

(11)

EP 3 697 745 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)**Corrections, see****Description Paragraph(s) 113, 136**

(48) Corrigendum issued on:

16.10.2024 Bulletin 2024/42(45) Date of publication and mention
of the grant of the patent:**24.07.2024 Bulletin 2024/30**(21) Application number: **18807449.6**(22) Date of filing: **17.10.2018**

(51) International Patent Classification (IPC):

C05F 11/00 (2006.01) C12N 3/00 (2006.01)**C05F 11/08 (2006.01)**

(52) Cooperative Patent Classification (CPC):

(C-Sets available)

C05F 11/00; C05F 11/02; C12N 1/20; C12N 3/00;**Y02W 30/40**

(Cont.)

(86) International application number:

PCT/UA2018/000114

(87) International publication number:

WO 2019/078806 (25.04.2019 Gazette 2019/17)**(54) METHOD OF OBTAINING A LIQUID ORGANIC BIOFERTILIZER FOR SOIL AND/OR PLANTS, THE BIOFERTILIZER AND METHODS OF USING THE SAME**

VERFAHREN ZUR GEWINNUNG EINES FLÜSSIGEN ORGANISCHEN BODÜNGEMITTELS FÜR BÖDEN UND/ODER PFLANZEN, BODÜNGEMITTEL UND VERFAHREN ZU SEINER VERWENDUNG

PROCÉDÉ PERMETTANT D'OBTENIR UN BIOFERTILISANT ORGANIQUE LIQUIDE POUR SOL ET/OU VÉGÉTAUX, BIOFERTILISANT ET PROCÉDÉS D'UTILISATION ASSOCIÉS

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **17.10.2017 UA 201710006**

(43) Date of publication of application:

26.08.2020 Bulletin 2020/35(73) Proprietor: **Osypenko, Serhii
Kherson 73013 (UA)**(72) Inventor: **Osypenko, Serhii
Kherson 73013 (UA)**(74) Representative: **Friese Goeden Patentanwälte**

**PartGmbB
Widenmayerstraße 49
80538 München (DE)**

(56) References cited:

WO-A1-2009/009805 US-A1- 2015 299 055

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

(52) Cooperative Patent Classification (CPC): (Cont.)

C-Sets

C05F 11/00, C05F 11/02, C05F 11/08, C05G 5/27

Description**TECHNICAL FIELD**

5 [0001] The present invention relates to agriculture and, more specifically, to the production and use of the environmentally friendly organic biofertilizer, namely, to the liquid organic biofertilizer for soils and/or plants colonized by natural soil microorganisms. The invention can be most widely used in restoring the fertility of soils depleted of nutrients and natural microorganisms as a result of the intensive use of chemical fertilizers and pesticides, underflooding, etc, as well as in improving seed germinating capacity and increasing plant yield, especially in case of drought and late frosts.

10 [0002] Presently it has been proved (at postulates level) that plants cannot exist without symbiosis and association with microorganisms.

15 [0003] Plant roots and microorganisms create a peculiar "cover" - the rhizosphere which provides necessary conditions for plants proper nutrition and their protection against pathogens. Therefore it is just the complexes of beneficial microorganisms within the soil - plant - microorganism system that help to optimally realize soil and plant potential capabilities and get quality yields.

20 [0004] It is this reason that stimulated microbiological approaches to increasing soil fertility and ensuring higher productivity of the agrarian sector in different countries of the world.

25 [0005] The basis of these approaches is the selection of soil microorganism beneficial strains and the creation of optimal conditions for their reproduction on artificial nutrient media to obtain high concentrations of 10^9 - 10^{10} microorganisms per 1 g of medium. The microorganisms which are considered "beneficial" are firstly nitrogen-fixing microorganisms, such as *Rhizobium*, *Bradirhizobium*, *Azotobacter*, phosphorous-mobilizing mostly from the *Bacillus Subtilis* species, lactobacillus, etc. At the same time, scientists - practitioners agree that the effectiveness of artificially created biological products does not exceed 65-70%, especially in extreme natural conditions, such as drought, high and low temperatures, soil underflooding. Bacteria which have been artificially created on culture media rich in organic matter cannot quickly be adapted to depleted soils and contaminated by chemicals and soon die reducing its initial concentration thousands of times. For example, bacteria grown artificially on BEA (beef-extract agar) with a level of ammonium nitrogen equals 120-130 mg / 100 g, are decreased in number from the initial titer of $5 \cdot 10^9$ to $2 \cdot 10^6$ per gram within only 1-2 days after getting into peat mixture with natural nitrogen level of 30-40 mg.

30 [0006] A known method for obtaining highly concentrated nitrogen-fixing bacterial preparations includes mixing a conventionally grown bacterial suspension with peat and adding into this mixture an aqueous extraction of biohumus as a source of biologically active compounds for limiting the development of fungal microflora (UA, 47304 A). In the preferred best embodiment of this method non-sterile peat is used and dextrin (about 2%) is added to the mixture to increase the growing capacity.

35 [0007] The time of preparing the final product is more than 20 days not considering the time of preparing a bacterial culture in liquid nutrient medium. Dependence on the poorly controlled quality of the biohumus does not guarantee the stability of the final product in addition the long preparation time is a disadvantage of this known method.

40 [0008] It is known also the alternative methods of obtaining biological compounds for increasing yields and controlling plant pathogens, which are more environmentally friendly and harmless to animals and humans and which contain useful natural microorganisms. A typical example of such methods is the method of producing biocompositions based on *Bacillus*, *Brevibacillus* and / or *Paenibacillus* strains (WO2008 / 025108 A1). Microorganism compositions, as described in this document, are made up of "wild type" bacteria, which requires an uneasy way of isolating these bacteria strains from the natural medium.

45 [0009] An example of another natural bacterium use (*Pseudomonas fluorescens* plant pathogen destroyer) for combatting with plant diseases and increasing yields is disclosed by US, 6495362.

50 [0010] Although these methods seem to be more biological due to using natural (wild) soil bacteria, it should be noted that the technology of isolating necessary strains from the natural environment is rather complicated, besides, these bacteria are quite selective for destructing only certain species of natural plant pathogens.

55 [0011] Growing these bacteria concentrates on an artificial nutrient media which are different from natural soils complicates the process and prolongs the time of adapting "foreigners" to a new place and creating the necessary "soil-plant-microorganism" biological complexes.

[0012] Manufacturers of such concentrates do not take into account the fact that artificial bacteria cannot quickly adapt to the new living conditions thereby increasing significantly the so-called lag phase and reducing the essential efficiency of these biological preparations.

[0013] In addition, by isolating one or another strain of a beneficial microorganism, researchers disregard the symbiotic, metabolic and antagonistic interactions between microorganisms living in natural conditions. Thus, the development of

anaerobes in well-aerated soils is impossible without aerobes that absorb free oxygen.

[0013] For this reason it is advisable not to destroy the microbiota living in sufficient quantity and natural symbiosis in fertile soils, peat bogs, sapropel deposits and the similar natural environment, it is better to create the necessary conditions for its preservation and reproduction. That is why in order to increase yields, especially those of legume crops, at the beginning of the last century agrarians sowed seeds together with particles of soil and roots taken from the fields where legumes had grown in the previous year. The introduction of fertile soil particles with beneficial microflora into new plots is used even now but mainly on household plots. It is clear that such technology is ineffective, since the average microbiota amount on fertile soils rarely exceeds 10^4 - 10^5 microorganisms / gram and, moreover, the removal of the upper soil layer upsets the current balance in the environment.

[0014] There are various methods of reproducing microbiota of the starting material. For example, it is known the method of obtaining a fertilizer from sapropel according to which silt is heated with superheated steam to destroy pathogenic microorganisms, the steam temperature is 200-600°C to activate soluble carbon and to reproduce the biological decomposition of the silt by using non-pathogenic microorganisms that remain in the silt after heating. The disadvantage of this method is significant environment pollution by steam emissions into the atmosphere, uneven heating of large silt amounts on open grounds and, accordingly, ineffective destruction of the pathogenic microflora to obtain quality fertilizers.

[0015] A more environmentally friendly method is the method of processing of waste waters and organic materials of these waters by cavitation using a rotor-stator mixer or a mill and converting the processed material into the "Bio-solids" mulch (US, 20050108930 A1). Unfortunately, these fertilizers cannot be used as organic due to the large number of chemical impurities that are hazardous to the main agricultural plants, therefore they are considered rather as a nutrient medium for decorative city plantations and lawns. In addition, their natural microbiota is far from symbiotically adapted microorganisms of fertile soil.

[0016] Also it is known the biological fertilizer which contains nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, copper, water-soluble humates and agronomical useful biological flora of the biohumus (RU, 2181710).

[0017] The disadvantage of this product is its low level of content of the agronomical useful biological bioflora, which leads to a significant decrease in a fertilizer efficiency. The reason for the low content of bioflora is that during mixing the biohumus and peat mixture in the reactor, a significant number of microorganisms just die when potassium alkali chemical solution is added and during filtering a large number of viable microflora stays in the sediment.

[0018] The particles of the active substance solids (biohumus and peat) contained in the final product cause the clogging of the sprayer apertures due to their excessive size. In addition, they can settle on the bottom of the container in which fertilizer is stored. Thus, the physical state of this known fertilizer can be characterized as a suspension of an inorganic origin with low dispersion and stability, its use for spraying plants being problematic.

[0019] In these prior art methods rather "tough" means of treating one or another biologically active medium were used to increase the availability of its beneficial components and at the same time to reduce the amount of plant pathogenic microorganisms and fungi.

[0020] Such "selectivity" of approaches, that is, the desire to remove "everything harmful" and save and reproduce "everything beneficial" is quite complicated and probably practically impossible task.

[0021] This opinion is confirmed by numerous studies of exactly the opposite direction, in particular pasteurization of food liquids by means of cavitation effects [CA, 2 511 744]. Thin coats of bacteria do not bear the cavitation pressure pulsations and are effectively destroyed.

[0022] There are a lot of convincing evidences on the bacterial microflora destruction by "tough" cavitation effects on the processed fluid. Reference can be made to the following documents of the prior art:

- ultrasonic cavitation [RU, 2109688 C1, US, 20080257830 A1, US, 9174189 B2, WO2009 / 118002A2];
- acoustic cavitation [EP, 1800744 A1, RU, 2396216 C1];
- cavitation effects by rotary-pulsating disperser, including those operating in the resonant acoustic oscillations mode [RU, 2396216 C1, RU, 2305073 C2, RU, 2420500 C1, RU, 2304561 C2];
- flow-type hydrodynamic cavitators such as Pito tube with obstacles having sharp edges and cracks, etc. [RU, 2585635 C1, RU, 2603391 C1, WO2012/005631 A2].

[0023] The authors of these publications specify different process parameters as a criterion that causes cavitation bulbs collapse and subsequent bacterial microflora destruction, in particular, the great amount of the specific energy per area unit or volume unit in the active zone of acoustic effect.

