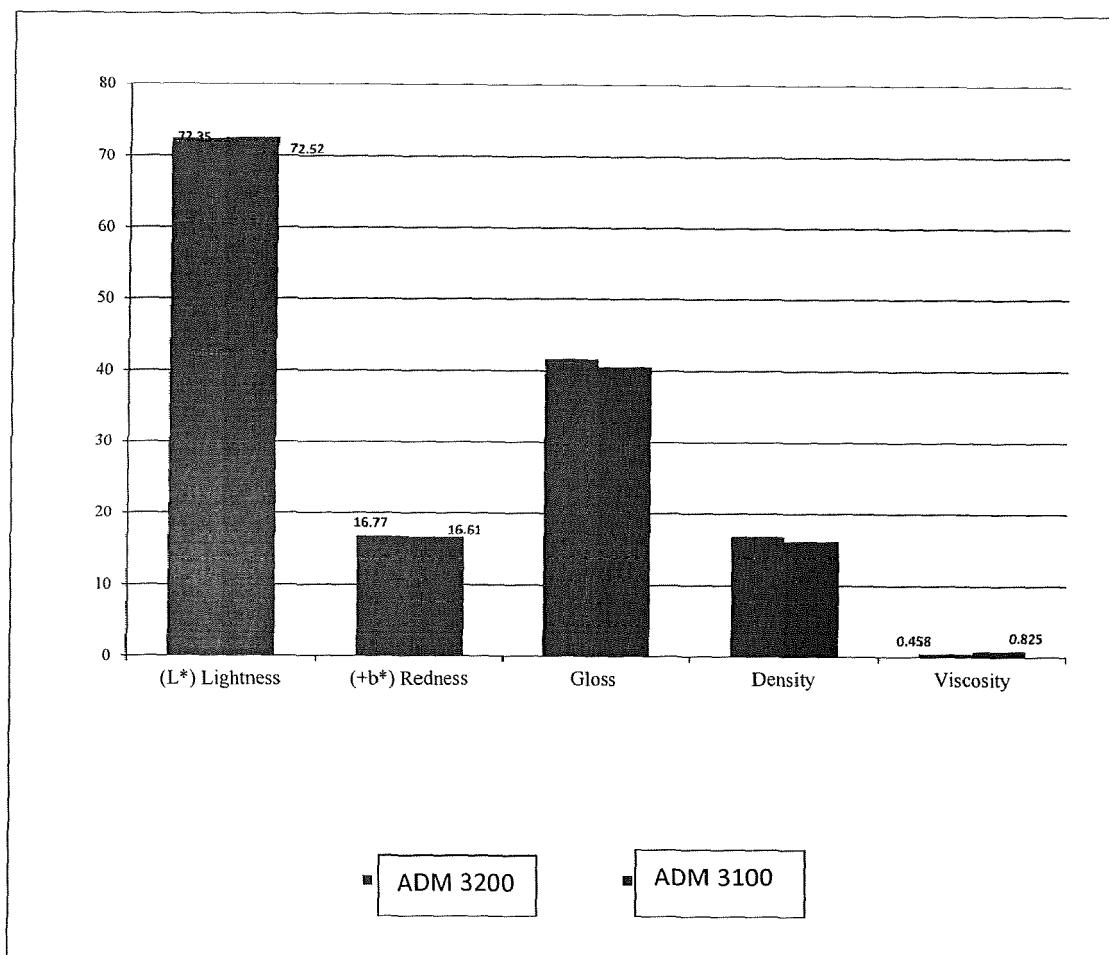


FIGURE 6

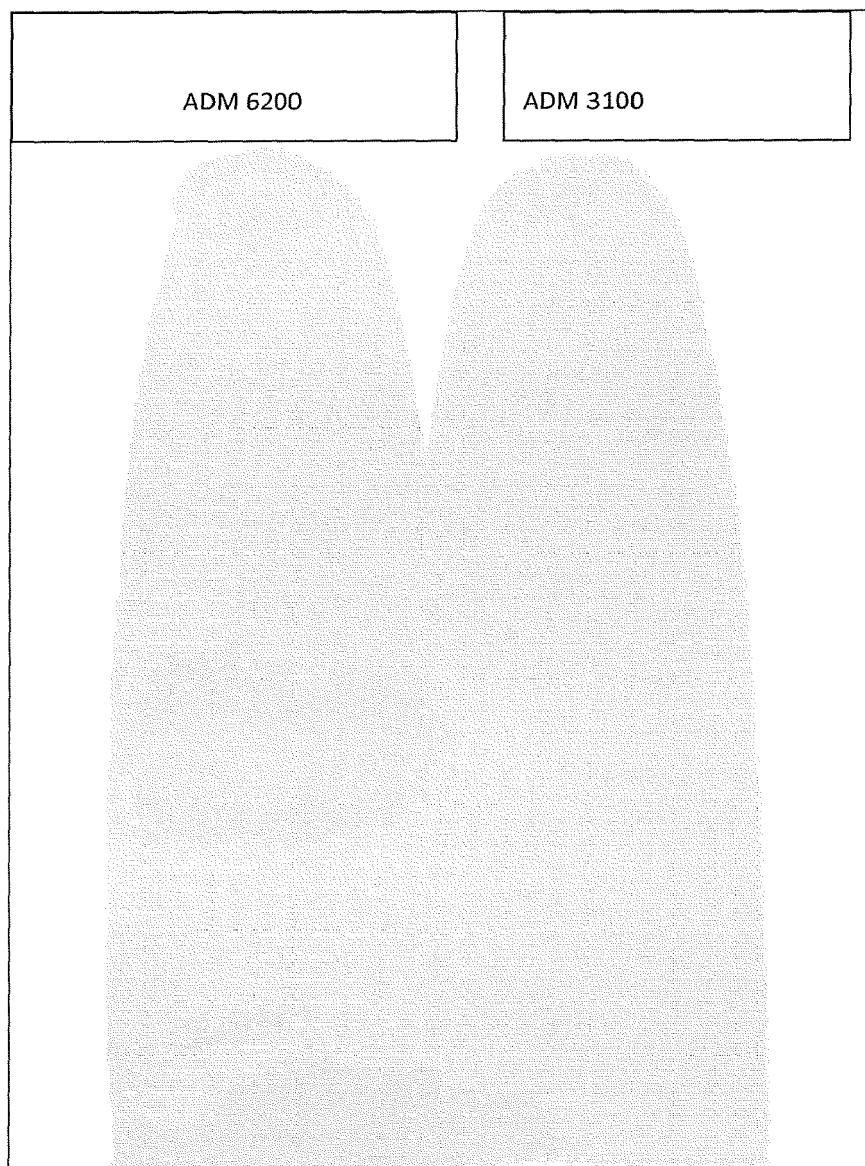


