FIELD OF THE INVENTION
[0001] The present invention relates to a filling system for a pressurized fluid circuit,
and more particularly to a filling system for a central heating circuit with a boiler.
BACKGROUND OF THE INVENTION
[0002] A typical domestic central heating circuit includes a gas or oil fired boiler for
production of hot water, the hot water is then distributed through a piping system,
such as radiators or under floor heating loop, to distribute heat to the facility
by having the hot water transfer heat to surrounding air. The boiler circuit includes
various components and is operated with water under pressure, however, the seals between
the various components are not perfect, and from time to time the pressure falls below
a value required for correct operation. In this case, additional water needs to be
added manually or automatically to the boiler circuit when the circuit is in a low
water condition.
[0003] As a traditional filling system illustrated in Fig. 1, the heating circuit is connected
to a pressurized water source, such as a water mains supply via a filling system to
be filled with water when a low water condition is detected. The filling system has
a manual tap 91 and a manual valve 92 both connected in a direct line 81 between the
water mains and the heating circuit, and a solenoid valve 93 is disposed in a line
82 connected after the manual tap 91 and around the manual valve 92. The manual tap
91 is normally open, while the manual valve 92 and the solenoid valve 93 are both
normally closed. The manual valve 92 is turned on when the heating circuit needs to
be charged with water at a high flow rate. For instance, on first installation of
the heating circuit, the circuit needs more than 50 liters of water, so the installer
need to turn on both the manual tap 91 and the manual valve 92 to avoid a waste of
time. During the daily operation, when a low water condition is detected by a pressure
sensor, the solenoid valve 93 is then activated by a controller to allow water from
the water mains to flow into the heating circuit at a relative lower flow rate until
the pressure sensor detects that a predetermined water pressure is reached.
[0004] However, the existing filling system is relatively complex and costly. European patent
publication
EP 1 832 816 A2 discloses a hydraulic device for filling and topping-up a heating circuit via two
on-off devices respectively. One of the on-off devices can be operated automatically,
and the automatic operation can be of the electric type, such as the magnetoelectric
or the thermoelectric type, through suitable drive and/or control signals to be sent
to the on-off devices.
SUMMARY OF THE INVENTION
[0005] It is an object of present invention to provide a filling system that has low cost
and complexity.
[0006] According to the present invention which is defined in claim 1, there is provided
a filling system for connecting a fluid supply to a pressurized fluid circuit. The
fluid supply is preferably a mins water supply, and the fluid circuit is preferably
a central heating circuit including a boiler. The filling system includes a filling
device and a thermal actuating device. The filling device includes a main fluid passageway
having an inlet port adapted for connection to the fluid supply and an outlet port
adapted for connection to the fluid circuit, a manual valve interposed in the main
fluid passageway to open and close a first fluid path defined by the main fluid passageway,
and a bypass fluid passageway connected between the inlet port and the outlet port
to conduct fluid around the manual valve. The thermal actuating device is associated
with the bypass fluid passageway to open and close a second fluid path defined by
the bypass fluid passageway.
[0007] The thermal actuating device includes a casing, a thermal actuator received in the
casing, and a movable member cooperating with the thermal actuator to be actuated
to move between a first and a second positions relative to the casing; wherein the
movable member is disposed in the casing and has one end extending out of the casing,
the end of the movable member blocks the bypass fluid passageway when the movable
member is located at the first position and unblocks the bypass fluid passageway when
the movable member is located at the second position.
[0008] The filling device may have a body, and the body has a periphery wall defining the
main fluid passageway therein; wherein the bypass fluid passageway preferably includes
a channel defined in the periphery wall, and the channel has one end communicating
with the main fluid passageway and the other end forming an opening on an outer surface
of the periphery wall; wherein the end of the movable member abuts against the opening
of the channel to close the second fluid path when the movable member is located at
the first position.
[0009] Preferably, the channel has a section size smaller than that of the main fluid passageway.
[0010] The bypass fluid passageway preferably includes a through hole defined in the periphery
wall and communicating with the main fluid passageway, and a chamber defined by projection
walls projecting from the periphery wall; wherein the chamber communicates with both
the channel and the through hole.
