(19)
(11) EP 3 705 185 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
09.09.2020  Patentblatt  2020/37

(21) Anmeldenummer: 20020085.5

(22) Anmeldetag:  24.02.2020
(51) Internationale Patentklassifikation (IPC): 
B03C 3/41(2006.01)
B03C 3/70(2006.01)
B03C 3/06(2006.01)
B03C 3/49(2006.01)
B03C 3/76(2006.01)
B03C 3/36(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
KH MA MD TN

(30) Priorität: 07.03.2019 DE 102019105776

(71) Anmelder: Karlsruher Institut für Technologie
76131 Karlsruhe (DE)

(72) Erfinder:
  • Bologa, Andrei
    76297 Stutensee (DE)

   


(54) ELEKTROSTATISCHER ABSCHEIDER FÜR DIE REINIGUNG VON RAUCHGASEN


(57) Elektrostatischer Abscheider für die Reinigung von Rauchgasen, umfassend ein Gehäuse (1) mit einem abnehmbaren Sammelbehälter (8) für abgeschiedene Partikel, einem Gaseintritt (2) und einem Gasaustritt (3) und dazwischen im Gehäuse (1) angeordneten am Sammelbehälter vorbeigeleiteten Strömungskanal, ein dem Gaseintritt (2) stromabwärts folgenden nach unten gerichteten ersten Strömungskanalabschnitt (5) des Strömungskanals, eine dem ersten Strömungskanalabschnitt (5) folgenden Strömungsumlenkung (6) in einen nach oben gerichteten zweiten Strömungskanalabschnitt (7) des Strömungskanals, wobei der zweite Strömungskanalabschnitt (7) in den Gasaustritt (3) ausmündet sowie eine Koronaentladungsanordnung im Strömungskanal, umfassend mindestens eine scheibenförmige Koronaentladungselektrode (9, 10) und Abscheideflächen (11), geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes (12) zwischen Koronaentladungselektrode (9,10) und den Abscheideflächen (11). Die Aufgabe liegt davon ausgehend in einer besseren Eignung und einer sichereren Handhabung bei der Rauchgasreinigung insbesondere für Kleinfeueungsanlagen. Gelöst wird die Aufgabe, indem die Abscheideflächen (11) geerdet sind und ganz oder teilweise durch Innenwandungen des Sammelbehälters (8) gebildet sind.




Beschreibung


[0001] Die Erfindung betrifft einen elektrostatischen Abscheider für die Reinigung von Rauchgasen, vorzugsweise aus technischen Umwandlungsprozessen, vorzugsweise Verbrennungsprozessen wie z.B. aus Kleinfeuerungsanlagen, Öfen, Verbrennungsmotoren oder sonstige Verbrennungsanlagen.

[0002] Rauchgase sind partikelhaltige Gase mit festen und/oder flüssigen Bestandteilen. Sie weisen eine gasförmige Trägerkomponente auf, in die feste Partikel und/oder Flüssigtropfen suspendiert sind.

[0003] Es ist immer noch üblich, insbesondere feste Brennstoffe wie Holz oder Kohle zum Heizen ohne jegliche Rauchgasreinigung zu verbrennen. Die dabei entstehenden Rauchgase verursachen Feinstaub- und Aerosolemissionen und damit einerseits eine Verunreinigung der Umwelt und andererseits emissionsbedingte Gesundheitsgefährdungen. Feinstaubpartikel und Aerosole können vor dem Austritt in die Umgebung durch wirksame Rauchgasreinigung abgefangen und weiterverarbeitet werden. Ein elektrostatischer Abscheider ist eine solche effektive Gasreinigungseinrichtung.

[0004] Eine bevorzugte Verwendung des elektrostatischen Abscheiders ist die Abreinigung von Rauchgasen aus Kleinverbrennungsanlagen wie insbesondere Verbrennungsöfen für Biomasse, Koks, Kohle, Brennöle, Holz, Holzpellets oder andere fossile Brennstoffe.

[0005] Elektrostatische Abscheider haben zum Reinigen von Aerosolen einen weiten Anwendungsbereich. Zum Beispiel werden in einem in der CH 694 645 A5 beschriebenen elektrostatischen Abscheider, die Partikel eines Verbrennungsgases durch einen Ionisierer geschickt, in dem sie in einer Korona-Entladung, die an den scharfen Kanten einer Hochspannungselektrode erzeugt wird, geladen werden. Das Kollektorrohr des Abscheiders ist geerdet. Geladene Partikel werden an der inneren Oberfläche des Kollektorrohrs gesammelt, hauptsächlich gasstromabwärts des Ionisierers.