FIGURE 7

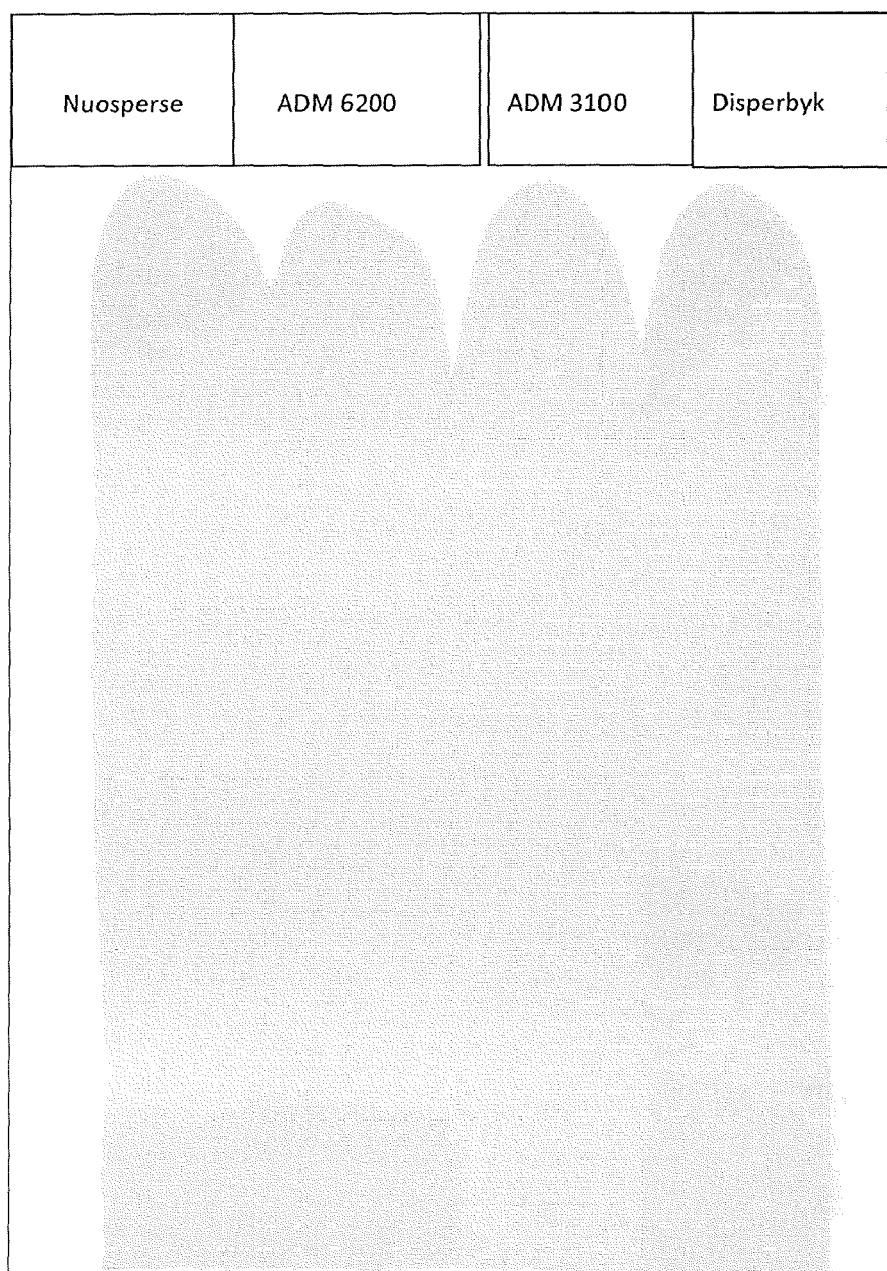


FIGURE 8