[0011] Preferably, the projection walls define an aperture in communication with the chamber,
and a membrane covers the aperture and has a central bore for being extended through
by the movable member into the chamber, wherein the central bore of the membrane has
a diameter smaller than that of the movable member.
[0012] According to the invention, the thermal actuator has thermally expandable material
contained therein; when the thermally expandable material expands, the movable member
moves relative to the casing from the first position to the second position; when
the thermally expandable material contracts, the movable member moves relative to
the casing from the second position to the first position.
[0013] The filling system includes a pressure sensor for monitoring pressure of fluid circulating
in the fluid circuit and a controller communicating with the pressure sensor and the
thermal actuator.
[0014] The controller activates the thermal actuator by heating the thermally expandable
material to actuate the movable member to move from the first position to the second
position for opening the second fluid path after the controller receives a signal
representing that the fluid pressure falls below a first pressure threshold from the
pressure sensor.
[0015] According to the invention, the controller estimates a remaining time when the fluid
pressure reaches a second pressure threshold equal to or greater than the first pressure
threshold; and the controller may further deactivate the thermal actuator by stopping
heating the thermally expandable material when the remaining time is equal to a fixed
time interval, thereby actuating the movable member to move from the second position
to the first position as the thermally expandable material cools down.
[0016] In one embodiment, the controller estimates the remaining time based on the monitoring
information of the pressure sensor.
[0017] Preferably, the thermal actuating device further includes a biasing element cooperating
with the movable member for biasing the movable member from the second position to
the first position.
[0018] Preferably, the manual valve is in a normally closed condition for closing the first
fluid path, and is manually operable to an open condition for opening the first fluid
path.
[0019] In this way, as the cost of a thermal actuating device is normally only a quarter
of the cost of a solenoid valve, and only one manual valve is needed for the filling
system, the cost, the size and the complexity in structure and operation of the apparatus
can be greatly reduced. In addition, the nature of the thermally expandable material
employed by the thermal actuating device can cause delays in control, and the aforementioned
filling system resolves this problem by using a new control algorithm of calculating
the remaining time of the filling operation and stopping heating the thermally expandable
material for a fixed time interval ahead of the end of the filling operation.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] For a more complete understanding of the present invention, and the advantages thereof,
reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, in which:
Fig. 1 is a schematic diagram illustrating a conventional filling system connected
between a water mains supply and a heating circuit;
Fig. 2 is a schematic diagram illustrating a filling system in accordance with one
embodiment of present invention, wherein the filing loop system is connected between
the water mains supply and the heating circuit;
Fig. 3 is a schematic sectional view of a combination of a filling device and a thermal
actuating device used in the filling system shown in Fig. 2, wherein the filling device
is in a closed condition;
Fig. 4 is a schematic sectional view similar to Fig. 3, wherein the filling device
is operated to feed water at a high flow rate;
Fig. 5 is a schematic sectional view similar to Fig. 3, wherein the filling device
is operated to feed water at a low flow rate.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0021] Reference will now be made to the drawing figures to describe the preferred embodiments
of the present invention in detail. However, the embodiments can not be used to restrict
the present invention. Changes such as structure, method and function obviously made
to those of ordinary skill in the art are also protected by the present invention.
[0022] Fig. 2 illustrates an embodiment of a filling system for connecting a water mains
supply to a pressurized heating circuit to automatically feed water to the heating
circuit when a low water condition is detected in the heating circuit. In this embodiment,
the heating circuit includes a gas or oil fired boiler for production of hot water,
the hot water is then distributed through a piping system, such as radiators or under
floor heating loop, to distribute heat to the facility by having the hot water transfer
heat to surrounding air. Those skilled in the art will also understand that the filling
system of present invention could also be used in any other cases that a pressurized
fluid circuit needs to be automatically filled with fluid from a fluid supply.