[0024] In practice, this means that the higher the energy intensity of the process, the more intense destruction of bacteria, especially relatively large ones, is caused by the cavitation process.

[0025] UA, 87342 C1 discloses the method of producing a liquid biological fertilizer and the fertilizer itself which are the most relevant to the claimed group of inventions. This known fertilizer contains partly preserved agronomical beneficial biological bioflora but for obtaining this fertilizer biohumus is subjected to dispersion by means of a hydrodynamic

cavitation disperser to obtain a finely dispersed water suspension with the biohumus particles of 3-10 microns. Accordingly, after such processing which leads to fine and aggressive crushing of solids of the nutrient medium a significant part of the unique bacterial microflora in the processed humus medium, particularly large-sized bacteria, will be destroyed. [0026] It is disclosed that "smaller particle size leads to increasing surface area on which microorganisms can be immobilized".

[0027] The characteristic sizes of beneficial soil bacteria are known to differ considerably. Thus, the characteristic sizes of nitrogen-fixing bacteria of the *Rhizobium* and *Bradirhizobium* type are bigger than the typical sizes of phosphorous-mobilizing bacteria of the *Bacillus* type and are about 3-5 microns.

[0028] This means that preservation and selection of the beneficial microbiota of the starting species composition, in particular, of beneficial natural (wild) soil bacteria living in natural humus soils, peatlands, sapropel deposits, etc., is impossible by using this method, since the known technology provides "tough" and aggressive cavitation effect on the processed medium, which changes substantially the starting species composition of the natural soil microorganisms. WO 2009/009805 A1 discloses a method of producing a suspension containing endomycorrhiza, water soluble nitrogen and carbon.

[0029] US 2015/299055 A1 discloses a method of producing a fertilizer by sieving a finely crushed source material to a 300 mesh (about 50 μm), inoculating the material with microorganisms, adding sources of carbon and/or nitrogen and Hoagland solution, incubating the mixture at about 30°C for 3-4 days until the target population of microorganisms is attained. The mixture is then dried and the population is approximately 106 to 109 CFU/g of dried.

[0030] UA, 87342 C2 also discloses that "the contact of microorganisms with biohumus fine-dispersed inclusions of biohumus occurs under the influence of airlift flows of air bubbles containing oxygen".

[0031] But the cavitation effect on the gases dissolved in flowing liquid media of the solid phase-liquid type under constant access of oxygen is chemically and biologically aggressive. Because of its unpredictability and uncontrollability there are negative effects related to the effective changes in natural microbiota of the species composition (for example, towards aerobic bacteria) and excessive oxidation of natural soil beneficial components, which causes as a result a significant distortion of the final product bacterial profile if compared to the initial bacterial profile at the beginning of the treating process.

SUMMARY OF THE INVENTION

[0032] The above mentioned problems lead to the need to create such a method of obtaining a liquid organic fertilizer for soils and/or plants colonized by natural soil microorganisms that could provide optimal conditions for reproducing and preserving substantially the starting species composition of natural soil microorganisms in the final product by using a special and unique technology of "soft" turbulent effect with no cavitation effects. This final product should be in the form of a homogeneous fine dispersion suspension with solids of 10-50 microns, which is bigger than the size of relatively large microorganisms (5-10 microns), be suitable for packing and long-term storage and contain carbon and nitrogen-containing substances in water-soluble forms and the hardened natural soil microorganisms of the starting species composition in the state of anabiosis and spore forms with the highest possible concentration. The optimal methods of using this final product should provide the conditions of obtaining higher crop yields, improved fertility of depleted soils and restored fertility of sandy and sandy-loam soils.

[0033] The problems are solved by the proposed method of obtaining liquid organic biofertilizer for soils and/or plants which is colonized by natural soil microorganisms and includes the following operations:

- a) preparing, sorting and crushing a portion of a starting humus-containing soil or soil mixture, in which at least one of soils in the mixture is a humus-containing, the starting humus-containing soil having beneficial components which contain an organic carbon in an amount greater than 10% and an organic nitrogen in an amount greater than 1% and having colonies of natural soil microorganisms, their concentration in the starting humus-containing soil or soil mixture being not less than 10^4 CFU/ml;
- b) mixing the crushed portion of the said soil or soil mixture with water to produce a water suspension;
- c) creating a running flow of said water suspension within a closed circuit with oxygen-eliminating;
- d) cyclic processing of the running flow of the water suspension within the closed circuit with oxygen-eliminating by using a turbulence effect so as to preclude cavitation and due to turbulent friction and shearing force to provide for crushing solids in a processed medium of the running flow of the said water suspension and uniform heating of a whole volume of the processed medium with a temperature growth rate not exceeding 2 °C/min; said cyclic processing comprising at least two stages, a first stage and a second stage.

[0034] The first stage provides an initial heating of the processed medium, extracting of carbon- and nitrogen-containing substances from the processed medium, transiting these substances into water-soluble forms with simultaneous crushing solids in the processed medium and as a result obtaining a homogeneous processed medium with carbon- and

nitrogen-containing substances in water-soluble forms causing a growth of colonies of natural soil microorganisms present in the homogeneous processed medium. When reaching a predetermined final temperature upon the initial heating, which depends on a species composition of the natural soil microorganisms containing in the starting humus-containing soil, it is achieved a growth of substantially all kind of colonies of the natural soil microorganisms present in the starting humus-containing soil to concentrations exceeding 10^8 CFU/ml and a uniform colonization of the homogeneous processed medium with carbon- and nitrogen-containing substances in water-soluble forms by these microorganisms.

[0035] The second stage provides a further heating the homogeneous processed medium and a further crushing solids in the homogeneous processed medium to result in hardening substantially all kinds of the natural soil microorganisms present in the homogeneous processed medium, transiting these microorganisms into an state of anabiosis and spore forms and crushing solids in the homogeneous processed medium to the sizes in the range of 10-50 microns.

[0036] The method according to the claimed invention comprises also the final step e) which provides: removing the homogenous processed medium from said closed circuit after finishing the second stage followed by cooling said medium to result in obtaining a final product in the form of a liquid organic biofertilizer for soils and/or plants.

This final product is suitable for packaging and long-term storage and contains carbon- and nitrogen substances in water-soluble forms, solids with size of 10-50 microns and the hardened natural soil microorganisms substantially of all kind present in the species composition of the starting humus-containing soil that are in the state of anabiosis or spore form and in the concentration exceeding 10^7 CFU/ml.

[0037] The method according to the invention completely eliminates the transition of the processable suspension flow into the cavitation with characteristic cavities and pockets, which prevents the destruction of a relatively large microorganisms such as *Rhizobium* or nodule bacteria.

[0038] The lower limit of crushing (10 microns) should be greater than the maximum size of the typical fertile soil bacteria, which prevents their destruction, while the upper limit should be 50 microns to meet the requirements of modern sprayer filter construction.

[0039] It is also necessary to emphasize that it is very important that the final product is obtained in form of the homogenous fine-dispersion suspension because it is just this form that causes the transition of the beneficial components of the starting humus-containing soil into water-soluble form which is indispensable both for the microflora active growth and for the macro and micro nutrition of germinating seeds and growing plants when using this product as a fertilizer.

[0040] According to the next preferred embodiment of the claimed method the optimal heating temperatures for cyclic processing at the first stage may be up to about 50°C, at the second stage - within the range of 50° - 80°C, while the optimal cooling temperatures may be from +40°C to -4°C, cooling to subzero temperatures ensuring additional hardening of microorganisms.

[0041] It is advisable to use a starting soil selected from the group consisting of peat, forest soil, sapropel, freshwater estuary and lake deposits, algae, biohumus, black earth, grey earth and leonardite. If the starting humus-containing soil or soil mixture has a lignin content amounting to more than 2% measured on a dry matter basis, the final product will be obtained in a gel-like form which is very usable and if the starting humus-containing soil or soil mixture has a humus content amounting to more than 3% measured on a dry matter basis, the final product will contain more than 0.1% humus water-soluble acids.

[0042] In the other preferred embodiment of the claimed method it is expedient to use microorganisms chosen from the group consisting of nitrogen-fixing bacteria, or nitrifiers, such as *Rhizobium*, bacteria that assimilate organic nitrogen from soils such as *Azotobacter*, phosphorous-mobilizing bacteria such as *Bacillus Subtilis*, oligotrophic bacteria that grow well in the depleted soils and fungal microflora including micromycetes. All these natural soil microorganisms upon hardening at the step d) of the proposed method are transiting to an state of anabiosis or spore forms and present in these state and forms in the final product.

[0043] In addition one more preferred embodiment of the claimed method includes a possibility to carry out the cyclic processing in a closed circuit with oxygen elimination containing a vertical cylindrical tank, an electric pump connected to the cylindrical tank lower part and a turbulence device with a turbulence nozzle mounted after the pump and tangentially connected to the cylindrical tank upper part. According to this embodiment it is additionally advisable that mode of turbulence effect on the medium processed in this closed circuit may be provided so as to exclude cavitation and emergence of dead zones by keeping the following three conditions:

$$10 \text{ kPa (0.1 Bar)} \leq \Delta P \leq 20 \text{ kPa (0.2 Bar)} \quad (1)$$

$$0.1 \frac{\text{kW}}{\text{kg}} \leq \bar{N} \leq 0.2 \frac{\text{kW}}{\text{kg}} \quad (2)$$

$$T_1 = T_2 \dots T_n \quad (3)$$

where $\Delta P = (P_1 - P_2)$ - pressure difference before and after the turbulence nozzle (kPa, Bar),

$$\bar{N} = \frac{N}{M}$$

\bar{N} - process specific energy consumption, kW/kg,

N - pump electric drive power, kW,

M - processed fluid medium weight, kg,

$T_1 = T_2 \dots T_n$ - current heating temperature at measuring points distributed on an outer surface of the cylindrical tank which serve to control the uniformity of heating the entire volume of the medium processed in the closed circuit.

[0044] The proposed according to the invention cyclic processing of the water suspension flow in the closed circuit without access to oxygen by turbulence effect in the mode that excludes cavitation may be best realized, for example, using the devices developed by Sergey Osypenko, the author of the present invention, and protected, in particular, by patents CA, 2511744 and UA, 42365.

[0045] In such devices the closed circuit is created by joining a vertical cylindrical tank to the pump through a sucker connected either to the tank lower part in its center on the continuation of the symmetry axis - patent CA, 2511744 (in this case the tank has a conical lower part connected to the tank cylindrical surface or to the pump tangential to the tank lower part in the direction of fluid rotation (patent UA, 42365) and tangential through a delivery nozzle to the tank upper part. The turbulence device is fixed on the delivery pipe.

[0046] The author has found that the proposed soft turbulence effect on the processed medium and slow heating, the rate not exceeding 2 °C /min, which excludes cavitations and dead zones in the closed circuit, may be best implemented by using any one of the above devices provided the above mentioned requirements 1), 2) and 3) are fulfilled during cyclic processing at stage d) according to the claimed method.