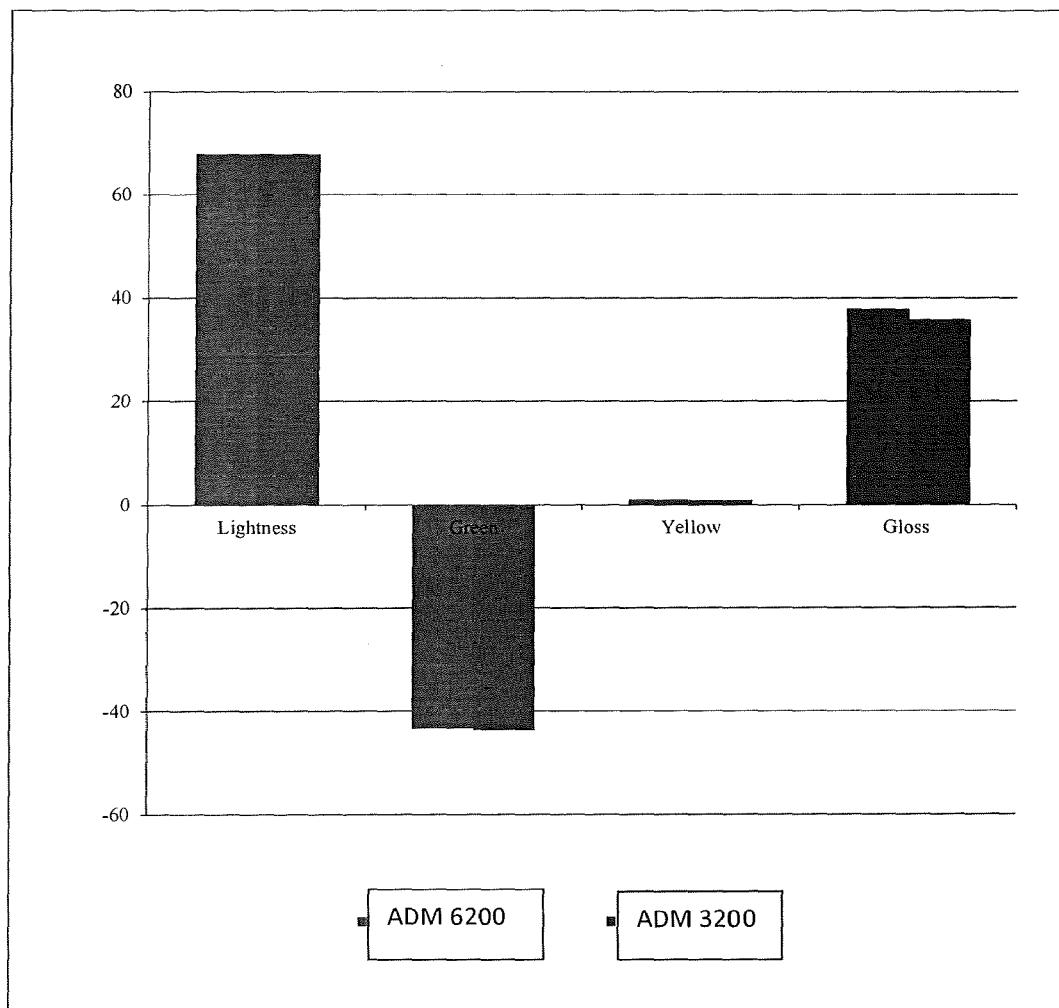


FIGURE 9

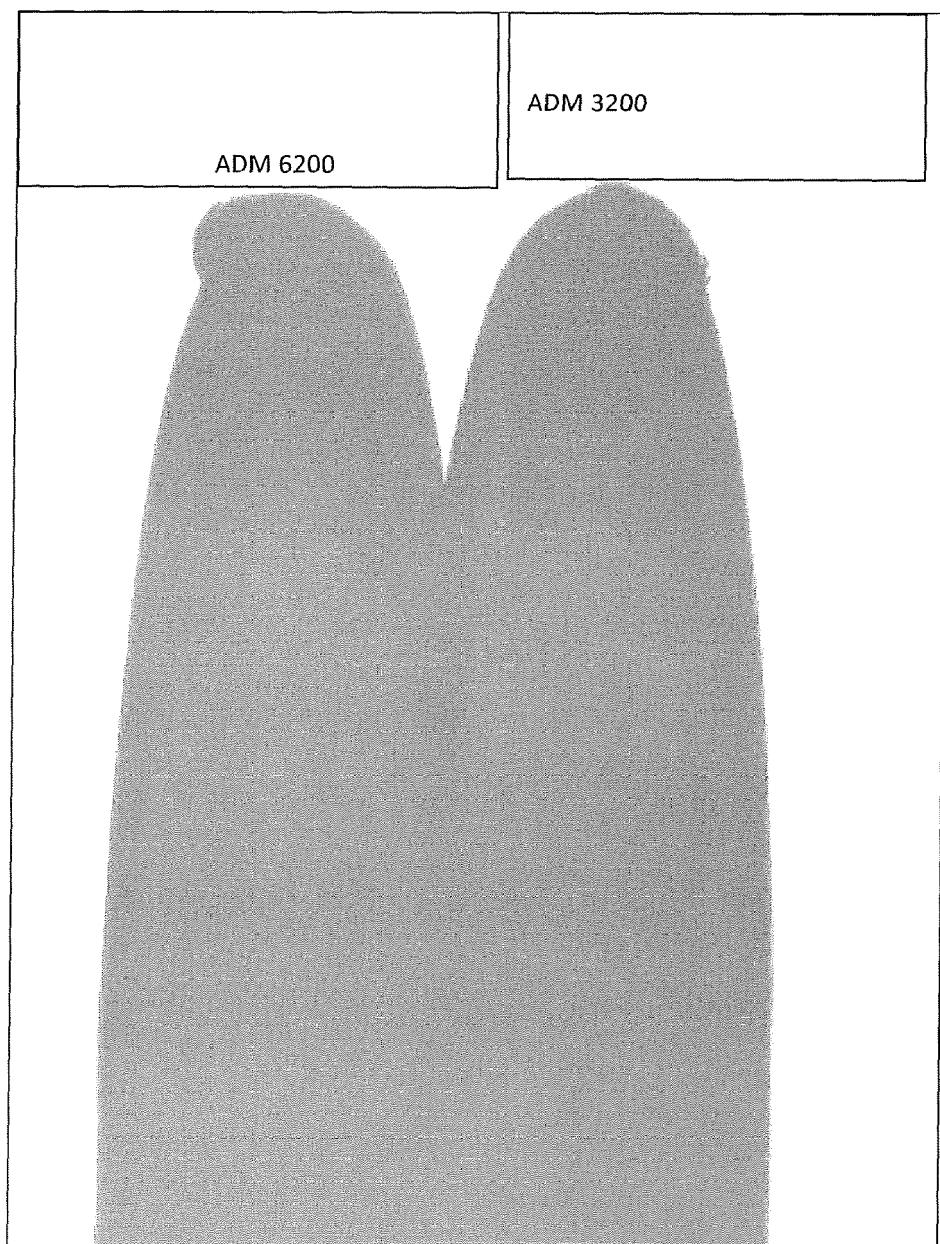


FIGURE 10