[0023] Referring to Figs. 2 and 3, the filling system 100 includes a filling device 1, a
thermal actuating device 21, a controller 3, and a pressure sensor 4. As shown in
Fig. 3, the filling device 1 includes a generally tubular body 10 with a periphery
wall and a central main fluid passageway 14 defined by the periphery wall. The body
10 has an inlet port 11 adapted for connection to the water mains supply and an outlet
port 12 adapted for connection to the heating circuit. A manual valve 13 is interposed
in the main fluid passageway to open and close a first fluid path defined by the main
fluid passageway 14, and a bypass fluid passageway 15 is connected between the inlet
port 11 and the outlet port 12 to conduct water around the manual valve 13. In this
embodiment, the body 10 has a lower vertical portion (not shown) upstanding from the
periphery wall and defining the inlet port 11 therein, and an upper vertical portion
upstanding from the periphery wall and defining the outlet port 12 therein.
[0024] The manual valve 13 may take forms of a plug valve provided at the bottom of the
body 10 with its plug portion being insertable into the main fluid passageway 14.
Fig. 3 and Fig. 5 show a normally closed condition of the manual valve 13, wherein
the plug portion of the manual valve is inserted into the main fluid passageway 14
to block water flow from the water mains supply via the inlet port to enter the main
fluid passageway 14. Fig. 4 shows an opened condition of the manual valve 13, wherein
the manual valve is rotated with its plug portion exiting from the main fluid passageway
14 to allow water flow from the water mains supply passing through the inlet port
to enter the main fluid passageway 14. If the manual valve 13 is rotated to have it
plug portion retreat to a maximum position as shown in Fig. 4, the water flow will
have a high flow rate.
[0025] The bypass fluid passageway 15 includes a channel 151 defined in the periphery wall.
As shown in Fig. 3, the channel 151 has one end at its bottom for communicating with
the main fluid passageway 14 and the other end forming an opening on an outer surface
of the periphery wall. The channel 151 has a section size much smaller than that of
the main fluid passage way 14, by this means, the water flow passing through the channel
151 has a flow rate much lower than that only passing through the main fluid passageway
14. The bypass fluid passageway 15 also includes a through hole 152 defined in the
periphery wall and communicating with the main fluid passageway 14, and a chamber
153 defined by projection walls projecting from the periphery wall for communicating
with both the channel 151 and the through hole 153. The projection walls define an
aperture in communication with the chamber 153, and a membrane 154 is attached to
the projection walls for covering the aperture. The membrane 154 has a central bore
for cooperating with a movable member of the thermal actuating device 21 that will
be described in detail hereinafter. In addition, a non-return valve 16 is provided
in the main fluid passageway 14 to prevent water in the heating circuit from flowing
into the water mains. Refer to Fig. 3, in this embodiment, the non-return valve 16
is disposed in the upper vertical portion and close to the outlet port 12.
[0026] As illustrated in Figs. 3 to 5, the thermal actuating device is associated with the
bypass fluid passageway 15 to open and close a second fluid path defined by the bypass
fluid passageway. The thermal actuating device includes a casing 210, a thermal actuator
211 retained in the casing, and a movable member 212 cooperating with the thermal
actuator. The casing 210 is usually made of thermoplastic material and mounted fixedly
with respect to the filing device 1. The thermal actuator is a small electric linear
motor based on a temperature sensitive element, and it can perform a linear stroke
with a considerable load with a silent and slow movement. The thermal actuator 211
has a body made of electrically and thermally conductive material (e.g. steel) and
containing thermally expandable material, such as was therein, and a piston 2111 at
least partially immersed into the body. The piston 2111 engages with and drives the
movable member 212 to move between a first position (as shown in Figs. 3 and 4) and
a second position (as shown in Fig. 5) relative to the casing 210. The body is in
contact with an electrical heater (not shown), usually a PTC (Positive Temperature
Coefficient) thermistor, so that the heat produced by the PTC thermistor is transferred
to the thermally expandable material to make it expand.