[0047] Exceeding pressure differential $\Delta P = (P_1 - P_2)$ over 20 kPa (0.2 Bar) testifies to cavitation start. In this case lower pressure at the pump outlet P_1 which prevents cavitation can be ensured by the pump drive speed control.

[0048] ΔP value drop below 10 kPa (0.1 Bar) decreases the turbulizer effect on the medium to be processed, which results in a substandard final product.

[0049] $T_1, T_2 \dots T_n$ sensors serve to control dead zone appearance. The change in their readings by 2-3°C testifies to the appearance of such a zone near the sensor with a lower temperature. As the temperature grows the medium viscosity grows and the probability of such zones increases.

[0050] Thus, the optimal process mode suggested by the claimed method provides controllability and reliability of cyclic processing without cavitation effects and dead zones with a limited heating rate which results in the improvement of the final product quality.

[0051] The biofertilizer obtained via the claimed process contains a water-soluble nitrogen and a water-soluble carbon, solids with size in the range of 10-50 microns and a hardened natural soil microorganisms substantially of all kind present in the species composition of the starting humus-containing soil which are in the state of anabiosis or in spore forms and are uniformly populated in this biofertilizer in the concentrations exceeding 10^7 CFU/ml.

[0052] Preferably a content of the water-soluble nitrogen is at least 40 mg and a content of the water-soluble carbon is not less than 470 mg per 100 g biological fertilizer on basis of a dry weight.

[0053] According to another aspect of the present invention it is claimed a method of treating soil, seeds or plants with using the liquid organic biofertilizer obtained by the claimed method of claims 1-8. This method comprises the following steps: adding a liquid or a crushed dry natural soil to the obtained biofertilizer to reduce the concentration of hardened natural soil microorganisms present in it in the state of anabiosis and spore forms to the concentration exceeding 10^4 CFU/ml, and applying such biofertilizer of reduced concentration to a soil before sowing or during the sowing period or treating seeds or plants with such biofertilizer during the vegetation period before harvesting. According to the different preferred embodiments of the proposed treating it is now possible to improve a yield of a specific crop, to increase the fertility of the depleted or to restore sandy and sandy-loam soils.

50 BEST MODE FOR CARRYING OUT THE INVENTION

[0054] The claimed invention is further described in more detail with reference to the accompanied Examples which disclose the different preferred embodiments in various aspects of the claimed invention.

[0055] In present application the term "natural soil microorganisms" means substantially all native soil microbiota divided into four types: bacteria and fungi as the basis of any soil as well as actinomycetes and yeast as intermediate forms between bacteria and fungi which are specific for each particular type of soil, highly variable depending on changes in external conditions.

[0056] Without exaggeration it should be point out the dominant role of the bacteria in soil fertility and plant productivity. Thus, if fungi have greater effect on plants, the bacteria - both on plants and soils, that is, they are directly involved in transformation and circulation of organic matter in the soil - plant - atmosphere - soil chain. Bacteria are more susceptible to chemicals in soil. Fungi populations are less susceptible to anthropogenic impact.

5 [0057] It is for this reason the bacteria have been chosen as the main representatives of fertile soil microorganisms and their main species have been studied. The control over fungal microflora has been carried out only as to its total number, without dividing it into classes and species.

10 [0058] According to the modern concept, the number of major bacteria types has long exceeded a thousand and their classification is very difficult and is the subject of scientific debate and controversy. Therefore, having no opportunity to produce a purely scientific proof of preserving the whole bacterial profile of natural soils, the Examples below will demonstrate data confirming the preservation in the final product obtained by the claimed method substantially the same fertile soil microorganisms present in the species composition of the starting humus-containing soil (the same "microbiotic portrait") (Example 1), and preservation of certain significant bacteria types, which confirms the achievement of unobvious technical results of the claimed method of obtaining the final product in the form of a biofertilizer which provides the 15 minimal disturbing natural balance of the soil microorganisms (Examples 2 - 11).

20 [0059] Example 12 is presented for comparing the result of the peat suspension processing, the suspension humidity being 80%, the analyses were made before and after the processing. Example 13 is presented in order to demonstrate an increase in fertility and yields when cultivating the *Aratta* soybean variety under irrigation. In all cases nitrogen-fixating bacteria of the *Rhizobium* and *Bradirhizobium* type have been selected as bacteria of "large" size (up to 5 microns and above). Even larger sizes have been registered with oligotrophic bacteria which are widespread in depleted soils, peat, sandy-loam soil, etc. In order to adapt to harsh living conditions with a poor nutrition these bacteria have a large contact surface, that is, large size (up to 10 microns) due to the formation of special overgrowths, flagella, etc.

25 [0060] As an example of relatively small bacteria (1-2 microns or lower) numerous species of phosphorous-mobilizing bacteria of the *Bacillus Subtilis* type have been selected. These bacteria are very important in transforming an organic phosphorous which is contained in plant in soil into the mineral form available for growing plants.

[0061] Numerous bacteria of the *Azotobacter* type are mainly related to microorganisms that grow well in the presence of oxygen, that is, to aerobic bacteria. At the same time some of them are relative aerobes, while others are anaerobes, for example, *Clostridium Azotobacter*.

30 [0062] It should be noted that due to the presence of a large number of relative aerobes and anaerobes in soil, the artificial aeration of nutritious substrates as well as suspensions from biohumus, vermicompost, etc used in well-known technologies results in a substantial distortion of the natural soil bacterial profile towards the aerobic bacteria.

35 [0063] To obtain a microbiological "portrait" before and after applying the method according to the invention, the following typical microorganisms conventionally tested on appropriate nutrient media have been used:

- 35 1. Nitrogen-fixing bacteria or nitrate-fixers, including *Rhizobium*, are tested on Ashby nutritional medium;
- 2. Bacteria capable of assimilating soil organic nitrogen forms of the *Azotobacter* type are tested on the SAA (starch - ammonia agar) medium;
- 3. Oligotrophic bacteria which develop well on depleted soils are tested on SA (starvation agar) medium;
- 4. Phosphorous-mobilizing bacteria of the *Bacillus Subtilis* type are tested on Gause's medium;
- 40 5. Fungi microflora including *Trichoderma* and micromycetes are tested on Czapek's medium;
- 6. The total amount of microorganisms is tested on Zvyagintsev's medium.

EXAMPLE 1

45 [0064] Research has been carried out using an organic valley peat diluted with water, the ratio being 1:1.25, as starting humus-containing soil. The resulting suspension was obtained according to the claimed method.

46 [0065] During obtaining the medium was studied by microbiological and plant pathological methods. In compliance with the conventional estimation of the soil composition the qualitative and quantitative microbiota composition was tested in the following titres: fungi and micromycetes - 1:10⁻³, bacteria - 1:10⁻⁴.

50 [0066] The results obtained are given in tables 1 - 4.

Table 1. Fungi microbiota and micromycetes of liquid soil samples under study (1:10⁻³titre, wort agar)

No	Temperature t° (degrees)	Average colonies number	Notes
	Feedstock before processing, 20°C	2.1 · 10 ³	4 <i>Aspergillus</i> colonies, 50 mm d

(continued)

№	Temperature t° (degrees)	Average colonies number	Notes
1	30°C	$4 \cdot 10^3$	- « -
2	40°C	$7.5 \cdot 10^3$	More <i>Penicillium</i>
3	50°C	$4 \cdot 10^4$	- « -
4	60°C	$3.1 \cdot 10^6$	sharp increase in fungi and micromycetes number
5	70°C	$2 \cdot 10^3$	
6	80°C	$1.2 \cdot 10^2$	spore and inactive forms
7	90°C	traces	practically no

Table 2. Nitrogen-fixing microbiota (*Rhizobium*, *Bradirhizobium*, etc) of liquid soil samples (1:10⁻⁴titre, Ashby medium)

№	Temperature t° (degrees)	Average colonies number (<i>Azotobacter</i>)	Notes
№	Feedstock before processing, 20°C	$3.2 \cdot 10^5$	mainly <i>Rhizobium</i>
1	30°C	$2 \cdot 10^8$	- « -
2	40°C	$3.5 \cdot 10^7$	- « -
3	50°C	$2.2 \cdot 10^8$	mainly <i>Rhizobium</i> and <i>Bradirhizobium</i>
4	60°C	$1.7 \cdot 10^7$	- « -
5	70°C	$2.3 \cdot 10^7$	mainly spore forms
6	80°C	$1.3 \cdot 10^7$	- « -

Table 3. Total amount of bacterial microbiota of liquid soil samples containing mainly organic nitrogen compounds (1:10⁻⁴titre, beef-extract agar)

№	Temperature t° (degrees)	Average colonies number	Notes
	Feedstock before processing, 20°C	$1.4 \cdot 10^4$	7 main morphological types, standard forms
1	30°C	$2.5 \cdot 10^4$	- « -
2	40°C	$7.4 \cdot 10^7$	- « -
3	50°C	$8.2 \cdot 10^8$	- « -
4	60°C	$3 \cdot 10^8$	- « -
5	70°C	$4.1 \cdot 10^8$	2 bacillary morphological types (10-15 mm d)
6	80°C	$5.6 \cdot 10^7$	bright yellow ones of the <i>Sarcina</i> type, 3 other saprophyte types, white color
7	90°C	$3.5 \cdot 10^5$	one viable bacterium

Table 4. Total amount of microbiota of liquid soil samples (1:10⁻⁴titre, Zvyagintsev's medium)

№	Temperature t° (degrees)	Average colonies number	Notes
№	Feedstock before processing, 20°C	$1.8 \cdot 10^5$	practically all morphological types
1	30°C	$2.3 \cdot 10^5$	- « -
2	40°C	$7.1 \cdot 10^7$	- « -
3	50°C	$3.4 \cdot 10^8$	- « -
4	60°C	up to $3 \cdot 10^{10}$	widest quality range of all morphological types
5	70°C	$7 \cdot 10^9$	spore formation
6	80°C	up to $6.7 \cdot 10^7$	spore and atypical forms
7	90°C	$2.1 \cdot 10^7$	bacillary + spore forms

[0067] Table 1 shows sharp increase in fungi and micromycetes amounts in the temperature range of 50° - 60°C up to $3.1 \cdot 10^8$ compared to the control ($2.1 \cdot 10^3$), that is, more than a thousand times.

[0068] Tables 2-4 show the increase in *Azotobacter* and *Rhizobium* bacteria amounts (wort agar medium) as well as in total microbiota (solid Zvyagintsev's medium).

[0069] The data in tables 1-4 testify to the sharp increase in microorganisms amounts within 50° - 60°C temperature range, while temperature increase over 60°C causes bacteria inhibition, their transition to suspended animation state and spore formation followed by their regeneration under favorable conditions.

[0070] At the same time the concentration of viable bacteria decreases by one or two digits on average but less than 10^7 CFU.

[0071] Temperatures higher than 80°C bring about the destruction of most microbiota and its amount reduction.