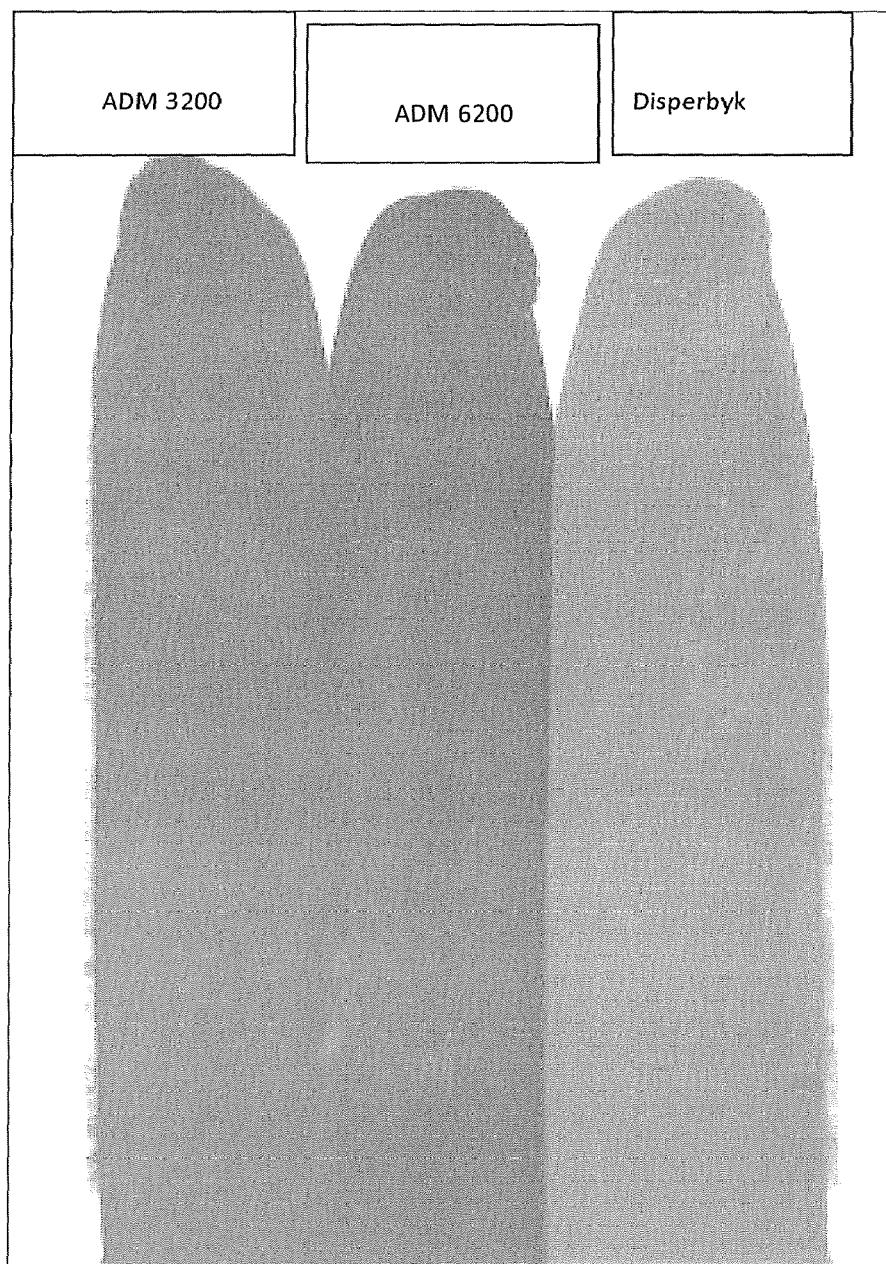


FIGURE 11

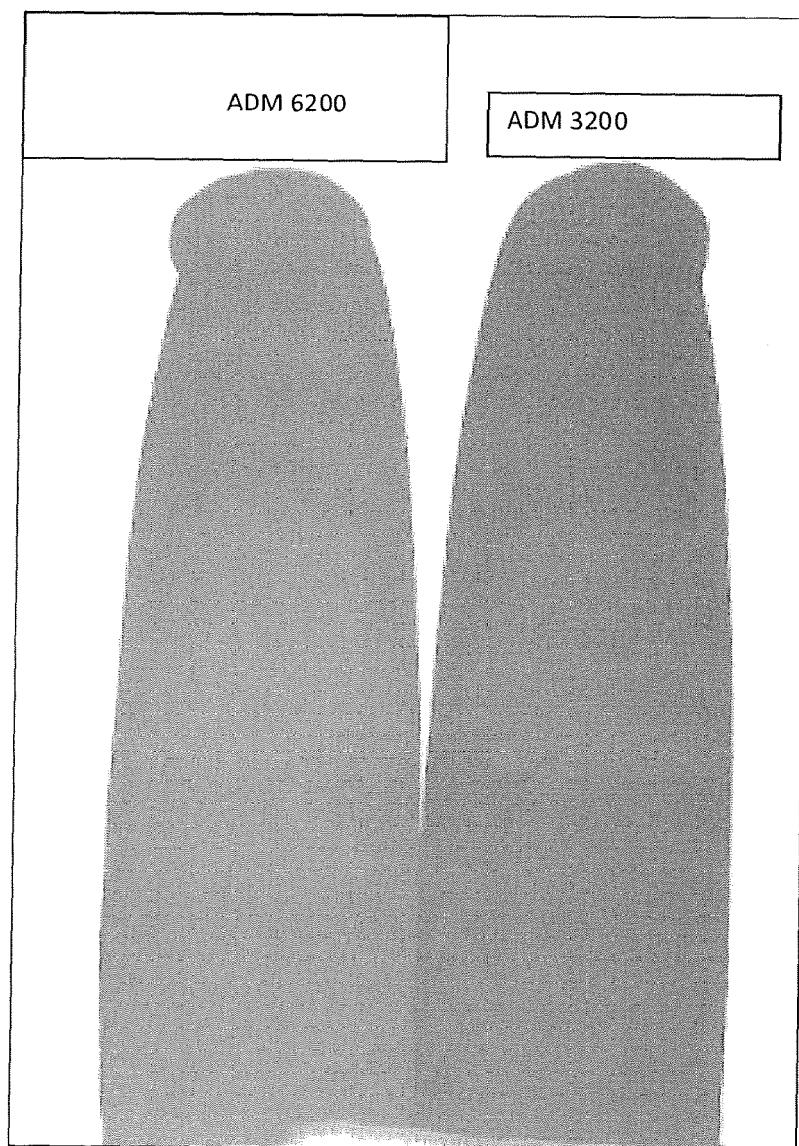


