

EP 3 696 798 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

19.08.2020 Bulletin 2020/34

(51) Int Cl.:

G09F 3/00 (2006.01)

G09F 3/10 (2006.01)

(21) Application number: 20163251.0

(22) Date of filing: 16.03.2020

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

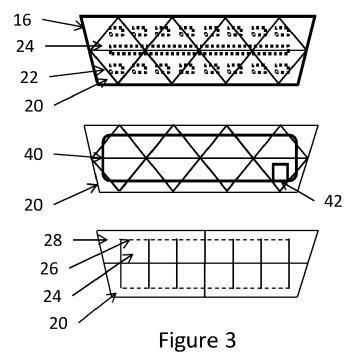
BA ME

Designated Validation States:

KH MA MD TN

(71) Applicant: OBD Safe ApS 8000 Aarhus C (DK)

(72) Inventors:


- Becker, Niels 8530 Hjortshøj (DK)
- Møller, Simon 8270 Højbjerg (DK)
- Møller, Jacob 8240 Risskov (DK)
- (74) Representative: Inspicos P/S

Kogle Allé 2

2970 Hørsholm (DK)

(54)LABEL FOR PREVENTING FRAUD IN VEHICLES

(57)A vehicle comprising a cabin, one or more engines, a controller configured to control the engine(s) and a communication interface to the controller, the vehicle further comprising an adhesive label (20) covering at least a portion of the communication interface. The adhesive label (20) is of a type from which it is visible if it has been removed and replaced or attempted removed.

35

40

45

50

sidered tampered with or not.

[0001] The present invention relates to a label for preventing fraud in vehicles and in particular for covering an electrical interface of the vehicle in a manner so that if access has been made, the label will bear proof thereof. [0002] Labels for sealing cargo, products and the like are well known. These labels are configured to break, deform or the like when attempted removed, so that a check will reveal whether the cargo/product can be con-

1

[0003] The present invention aims at indicating whether, for example, the OBD of a vehicle has been contacted, as this may be an indication of tampering with the vehicle. The mileage of a vehicle may be altered via the OBD, as may the operation of the engine. Engine tuning is possible via the OBD without having to replace hardware in the engine.

[0004] In a first aspect, the invention relates to a vehicle comprising one or more engines, a controller configured to control the engine(s) and a communication interface to the controller, the vehicle further comprising an adhesive label covering at least a portion of the communication interface.

[0005] In the present context, a vehicle may be a car, bus, truck, pick-up, camper van, or the like. Usual vehicles have a cabin with a driver's seat and often one or more passenger seats. Often, the communication interface is engageable in or from the cabin and often if positioned close to the driver's seat.

[0006] A vehicle may have one or more motors or engines. Vehicles may have only a single combustion engine, one or more electrical engines or a combination thereof. Hybrid vehicles often have both electrical motor(s) and a combustion engine.

[0007] The engine(s)/motor(s) is/are controlled by the controller. Different controlling may be made for different types of engine/motor. For combustion engines, the fuel consumption may be controlled by controlling the maximum torque which the engine/motor is allowed to output. Limiting the torque may be performed by limiting the number of revolutions (per minute) which the motor/engine is allowed to make and/or limiting the amount of fuel which the engine/motor is allowed to consume (per time unit).

[0008] For electrical motors, the controller may in the same manner control the power consumption, and thus the energy consumption, of the motor in order to e.g. ensure a minimum range or maximum power consumption.

[0009] Controllers may also keep track of the mileage of the vehicle. On many vehicles, the mileage may actually be affected both in an upward and in a downward direction so that a vehicle may seem to have a lower mileage than it actually has.

[0010] Clearly, the controller may control other portions of the engine/motor, such as exhaust sensors, EGR, or the like.

[0011] In addition to the controlling, the controller may also gather data from the motor(s)/engine(s), such as temperatures, fuel/power consumption, emission data, vehicle speed, throttle position, oxygen contents in the intake and/output gas, when the next service is due, and the like. The controller may also operate one or more warning lamps or lights visible to the driver, such as provided in a dashboard of the vehicle.