[0006] Aus DE 10 2004 039 118 ist zu entnehmen, das Partikel in einem ersten Ionisierungsfeld geladen und abgeschieden werden können. Geladene Partikel werden unter dem Einfluss einer Aerosol-Raumladung auf der inneren Oberfläche der Wände der Abscheiderkammer, durch die die Rauchgase gelangen, abgeschieden und treten dann gereinigt aus dem Abscheider aus.

[0007] Ferner ist aus der DE 10 2008 049 211 A1 ein elektrostatischer Abscheider für die Reinigung von Rauchgasen aus Holzverbrennungsöfen oder stationären Dieselmotoren bekannt. Er besteht aus einem Gehäuse mit mindestens einem Gaseintritt und ein Gasaustritt. Dem Gaseintritt folgt in Strömungsrichtung ein nach unten führender, rohrförmiger erster Strömungskanalabschnitt mit einem Nicht-Korona-Agglomerator, gefolgt von einem Korona-Entlader, der in einen abgedeckten Schacht zum Auffangen ausgeschiedener Rußpartikel mündet. Aus dem abgedeckten Schacht folgt in Strömungsrichtung, nach oben führend, der rohrförmige zweite Strömungskanalabschnitt, der in einen Gasaustritt mündet und als Kollektor mit einer drehbaren, wendelförmigen Bürste ausgestattet ist.

[0008] Davon ausgehend liegt eine Aufgabe der Erfindung darin, ein Konzept für eine elektrostatische Abscheidung zur Reinigung von Rauchgasen so auszugestalten, dass es in besonderem Maße für den Einsatz mit Kleinfeuerungsanlagen vor allem in beengten Platzverhältnissen oder Emissionssensiblen Umgebungen wie z.B. in Gebäuden geeignet ist und sich dabei durch eine besonders sichere Handhabung auszeichnet.

[0009] Die Aufgabe wird durch einen elektrostatischen Abscheider mit den Merkmalen des Anspruchs 1 gelöst. Hierauf rückbezogene Unteransprüche geben vorteilhafte Ausgestaltungen wieder.

[0010] Die Lösung der Aufgabe basiert auf einen elektrostatischen Abscheider für die Reinigung von Rauchgasen, umfassend ein Gehäuse mit vorzugsweise nach unten abnehmbarem Sammelbehälter für abgeschiedene Partikel, ein Gaseintritt und ein Gasaustritt und dazwischen einen im Gehäuse angeordneten und am Sammelbehälter vorbeigeleiteten Strömungskanal. Der Strömungskanal folgt nach dem Gaseintritt stromabwärts zunächst einem nach unten gerichteten ersten Strömungskanalabschnitt und mündet von da aus in eine Strömungsumlenkung, von da aus in einen nach oben gerichteten zweiten Strömungskanalabschnitt des Strömungskanals und von dem er in den Gasaustritt aus.

[0011] Im Strömungskanal ist eine Koronaentladungsanordnung angeordnet, umfassend mindestens eine, vorzugsweise zwei scheibenförmige Koronaentladungselektroden und Abscheideflächen, geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes zwischen Koronaentladungselektrode und den Abscheideflächen als Gegenelektroden. Im Falle von mehreren Koronaentladungselektroden sind diese im Strömungskanal in Strömungrichtung seriell angeordnet und vorzugsweise miteinander elektrisch verbunden.

[0012] Vorzugsweise sind die scheibenförmigen Koronaentladungselektroden orthogonal zu der Durchströmungsrichtung im Strömungskanal angeordnet, womit eine Umlenkung der Rauchgasdurchströmung im Strömungskanal durch das elektrische Feld hindurch möglichst im gesamten Feld gleichmäßig homogen erfolgt. Zur Erzeugung einer gleichmassigen elektrischen Feldstärke über das gesamte Feld wird vorgeschlagen, dass der kürzeste Abstand des umlaufenden Rands der Koronaentladungselektrode vorzugsweise zu jeweils der nächstliegenden Innenwandung jeweils gleich ist. Entsprechend ist das elektrische Feld zwischen dem umlaufenden Rand einer Koronaentladungselektrode und dem jeweils kürzesten Abstand zur Innenwandung maximal.