FIGURE 12

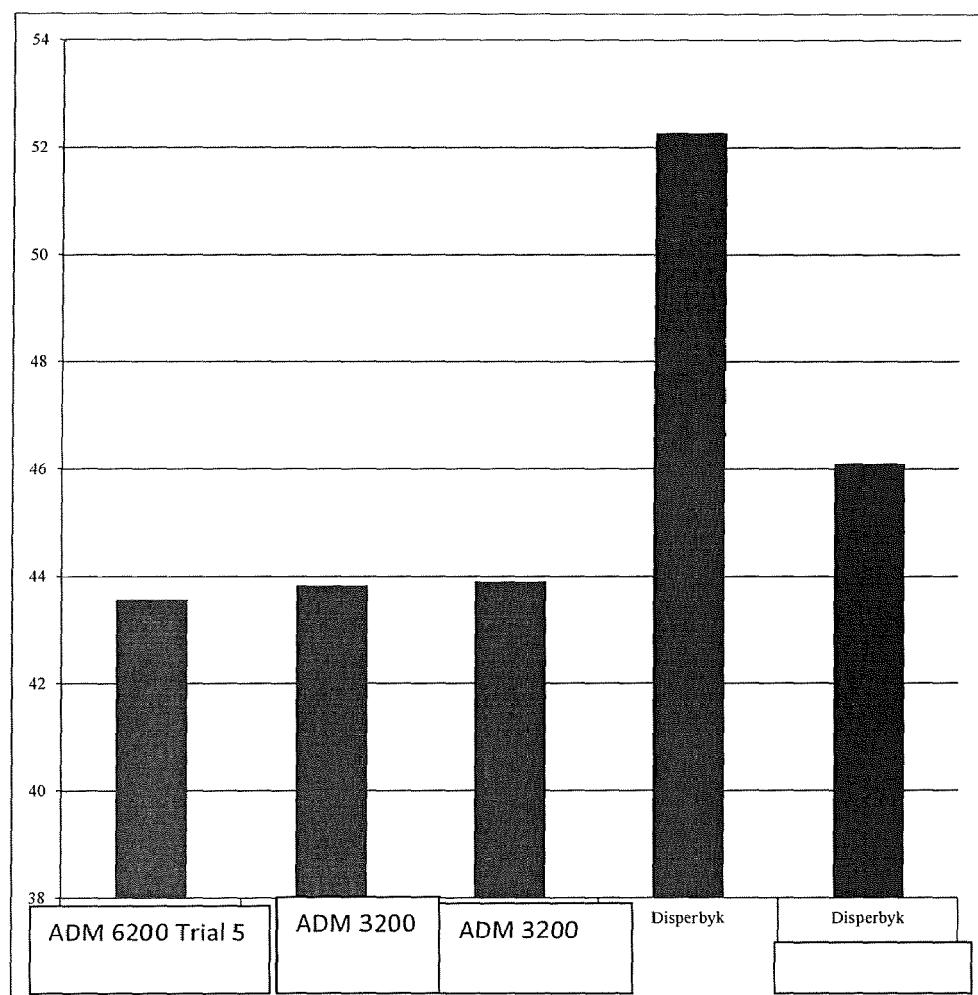


FIGURE 13