[0012] The controller has a communication interface via which the controller may receive data or software and output data, such as status data, operation data or the like, such as the above types of data. A mechanic may from such data received from the controller diagnose the vehicle and determine what is required fixed or replace on the vehicle.

[0013] Data which may be uploaded to the controller via the interface may be the number of km/miles to the next service. Also, warnings stored in the controller may be reset.

[0014] The interface preferably is easily available in the vehicle. Often, the interface is a connector engageable in or from the cabin of the vehicle, so that an operator may swiftly connect thereto to read out the data from the controller. Usually, the interface is a connector which is configured to mate with a connector of a computer, terminal or monitor, such as by a mechanic or operator.

[0015] According to the invention, the vehicle comprises an adhesive label covering at least a portion of the communication interface. In this context, the interface often is a connector, where the label covers the connector in a manner so that a mating connector cannot be connected to the connector without breaking or deforming the label. Naturally, the label need not cover all of the interface/connector even if this is preferred. The label may cover at least 10%, such as at least 20%, such as at least 30%, such as at least 40%, such as at least 50%, such as at least 60%, such as at least 70%, such as at least 80%, such as at least 90% of the connector or at least portions thereof configured to electrically connect to the mating connector.

[0016] In this context, a label is a sheet-shaped element which has a thickness which is much lower than the extent in the two perpendicular directions perpendicular to the direction of the thickness. A label may have a thickness which is no more than 1% of an extent in any extent perpendicular to the direction of the thickness.

[0017] In this context, the label is adhesive when it comprises a layer or a surface which is configured to fix the remainder of the label to a surface, such as a polymer, plastic, rubber, metal surface or the like. The adhesive may have a layer of an adhesive, a glue or the like. The adhesive or glue may be useful at any desired temperature, such as room temperature. Alternatively, the adhesive may be activated at elevated temperatures and then be heated before application on the connector.

[0018] The adhesive may be provided as a layer of only the adhesive or may be provided in an element such as a foam which may act as a carrier for the adhesive

25

area.

and which due to the adhesive or by other means may be attached to other portions of the label.

[0019] In one embodiment, the label comprises a first, adhesive layer and a second layer, often called the facestock. The second layer preferably is an outer layer facing the cabin of the vehicle where the adhesive layer attaches the second/outer layer to the connector. The outer layer may be any type of layer. Below a number of different materials, designs and embodiments are described for this material, which preferably has the main function of displaying if attempts have been made to remove the label or if the label has been removed and re-positioned on the connector.

[0020] Naturally, the label may have additional layers. Thus, a layer, often called an overlamination film, may be provided for attaching the adhesive to the second layer. In this situation, it may be desired to provide the overlamination film with a weak adhesive allowing separation from the facestock when the label is in position. Alternatively or generally, good release capabilities, such as by providing a release material, such as a release lacquer, may be provided on the second layer in order to ensure easy removal of the overlamination film. This also has the advantage that attempts of removing the label by attaching it to e.g. a tape will be made difficult by the release properties of the second layer in that the label will adhere better to the vehicle than the tape to the label.

[0021] Also, additional layers may be provided which have additional functionalities. In one situation, a hologram is provided in either the second layer or in a separate layer. A hologram may be used for ensuring the genuineness of the label. Other manners of doing so would be to provide a trademark/logo on the label or providing a bar code or the like. Further manners would be to provide the label with communicating means capable of outputting information, such as an ID of the label, so that this ID may be compared to a database, the vehicle ID or the like to ensure that the label is genuine and e.g. is expected to be attached to this particle vehicle, or if the label is not to be attached to the present vehicle, or if the label is not genuine, a warning may be output.