EXAMPLE 2

[0072] To increase the fertility of sandy loamy soils and their water-retaining properties, use is made of the following mixture: 200 kg of valley peat and 40 kg of the Californian worm biohumus. Peat humidity is 60%, it contains 20% ash, 80% organic matter, carbon content mainly in the form of humic substances being about 30% relative to the dry organic matter amount. The total nitrogen amount in the peat is about 2.8%. The total microorganism content of the mixture is $2.2 \cdot 10^4$ CFU / ml, organic carbon - 25.6%, nitrogen - 1.6% per 100 g dry mixture. Raw materials are carefully sifted to remove mechanical impurities in the form of pebbles and wood residues, loaded into a separate tank filled previously with 400 l water and mixed thoroughly by circulating them with a pump. As a result, a "coarse" aqueous suspension fertile soil-water is obtained. The suspension is pumped to the device in the form of a closed circuit consisting of a 670 liter vertical tank with a piping system connected to an electric pump with a capacity of 90 m³ / h and an outlet pressure of 400 kPa (4 bar) and a 90 kW electric drive. Between the pump and the tank a turbulator is installed in the form of a hydrodynamic nozzle with a relative contraction close to two and a smoothly streamlined obstacle in the form of a ball with a flow blocking factor close to 65%. The spherical form of obstacles is traditionally used to create developed turbulent currents reaching the critical Reynolds numbers which characterize turbulence degree.

[0073] To control the nozzle operation in the turbulent mode with no cavitation ruptures, manometers P₁ and P₂ are installed to measure pressure before and after the nozzle correspondingly. In the case of cavitation ruptures, the difference in the manometer readings changes discontinuously towards the reading increase.

[0074] After loading a portion of suspension to be processed, a pump is switched on and the liquid medium circulates through a closed circuit: tank - pump - turbulent nozzle - tank. As a result of particles turbulent friction in the nozzle, on the tank and pipeline walls as well as shear stresses in the liquid, the suspension is heated. The manometer readings are P₁≈743 kPa (7.43 bar), P₂≈733 kPa (7.33 bar), the difference being $\Delta P=10$ kPa (0.1 bar), which meets the condition 10 kPa (0.1 bar) $\leq \Delta P \leq 20$ kPa (0.2 bar) controlling the absence of cavitation currents.

[0075] Due to the fact that the specific energy intensity of the process is close to $W=0.134$ kW / kg, which corresponds to the condition (2) specified in claim 8, the heating rate of the processed suspension is 1.8 deg / min, which does not exceed the value of 2 deg / min.

[0076] In the process of cyclic processing, the suspension to be processed is sufficiently slowly heated, which facilitates the transition of the raw material useful components into a water-soluble form. The use of these useful components which have passed into an accessible form by bacteria leads to their intensive growth.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9

mainly humic and fulvic acids. That is why the organic fertilizer obtained after water dilution has an opaque dark color.

[0081] Active mixing, slowly growing comfortable temperature of the nutrient medium, easily digested food with available forms of complex sugars in the form of water-soluble carbohydrates and minerals intensify the process to the maximum possible values. A "soft" turbulent effect on the processed medium prevents the selective growth of small and death of relatively large bacteria forms which is characteristic of the well-known methods that use the hard mechanic effect, for example, cavitation, for the purpose. The above features that characterize the invention allow maximum maintenance of the bacterial profile or "portrait" of the feedstock aboriginal microorganisms.

[0082] The results of bacterial concentration growth are shown in Table 6 which shows that, as the temperature reaches 60 ° C, the intensive growth of microflora ceases, limited to a value of 3.0×10^8 , which can be considered the end of the first stage of processing.

Table 6

Total bacterial microbiota amount in the studied liquid soil samples (1: 10 ⁻⁴ titer, Zvyagintsev medium)			
No	Temperature	Average number of colonies	Notes
1.	20 °C (feedstock)	$2.2 \cdot 10^4$	up to 7 colonial morphotypes
2.	30 °C	$3.5 \cdot 10^6$	up to 7 colonial morphotypes
3.	50 °C	$2.5 \cdot 10^8$	up to 7 colonial morphotypes
4.	60 °C	up to $3.0 \cdot 10^8$	The widest quality spectrum of morphotypes
5.	70 °C	$6.0 \cdot 10^7$	colonial types of <i>Pseudomonas</i> and others in suspended animation state
6.	80 °C	up to $4.0 \cdot 10^6$	bacillary forms in spore forms and suspended animation

[0083] After the temperature of 60 ° C, the second stage of the bacteria hardening begins accompanied by their simultaneous transfer to spore forms and / or the state of anabiosis. At the same time microorganisms concentration decreases vastly (from $3 \cdot 10^8$ at 60°C to $4 \cdot 10^7$ at 80°C) because of some bacteria destruction and some bacteria transition to the state of anabiosis and spore forms.

[0084] At this stage it is especially important to avoid dead zones inside the tank, that is, zones with insufficiently crushed solid soil particles and lower temperatures insufficient for the transition of microorganisms into spore forms and the state of anabiosis. Accordingly, this can lead to a drastic reduction in the fertilizer shelf life, pack swell, bloat and the like.

[0085] Therefore, the equality of temperatures $T_1 = T_2 = \dots = T_n$ on the tank outer surface ensures the control of the uniform heating of the entire suspension volume processed in the tank. The equality of temperatures on the surface and inside the entire volume is due to the high degree of heat and mass transfer coefficient as a result of active pumping and turbulent mixing of the entire processed liquid.

[0086] It is especially important to note the equality of the temperature values top-down, in particular, in the upper and lower parts of the tank where the probability of dead zones occurrence is the highest. This is due to the fact that the viscosity of the processed suspension increases as the temperature rises and after reaching the temperature of 50 ° C it can increase tenfold. This is due to carbon transfer into a form that is accessible to bacteria, i.e. water-soluble form, and primarily into lignin and humic compounds, as well as cellulose transition into dextrins, protopectin - into pectin and so on, which leads to a significant increase in the liquid medium rheological properties.

[0087] The temperature increase in the second stage is targeted to 80 ° C. Its further increase, as experiments have shown, leads to irreversible processes of some microorganism spore forms death and to "welding" high-molecular polysaccharides of lignin type. In this case the final product becomes poorly soluble and substandard because of the bacterial content which is below 10⁷CFU/ml. Naturally the bacterial profile of such a fertilizer differs significantly from the initial profile of natural raw materials, shifting towards thermophilic bacteria.

[0088] Note that usually the transition of bacteria into spore forms begins at temperatures around 60 ° C, at a temperature above 70 ° C it becomes active and at 75° - 80 ° C its activity practically ends.

[0089] To increase the number of microorganisms at the end of the first stage, it is advisable in certain cases to make a temporary pause as one else processing stage, thereby fixing the optimal temperature of bacteria proliferation. To do this, it is enough to switch off the pump for a while.

[0090] In any case, the expedience of a pause is determined in each case experimentally, on the basis of microbiological

tests analysis.

EXAMPLE 3

5 [0091] The same as in example 2. The power of the pump drive is increased to 150 kW. Power dimensional factor $\bar{N} = 0.22$ kW / kg exceeds the upper permissible limit equaling 0.2 kW / kg of the inequality (2), p. 8.

[0092] Substandard final product is obtained because of high heating rate (more than 2 deg/min). The total amount of bacteria does not exceed 10^5 CFU/ml, which testifies to microorganisms inability to adapt to too fast medium heating.

10 EXAMPLE 4

15 [0093] The same as in example 2. The power of the pump drive is decreased to 30 kW. Substandard final product is obtained because of dispersion particles heterogeneity. Dimensional factor $\bar{N} = 0.045$ exceeds the lower permissible power limit $\bar{N} = 0.1$ kW. Some suspension particles are more than 50 micron size which can cause a sprayer filter or a drip hose injector clogging. The flow energy is not enough for crushing effectively the medium under processing. In this example, in the process of heating the temperature at different points of the tank surface was different. Therefore, when the temperature reaches 80 ° C in the upper part of the tank, in its lower part the temperature reaches only 68 ° C, which testifies to the presence of dead zones due to the insufficient provision of power.

20 EXAMPLE 5

[0094] The same as in example 2. Pressure at the pump outlet is increased to $P_1 = 1200$ kPa (12 bar).

25 [0095] As a result, the pressure difference on the turbulent nozzle increases to $\Delta P = P_1 - P_2 = 27$ kPa (0.27 bar). The device switches to cavitation mode because of the violation of the condition (1) specified in p. 8 of the claims according to which the maximum pressure difference on the nozzle should not exceed $\Delta P = 20$ kPa (0.2 bar). High-frequency noise appears at frequencies close to $(17.5 \cdot 10^3$ Hz), which accompanies the destruction of cavitation bubbles. In the product obtained the percentage of relatively "large" nitrogen-fixing bacteria of the *Rhizobium* type (tubercular bacteria) has been reduced three times compared to the natural profile (see Table 6). This testifies to the fact that the microorganisms that are important for plants and soils and that accumulate nitrogen from the atmosphere in tubercles have been destructed.

30 The final product is substandard as the bacterial profile has higher content of small bacteria (1-2 micron size or even smaller), thus it fails to provide plants with necessary nutrients.

EXAMPLE 6

35 [0096] The same as in example 2. Pressure P_1 at the pump outlet is decreased to 500 kPa (5 bar).

[0097] As a result the pressure difference at the nozzle ΔP decreases to 8 kPa (0.08 bar) which violates the condition (1) specified in p. 8 of the claims going beyond the lower limit $\Delta P = 10$ kPa (0.1 bar).

[0098] Substandard product is obtained as the fertilizer particle size exceeds 50 micron which causes sprayer filter clogging.

40 [0099] Hydrodynamic effect on the processed medium is insufficient. The resulting product has a liquid consistency which is explained by the fact that lignin contained in peat has not been converted to water-soluble form. Accordingly, natural humic compounds remain unavailable to soil microorganisms. The ultimate concentration of microorganisms is low (10^5 - 10^6 CFU / ml), which is not enough for effective pre-sowing seeds treatment (inoculations).

45 EXAMPLE 7

[0100] Fertilizer is supposed to be used for growing soybeans on light grey desert soils containing not more than 1.5% humus. Use has been made of the same device as in example 2. 200 kg of light grey desert soil with the initial natural microflora content of $2.7 \cdot 10^4$ CFU/ml and 0.52% nitrogen and 8% carbon content (on the dry matter basis) has been used.

50 [0101] At the end of the first stage of the cyclic processing the content of water-soluble carbon increases to 370 mg and water-soluble nitrogen - to 25 mg/100 g product. It is below the lower limit (40 mg) for the standard product in compliance with the preferred embodiment as claimed in claim 10. Accordingly, because of the nutrients low concentration in grey desert soil, the soil microorganism concentration increases only to $1.2 \cdot 10^6$, thus using the proposed technology is inexpedient because the final microorganism concentration in the final product according to the invention should be at least 10^7 CFU/ml.