[0027] The movable member 212 is received in the casing 210 and has a shaft portion extending
out of the casing. The shaft portion has a distal end that is able to abut against
the opening of the channel 151 to close the second fluid path when the movable member
212 is located at the first position and uncover the opening to open the second fluid
path when the movable member 212 is located at the second position. The shaft portion
of the movable member 212 extends through the central bore of the membrane 154 and
has a diameter a bit larger than that of the central bore for avoidance of a fluid
leakage through the connection between the shaft portion and the membrane 154. The
thermal actuating device further includes a biasing element 213 cooperating with the
movable member 212 for biasing the movable member from the second positon to the first
position. In present embodiment, the biasing element 213 can be a spring disposed
between an inner wall of the casing 210 and the other end of the movable member 212
opposing to the end of the movable member 212 extending out of the casing 210. The
spring 213 is able to be stretched and compressed along the movement direction of
the movable member 212.
[0028] Also referring to Fig. 2, the filling system 100 further includes a pressure sensor
4 for monitoring pressure of water circulating in the heating circuit and a controller
3 electrically connecting with the pressure sensor 4 and the thermal actuator 211.
The controller 3 may be embodied in hardware or software as a digital microcontroller
or microprocessor or an analog circuit, for example, and/or by a digital IC such as
a digital signal processor or an application specific integrated circuit (ASIC). In
this embodiment, the filling system 100 is embedded in the heating circuit, that is,
the filling device 1 and the thermal actuating device 21 are installed in the boiler
as parts of the boiler, and the controller 3 can be an existing boiler management
unit with new water filling instructions, and the pressure sensor 4 is the existing
one located in the heating circuit. Person skilled in the art will recognize that
the filling system could also be a separate apparatus with part or all of the components
including the filling device, the thermal actuating device, a controller specific
for automatic filling operation, and so on. This separate filling system can be connected
to the heating circuit and the water mains supply via pipe lines/fittings and electrical
lines/connectors to perform the automatic filling operation.
[0029] Referring to Fig. 3, in conjunction with Fig. 5, during the daily operation, the
pressure sensor 4 monitors pressure of water circulating in the heating circuit. When
the detected water pressure is larger than a first pressure threshold indicating a
critical pressure level below which the heating circuit is in a low water condition,
no water filling operation is needed. In this case, the manual valve 13 keeps the
normal closed condition to block the main fluid passageway 14, and the end of the
movable member 212 abuts against the opening of the channel 151 to block the bypass
fluid passageway 15. When the detected water pressure falls below the first pressure
threshold, which means the heating circuit is in a low water condition, on receiving
the signal representing this low water condition from the pressure sensor 4, the controller
3 activates the thermal actuator 211 by energizing the PTC thermistor, the thermally
expandable material contained in the thermal actuator is then heated and expands accordingly.
The piston 2111 is pushed with the expansion of the thermally expandable material,
and the movable member 212 is driven by the piston 2111 to move inward the casing
210 form the first position toward the second position. During the period, the end
of the movable member 212 out of the casing 210 uncovers the opening of the channel
151 to unblock the bypass fluid passageway, therefore, water flow from the water mains
supply via the inlet port 11 sequentially passes through the channel 151, the chamber
153, and the through hole 152 and enters the main fluid passageway 14, and further
exits from the outlet port 12 to be filled in the heating circuit. Meanwhile, the
spring 213 is compressed by the other end of the movable member 212 within the casing
210 against the inner wall of the casing 210.
[0030] As water flows through the bypass fluid passageway 15 at a lower and steady flow
rate, the controller 3 estimates how much time the water pressure of the heating circuit
can reach a second pressure threshold indicating an acceptable pressure level above
which the normal heating operation can be conducted, in other words, the controller
estimates a remaining time when the filling operation is supposed to be ended. For
example, the controller 3 continuously receives the monitoring information of the
pressure sensor 4 and can get to know how much time it need to increase the pressure
of 0.1 bar, and then estimates how much time the filling operation can finish. The
second pressure threshold may be equal to or greater than the first pressure threshold.