[0013] Eine bevorzugte Ausgestaltung der mindestens einen scheibenförmige Koronaentladungselektrode kennzeichnet sich dadurch aus, dass diese umlaufend radial vorstehenden Elektrodenspitzen aufweist, wobei dann der Abstand der Elektrodenspitzen als kürzester Abstand maßgeblich und zu jeweils der nächstliegenden Abscheidefläche vorzugsweise einheitlich gleich groß ist.

[0014] Die Abscheideflächen werden durch die Innenwandungsbereiche des Strömungskanals gebildet. Vorzugsweise sind dabei die Abscheideflächen im Strömungskanal geerdet (Nullpotential), während die mindestens eine Koronaentladungselektrode bevorzugt an eine vorzugsweise gemeinsame Hochspannungsquelle angeschlossen ist und durch diese mit einer Potentialdifferenz zum Nullpotential, vorzugsweise mit einem negativen Gleichspannungspotential beaufschlagt ist. Dabei sind das Gehäuse oder zumindest die Innenwandungen des Strömungskanals oder zumindest die Abscheideflächen elektrisch leitfähig bzw. leitfähig beschichtet.

[0015] Die Abscheideflächen erstrecken sich in ihrer Gesamtheit grundsätzlich über alle elektrisch leitfähigen oder leitfähig beschichteten Innenwandungen des Strömungskanals, die elektrisch miteinander verbunden sind und hierdurch mit einem gleichen Potential zueinander beaufschlagt sind.

[0016] Grundsätzlich bildet die gesamte innere Oberfläche des elektrostatischen Abscheiders die Sammelfläche für Partikel: Partikel werden aus dem Gasstrom nach Durchlauf des Gaseinlasses und vor Erreichen des Koronaentladungsanordnung zunächst aufgrund gasdynamischer Phänomene als gasdynamischer und mechanischer Niederschlag an den Innenwandungen insbesondere des ersten Strömungskanalabschnitts abgeschieden. Mit Erreichen des Gasstroms der ersten Koronaentladungselektrode erfolgt die Abscheidung zunehmend elektrostatisch im Koronaentladungsfeld, wobei die Abscheidung der Partikel im Wesentlichen als Partikelablagerungen an den geerdeten Innenwandungsbereichen erfolgt. Diese Abscheidung wiederholt sich bei den der ersten Koronaentladungselektrode folgenden zweiten und ggf. weiteren Koronaentladungselektroden. An den Oberflächen der Koronaentladungselektroden ebenfalls findet Abscheidung statt (gasdynamische Effekte, mechanisches Sammeln und Sammeln unter dem Einfluss von elektrischem Wind). Dabei werden Partikel auch auf der nach oben weisenden Flächen der ersten und zweiten und ggf. folgenden weiteren scheibenförmigen Koronaentladungselektroden abgeschieden (gasdynamische Effekte, mechanische Ausfällung, teilweise elektrostatische Ausscheidung positiv geladener Partikel aus der Gasströmung auf der Oberfläche der Hochspannungselektrode mit negativer Polarität, Niederschlag durch elektrischen Wind). Im ebenfalls geerdeten Sammelbehälter werden Partikel auf der inneren Oberfläche abgeschieden. Diese Abscheidung erfolgt aufgrund von Raumladungseffekten mittels mechanischer Kräfte, thermophoretischer Kräfte, elektrischer Feldkräfte zwischen der inneren Oberfläche des Sammelbehälters und dem starren Träger zwischen den Koronaentladungselektroden. Die Innenwandungen des in Strömungsrichtung den Koronaentladungselektroden nachfolgenden zweiten Strömungskanalabschnitts erfolgt ferner unter dem Einfluss von Raumladungseffekten eine weitere Abscheidung von geladenen Partikeln.

[0017] Ein wesentlicher Grundgedanke der Erfindung liegt darin, die Abscheideflächen ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters zu bilden. Dies bedeutet, dass der Strömungskanal zumindest im Bereich der Koronaentladungsanordnung durch den Sammelbehälter geleitet wird oder diesen tangiert. Die Abscheideflächen oder ein Teil der Abscheideflächen erstrecken sich dabei auf die Innenwandung des Sammelbehälters, die somit einen Teil der vorgenannten Innenwandung des Strömungskanals bildet. Der Sammelbehälter und damit die Innenwandungen sind hierfür elektrisch leitfähig oder leitfähig beschichtet vorgenannten Innenwandung des Strömungskanals bildet. Der Sammelbehälter und damit die Innenwandungen sind hierfür elektrisch leitfähig oder leitfähig beschichtet.