[0102] At the same time increasing the amount of grey desert soil in the loaded portion to 240 kg with the aim of ensuring more beneficial properties of the final product leads to higher viscosity of the suspension which makes impossible an active circulation because of dead zones emergence.

[0103] This leads to the conclusion that just grey desert soil cannot be a proper feedstock for a quality biofertilizer, it requires additions of biohumus, sapropel, manure, etc which contain more microorganisms and organic substances.

EXAMPLE 8

[0104] The same as in example 7. 200 kg grey desert soil are supplied with 20 kg biohumus on the basis of cow manure, 32% moisture with an initial carbon content of 25.3% and total nitrogen of 2.63% based on dry matter. The initial concentration of biohumus bacteria is $3.2 \cdot 10^8$ CFU/ml.

[0105] On processing the final quality product demonstrates fungicide properties because natural bacteria have been substituted for pathogenic fungi.

[0106] High nutritional properties of the product obtained as an organic fertilizer are due to a significant amount of soluble carbon (980 mg) and soluble nitrogen (65 mg) per 100 g of product, as well as to high content of trace elements.

[0107] As a result of applying the obtained product to clay soils of southern Ukraine, the yield of soybeans under irrigation increases by 12% on using 1l fertilizer per 1000 kg seeds (inoculation) and by 18.2% on a single spraying, the dose being 2 l/ha per 200 l water at the stage of 4-6 true leaves.

[0108] Soya plants remain practically sound. The activity of the soil microflora which is determined by carbon dioxide release from soil has increased almost 2.5 times. It is important to note that in July the soil temperature rises to 60°C, however, the natural bacteria hardened at the second processing stage have survived and actively reproduced at extreme temperatures of southern Ukraine.

[0109] As numerous experiments have shown, traditional biological products based on nitrogen-fixing bacteria (so-called "inoculants") grown on artificial media practically lose their effectiveness in such extreme conditions.

EXAMPLE 9

[0110] When cultivating melons on poor sandy soils it is advisable to use mixtures poor in organic matter, colonized by oligotrophic bacteria characteristic of sandy soils. To produce fertilizers the following mixture of soils is used: 40% sandy soils, 30% peat, 20% sapropel, 10% biohumus. The mixture contains about 19.7% of total carbon and 2.3% of nitrogen based on dry matter.

[0111] Microorganism concentration in this soil mixture is $1.2 \cdot 10^5$ CFU/ml. The feedstock contains relatively great amount of oligotrophic bacteria typical of sandy soil and valley peat. These bacteria can develop at low nitrogen concentration in well-aerated sandy soil.

[0112] On using the described technology and the processing mode described in Example 2, a quality product is produced, its bacteria content being $1.7 \cdot 10^9$, water-soluble carbon making 690 mg and nitrogen making 78 mg per 100 g of dry matter with highly homogenous structure. The sand particles are filtered before packing. The product contains a large number of biologically active substances inherent in sapropel and organic biohumus.

[0113] The final product has been used on sandy testing grounds for cultivating organic melons and watermelons. The results of cultivating organic non-irrigated watermelons are given in table 7. The fertilizer made according to the invention is called "Product".

Table 7.

Cultivation of organic watermelons						
№	Experiment variant	Yield, t/ha	± to control 1		± to control 2	
			t/ha	%	t/ha	%
1	Control 1	17.2	-	-	-0.6	-3.5
2	Control 2 (treating seeds with water)	17.8	+0.6	+3.5	-	-
3	Treating seeds with "Product" (1 l/t)	18.9	+1.7	+9.9	+1.1	+6.2
4	Treating seeds with "Product" (2 l/t)	19.4	+2.2	+12.8	+1.6	+9
5	Spraying plants with "Product" (2 l/ha)	20.2	+3	+17.4	+2.4	+13.5
6	Spraying plants with "Product" (4 l/ha)	20.6	+3.4	+19.8	+2.8	+15.7
7	Treating seeds with "Product" (1 l/t) + spraying plants with "Product" (2 l/ha)	21.2	+4	+23.2	+3.4	+19.1
8	Treating seeds with "Product" (1 l/t) + spraying plants with "Product" (4 l/ha)	22.1	+4.9	+28.5	+4.3	+24.1

(continued)

Cultivation of organic watermelons						
№	Experiment variant	Yield, t/ha	± to control 1		± to control 2	
			t/ha	%	t/ha	%
9	Treating seeds with "Product" (2 l/t) + spraying plants with "Product" (2 l/ha)	22.6	+5.4	+31.4	+4.8	+27
10	Treating seeds with "Product" (2 l/t) + spraying plants with "Product" (4 l/ha)	22.8	+5.6	+32.5	+5	+28.1
HIP 05 t = 0.51						

[0114] The main concise conclusions of using the product are presented below:

- seedling emergence 2 days and fruits ripening 8 days earlier than in control;
- 2 - 2.5 times increase in soil organisms biological activity which testifies to the increased activity of soil processes and nutrition improvement;
- 20 - 22% reduction of water consumption coefficient, i.e. the amount of groundwater needed to form 1000 kg fruit;
- 9.9% increase in yield with pre-sowing seed treatment and 32.5% increase with the product combined application.

EXAMPLE 10

[0115] Biofertilizer is used for growing apple-trees on clay soil. Valley peat with Ph = 6.8 acidity is applied. Initial microorganism concentration in the feedstock is $1.5 \cdot 10^4$ CFU/ml. The amount of lignin in peat is 3.6% based on dry matter.

[0116] As a result of the proposed method use and the final heating up to 80°C at the second stage, a homogenous gel-like product has been obtained. The ultimate total concentration of microorganisms that have entered the state of suspended animation and spore forms, is about 2.2×10^8 CFU / ml. After packaging, the product is cooled to -2°C. This is done for the purpose of hardening microorganisms.

[0117] Apart from organic fertilizer properties, the product has the properties of a natural adaptogen which is capable to restore plants promptly after chemical treatment, adverse weather conditions including crops freezing during winter. First of all it is due to the carbon conversion into water-soluble forms as humic acids. As the study has shown, the content of water-soluble humates (see Table 5) increases tenfold reaching 0.1-1% of the fertilizer dry weight. The product triple application by spraying, the dose being 6 l/ha, made it possible to restore the apple orchard productivity after late frosts in 2017.

[0118] The fertilizer gel-like form reduces fertilizer consumption by 30-40% due to its better adhesion to leaf surface.

EXAMPLE 11

[0119] The same as in example 9. The production process is restricted to the first stage and stopped at 55°C medium temperature which is immediately followed by packing. Live bacteria concentration is higher than 10^{11} . The bacteria have not entered the state of suspended animation or spore forms, thus the product is substandard. Active reproduction of soil microflora caused packages bloating and depressurizing, thus making the biofertilizer transportation impossible.

EXAMPLE 12

[0120] In order to compare the final products made by using cavitation and turbulence phenomena, the same sequence of operations and the device described in example 2 are used, the mixture content being the same as well. The turbulent nozzle of this example is replaced with a direct-flow cavitation mixer with a cavitator in the form of a truncated cone that clogs the flow by 85% with regard to the area of the nozzle minimum cross-section.

[0121] The pressure at the P₁ pump outlet has been increased to 1120 kPa (11.2 bar). Thus the pressure difference ΔP at the nozzle increased to 35 kPa (0.35 bar) which indicates that the nozzle has changed over to the cavitation flow mode. The emergence of cavitation is accompanied by specific cavitation noise. All other parameters of the process are identical. To get the bacterial profile before and after applying the invention the following microorganisms tested on the conventional nutrient medium have been used:

1. Nitrogen-fixing bacteria which include *Rhizobium*, Ashby nutrient medium;

2. Bacteria capable of absorbing organic forms of nitrogen in soil, SAA (starch-ammonia agar) nutrient medium;
 3. Oligotrophic bacteria which grow well on depleted soils, SA (starvation agar) nutrient medium;
 4. Phosphorous-mobilizing bacteria of the *Bacillus subtilis* type Gause's nutrient medium;
 5. Fungi microflora including micromycetes, Czapek's nutrient medium;
 6. The total amount of microorganisms, Zvyagintsev's nutrient medium.

[0122] Table 8 shows comparative round results of the bacteria concentrations in the feedstock diluted with water and mixed to a suspension of 80% humidity before and after processing by means of cavitation and turbulence phenomena.

Table 8

№	Medium	Initial suspension peat-water	r_1 (%)	A Turbulence (CRU/ml)	r_2 (%)	B Cavitation (CFU/ml)	r_3 (%)
1	Ashby	$3.0 \cdot 10^5$	10	$1.1 \cdot 10^8$	12	$0.2 \cdot 10^7$	3
2	SAA	$6.1 \cdot 10^5$	20	$2.2 \cdot 10^8$	24	$0.9 \cdot 10^7$	12
3	SA	$7.6 \cdot 10^5$	25	$1.8 \cdot 10^8$	21	$1.2 \cdot 10^7$	17
4	Gause's	$1.1 \cdot 10^6$	35	$2.8 \cdot 10^8$	32	$4.1 \cdot 10^7$	56
5	Czapek's	$3.2 \cdot 10^4$	1.0	$6.9 \cdot 10^6$	0.8	$1.5 \cdot 10^6$	2.1
6	Zvyagintsev's	$3.1 \cdot 10^6$	100	$8.7 \cdot 10^8$	100	$7.3 \cdot 10^7$	100

[0123] The values of r_1 , r_2 , r_3 (%) show the percentage of bacterial components in the total amount of microorganisms bred in Zvyagintsev's medium and taken for 100% (table 8).

[0124] After processing by turbulence (A) and cavitation (B) this amount changes but under turbulence the amount of relatively "large" bacteria bred on Ashby medium (nitrogen-fixing) - 12% and on SA medium (oligotrophic) - 21% remains practically the same compared to their amount in the initial suspension (10% and 25%, respectively). But under cavitation the share of these bacteria drops sharply to 3% and 17%, respectively.

[0125] At the same time the share of relatively "small" phosphorous-mobilizing bacteria (Gause's medium) practically does not change (35% in the initial soil suspension and 32% after turbulence process). It should be noted that after cavitation it increases sharply by more than 1.6 times and reaches 56%.

[0126] But the percentage of fungi in micromycetes practically does not change from 1% in the initial feedstock up to 0.8% under the influence of turbulence and changes greatly influenced by cavitation, doubling to 2.1% of the total microbiota amount.

[0127] This testifies to the fact that the proposed method of "gentle" soil suspension processing by turbulence preserves the natural profile ("portrait") of fertile soils while "hard" processing by cavitation deforms it considerably destroying relatively large bacteria (3-10 microns) and cultivating small ones (1-2 microns).

[0128] The emergence of cavitation is accompanied by a typical cavitation noise, the other process parameters being the same.

[0129] At the same time the patented method using the "soft" processing mode based on turbulence increases the availability of fertile soil beneficial components by increasing the efficiency of the final product use also as a mineral organic biological fertilizer.

[0130] Various aspects of the invention to be patented are most effective for the restoration of soil fertility depleted by fertilizers and pesticides overuse, under flooding, etc.