[0022] In one embodiment, the second layer is permanently stretchable, such as when attempted removed from the connector. Thus, the adhesive preferably is suitably strong to resist a pulling force which would cause this permanent deformation. In one example, the label is permanently stretched when exposed to a pulling force lower than, identical to or exceeding an adhesive force of the adhesive layer, such as a force exceeding 5 N. The second layer may have an elongation at break of at least 1%, such as at least 10%, such as at least 50%. The tensile strength (N/25mm; HEXNFX41021) of at least 10, such as at least 15, such as at least 30, such as at least 30, such as at least 40 may be desired of the material thereof. Portions of the second layer may be defined which have a tensile strength of less than 40, such as less then 20, such as less than 10, such as less than 5. A 90° peel adhesion tack of (25mm, FRM 2 St.St.)

of at least 5N, such as at least 7N, such as at least 10N, such as at least 15N, such as at least 20N may be preferred. In this situation, the label cannot be pulled from the connector without permanent deformation. Thus, if the label is subsequently re-applied on the connector, this will be visible from the deformation of the label.

[0023] In one embodiment, the label comprises a first area with a first tear strength and one or more second areas or lines with a second tear strength which is lower than the first tear strength.

[0024] In this manner, when the first area is sufficiently attached to the connector, it cannot be removed by pulling a second area, as the second area would tear before the first area was detached. Again, this tear would be visible. [0025] In this connection, again it is desired that the first area is sufficiently attached to the connector. Thus, the adhesive preferably is rather strong such that it will prevent detachment of the first area when the first area

is exposed to a pulling force causing tear of the second

[0026] In one embodiment, the label, and preferably the outer layer, comprises a first area with a first thickness and one or more second areas or lines with a second thickness which is lower than the first thickness. Then, again, the first area may not be removable by pulling a second area, as the second area then would tear or deform due to the lower thickness.

[0027] Usually, when a label is to be removed, an outer portion thereof would be engaged and pulled in the hope that the remainder of the label will detach.

[0028] In one situation, such as in the two embodiments above, the second area(s), in a projection on to a plane of the label, surround the first area, the first area being attached to the interface. In this manner, the second area(s) will be more easily engaged when attempting to remove the label, but the first area(s) will make this difficult or visible.

[0029] Another aspect of the invention relates to a label for use in the vehicle according to the first aspect of the invention, the label comprising a first, adhesive layer, a carrier layer and a second layer attached to the adhesive layer and the carrier layer. In this context, the adhesive layer and the second layer may be as described above. Naturally, all aspects, embodiments, situations and the like may be exchanged and interchanged if desired.

[0030] The carrier layer may facilitate correct positioning of the label during attachment to the connector. Also, if the second layer is provided with scoring, perforations or the like, portions of the second layer may be interconnected by thinner portions (such as with a lower tensile strength) and thus may be easily separated from each other. In fact, in one embodiment, portions of the second layer may be interconnected only via the adhesive layer and the carrier layer. The carrier layer be transparent so that positioning of the label vis-à-vis the connector may be easy. When the label is adhered to the connector, the carrier layer may be removed. The second layer may be provided with good release properties, such as due to a

release material, such as a release lacquer, enabling easy removal of the carrier layer. A tack or release of (N/25mm; HEXFTM003) of 5 or less, such as 3 or less, such as 1 or less, such as 0.5 or less may be desired.

[0031] Naturally, a protective sheet may be provided for protecting the adhesive layer during transport and the like.

[0032] Another type of label for use in the vehicle is a label comprising an adhesive layer and an outer layer comprising, on the surface facing the adhesive layer, a coloured layer. The label may be configured to, when the outer layer and the adhesive layer are separated from each other, deposit part of the coloured layer on the adhesive layer and another part thereof on the outer layer. In this respect, it is desired that the coloured layer, when the adhesive and outer layers are separated, in some areas adhere more to the adhesive layer and in other positions adhere more to the outer layer. In that manner, attempting to reconnect the two layers would result in a displacement of the two layers, which would result in areas where there is no coloured layer. This makes tampering very evident.

[0033] This selective larger attachment of the coloured layer to the adhesive layer than to the outer layer, and vice versa in other areas, may be obtained by providing the adhesive layer with a higher adhesivity toward the coloured layer in the areas in question and a lower adhesivity in the other areas, where the coloured layer is attached to the outer layer with an adhesivity between the higher and lower adhesivity. Alternatively, the adhesion between the coloured layer and the outer layer may be lower in some areas than others, where the adhesion of the adhesive layer then may be homogeneous.