[0018] Eine bevorzugte Ausführung sieht zudem vor, mindestens eine der, vorzugsweise alle scheibenförmigen Koronaentladungselektroden im Sammelbehälter anzuordnen, d.h. sie sind nicht im Innern des Gehäuses angeordnet, sondern ragen zumindest zum Teil aus dem Gehäuse heraus und in den Sammelbehälter hinein.

[0019] Eine bevorzugte Ausführung kennzeichnet sich dadurch aus, dass nur die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zu einer der Elektroden aufweisen, ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet werden.

[0020] Eine weitere bevorzugte Ausführung kennzeichnet sich dadurch, dass nur die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zuzüglich maximal 50%, weiter bevorzugt 20%, weiter bevorzugt 10% des kürzesten Abstands zu einer der Elektroden aufweisen, ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet werden.

[0021] Die mindestens eine Koronaentladungselektrode ist vorzugsweise durch, vorzugsweise nur durch eine starre Hochspannungsleitung im Strömungskanal fixiert und über diese an eine Hochspannungsquelle außerhalb des Gehäuses angeschlossen. Es versteht sich von selbst, dass nur wenn die Hochspannungsleitung und die elektrisch leitfähige Innenwandung des Strömungskanals gegeneinander isoliert sind, ein vorgenannter Potentialunterschied zwischen Koronaentladungselektrode und Innenwandung als Abscheideflächen überhaupt möglich ist.

[0022] Die starre Hochspannungsleitung endet an einer ersten Koronaentladungselektrode. Im Falle von mehreren Koronaentladungselektroden, die vorzugsweise in Strömungsrichtung im Strömungskanal hintereinander angeordnet sind, sind die Koronaentladungselektroden untereinander durch eine elektrisch leitfähige starre Verbindung, wie z.B. ein starrer Träger aus Metall miteinander verbunden.

[0023] Die starre Hochspannungsleitung ist vorzugsweise axial im ersten Strömungskanalabschnitt, d.h. mit ihrem freien Ende nach unten ausgerichtet und weist dabei keinen elektrischen Kontakt zur Innenwandung auf. Weiter bevorzugt ist der Abstand von der Hochspannungsleitung zur Innenwandung abseits der mindestens Koronaentladungselektrode zur Vermeidung von Ablagerungen stets größer als der vorgenannte kürzeste Abstand des umlaufenden Rands der Koronaentladungselektrode zu jeweils der nächstliegenden Innenwandung.

[0024] Die Ausleitung der Hochspannungsleitung aus dem Strömungskanal erfolgt vorzugsweise über eine gasundurchlässige Hochspannungsdurchführung abseits dem Gaseintritt. Zur Reduzierung einer Verschmutzungsgefahr durch Ablagerungen aus dem zu reinigenden Rauchgas auf der Innenwandung und der Hochspannungsleitung der und damit einer grundsätzlich möglichen Kurzschlussgefahr ist die gasundurchlässige Hochspannungsdurchführung abseits dem Gaseintritt vorgesehen.

[0025] Vorzugsweise wird auch auf der Hochspannungsleitung im Strömungskanal selbst ein rohrförmiger elektrischer Isolator um die Hochspannungsleitung angeordnet. Vorzugsweise erstreckt sich dieser Isolator von der gasundurchlässige Hochspannungsdurchführung bis kurz vor oder bis zur ersten Elektrode und isoliert dabei die Hochspannungsleitung von dem ersten Strömungskanalabschnitt elektrisch. Der rohrförmige elektrische Isolator dient dabei auch der Verbesserung der Betriebsstabilität des Abscheiders, der Verlängerung der Länge der Isolierfläche zwischen vorgenannter Abscheidungsfläche und Hochspannungsleitung sowie der Verringerung von elektrischen Leckströme.