EXAMPLE 13

[0131] In order to increase yields and restore soil fertility the biological fertilizer according to the invention has been used in growing the *Aratta* soybean variety under irrigation.

[0132] Microbiota in the soil for the crop is almost absent and amounts to 10^2 - 10^3 CFU/ml. The humus amount in the soil is not higher than 1.2%, which is not enough for soybean cultivation.

[0133] To increase soybean productivity, fertile organic soil of the black earth profile has been used after growing on it the same soybean variety in the previous year.

[0134] The amount of nitrogen-fixing *Rhizobium* bacteria in the soil is $8 \cdot 10^7$. The total microbiota amount is not less than 10^8 - 10^9 , that of carbon - 12%, nitrogen - more than 2.5% on a dry matter basis. Thus the potential fertility of the soil is very high.

[0135] On processing according to the proposed technology, a quality product has been obtained, nitrogen-fixing bacteria prevailing in its profile ($2 \cdot 10^8$), water-soluble nitrogen and carbon making 120 mg and 570 mg, respectively, on a dry matter basis.

[0136] The results of studying the obtained biological fertilizer are given in table 9.

5

Table 9. Indicators of nitrogen-fixing capacity and the *Aratta* soybean variety productivity

№	Variants	Tuber weight per plant, g	Tuber weight per ha, kg	Yield, center/ha	Increase, %
1	Treatment with water (control)	0.10	66.0	18.1	0
2	Seed treatment with Product (1 l/t)	0.26	171.6	19.8	9.4
3	Spraying 1% Product solution on vegetating plants (2 real leaves)	0.45	317.0	20.5	13.3
4	Seed treatment with Product (1 l/t) + spraying 1% Product solution on vegetating plants (2 real leaves)	0.65	432.0	20.7	14.4

20

[0137] Consequently, the studies conducted have found out that the application of the proposed biological fertilizer affects significantly the productivity, the formation of tubers and their weight.

[0138] Thus, seed treatment with Product (1 lit) + spraying 1% Product solution on vegetating plants (2 real leaves) cause tubers weight increase to 0.55 g per plant compared to the control, while the total tubers weight increased by 366.0 kg/ha.

[0139] The yield increase varies from 9.4% to 14.4%, which in terms of economic indicators gives an estimated 10-15 UAH additional income per each UAH invested in organic fertilizers.

INDUSTRIAL APPLICABILITY

30

[0140] The studies conducted have shown that based on the state of soil, plant species and variety, cultivation technology, etc the proposed invention makes it possible to select the feedstock component composition by optimizing its application method to ensure a commercially significant industrial application. The proposed technology is particularly relevant in present day conditions when soils are depleted by irrational crop rotation, chemical pollution, natural disasters such as droughts and late frosts, global warming on the planet.

[0141] The naturalness and organicity of the proposed technical decisions on obtaining liquid organic biological fertilizer and its subsequent application is that by transferring a small amount of fertile soil from one place to another it is possible to restore fertility and increase yields on large areas in a short period of time at a minimal labor and material cost.

[0142] It is also important to note that the application of the biological fertilizer of a certain microbiotic portrait produced according to the invention also leads to the reduction in herbicide and fungicide use up to 30% of the recommended doses.

40

Claims

45 1. A method of obtaining a liquid organic biofertilizer for soils and/or plants that is colonized by natural soil microorganisms comprising the following steps:

50 a) preparing, sorting and crushing a portion of a starting humus-containing soil or soil mixture, in which at least one of soils in the mixture is a humus-containing, the starting humus-containing soil having beneficial components which contain an organic carbon in an amount greater than 10% and an organic nitrogen in an amount greater than 1% and having colonies of natural soil microorganisms, their concentration in the starting humus-containing soil or soil mixture being not less than 10^4 CFU/ml; and
55 b) mixing the crushed portion of the said soil or soil mixture with water to produce a water suspension;

55

characterized by the following steps:

c) creating a running flow of said water suspension within a closed circuit with oxygen-eliminating;
d) cyclic processing of the running flow of the water suspension within the closed circuit with oxygen-eliminating

by using a turbulence effect so as to preclude cavitation and due to turbulent friction and shearing force to provide crushing solids in a processed medium of the running flow of the said water suspension and uniform heating of a whole volume of the processed medium with a temperature growth rate not exceeding 2 °C/min; said cyclic processing comprising at least two stages, a first stage and a second stage, wherein

5 - the first stage providing an initial heating of the processed medium, extracting of carbon- and nitrogen-containing substances from the processed medium, transiting these substances into water-soluble forms with simultaneous crushing solids in the processed medium and as a result obtaining a homogeneous processed medium with carbon- and nitrogen-containing substances in water-soluble forms causing a growth of colonies of natural soil microorganisms present in the homogeneous processed medium and when reaching a predetermined final temperature upon the initial heating which depends on a species composition of the natural soil microorganisms containing in the starting humus-containing soil it is achieved a growth of substantially all kind of colonies of the natural soil microorganisms present in the starting humus-containing soil to concentrations exceeding 10⁸ CFU/ml and a uniform colonization of the homogeneous processed medium with carbon- and nitrogen-containing substances in water-soluble forms by these microorganisms;

10 - the second stage providing a further heating the homogeneous processed medium and a further crushing solids in the homogeneous processed medium to result in hardening substantially all kinds of the natural soil microorganisms present in the homogeneous processed medium, transiting these microorganisms into an state of anabiosis and spore form and crushing solids in the homogeneous processed medium to the size in the range of 10-50 microns; and

15

20 e) removing the homogenous processed medium from said closed circuit after finishing the second stage followed by cooling said medium to result in obtaining a final product in the form of a liquid organic biofertilizer for soils and/or plants suitable for packaging and long-term storage, which contains carbon- and nitrogen substances in water-soluble forms, solids with size of 10-50 microns and the hardened natural soil microorganisms substantially of all kind present in the species composition of the starting humus-containing soil that are in the state of anabiosis or spore form and in the concentration exceeding 10⁷ CFU/ml.

25

30 2. The method of claim 1, wherein the final temperature of the initial heating of the homogeneous processed medium at the first stage of the cyclic processing while performing step d) is about 50°C.

35 3. The method of any of the preceding claims, wherein the final temperature of the further heating the homogeneous processed medium at the second stage of the cyclic processing while performing the step d) is in the range of about 50° - 80°C.

40 4. The method of any of the preceding claims, wherein the cooling at step e) is carried out within the temperature range from +40°C to -4°C.

45 5. The method of any of the preceding claims, wherein the starting humus-containing soil is selected from the group consisting of peat, forest soil, sapropel, bottom sediments of freshwater estuaries and lakes, algae, biohumus, black earth, grey desert soil and leonardite.

6. The method of any of the preceding claims, wherein the final product is obtained in a gel form provided a lignin content in the starting humus-containing exceeds about 2% based on a dry weight.

55 7. The method of any of the preceding claims. wherein the final product is obtained with humic water-soluble acids content exceeding about 0,1 % provided a humus content the staring humus-containing soil exceeds about 3%.

8. The method of any of the preceding claims, wherein the natural soil microorganisms which transit under hardening into a state and spore forms are the microorganisms selected from the group consisting of nitrogen-fixing bacteria such as *Rhizobium*, bacteria that assimilate organic soil nitrogen such as *Azotobacter*, phosphorous-mobilizing bacteria such as *Bacillus subtilis*, oligotrophic bacteria that grow on depleted soils and fungal microflora including micromycetes.

9. The method of any of the preceding claims, wherein the cyclic processing performed in step d) is carried out in a closed circuit with oxygen elimination containing a vertical cylindrical tank, an electric pump connected to the cylindrical tank lower part and a turbulence device with a turbulence nozzle mounted after the pump and tangentially

connected to the cylindrical tank upper part, the mode of turbulence effect on the medium processed in this closed circuit being provided so as to exclude cavitation and emergence of dead zones and to keep the following three conditions:

5

$$10 \text{ kPa (0.1 Bar)} \leq \Delta P \leq 20 \text{ kPa (0.2 Bar)} \quad (1)$$

10

$$0,1 \frac{kW}{kg} \leq \bar{N} \leq 0,2 \frac{kW}{kg} \quad (2)$$

$$T_1 = T_2, \dots, T_n \quad (3)$$

15 where $\Delta P = (P_1 - P_2)$ - pressure difference before and after the turbulence nozzle in kPa (bar),

$$\bar{N} = \frac{N}{M} \quad \text{process specific energy consumption, kW/kg,}$$

N - pump electric drive power, kW,

M - processed fluid medium weight, kg,

20 $T_1 = T_2, \dots, T_n$ - current heating temperature at measuring points distributed on an outer surface of the cylindrical tank which serve to control the uniformity of heating the entire volume of the medium processed in the closed circuit.

25 10. The method of any of the preceding claims, wherein the liquid organic biofertilizer for soils and/or plants obtained comprises a water-soluble nitrogen and a water-soluble carbon, solids with size in the range of 10-50 microns and hardened natural soil microorganisms substantially of all kind present in the species composition of the starting humus-containing soil which are in the anabiotic state of or in spore forms and are uniformly populated in this biofertilizer in the concentrations exceeding 10^7 CFU/ml.

30 11. The method of any of the preceding claims, wherein a content of the water-soluble nitrogen is at least 40 mg and a content of the water-soluble carbon is not less than 470 mg per 100 g biological fertilizer on basis of a dry weight.

35 12. A method of treating soil, seeds or plants with a product obtained according to the method of claims 1-11, comprising the following steps: adding a liquid or a crushed dry natural soil to the obtained biofertilizer to reduce the concentration of hardened natural soil microorganisms present in it in the anabiotic state or spore forms to the concentration exceeding 10^4 CFU/ml, and applying such biofertilizer of reduced concentration to a soil before sowing or during the sowing period or treating seeds or plants with such biofertilizer during the vegetation period before harvesting.

40 13. The method of claim 12, wherein for improving a yield of a specific crop, the liquid organic biofertilizer is obtained by using as the starting humus-containing soil a fertile soil taken from the field where the same or similar crop was grown in the previous time period.

45 14. The method of any of the claims 12 or 13, wherein for increasing the fertility of the depleted soil the liquid organic biofertilizer is obtained by using as the start gumus-containing soil the soil of the same type as the depleted soil to which the said fertilizer is added.

50 15. The method of any of the claims 12, 13 or 14, wherein for restoring sandy and sandy-loam soil the liquid organic biofertilizer is obtained by using as the start gumus-containing soil colonized by oligotrophic bacteria.