[0034] In a label of this type, the adhesive layer will then retain part of the coloured layer. This adhesive layer may have a thickness of at least 0.1mm so that it may be at least partly removed to allow removal of the portions of the coloured layer attached thereto.

[0035] Labels of this type exist which will deposit part of the coloured layer on the part on which it is attached, but this has the disadvantage that such deposited parts may overlap with a later applied new label, which makes tampering less evident.

[0036] Alternatively, the adhesive layer may have a colour different from the coloured layer so that a new label attached on top of remnants of the adhesive layer of a former label may cover the former label portions and then provide a new, fresh basis for the coloured layer.

[0037] In general, it may be desired to provide the second layer of a material which becomes soft when heated. It may be attempted to remove the label by heating it to soften the adhesive. Softening at the same time the second layer will make deformability of the second layer more probable.

[0038] A third aspect of the invention relates to a method of operating the vehicle according to the first aspect of the invention, the method comprising initially removing the adhesive label to uncover the communication inter-

face, subsequently communicating with the controller via the communication interface and finally covering the communication interface with another adhesive label.

[0039] As mentioned above, the removal of the label may be removing the label in different portions, as this will make it evident that the label has been removed. An authorized mechanic or operator will then be able to purchase new labels and attach a new label to the connector once the communication with the controller is done.

10 [0040] In general, it may be desired to seal other communication connections to the controller, such as other connectors of the CAN bus of vehicles. In this situation, the sealing need not be easily removable but may be simpler, tamper evident products, such as simple stickers.

[0041] A fourth aspect of the invention relates to an assembly comprising a scanning element and a vehicle according to the first aspect of the invention, wherein the scanning element is configured to:

- scan the label,
- based on the scan generate label information,
- compare the label information to predetermined information and
- ²⁵ output a result of the comparison.

[0042] In this context, the scanning element is configured to scan the label. A number of manners are described below for scanning different types of labels.

[0043] The label information may be an identity or a type of the label. In one embodiment, the label information is a unique ID. Then, the predetermined information may relate to which IDs are provided to labels, which IDs are in use, which IDs are no longer in use, for example. Comparing the label ID to that information will disclose whether the label is genuine or a copy. If the label ID belongs to a label not yet in use or which is no longer in use, the label will be a copy and not genuine.

[0044] In addition, it may be desired to store the label ID together with e.g. a vehicle ID, so that the next time the label is scanned, it may be ascertained that it is attached to the correct vehicle. If not, a warning may be output, as the label may then have been removed, or it may be a fake.

- 45 **[0045]** In one situation:
 - the label comprises, as the label information and on an outer side thereof, a predetermined pattern and
 - the scanning element is configured to generate an image of the label and generate the label information from the image.

[0046] In this situation, the label information may be a trademark/logo, bar code, hologram, ID number or the like. This may be visible to the naked eye or may be determined by illuminating the label with e.g. UV or IR light or obtaining the image by detecting UV or IR light. [0047] Then, the scanning element may be a camera

50

of any desired type. The label information may then be a number of ID, producer, serial number, or the like derived from the image from the scanning element.

[0048] In one embodiment, the scanning element is configured to determine, from the comparison, whether one portion of the label is displaced in relation to another portion of the label.

[0049] Thus, from the image of the label, it may be determined whether portions of the label are displaced in relation to other portions. In one situation, the scanning element comprises information relating to the expected relative positions of portions of the label, positions, widths or the like of edges of portions of the label or boundaries between neighbouring portions. Also or alternatively, the scanning element may determine shapes/sizes of individual portions of the label and compare these to expected shapes/sizes. Again, if these vary more than a predetermined threshold value, it may be determined that the label is deformed and has been attempted removed. [0050] In one embodiment, the scanning element is configured to:

- determine, as the label information, an identity of the label and
- compare the identity to one ore more predetermined identities.