[0026] Um einer Kurzschlussgefahr am Ende des Isolators vorzubeugen, wird im Rahmen einer Ausführungsform vorgeschlagen, den rohrförmigen elektrische Isolator so auszugestalten, dass dieser einen Innendurchmesser größer dem Außendurchmesser der starren Hochspannungsleitung aufweist. Zwischen Hochspannungsleitung und rohrförmigen Isolator entstehen so ein Spielmaß und damit ein umlaufender Spalt, wobei der rohrförmige elektrische Isolator dabei in vorteilhafter Weise an der gasundurchlässigen Hochspannungsdurchführung aufgehängt ist und der Spalt somit nur nach unten offen ist. Dieser Spalt, insbesondere dann, wenn dieser sich im laufenden Betrieb in der Spaltbreite verändert, erschwert grundsätzlich eine durchgehende Ablagerungsbeschichtung über den Übergang zwischen Isolator und Hochspannungsleitung über das offene Ende des Spalts hinweg. Vorzugsweise besteht der rohrförmige Isolator aus einen Schlauch aus einem elastischen oder biegeschlaffen Material, vorzugsweise einem Silikon, einem silikonhaltigen Material oder einem anderen temperaturbeständigen elastischen Werkstoff. Alternativ ist der rohrförmige Isolator in der vorgenannten Aufhängung elastisch fixierbar. Dies bewirkt in vorteilhafter Weise, dass der Isolator durch Anströmung mit Rauchgas relativ zur Hochspannungsleitung bewegt wird, dadurch sich der vorgenannte Spalt mit der Anströmung dynamisch ändert und sich mögliche Ablagerungen im und am Spalt sich lösen. Da die Hochspannungsleitung mit dem Isolator im ersten nach unten gerichteten Strömungskanalabschnitt von oben an der Hochspannungsdurchführung nach unten zum Spalt angeordnet ist, werden die gelösten Ablagerungen im Spalt allein schon durch die Schwerkraft aus dem Spalt nach unten herausbefördert und der Spalt dadurch stabilisiert.

[0027] Der rohrförmige elektrische Isolator endet vorzugsweise mit einem vorgebbaren fixen Abstand vor Erreichen, d.h. über einer ersten der mindestens einen Koronaentladungselektrode. Dies verhindert, dass die auf der ersten der mindestens einen Koronaentladungselektrode abgeschiedenen Partikel als Schüttung nicht das untere Ende des Isolators erreichen und womöglich einen Kurzschluss oder einen Kriechstromweg verursachen. Diese Schüttung entsteht auf der nach oben weisenden Fläche der Koronaentladungselektrode, indem sich dort insbesondere aus dem Spalt oder direkt aus dem Rauchgas abgeführte Partikelmassen anlagern. Der genannte fixe Abstand entspricht vorzugsweise zwischen 10%, 20% oder 30% bis 50%, 70% oder 80% der maximalen Abmessung der ersten der mindestens einen scheibenförmigen Koronaentladungselektrode. Für elektrostatische Abscheider für Kleinfeuerungsanlagen, Öfen, Verbrennungsmotoren mit Abgasströmungsvolumina im Bereich zwischen 20 bis 300 m3/h liegt der fixe Abstand typischerweise zwischen 2 und 15 cm.

[0028] Für den Betrieb des elektrostatischen Abscheiders für eine Rauchgasreinigung von Verbrennungsprozessen ist ein optionaler Temperatursensor für den Strömungskanal vorteilhaft. Je nach Rauchgastemperatur lässt sich die Rauchgasreinigung durch Beaufschlagen der mindestens einen Koronaentladungselektrode mit einer HV-Spannung aktivieren oder deaktivieren. Vorzugsweise erfolgt die Temperaturerfassung durch mindestens einen Temperaturerfassungssensor im ersten Strömungskanalabschnitt oder am Gehäuse nahe des ersten Strömungskanalabschnitts.

[0029] Während des Betriebs des elektrostatischen Abscheiders besteht die Gefahr, dass sich an den Innenwänden des Strömungskanals insbesondere in der Anlaufphase vor Erreichen einer Betriebstemperatur zusätzlich kleinere Kondensatmengen insbesondere an noch kälteren Bereichen der Innenwandung bilden, die jedoch im laufenden stationären Betrieb durch das heiße Gas wieder verdampft werden und so die Prozessstabilität der elektrostatischen Abscheidung allenfalls nur unwesentlich beeinträchtigen. Lassen die Temperaturverhältnisse in den beiden Strömungskanalabschnitten eine Verdampfung nicht zu, fließen die Kondensate schwerkraftgetrieben nach vorzugsweise stufenlos und vertikal nach unten direkt in den Sammelbehälter. Es wird optional vorgeschlagen, die Hochspannung erst oberhalb von 50°C bis 70°C, vorzugsweise oberhalb von 60°C, gemessen mit dem Temperaturerfassungssensor im ersten Strömungskanalquerschnitt, auf die mindestens eine Koronaentladungselektrode durchzuschalten und so die elektrostatische Abscheidung zu aktivieren.