The controller 3 will deactivate the thermal actuator 211 by de-energizing the PTC
thermistor for a fixed time interval before the end of the filling operation, thus,
the thermally expandable material stops being heated and contracts accordingly, and
the movable member 212 together with the piston 2111 is driven by the biasing means
213 under the effect of elastic restoring force of the compressed spring to move relative
to the casing from the second position toward the first position. When the thermally
expandable material completely cools down, the movable member 212 returns to the first
position where the opening of the channel 151 is covered again by the end of the movable
member 212 so that the bypass fluid passageway 15 is blocked again, at this time,
the water pressure of the heating circuit reaches the second pressure threshold. The
fixed time interval can be determined based on the relationship between the cooling
time and the contracted stroke of the thermally expandable material. For example,
the controller 3 can know in advance the time required for the thermally expandable
material to completely cool down during the movement of the movable member 212 from
the second position to the first position, e.g. two minutes, therefore, the controller
stops heating when the remaining time is equal the two minutes.
[0031] The cost of a thermal actuating device is normally only a quarter of the cost of
a solenoid valve, and only one manual valve is needed for the filling system, therefore,
the cost, the size and the complexity in structure and operation of the apparatus
can be greatly reduced. In addition, the nature of the thermally expandable material
employed by the thermal actuating device can cause delays in control, and the aforementioned
filling system resolves this problem by using a new control algorithm of calculating
the remaining time of the filling operation and stopping heating the thermally expandable
material for a fixed time interval ahead of the end of the filling operation.
[0032] It is to be understood, however, that even though numerous, characteristics and advantages
of the present invention have been set forth in the foregoing description, together
with details of the structure and function of the invention, the disclosed is illustrative
only, and changes may be made in detail, especially in matters of number, shape, size,
and arrangement of parts within the principles of the invention to the full extent
indicated by the broadest general meaning of the terms in which the appended claims
are expressed.
1. A filling system (100) for connecting a fluid supply to a pressurized fluid circuit,
comprising:
a filling device (1) comprising a main fluid passageway (14) having an inlet port
(11) adapted for connection to the fluid supply and an outlet port (12) adapted for
connection to the fluid circuit, a manual valve (13) interposed in the main fluid
passageway (14) to open and close a first fluid path defined by the main fluid passageway,
and a bypass fluid passageway (15) connected between the inlet port (11) and the outlet
port (12) to conduct fluid around the manual valve (13); and
a thermal actuating device (21) associated with the bypass fluid passageway to open
and close a second fluid path defined by the bypass fluid passageway (15); said thermal
actuating device (21) comprising a casing (210), a thermal actuator (211) received
in the casing and having thermally expandable material contained therein, and a movable
member (212) cooperating with the thermal actuator (211) to be actuated to move between
a first and a second positions relative to the casing; wherein the movable member
is disposed in the casing and has one end extending out of the casing (210) for blocking
the bypass fluid passageway (15) when the movable member (212) is located at a first
position and unblocking the bypass fluid passageway (15) when the movable member (212)
is located at a second position;
a pressure sensor (4) for monitoring pressure of fluid circulating in the fluid circuit;
and
a controller (3) communicating with the pressure sensor (4) and the thermal actuator
(211); said controller (3) being configured to activate the thermal actuator (211)
by heating the thermally expandable material to actuate the movable member (212) to
move from the first position to the second position for opening the second fluid path
after receiving a signal representing that the fluid pressure falls below a first
pressure threshold from the pressure sensor (4); characterised in that
said controller (3) is configured to estimate a remaining time when the fluid pressure
reaches a second pressure threshold equal to or greater than the first pressure threshold;
and the controller (3) is further configured to deactivate the thermal actuator (211)
by stopping heating the thermally expandable material when the remaining time is equal
to a fixed time interval, thereby actuating the movable member (212) to move from
the second position to the first position as the thermally expandable material cools
down.
2. A filling system according to claim 1, characterized in that the filling device has a body (10), and the body has a periphery wall defining said
main fluid passageway (14) therein; wherein the bypass fluid passageway (15) comprises
a channel (151) defined in the periphery wall, and the channel (151) has one end communicating
with the main fluid passageway (14) and the other end forming an opening on an outer
surface of the periphery wall; wherein said end of the movable member (212) abuts
against the opening of the channel to close the second fluid path when the movable
member (212) is located at the first position.
3. A filling system according to claim 2, characterized in that the channel (151) has a section size smaller than that of the main fluid passageway
(14).