[0051] In this situation, the label may comprise the above bar code, number, hologram or the like.

[0052] In one embodiment:

- the label comprises a wireless communication element
- the scanning element is configured to receive information from the wireless communication element and derive the identity information from the received information.

[0053] In this manner, information may be derived from the label by communicating with it. Then, the information output of the label may be an identity number or the like identifying the label.

[0054] Multiple wireless communication protocols exist, such as WiFi, Bluetooth, NFC, but presently, RFID is preferred as this does not require the label to have an internal power supply.

[0055] The label may then comprise an antenna which may be provided in the label and which may be destroyed, of the label is deformed, stretched, bent or the like. Thus, another manner is provided from which deforming, removal or the like has taken place.

[0056] In the following, preferred embodiments are described with reference to the drawing, wherein:

- Figure 1 illustrates portions of a vehicle according to the invention,
- Figure 2 illustrates different shapes of OBD connectors of vehicles,

- Figure 3 illustrates different types of label for use in the vehicle of figure 1 and
- Figure 4 illustrates details of labels for use in the vehicle of figure 1.

[0057] In figure 1, the steering wheel 12 and the pedals 14 of a vehicle are illustrated as well as the OBD connector 16 of the vehicle. The OBD connector is an interface to a controller (not illustrated) of the vehicle. This controller controls, among other things, the operation of the vehicle. Thus, an engine operation, such as the energy consumption, the power generation and the like, may be affected by programming the controller differently. This programming may take place via the OBD connector. The controller also keeps track of the mileage of the vehicle. This mileage may also be altered via the OBD connector. Thus, it is desirable to be able to determine whether the OBD connector has been in use. If so, it may be pertinent to inquire as to why and for which purpose.

[0058] Figure 2 illustrates different shapes or embodiments of OBD connectors for vehicles. The OBD connector of the vehicle usually is the female connector having openings or channels 161 configured to receive protruding conductors in two rows (of 8 conductors) and a central, elongated protruding element of a male connector

[0059] In order to see whether the OBD connector has been used, a label 20, see figure 3, covers the OBD connector. Naturally, the label need only cover enough of the connector 20 to prevent attachment of the male connector (or portions thereof) without damaging the label. [0060] The label may comprise a number of cuts or scores 22 or perforations 26 which make it difficult or impossible to remove the label in one piece. Removing the label in multiple pieces will make it more difficult to re-position the pieces to hide the fact that the label was removed and the OBD accessed.

[0061] In addition to, or alternatively to the scores, the label may be made of, or at least comprise, a material which is easily permanently deformable, such as a materiel which is easily stretched but which will at least partially maintain the stretched shape so that removal or removal attempts may be seen from the deformed shape of the label.

[0062] In addition to or alternatively, the label may be made of, or at least comprise, a material which changes appearance, such as a colour thereof, when bent, stretched, or the like. Thus, again removal or removal attempts may be visible.

[0063] In figure 3, three different types or designs of labels are illustrated. In the upper illustration, the upper connector 16 is indicated in broken lines on to which a label design comprising a number of triangles separated by cuts is illustrated.

[0064] In the middle illustration of figure 3, the same label cut design is illustrated without the connector but now comprising an RFID circuit 42 connected to an an-

tenna 40 which extends through most of or all of the portions of the label. Thus, separating two portions of the label from each other may disable the antenna and thus the operation of the RFID circuit.

[0065] In the lower illustration of figure 3, another label design is illustrated comprising an outer periphery 28 and a number of areas 24 separated from each other by cuts and separated from the periphery 28 by perforations 26. [0066] In one embodiment, the material of the label in the lower illustration of figure 3 is a material which easily stretches permanently but which has a sufficient pulling strength, so that when pulling the upper left corner of the outer periphery, the areas 24 will also be removed by the pulling force transmitted via the perforations, but in a manner so that at least the material at the perforations is permanently stretched so that the label is deformed when removed.

[0067] Alternatively, the label may comprise different areas or portions separated by cuts or perforations, so that removal, such as by pulling, of one area will not assist in the removal of the next area but rather in a separation of the two areas due to the cuts or perforations.