[0030] Die Erfindung wird anhand von weiteren Ausführungsbeispielen, den folgenden Figuren und Beschreibungen näher erläutert. Alle dargestellten Merkmale und deren Kombinationen sind nicht nur auf diese Ausführungsbeispiele und deren Ausgestaltungen begrenzt. Vielmehr sollen diese stellvertretend für weitere mögliche, aber nicht explizit als Ausführungsbeispiele dargestellte weitere Ausgestaltungen kombinierbar angesehen werden. Es zeigen

Fig.1a und b prinzipielle Ansichten von Ausführungsbeispielen für je einen elektrostatischen Abscheider mit einer Koronaentladeanordnung mit zwei scheibenförmigen Koronaentladungselektroden, bei der die Temperatur nahe der Hochspannungsdurchführung im Strömungskanal (Fig.1a) oder am Gehäuse (Fig.1b) ermittelt wird,

Fig.2 eine sowie prinzipielle Ansicht eines Ausführungsbeispiels in Anlehnung an Fig.1a oder b (jedoch ohne Temperaturmessvorrichtung) mit abgenommen Sammelbehälter,

Fig.3 eine Querschnittdarstellung der in Fig.1a dargestellten Ausführungsform auf der Höhe des Gaseintritts und des Gasaustritts,

Fig.4 eine beispielhafte Ausgestaltung eines starren Trägers mit den beiden Koronaentladungselektroden (nur angedeutet) im Bereich der Strömungsumlenkung der Ausführungsbeispiele gemäß Fig.1a, 1b, 2 und 3 sowie

Fig.5 eine Detailansicht der Hochspannungsleitung im Bereich oberhalb der ersten Koronaentladungselektrode mit Ablagerungen von Partikeln.



[0031] Die in Fig.1a und b sowie Fig.2 und 3 dargestellten Ausführungsbeispiele zeigen ein Gehäuse 1 des elektrostatischen Abscheiders mit einem Gaseinlass 2 und einem Gasauslass 3 und zwischen diesen im Gehäuse angeordneten Strömungskanal, umfassend einen in Strömungsrichtung 4 nach unten gerichteten ersten Strömungskanalabschnitt 5, eine dem ersten Strömungskanalabschnitt folgenden Strömungsumlenkung 6 in einen nach oben gerichteten zweiten Strömungskanalabschnitt 7 des Strömungskanals. Das Gehäuse 1 selbst ist nach unten hin offen, wird aber durch einen die Öffnung schließenden Sammelbehälter 8 mit beidseitigen Griffen nach außen hin abgeschlossen. Das Gehäuse und/oder der Sammelbehälter sind im Ausführungsbeispiel vorzugsweise aus Metall gefertigt und geerdet.

[0032] Fig.1a zeigt ein Ausführungsbeispiel mit seitlich angeordneten Gaseinlass und Gasauslass für eine Verwendung z.B. in einem waagerechten Abgasstrang, beispielsweise in einer Übergangsleitung zwischen einem Brennofen und einer Kaminschacht.

[0033] Fig.1b zeigt dagegen ein Ausführungsbeispiel mit seitlich angeordneten Gaseinlass und nach oben gerichteten Gasauslass, beispielsweise geeignet für einen Einbau in einem Kaminschacht, in den der Gasauslass unmittelbar ausmündet.

[0034] In der Darstellung eines ersten Ausführungsbeispiels gemäß Fig.1a sind die Umlauflinien oder Trennungen den einzelnen Komponenten zur Hervorhebung des durchgehenden Strömungskanals im Gegensatz zu der Darstellung in Fig.1b nicht eingezeichnet.

[0035] Zugunsten eine kompakten Aufbaus sind der ersten und der zweite Strömungskanalabschnitt 5 bzw. 7 parallel zueinander angeordnet, weiter bevorzugt vertikal parallel zueinander angeordnet.