4. A filling system according to claim 2, characterized in that the bypass fluid passageway (15) further comprises a through hole (152) defined in
the periphery wall and communicating with the main fluid passageway (14), and a chamber
(153) defined by projection walls projecting from the periphery wall; wherein the
chamber (153) communicates with both the channel (151) and the through hole (152).
5. A filling system according to claim 4, characterized in that said projection walls define an aperture in communication with the chamber (153),
and a membrane (154) covers said aperture and has a central bore for being extended
through by the movable member (212) into the chamber (153), wherein said central bore
of the membrane (154) has a diameter smaller than that of the movable member (212).
6. A filling system according to claim 1, characterized in that the controller estimates the remaining time based on the monitoring information of
the pressure sensor (4).
7. A filling system according to claim 1, characterized in that the thermal actuating device further comprises a biasing element (213) cooperating
with the movable member (212) for biasing the movable member from the second position
to the first position.
8. A filling system according to claims 1, characterized in that the manual valve (13) is in a normally closed condition for closing the first fluid
path, and is manually operable to an open condition for opening the first fluid path.
1. Füllsystem (100) zum Anschließen einer Fluidversorgung an einen Druckfluidkreislauf,
umfassend:
eine Füllvorrichtung (1), umfassend einen Hauptfluiddurchgang (14) mit einer Einlassöffnung
(11), die zum Anschluss an die Fluidversorgung konzipiert ist, und einer Auslassöffnung
(12), die zum Anschluss an den Fluidkreislauf konzipiert ist, wobei ein manuelles
Ventil (13) in den Hauptfluiddurchgang (14) eingefügt ist, um einen ersten Fluidpfad
zu öffnen und zu schließen, der durch den Hauptfluiddurchgang definiert ist, und einen
Bypass-Fluiddurchgang (15), der zwischen der Einlassöffnung (11) und der Auslassöffnung
(12) angeschlossen ist, um Fluid um das manuelle Ventil (13) herum zu leiten; und
eine thermische Betätigungsvorrichtung (21), die dem Bypass-Fluiddurchgang zugeordnet
ist, um einen zweiten Fluidpfad zu öffnen und zu schließen, der durch den Bypass-Fluiddurchgang
(15) definiert ist; die thermische Betätigungsvorrichtung (21) umfassend ein Gehäuse
(210), ein thermisches Betätigungselement (211), das im Gehäuse aufgenommen ist und
darin enthaltenes thermisch expandierbares Material aufweist, und ein bewegbares Element
(212), das mit dem zu betätigenden thermischen Betätigungselement (211) zusammenwirkt,
um sich zwischen einer ersten und einer zweiten Position bezogen auf das Gehäuse zu
bewegen; wobei das bewegbare Element im Gehäuse angeordnet ist und ein Ende, das sich
aus dem Gehäuse (210) heraus erstreckt, zum Blockieren des Bypass-Fluiddurchgangs
(15), wenn sich das bewegbare Element (212) an einer ersten Position befindet, und
Freigeben des Bypass-Fluiddurchgangs (15), wenn sich das bewegbare Element (212) an
einer zweiten Position befindet, aufweist;
einen Drucksensor (4) zum Überwachen des Drucks von Fluid, das im Fluidkreislauf zirkuliert;
und
eine Steuereinheit (3), die mit dem Drucksensor (4) und dem thermischen Betätigungselement
(211) kommuniziert; wobei die Steuereinheit (3) zum Betätigen des thermischen Betätigungselements
(211) durch Erwärmen des thermisch expandierbaren Materials zum Betätigen des bewegbaren
Elements (212) zum Bewegen von der ersten Position in die zweite Position zum Öffnen
des zweiten Fluidpfads nach dem Empfangen eines Signals, das angibt, dass der Fluiddruck
unter einen ersten Druckschwellwert fällt, vom Drucksensor (4) ausgelegt ist; dadurch gekennzeichnet, dass
die Steuereinheit (3) zum Schätzen einer verbleibenden Zeit, wenn der Fluiddruck einen
zweiten Druckschwellwert erreicht, der gleich oder größer als der erste Druckschwellwert
ist, ausgelegt ist; und die Steuereinheit (3) weiter zum Deaktivieren des thermischen
Betätigungselements (211) durch Stoppen des Erwärmens des thermisch expandierbaren
Materials, wenn die verbleibende Zeit gleich einem festen Zeitintervall ist, wodurch
das bewegbare Element (212) betätigt wird, sodass es sich von der zweiten Position
in die erste Position bewegt, wenn sich das thermisch expandierbare Material abkühlt,
ausgelegt ist.
2. Füllsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Füllvorrichtung einen Körper (10) aufweist und der Körper eine Umfangswand aufweist,
die den Hauptfluiddurchgang (14) darin definiert; wobei der Bypass-Fluiddurchgang
(15) einen Kanal (151) umfasst, der in der Umfangswand definiert ist, und der Kanal
(151) ein Ende aufweist, das mit dem Hauptfluiddurchgang (14) kommuniziert, und wobei
das andere Ende eine Öffnung an einer Außenoberfläche der Umfangswand bildet; wobei
das Ende des bewegbaren Elements (212) an der Öffnung des Kanals anliegt, um den zweiten
Fluidpfad zu schließen, wenn sich das bewegbare Element (212) an der ersten Position
befindet.
3. Füllsystem nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (151) eine Abschnittsgröße aufweist, die kleiner als die des Hauptfluiddurchgangs
(14) ist.
4. Füllsystem nach Anspruch 2, dadurch gekennzeichnet, dass der Bypass-Fluiddurchgang (15) weiter ein Durchgangsloch (152), das in der Umfangswand
definiert ist und mit dem Hauptfluiddurchgang (14) kommuniziert, und eine Kammer (153),
die durch von der Umfangswand vorstehende Vorsprungswände definiert ist, umfasst;
wobei die Kammer (153) mit sowohl dem Kanal (151) als auch dem Durchgangsloch (152)
kommuniziert.
5. Füllsystem nach Anspruch 4, dadurch gekennzeichnet, dass die Vorsprungswände eine Öffnung in Kommunikation mit der Kammer (153) definieren
und eine Membran (154) die Öffnung abdeckt und eine zentrale Bohrung aufweist, durch
die sich das bewegbare Element (212) in die Kammer (153) erstreckt, wobei die zentrale
Bohrung der Membran (154) einen Durchmesser aufweist, der kleiner als der des bewegbaren
Elements (212) ist.
6. Füllsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit die verbleibende Zeit basierend auf den Überwachungsinformationen
des Drucksensors (4) schätzt.
7. Füllsystem nach Anspruch 1, dadurch gekennzeichnet, dass die thermische Betätigungsvorrichtung weiter ein Vorspannelement (213) umfasst, das
mit dem bewegbaren Element (212) zum Vorspannen des bewegbaren Elements von der zweiten
Position in die erste Position zusammenwirkt.
8. Füllsystem nach Anspruch 1, dadurch gekennzeichnet, dass das manuelle Ventil (13) in einem normalerweise geschlossenen Zustand zum Schließen
des ersten Fluidpfads ist und manuell in einen offenen Zustand zum Öffnen des ersten
Fluidpfads betätigbar ist.