[0068] In figure 3, one area 24 is illustrated which is separated from the remainder of the label by cuts or perforations. Thus, pulling the upper left corner of the label will cause the transfer to the area 24, but due to the area 24 being separately attached to the connector 16, this force will, instead of a removal of area 24, cause a separation of the area 24 from the portion of the label removed by the pulling.

[0069] In figure 4 different label compositions and cut/perforation designs are seen. In the upper illustration, an area 24 of the label is illustrated with cuts on three sides and a perforation at the upper side. The perforation may have larger or smaller distances between the individual holes or larger or smaller width of the material between the holes.

[0070] In the second illustration, a cut 22 is illustrated in a label comprising an upper or outer material 203 in which the cut is made. This material is attached to an adhesive layer 202 protected by a protective sheet 201. In order to be able to easily position the label on to the connector 16 without deforming the label or any portion thereof, the label may be provided on a carrier sheet 204, such as a transparent carrier sheet, so that a user may position the label over the connector and attach it thereto, where after the carrier sheet may be removed from the label.

[0071] In the third illustration, a label for use in the second illustration in figure 3 is seen. In this label, a connecting layer 40 is provided which may be used as the antenna in the label of figure 3. Separation of the label of this figure along the cut 22 therein would separate also the conductive layer and thus render the antenna 40 inoperable. Clearly, the cut 22 may also extend into the layer 40, but alternatively this layer may be made so thin that it itself need not add much strength to the label.

[0072] In general, the outer layer 203 may be a plastics

or polymer material, such as poly propylene, poly ethylene, and the like.

[0073] Also, the adhesive 202 may be an acrylic adhesive, for example, as these may be made rather aggressive. It may be desired to provide an adhesive which does not loose its adhesive or coherent properties even when exposed to air or oxygen.

[0074] In the lower illustration of figure 4, another type of label is illustrated. This label need not have any cuts or perforations but instead has an upper layer 205 of the so-called void label type. This type of label has an upper transparent layer on the back side of which a coloured layer is provided. On the lower side of the coloured layer, a pattern of a first adhesive is provided and outside of this pattern, a second adhesive is provided. The first adhesive is stronger than the second adhesive so that when the outer layer is separated from whatever base surface the label is attached to, the coloured layer will remain attached to the base surface but will remain attached to the outer layer at the second adhesive. Thus, it becomes clear that the outer layer has been removed.

[0075] Alternatively, the same adhesive may be provided between the coloured layer and the base layer but the outer layer may have different surface properties in the desired pattern or another component may be added to the outer layer in the desired pattern so as to again achieve the effect that the coloured layer is separated into a portion remaining attached to the outer layer and a portion remaining attached to the base layer when the outer layer is separated from the base layer.

[0076] A label of this type, 205, is attached to an adhesive layer 202, which may be an adhesive or e.g. a foam covered by adhesive.

[0077] An attempt to remove this type of label will either result in the outer label 205 being removed from the adhesive layer, whereby the above visible removal attempt is clear by the coloured layer being separated. Alternatively, the removal attempt may be an attempt to remove also the adhesive layer 202 from the connector 16. This will result in a deformation of the adhesive layer relative to the outer label 205, which again will result in a removal of part of the coloured layer of the outer label 205.

[0078] In relation to the RFID solution seen in figure 3, it may be desired to provide a label 20 with a unique identity. This may be by providing the label with a bar code, such as a 1D or 2D barcode, a hologram, or the like. Alternatively, the label may be provided with a communication element, such as an RFID component, configured to hold and output a unique ID.

[0079] An RFID component has the advantage that it needs no own power supply.

[0080] The unique ID has the further advantage that the labels may be tracked and may be correlated to a particular vehicle, so that a replacement of one label with another may be revealed by determining the ID of the present label of the vehicle and comparison thereof with a database holding vehicle IDs and label IDs.