[0036] Ferner umfassen die dargestellten Ausführungsbeispiele je eine Koronaentladungsanordnung im Strömungskanal mit zwei scheibenförmigen Koronaentladungselektroden 9 und 10 sowie Abscheideflächen 11, geeignet für eine Ausbildung jeweils eines umlaufenden elektrischen Feldes 12 zwischen Koronaentladungselektrode und den Abscheideflächen. Wie in den Ausführungsbeispielen gemäß den Fig.1a und b dargestellt, sind die beiden Koronaentladungselektroden vorzugsweise jeweils eine vor und eine nach der Strömungsumlenkung 6 angeordnet. Weiter bevorzugt sind die mindestens eine Koronaentladungselektrode orthogonal zu dem ersten und/oder dem zweiten Strömungskanalabschnitt ausgerichtet. Bei einer vertikalen Ausrichtung der genannten Strömungskanalabschnitte sind die scheibenförmigen Koronaentladungselektroden horizontal ausgerichtet.

[0037] Die Koronaentladungselektroden 9 und 10 sind wie insbesondere in Fig.2 dargestellt nicht im Gehäuse 1 angeordnet, sondern ragen nach unten aus dem Gehäuse 1 heraus. Wie in Fig.1a und b dargestellt, sind sie im Innern des Sammelbehälters 8 angeordnet. Ebenso werden die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zu einer der Elektroden ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet.

[0038] Die beiden Koronaentladungselektroden 9 und 10 weisen, wie in Fig.3 schematisch zu erkennen, umlaufend radial vorstehenden Elektrodenspitzen 25 auf, um die die Feldstärken des elektrischen Feldes 12 maximal sind. Vorzugsweise weisen diese Elektrodenspitzen jeweils einen gleichen Abstand A zu der jeweilig nächstliegenden Abscheidefläche auf, sodass die elektrischen Felder über den gesamten Umfang der Koronaentladungselektroden eine ungefähr gleiche Feldstärke aufweisen.

[0039] Die beiden Koronaentladungselektroden 9 und 10 sind zudem, wie in Fig.4 dargestellt, durch einen elektrisch leitfähigen starren Träger 13 entlang der Strömungsumlenkung 6 miteinander verbunden, womit an diesen ein und dasselbe elektrische Potential anliegt. Der starre Träger ist nur mit den Koronaentladungselektroden verbunden (elektrisch leitfähig), positioniert diese relativ zueinander im Strömungskanal und weist vorzugsweise keine Verbindung zu anderen Komponenten, insbesondere zu den Innenwandungen des Strömungskanals insbesondere im Bereich zu der Strömungsumlenkung 6 auf. Vorzugsweise ist der Träger ein Blechträger, wobei das Blech hierfür zur Vermeidung oder Reduzierung von Ablagerungen von Partikeln möglichst hochkant, d.h. vertikal sowie zugunsten eines minimalen Druckabfalls in der Gasströmung möglichst aixal im Strömungskanal im Bereich der Umlenkung 6 angeordnet ist.

[0040] Ferner ist in den Figuren eine starre Hochspannungsleitung 15 axial im ersten Strömungskanalabschnitt 6 angeordnet, die sowohl als Trägerelement für die für eine Fixierung der Koronaentladungselektroden 9 und 10 im Strömungskanal als auch als elektrischer Anschluss dieser an eine Hochspannungsquelle 16 dient. Die Hochspannungsleitung wird durch eine Hochspannungsdurchführung 17 mit einem vorzugsweise keramischen Element 18, alternativ einem Glaselement als elektrischer Isolator zum Gehäuse 1 aus dem oberen Ende des ersten Strömungskanals 5 ausgeleitet und gehalten. Ferner ist um die Hochspannungsleitung eine elastische oder biegeschlaffe rohrförmige elektrische Isolierung, vorzugweise ein Silikonschlauch 19 vorgesehen, der einen größeren Innendurchmesser als der Außendurchmesser der Hochspannungsleitung unter Ausbildung eines ringförmigen Spaltes 21 aufweist. Das Schlauchende 20 des Silikonschlauchs 19 endet wie zuvor erläutert und in Fig.5 dargestellt in einem fixen Abstand H über der ersten Koronaentladungselektrode 9. Die Höhe H übersteigt vorzugsweise die maximal mögliche Schütthöhe der Partikelschüttung 22 auf der ersten Koronaentladungselektrode 9, sodass zwischen den Partikelablagerungen 23 auf dem Silikonschlauch 19 am unteren Schlauchende 20 und der vorgenannten Partikelschüttung 22 auf der ersten Koronaentladungselektrode 9.