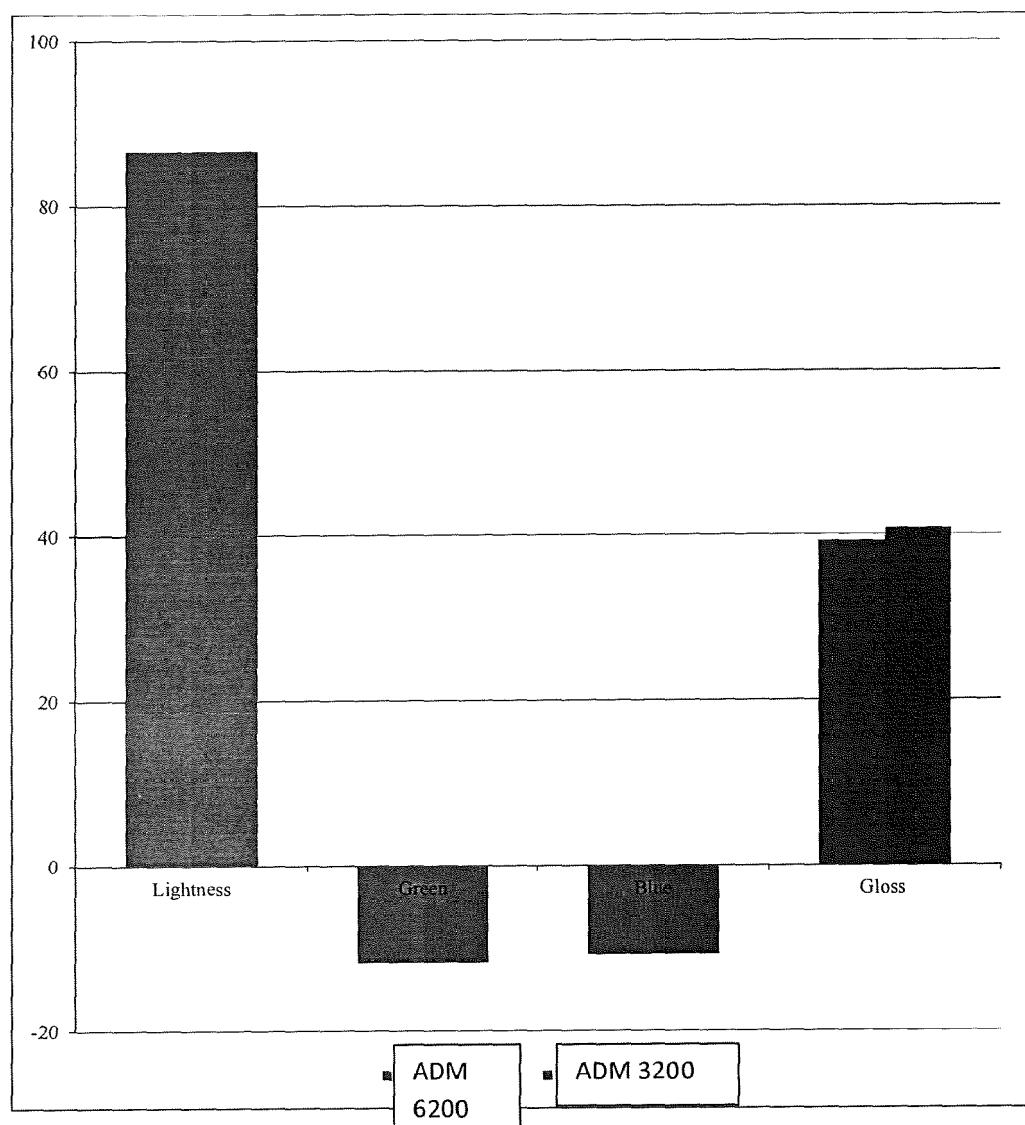


FIGURE 14

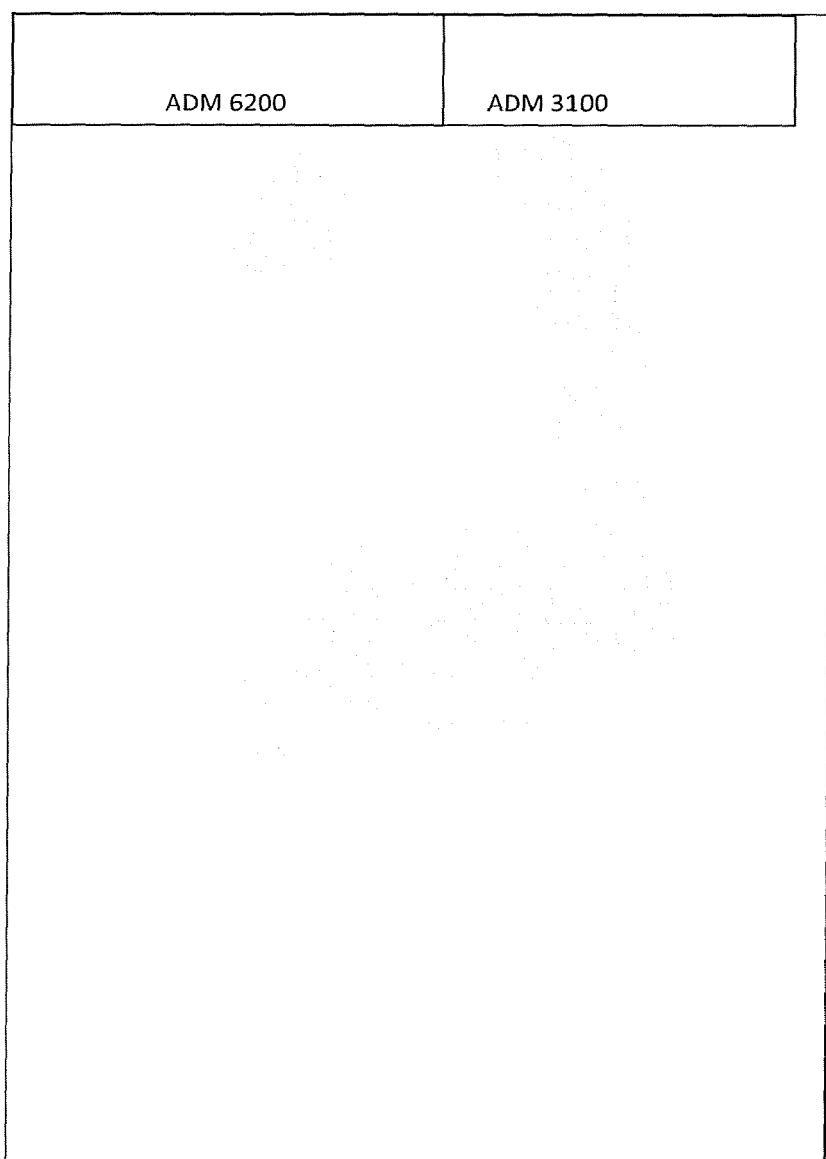


FIGURE 15