[0081] Thus, referring back to figure 1, a scanner 30

45

25

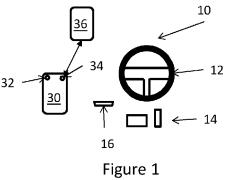
35

40

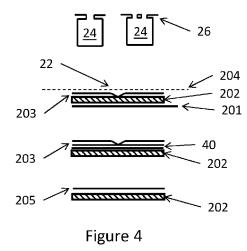
50

comprising a scanning element, such as a camera, an RFID or NFC antenna or the like, may be used for scanning the label. The scanner 30 may communicate with a remote server 36 in order to upload information relating to a replaced label, so that the server 36 may hold label IDs and the IDs of the vehicles to which they are attached. [0082] The scanner may then be configured to determine whether a label attached to a vehicle is the correct label. If not, the vehicle owner or user may be warned. Also, the scanner may be used for ensuring that the label to be attached to the vehicle is a valid label and not a copy. Copy labels may be made of a lower quality so that they may be removed and replaced without visible proof of the tampering.

[0083] It may be desired to provide, in the interface, a cover, such as a cover covering all electrical connections thereof or all cavities thereof, so that removing the cover breaks the label. In this manner, it is ensured that adhesive left over from the removal of the adhesive does not enter the interface when connecting a connector thereto. In this manner, the adhesive acts to indicate whether the cover has been removed.


Claims

- A vehicle comprising one or more engines, a controller configured to control the engine(s) and a communication interface to the controller, the vehicle further comprising an adhesive label covering at least a portion of the communication interface.
- **2.** A vehicle according to claim 1, wherein the label comprises a first, adhesive layer and a second layer.
- 3. A vehicle according to claim 2, wherein the second layer is permanently stretchable when exposed to a pulling force not exceeding an adhesive force of the adhesive layer.
- 4. A vehicle according to any of the preceding claims, wherein the label comprises a first area with a first tear strength and one or more second areas or lines with a second tear strength which is lower than the first tear strength.
- 5. A vehicle according to any of the preceding claims, wherein the label comprises a first area with a first thickness and one or more second areas or lines with a second thickness which is lower than the first thickness.
- **6.** A vehicle according to claim 4 or 5, wherein, in a projection on to a plane of the label, the second area(s) surround the first area, the first area being attached to the interface.
- 7. A label for use in the vehicle according to any of the


preceding claims, the label comprising a first, adhesive layer, a carrier layer and a second layer attached to the adhesive layer and the carrier layer.

- 8. A method of operating the vehicle according to any of the preceding claims, the method comprising initially removing the adhesive label to uncover the communication interface, subsequently communicating with the controller via the communication interface and finally covering the communication interface with another adhesive label.
 - 9. An assembly comprising a scanning element and a vehicle according to any of the preceding claims, wherein the scanning element is configured to:
 - scan the label,
 - based on the scan generate label information,
 - compare the label information to predetermined information and
 - output a result of the comparison.
 - 10. An assembly according to claim 9, wherein:
 - the label comprises, as the label information and on an outer side thereof, a predetermined pattern and
 - the scanning element is configured to generate an image of the label and generate the label information from the image.
 - 11. An assembly according to claim 10, wherein the scanning element is configured to determine, from the comparison, whether one portion of the label is displaced in relation to another portion of the label.
 - **12.** An assembly according to claim 10, wherein the scanning element is configured to:
 - determine, as the label information, an identity of the label and
 - compare the identity to one ore more predetermined identities.
- 45 **13.** An assembly according to claim 9, wherein:
 - the label comprises a wireless communication element,
 - the scanning element is configured to receive information from the wireless communication element and derive the identity information from the received information.

7

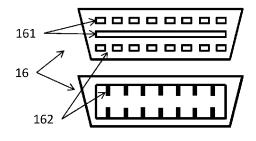
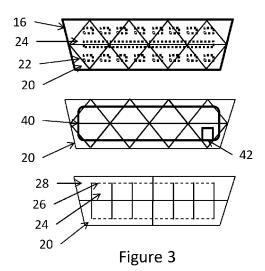



Figure 2