Patentansprüche

1. Verfahren zum Gewinnen eines flüssigen organischen Biodüngers für Böden und/oder Pflanzen, der von natürlichen Bodenmikroorganismen besiedelt ist, umfassend die folgenden Schritte:

55 a) Herstellen, Sortieren und Zerkleinern eines Teils eines humushaltigen Ausgangs-Bodens oder Bodengemisches, bei dem mindestens einer der Böden in dem Gemisch humushaltig ist, wobei der humushaltige Aus-

gangs-Boden nützliche Komponenten aufweist, die einen organischen Kohlenstoff in einer Menge von mehr als 10% und einen organischen Stickstoff in einer Menge von mehr als 1% enthalten und Kolonien natürlicher Bodenmikroorganismen aufweisen, wobei ihre Konzentration in dem humushaltigen Ausgangs-Boden oder Bodengemisch nicht weniger als 10^4 CFU/ml beträgt; und

5 b) Mischen des zerkleinerten Teils des Bodens oder Bodengemisches mit Wasser, um eine wässrige Suspension herzustellen;

gekennzeichnet durch die folgenden Schritte:

10 c) Erzeugen eines fließenden Stroms der wässrigen Suspension innerhalb eines geschlossenen Kreislaufs unter Eliminierung von Sauerstoff;

d) zyklisches Bearbeiten des fließenden Stroms der wässrigen Suspension innerhalb des geschlossenen Kreislaufs unter Eliminierung von Sauerstoff durch Ausnutzen eines Turbulenzeffekts, um eine Kavitation auszuschließen, und aufgrund von turbulenter Reibung und Scherkraft, um ein Zerkleinern von Feststoffen in einem bearbeiteten Medium des fließenden Stroms der wässrigen Suspension und ein gleichmäßiges Erwärmen eines gesamten Volumens des bearbeiteten Mediums mit einer Temperaturwachstumsrate, die $2^{\circ}\text{C}/\text{min}$ nicht überschreitet, vorzusehen; wobei die zyklische Bearbeitung mindestens zwei Stufen umfasst, nämlich eine erste Stufe und eine zweite Stufe, wobei

20 - die erste Stufe ein anfängliches Erwärmen des bearbeiteten Mediums, ein Extrahieren von kohlenstoff- und stickstoffhaltigen Substanzen aus dem bearbeiteten Medium, ein Überführen dieser Substanzen in wasserlösliche Formen bei gleichzeitigem Zerkleinern von Feststoffen in dem bearbeiteten Medium und als Ergebnis ein Erhalten eines homogenen bearbeiteten Mediums mit kohlenstoff- und stickstoffhaltigen Substanzen in wasserlöslichen Formen vorsieht, wodurch ein Wachstum von Kolonien natürlicher Bodenmikroorganismen bewirkt wird, die in dem homogenen bearbeiteten Medium vorhanden sind, und beim Erreichen einer vorbestimmten Endtemperatur nach dem anfänglichen Erwärmen, die von einer Artenzusammensetzung der natürlichen Bodenmikroorganismen abhängt, die in dem humushaltigen Ausgangs-Boden enthalten sind, ein Wachstum von im Wesentlichen allen Arten von Kolonien der natürlichen Bodenmikroorganismen, die in dem humushaltigen Ausgangs-Boden vorhanden sind, auf Konzentrationen von mehr als 10^8 CFU/ml und eine gleichmäßige Besiedelung des homogenen bearbeiteten Mediums mit kohlenstoff- und stickstoffhaltigen Substanzen in wasserlöslichen Formen durch diese Mikroorganismen erreicht werden;

25 - die zweite Stufe vorsieht: ein weiteres Erwärmen des homogenen bearbeiteten Mediums und ein weiteres Zerkleinern von Feststoffen in dem homogenen bearbeiteten Medium, was zu einer Härtung von im Wesentlichen allen Arten der natürlichen Bodenmikroorganismen führt, die in dem homogenen bearbeiteten Medium vorhanden sind, ein Überführen dieser Mikroorganismen in einen Zustand der Anabiose und Sporenform und ein Zerkleinern von Feststoffen in dem homogenen bearbeiteten Medium auf eine Größe im Bereich von $10\text{--}50 \mu\text{m}$; und

30 e) Entfernen des homogenen bearbeiteten Mediums aus dem geschlossenen Kreislauf nach Beendigung der zweiten Stufe, gefolgt von einem Kühlen des Mediums, was dazu führt, dass ein Endprodukt in Form eines flüssigen organischen Biodüngers für Böden und/oder Pflanzen erhalten wird, der verpackt werden kann und für die Langzeitlagerung geeignet ist und der Kohlenstoff- und Stickstoffsubstanzen in wasserlöslichen Formen, Feststoffe mit einer Größe von $10\text{--}50 \mu\text{m}$ und die gehärteten natürlichen Bodenmikroorganismen im Wesentlichen aller Arten enthält, die in der Artenzusammensetzung des humushaltigen Ausgangs-Bodens vorhanden sind, die im Zustand der Anabiose oder Sporenform und in einer Konzentration von mehr als 10^7 CFU/ml vorliegen.

40 2. Verfahren nach Anspruch 1, wobei die Endtemperatur des anfänglichen Erwärmens des homogenen bearbeiteten Mediums in der ersten Stufe der zyklischen Bearbeitung während des Durchführens von Schritt d) etwa 50°C beträgt.

45 3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Endtemperatur des weiteren Erwärmens des homogenen bearbeiteten Mediums in der zweiten Stufe der zyklischen Bearbeitung während des Durchführens des Schritts d) im Bereich von etwa $50^{\circ}\text{--}80^{\circ}\text{C}$ liegt.

55 4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Abkühlen in Schritte) in einem Temperaturbereich von $+40^{\circ}\text{C}$ bis -4°C durchgeführt wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der humushaltige Ausgangs-Boden ausgewählt ist aus der Gruppe bestehend aus Torf, Waldboden, Sapropel, Bodensedimenten von Süßwasser-Mündungsgebieten und Seen, Algen, Bichumus, Schwarzerde, grauer Wüstenboden und Leonardit.

5 6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Endprodukt in Gelform erhalten wird, sofern der Ligningehalt im humushaltigen Ausgangs-Boden mehr als etwa 2 %, bezogen auf das Trockengewicht, beträgt.

10 7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Endprodukt mit einem Gehalt an humushaltigen wasserlöslichen Säuren erhalten wird, der etwa 0,1 % übersteigt, sofern der Humusgehalt des humushaltigen Ausgangs-Bodens mehr als 3 % beträgt.

15 8. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei den natürlichen Bodenmikroorganismen, die unter Härten in einen Zustand und Sporenformen übergehen, um die Mikroorganismen handelt, die ausgewählt sind aus der Gruppe bestehend aus stickstofffixierenden Bakterien, wie beispielsweise Rhizobium, Bakterien, die den Stickstoff eines organischen Bodens assimilieren, wie beispielsweise Azotobacter, phosphormobilisierenden Bakterien, wie beispielsweise *Bacillus subtilis*, oligotrophen Bakterien, die auf ausgelaugten Böden wachsen, und Pilzmikroflora einschließlich Mikromyceten.

20 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die in Schritt d) durchgeführte zyklische Bearbeitung in einem geschlossenen Kreislauf unter Eliminierung von Sauerstoff durchgeführt wird, der einen vertikalen zylindrischen Tank, eine elektrische Pumpe, die mit dem unteren Teil des zylindrischen Tanks verbunden ist, und eine Turbulenzeinrichtung mit einer Turbulenzdüse enthält, die nach der Pumpe montiert und tangential mit dem oberen Teil des zylindrischen Tanks verbunden ist, wobei die Art des Turbulenzeffekts auf das in diesem geschlossenen Kreislauf bearbeitete Medium so vorgesehen ist, dass eine Kavitation und das Auftreten von toten Zonen ausgeschlossen ist und die folgenden drei Bedingungen erfüllt werden:

25

$$10 \text{ kPa (0,1 bar)} \leq \Delta P \leq 20 \text{ kPa (0,2 bar)} \quad (1)$$

$$0,1 \frac{\text{kW}}{\text{kg}} \leq \bar{N} \leq 0,2 \frac{\text{kW}}{\text{kg}} \quad (2)$$

$$T_1 = T_2, \dots, T_n \quad (3)$$

worin $\Delta P = (P_1 - P_2)$ - Druckdifferenz vor und nach der Turbulenzdüse in kPa (bar),

$$\bar{N} = \frac{N}{M} \quad \text{prozessspezifischer Energieverbrauch, kW/kg,}$$

N -- elektrische Antriebsleistung der Pumpe, kW,

M -- Gewicht des bearbeiteten flüssigen Mediums, kg,

$T_1 = T_2, \dots, T_n$ - aktuelle Heiztemperatur an Messpunkten, die auf der Außenfläche des zylindrischen Tanks verteilt sind und die dazu dienen, eine gleichförmige Erwärmung des gesamten Volumens des im geschlossenen Kreislauf bearbeiteten Mediums zu steuern.

40 10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erhaltene flüssige organische Biodünger für Böden und/oder Pflanzen einen wasserlöslichen Stickstoff und einen wasserlöslichen Kohlenstoff, Feststoffe mit einer Größe im Bereich von 10-50 μm und gehärtete natürliche Bodenmikroorganismen von im wesentlichen allen Arten umfasst, die in der Artenzusammensetzung des humushaltigen Ausgangs-Bodens vorhanden sind und die sich im anabiotischen Zustand oder in Sporenformen befinden und diesen Biodünger in Konzentrationen von mehr als 10^7 CFU/ml gleichmäßig besiedeln.

50 11. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Gehalt an wasserlöslichem Stickstoff mindestens 40 mg und der Gehalt an wasserlöslichem Kohlenstoff nicht weniger als 470 mg pro 100 g Biodünger, bezogen auf das Trockengewicht, beträgt.

55 12. Verfahren zum Behandeln von Boden, Saatgut oder Pflanzen mit einem Produkt, das nach dem Verfahren der

Ansprüche 1-11 erhalten wurde, umfassend die folgenden Schritte:

5 Zugeben einer Flüssigkeit oder eines zerkleinerten trockenen natürlichen Bodens zu dem erhaltenen Biodünger, um die Konzentration an gehärteten natürlichen Bodenmikroorganismen, die im anabiotischen Zustand oder in Sporenformen darin vorliegen, auf eine Konzentration von mehr als 10^4 CFU/ml zu reduzieren, und Anwenden eines solchen Biodüngers mit verringriger Konzentration auf einen Boden vor der Aussaat oder während der Aussaatperiode oder Behandeln von Saatgut oder Pflanzen mit einem solchen Biodünger während der Vegetationsperiode vor der Ernte.

10 13. Verfahren nach Anspruch 12, wobei zum Verbessern des Ertrags einer bestimmten Nutzpflanze der flüssige organische Biodünger dadurch erhalten wird, dass als humushaltiger Ausgangs-Boden ein fruchtbarer Boden verwendet wird, der dem Feld entnommen wurde, auf dem die gleiche oder eine ähnliche Nutzpflanze in der vorangegangenen Zeitperiode angebaut wurde.

15 14. Verfahren nach einem der Ansprüche 12 oder 13, wobei zum Steigern der Fruchtbarkeit des ausgelaugten Bodens der flüssige organische Biodünger dadurch erhalten wird, dass als humushaltiger Ausgangs-Boden ein Boden desselben Typs wie der ausgelaugte Boden verwendet wird, dem der Dünger zugesetzt wird.