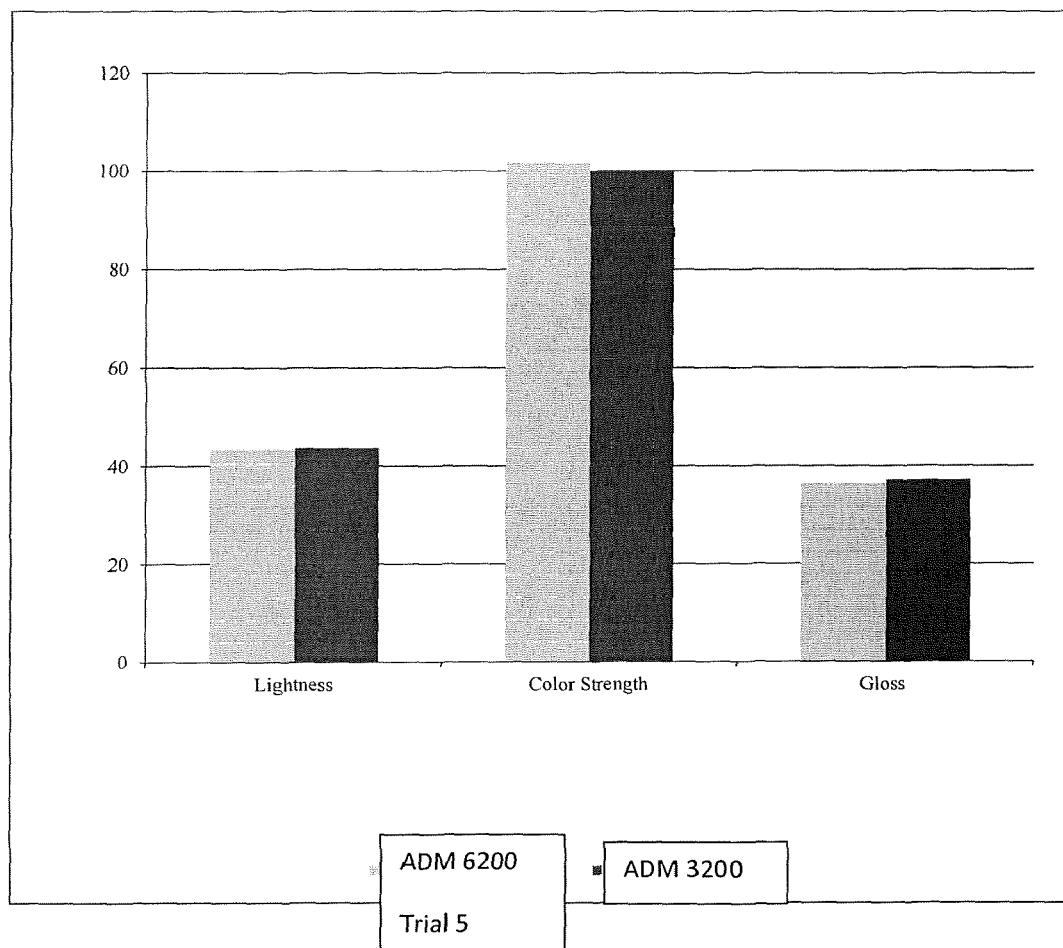
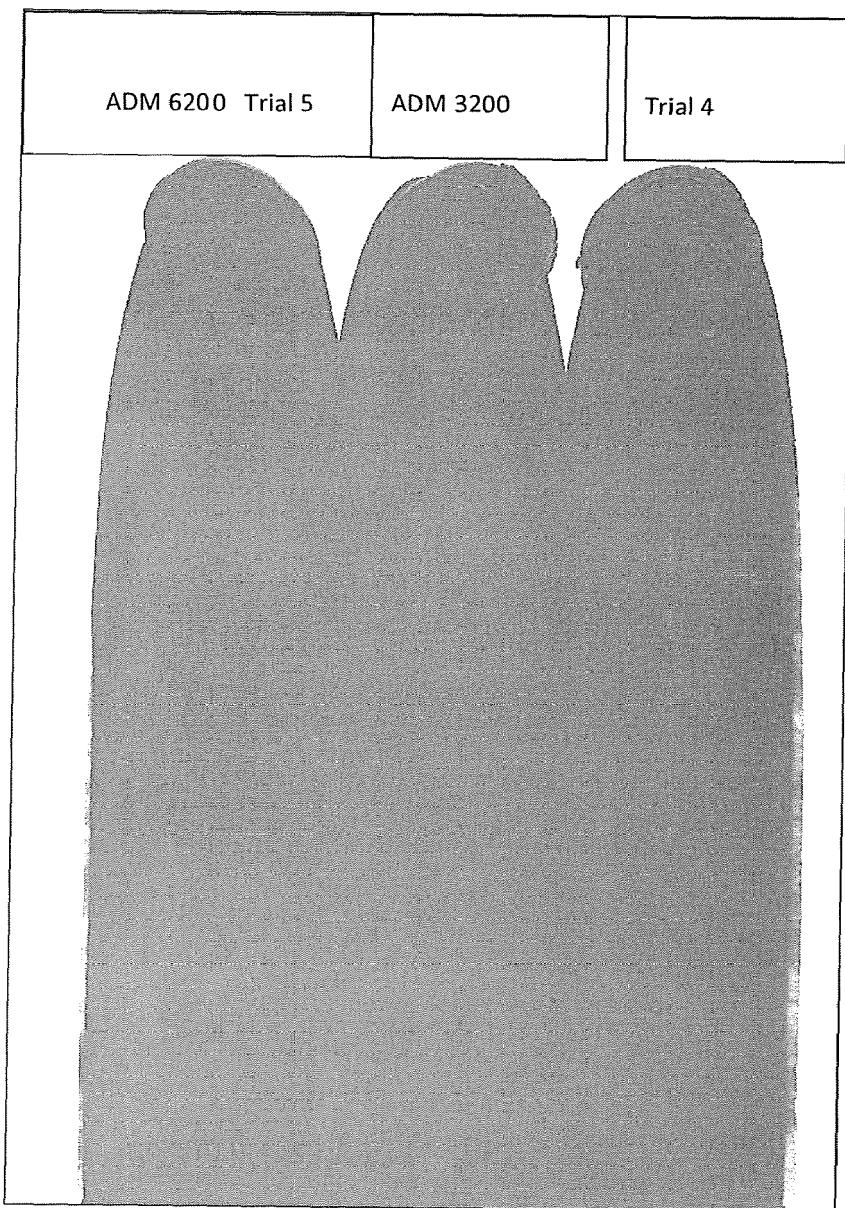