1. Système de remplissage (100) pour raccorder une alimentation en fluide à un circuit
de fluide pressurisé, comprenant :
un dispositif de remplissage (1) comprenant un passage de fluide principal (14) présentant
un orifice d'entrée (11) adapté pour un raccordement à l'alimentation en fluide et
un orifice de sortie (12) adapté pour un raccordement au circuit de fluide, une soupape
manuelle (13) interposée dans le passage de fluide principal (14) pour ouvrir et fermer
un premier trajet de fluide défini par le passage de fluide principal, et un passage
de fluide de dérivation (15) raccordé entre l'orifice d'entrée (11) et l'orifice de
sortie (12) pour diriger le fluide autour de la soupape manuelle (13) ; et
un dispositif d'actionnement thermique (21) associé au passage de fluide de dérivation
pour ouvrir et fermer un second trajet de fluide défini par le passage de fluide de
dérivation (15) ; ledit dispositif d'actionnement thermique (21) comprenant un boîtier
(210), un actionneur thermique (211) reçu dans le boîtier et présentant un matériau
thermiquement extensible contenu dans celui-ci, et un élément mobile (212) coopérant
avec l'actionneur thermique (211) à actionner pour se déplacer entre une première
et une seconde position par rapport au boîtier ; dans lequel l'élément mobile est
disposé dans le boîtier et présente une extrémité s'étendant hors du boîtier (210)
pour bloquer le passage de fluide de dérivation (15) lorsque l'élément mobile (212)
est situé dans une première position et débloquer le passage de fluide de dérivation
(15) lorsque l'élément mobile (212) est situé dans une seconde position ;
un capteur de pression (4) pour surveiller la pression de fluide circulant dans le
circuit de fluide ; et
un dispositif de commande (3) communiquant avec le capteur de pression (4) et l'actionneur
thermique (211) ; ledit dispositif de commande (3) étant configuré pour activer l'actionneur
thermique (211) en chauffant le matériau thermiquement extensible pour actionner l'élément
mobile (212) pour se déplacer de la première position à la seconde position pour ouvrir
le second trajet de fluide après avoir reçu du capteur de pression (4) un signal indiquant
que la pression de fluide tombe en dessous d'un premier seuil de pression ; caractérisé en ce que
ledit dispositif de commande (3) est configuré pour estimer un temps restant lorsque
la pression de fluide atteint un second seuil de pression égal ou supérieur au premier
seuil de pression ; et le dispositif de commande (3) est en outre configuré pour désactiver
l'actionneur thermique (211) en arrêtant de chauffer le matériau thermiquement extensible
lorsque le temps restant est égal à un intervalle de temps fixé, actionnant ainsi
l'élément mobile (212) pour se déplacer de la seconde position à la première position
tandis que le matériau thermiquement extensible refroidit.
2. Système de remplissage selon la revendication 1, caractérisé en ce que le dispositif de remplissage présente un corps (10), et le corps présente une paroi
périphérique définissant ledit passage de fluide principal (14) dans celle-ci ; dans
lequel le passage de fluide de dérivation (15) comprend un canal (151) défini dans
la paroi périphérique, et le canal (151) présente une extrémité communiquant avec
le passage de fluide principal (14) et l'autre extrémité formant une ouverture sur
une surface extérieure de la paroi périphérique ; dans lequel ladite extrémité de
l'élément mobile (212) vient en butée contre l'ouverture du canal pour fermer le second
trajet de fluide lorsque l'élément mobile (212) est situé dans la première position.
3. Système de remplissage selon la revendication 2, caractérisé en ce que le canal (151) présente une taille de section inférieure à celle du passage de fluide
principal (14).
4. Système de remplissage selon la revendication 2, caractérisé en ce que le passage de fluide de dérivation (15) comprend en outre un trou traversant (152)
défini dans la paroi périphérique et communiquant avec le passage de fluide principal
(14), et une chambre (153) définie par des parois de saillie faisant saillie depuis
la paroi périphérique ; dans lequel la chambre (153) communique à la fois avec le
canal (151) et le trou traversant (152).
5. Système de remplissage selon la revendication 4, caractérisé en ce que lesdites parois de saillie définissent un interstice en communication avec la chambre
(153), et une membrane (154) recouvre ledit interstice et présente un alésage central
destiné à être étendu à travers l'élément mobile (212) dans la chambre (153), dans
lequel ledit alésage central de la membrane (154) présente un diamètre inférieur à
celui de l'élément mobile (212).
6. Système de remplissage selon la revendication 1, caractérisé en ce que le dispositif de commande estime le temps restant sur la base des informations de
surveillance du capteur de pression (4).
7. Système de remplissage selon la revendication 1, caractérisé en ce que le dispositif d'actionnement thermique comprend en outre un élément de sollicitation
(213) coopérant avec l'élément mobile (212) pour solliciter l'élément mobile de la
seconde position à la première position.
8. Système de remplissage selon la revendication 1, caractérisé en ce que la soupape manuelle (13) est dans un état normalement fermé pour fermer le premier
trajet de fluide, et peut être actionnée manuellement dans un état ouvert pour ouvrir
le premier trajet de fluide.