20 15. Verfahren nach einem der Ansprüche 12, 13 oder 14, wobei zum Wiederherstellen eines Sand- und Sand-Lehm-Bodens der flüssige organische Biodünger dadurch erhalten wird, dass als humushaltiger Ausgangs-Boden der von oligotrophen Bakterien besiedelte Boden verwendet wird.

Revendications

25 1. Procédé permettant d'obtenir un biofertilisant organique liquide pour les sols et/ou les plantes, qui est colonisé par des micro-organismes naturels du sol, comprenant les étapes suivantes consistant à :

30 a) préparer, trier et broyer une partie d'un sol ou d'un mélange de sols initial, contenant de l'humus, dans laquelle l'un au moins des sols du mélange est un sol contenant de l'humus, le sol initial contenant de l'humus ayant des composants bénéfiques, qui contiennent du carbone organique dans une quantité supérieure à 10 % et de l'azote organique dans une quantité supérieure à 1 %, et ayant des colonies de micro-organismes naturels du sol, leur concentration dans le sol ou dans le mélange de sols initial contenant de l'humus n'étant pas inférieure à 10^4 UFC/ml ; et

35 b) mélanger la partie broyée dudit sol ou mélange de sols avec de l'eau pour produire une suspension aqueuse ;

caractérisé par les étapes suivantes consistant à :

40 c) créer un flux en écoulement de ladite suspension aqueuse dans un circuit fermé avec élimination de l'oxygène ;
d) traiter cycliquement le flux en écoulement de la suspension aqueuse dans le circuit fermé avec élimination de l'oxygène, en utilisant un effet de turbulence de manière à exclure la cavitation et, en raison d'un frottement turbulent et d'une force de cisaillement, à broyer les matières solides dans un milieu traité du flux en écoulement de ladite suspension aqueuse, et chauffer uniformément un volume entier du milieu traité avec un taux de croissance de la température ne dépassant pas 2 °C/min ; ledit traitement cyclique comprenant au moins deux étapes, une première étape et une deuxième étape, sachant que

45 - la première étape consiste à chauffer initialement le milieu traité, à extraire les substances contenant du carbone et de l'azote du milieu traité, à transformer ces substances en formes solubles dans l'eau avec broyage simultané des matières solides dans le milieu traité et, en conséquence, à obtenir un milieu traité homogène avec des substances contenant du carbone et de l'azote sous des formes solubles dans l'eau, ce qui entraîne la croissance de colonies de micro-organismes naturels du sol, présents dans le milieu traité homogène, et, lorsqu'une température finale prédéterminée est atteinte lors du chauffage initial, laquelle dépend de la composition des espèces de micro-organismes naturels du sol, présents dans le sol initial contenant de l'humus, on obtient une croissance de pratiquement tous les types de colonies de micro-organismes naturels du sol, présents dans le sol initial contenant de l'humus, à des concentrations supérieures à 10^8 UFC/ml, et une colonisation uniforme du milieu traité homogène avec des substances contenant du carbone et de l'azote sous des formes solubles dans l'eau par ces micro-organismes ;
- la deuxième étape consiste à chauffer davantage le milieu traité homogène et à broyer davantage les

5 matières solides dans le milieu traité homogène, afin de durcir pratiquement tous les types de micro-organismes naturels du sol présents dans le milieu traité homogène, à faire passer ces micro-organismes à un état d'anabiose et à une forme de spores, et à broyer les matières solides dans le milieu traité homogène jusqu'à une taille de l'ordre de 10 à 50 microns ; et

10 5 e) retirer le milieu traité homogène dudit circuit fermé à la fin de la deuxième étape, suivie du refroidissement dudit milieu, afin d'obtenir un produit final sous la forme d'un biofertilisant organique liquide pour les sols et/ou les plantes, apte à être conditionné et stocké à long terme, qui contient des substances, contenant du carbone et de l'azote, sous forme soluble dans l'eau, des matières solides d'une taille de 10 à 50 microns et des micro-organismes naturels du sol durcis, sensiblement de tous types, présents dans la composition des espèces du sol initial contenant de l'humus, à l'état d'anabiose ou sous forme de spores et en concentration supérieure à 10^7 UFC/ml.

15 2. Procédé selon la revendication 1, dans lequel la température finale du chauffage initial du milieu traité homogène dans la première étape du traitement cyclique lors de l'exécution de l'étape d) est d'environ 50 °C.

20 3. Procédé selon l'une des revendications précédentes, dans lequel la température finale du chauffage supplémentaire du milieu traité homogène dans la deuxième étape du traitement cyclique lors de l'exécution de l'étape d) est comprise entre 50° et 80 °C environ.

25 4. Procédé selon l'une des revendications précédentes, dans lequel le refroidissement dans l'étape e) est effectué dans une plage de température allant de +40 °C à -4 °C.

5. Procédé selon l'une des revendications précédentes, dans lequel le sol initial contenant de l'humus est choisi dans le groupe constitué par la tourbe, le sol forestier, le sapropel, les sédiments de fond des estuaires et des lacs d'eau douce, les algues, le bio-humus, la terre noire, la terre désertique grise et la léonardite.

30 6. Procédé selon l'une des revendications précédentes, dans lequel le produit final est obtenu sous forme de gel, à condition que la teneur en lignine de l'humus initial est supérieure à environ 2 % sur la base du poids sec.

7. Procédé selon l'une des revendications précédentes, dans lequel le produit final est obtenu avec une teneur en acides humiques solubles dans l'eau supérieure à environ 0,1 %, à condition que la teneur en humus du sol initial contenant de l'humus soit supérieure à environ 3 %.

40 8. Procédé selon l'une des revendications précédentes, dans lequel les micro-organismes naturels du sol qui passent à des formes d'état de spores en durcissant sont les micro-organismes choisis dans le groupe constitué des bactéries fixatrices d'azote telles que *Rhizobium*, des bactéries qui assimilent l'azote organique du sol telles que *Azotobacter*, des bactéries mobilisant le phosphore telles que *Bacillus subtilis*, des bactéries oligotrophes qui se développent sur des sols épuisés, et de la microflore fongique, y compris les micromycétètes.

45 9. Procédé selon l'une des revendications précédentes, dans lequel le traitement cyclique effectué à l'étape d) est réalisé dans un circuit fermé avec élimination de l'oxygène, comprenant un réservoir cylindrique vertical, une pompe électrique reliée à la partie inférieure du réservoir cylindrique, et un dispositif à turbulence avec une tuyère à turbulence monté après la pompe et relié tangentiallement à la partie supérieure du réservoir cylindrique, l'effet turbulent sur le milieu traité dans ce circuit fermé étant prévu de manière à exclure la cavitation et l'apparition de zones mortes et à maintenir les trois conditions suivantes :

$$10 \text{ kPa (0,1 bar)} \leq \Delta P \leq 20 \text{ kPa (0,2 bar)} \quad (1)$$

$$0,1 \text{ kW/kg} \leq \bar{N} \leq 0,2 \text{ kW/kg} \quad (2)$$

$$T_1 = T_2, \dots T_n$$

(3)

où

5 $\Delta P = (P_1 - P_2)$ - différence de pression avant et après la tuyère à turbulence en kPa (bar),

$\bar{N} = N/M$ - consommation d'énergie spécifique au processus, en kW/kg,

N - puissance d'entraînement électrique de la pompe, en kW,

M - poids du milieu fluide traité, en kg,

10 $T_1 = T_2, \dots T_n$ - température de chauffage actuelle aux points de mesure répartis sur une surface extérieure du réservoir cylindrique, qui servent à contrôler l'uniformité du chauffage de l'ensemble du volume du milieu traité dans le circuit fermé.

15 10. Procédé selon l'une des revendications précédentes,

dans lequel le biofertilisant organique liquide pour les sols et/ou les plantes obtenu comprend de l'azote soluble dans l'eau et du carbone soluble dans l'eau, des matières solides d'une taille comprise entre 10 et 50 microns et des micro-organismes naturels durcis du sol, sensiblement de tous types, présents dans la composition des espèces du sol initial contenant de l'humus, qui sont à l'état anabiotique ou sous forme de spores et qui sont uniformément peuplés dans ce biofertilisant à des concentrations supérieures à 10^7 UFC/ml.

20 11. Procédé selon l'une des revendications précédentes,

dans lequel une teneur en azote soluble dans l'eau est d'au moins 40 mg et une teneur en carbone soluble dans l'eau n'est pas inférieure à 470 mg par 100 g d'engrais biologique sur la base du poids sec.

25 12. Procédé de traitement du sol, des semences ou des plantes avec un produit obtenu par le procédé selon les revendications 1 à 11, comprenant les étapes suivantes consistant à :

ajouter un liquide ou un sol naturel sec broyé au biofertilisant obtenu, afin de réduire la concentration des micro-organismes du sol naturel durcis,

30 présents dans celui-ci à l'état anabiotique ou sous forme de spores, à une concentration supérieure à 10^4 UFC/ml, et

appliquer ce biofertilisant à concentration réduite sur un sol avant l'ensemencement ou pendant la période d'ensemencement, ou traiter des semences ou des plantes avec ce biofertilisant pendant la période de végétation, avant la récolte.

35 13. Procédé selon la revendication 12,

dans lequel, pour améliorer le rendement d'une culture spécifique, le biofertilisant organique liquide est obtenu en utilisant comme sol initial contenant de l'humus un sol fertile prélevé dans le champ où la même culture ou une culture similaire a été cultivée au cours de la période précédente.

40 14. Procédé selon l'une des revendications 12 ou 13,

dans lequel, pour augmenter la fertilité du sol épuisé, le biofertilisant organique liquide est obtenu en utilisant comme sol initial contenant de l'humus un sol du même type que le sol épuisé auquel ledit engrais est ajouté.

45 15. Procédé selon l'une des revendications 12, 13 ou 14,

dans lequel, pour restaurer un sol sablonneux et sablo-limoneux, le biofertilisant organique liquide est obtenu en utilisant comme sol initial contenant de l'humus le sol colonisé par des bactéries oligotrophes.

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2008025108 A1 [0007]
- US 6495362 B [0008]
- US 20050108930 A1 [0015]
- RU 2181710 [0016]
- CA 2511744 [0021] [0044] [0045]
- RU 2109688 C1 [0022]
- US 20080257830 A1 [0022]
- US 9174189 B2 [0022]
- WO 2009118002 A2 [0022]
- EP 1800744 A1 [0022]
- RU 2396216 C1 [0022]
- RU 2305073 C2 [0022]
- RU 2420500 C1 [0022]
- RU 2304561 C2 [0022]
- RU 2585635 C1 [0022]
- RU 2603391 C1 [0022]
- WO 2012005631 A2 [0022]
- UA 87342 C1 [0025]
- WO 2009009805 A1 [0028]
- US 2015299055 A1 [0029]
- UA 87342 C2 [0030]
- UA 42365 [0044] [0045]