FIGURE 16

EUROPEAN SEARCH REPORT

Application Number

EP 20 15 6082

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10 X	WO 2008/100896 A2 (ARCHER DANIELS MIDLAND CO [US]; BASEETH SHIREEN S [US]; SEBREE BRUCE R) 21 August 2008 (2008-08-21) * examples 1,4 * * claims 15,17,21 * * page 7, line 30 - line 34 * * page 1, line 10 - line 13 * -----	1-14	INV. C07F9/10
15 X	WO 2010/018596 A2 (BHARAT SERUMS & VACCINES LTD [IN]; DAFTARY GAUTAM VINOD [IN] ET AL.) 18 February 2010 (2010-02-18) * claims 16,18,21 *	1,2, 8-12,14	
20 E	WO 2013/134267 A1 (ARCHER DANIELS MIDLAND CO [US]) 12 September 2013 (2013-09-12) * claims 1,7,15,17,24 * * claim 35 * -----	1-14	
25			TECHNICAL FIELDS SEARCHED (IPC)
30			A61K A61Q C09D C08K
35			
40			
45			
50 1	The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 2 June 2020	Examiner Giacobbe, Simone
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 20 15 6082

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-06-2020

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	WO 2008100896 A2	21-08-2008	AU 2008216411 A1	21-08-2008
			BR PI0807495 A2	20-05-2014
			CO 6220880 A2	19-11-2010
			CR 11024 A	20-11-2009
			EP 2120586 A2	25-11-2009
			GT 200900224 A	01-09-2010
			JP 5480633 B2	23-04-2014
			JP 2010518126 A	27-05-2010
			MX 338777 B	02-05-2016
			MY 151588 A	13-06-2014
			PL 2120586 T3	28-02-2019
			US 2008194410 A1	14-08-2008
			US 2012329655 A1	27-12-2012
			WO 2008100896 A2	21-08-2008
20			ZA 200905626 B	26-10-2011

	WO 2010018596 A2	18-02-2010	AU 2009280803 A1	18-02-2010
			BR PI0916535 A2	10-11-2015
			CA 2731353 A1	18-02-2010
			CN 102105134 A	22-06-2011
			EA 201100069 A1	31-10-2011
			EP 2317978 A2	11-05-2011
			JP 5635504 B2	03-12-2014
			JP 2011529042 A	01-12-2011
			KR 20110036075 A	06-04-2011
			NZ 590730 A	26-10-2012
			US 2011275705 A1	10-11-2011
			WO 2010018596 A2	18-02-2010
25			ZA 201100465 B	29-02-2012

	WO 2013134267 A1	12-09-2013	AU 2013230085 A1	18-09-2014
			AU 2016201938 A1	21-04-2016
			CA 2866262 A1	12-09-2013
			CL 2014002362 A1	19-12-2014
			CN 104244712 A	24-12-2014
			CO 7091189 A2	21-10-2014
			EP 2822381 A1	14-01-2015
			EP 3590335 A1	08-01-2020
			JP 6182165 B2	16-08-2017
			JP 2015519294 A	09-07-2015
			US 2015057157 A1	26-02-2015
			WO 2013134267 A1	12-09-2013
30	-----			

35	-----			

40	-----			

45	-----			

50	-----			

55	-----			

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6677327 B [0024]
- US 99328210 [0055] [0061]

Non-patent literature cited in the description

- **GRIFFIN.** Classification of Surface-Active Agents by 'HLB. *J. Soc. Cosmetic Chemists*, 1949, vol. 1 [0024]
- **GRIFFIN.** Calculation of HLB Values of Non-Ionic Surfactants. *J. Soc. Cosmetic Chemists*, 1954, vol. 5 [0024]
- **DAVIES.** A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. *Gas/Liquid and Liquid/Liquid Interfaces, Proceedings of the 2d International Congress on Surface Activity*, 1957 [0024]
- **SCHICK.** Nonionic Surfactants: Physical Chemistry. Marcel Dekker, Inc, 1987, 439-47 [0024]