[0041] Die Beaufschlagung der Koronaentladungelektroden durch die Hochspannungsquelle 16 erfolgt vorzugsweise temperaturgesteuert, wobei ein Potentialunterschied nur ab einer einstellbaren Betriebstemperatur eingespeist wird. Es wird vorgeschlagen, mindestens eine Temperaturerfassung im ersten Strömungskanalabschnitt 5 oberhalb des Gaseintritts 2 vorzunehmen. Dies erfolgt mittels eines Temperaturerfassungssensor 24 entweder punktuell, wie in Fig.1a dargestellt, im Innenvolumen oder integral über die Wandungsfläche, wie in Fig.1b dargestellt, an der oberen Wandung des ersten Strömungskanalabschnitts nahe der Hochspannungsdurchführung 17.

[0042] Eine Umströmung der elastischen oder biegeschlaffen rohrförmigen elektrischen Isolierung, vorzugweise des Silikonschlauches mit Rauchgas bewirkt in vorteilhafter Weise eine andauernde oder wiederkehrende Bewegung des Schlauchendes um die Hochspannungsleitung. Die damit einhergehenden ständigen Änderungen der Breite des Spaltes 21 im Bereich des Schlauchendes 20 führt zu einem Ablösen von Partikel von auf dem Schlauch und / oder Hochspannungsleitung abgeschiedenen Partikeln insbesondere im Spalt. Die abgelösten Partikel oder Partikelagglomerate fallen dann der Schwerkraft folgend auf die Oberseite der ersten Koronaentladungselektrode 9.

[0043] Insbesondere instationäre Strömungsanteile wie z.B. Turbulenzen um das Schlauchende führen zu dessen ständiger Bewegung. Insofern werden im Rahmen einer bevorzugten Ausgestaltung des ersten Strömungskanalabschnitts 5 dieser optional mit entsprechenden, in den Figuren nicht weiter dargestellten Strömungsstörquellen wie z.B. Leitblechen und/oder Abrisskanten versehen, in denen Turbulenzen lokal erzeugt werden und deren Strömungsnachlauf auf das Schlauchende 20, weiter bevorzugt nicht aber auf die vorgenannten elektrischen Felder 12 um die ersten Koronaentladungselektrode 9 erstreckt.

[0044] Eine besonders bevorzugte Ausgestaltung des vorgenannten kompakten Aufbaus sieht ein Gehäuse 1 vor, das ein zylinderförmiges Innenvolumen einschließt (vgl. Fig.3), das oberhalb der Strömungsumlenkung 6 durch eine Trennwand 14 mit elektrisch leitfähigen und geerdeten Oberfläche als ein Teil der Abscheideflächen in zwei halbzylinderförmige Teilvolumina unterteilt ist, wobei je eines der Teilvolumina den ersten und den zweiten Strömungskanalabschnitt bildet. Dies begünstigt in vorteilhafter Weise eine zylindrische Außenkontur des Gehäuses 1 des elektrostatischen Abscheiders und damit auch eine Gestaltung als Sammelbehälters 8 als zylinderförmigen Topfes mit bevorzugten einheitlichen Innen- und Außendurchmesser, d.h. einem stufenlosen Übergang insbesondere der Innenwandungen zwischen Gehäuse und Sammelbehälter.

[0045] Der Sammelbehälter ist an die untere Öffnung des Gehäuses ansetzbar und beispielsweise mit einem Bajonettanschluss oder mit Spannschellen arretierbar. Zur Vermeidung von einem Austritt von Rauchgas zwischen Gehäuse und Sammelbehälter ist ein aufeinander angepasstes Dichtflächenpaar optional ein dort separater umlaufender Dichtring vorgesehen. In einer ersten Ausgestaltung sind der Sammelbehälter und das Gehäuse, zumindest deren Innenwandungen, die den Strömungskanal bilden, mit dem gleichen elektrischen Potential wie das Gehäuse, vorzugsweise mit Erd- oder Nullpotential beaufschlagt. In einer weiteren optionalen Ausgestaltung sind der Sammelbehälter und das Gehäuse mit einem unterschiedlichen elektrischen Potential beaufschlagt, womit unterschiedliche elektrostatische Anziehungskräfte zu den jeweiligen Innenwandungen von Gehäuse, d.h. ersten oder zweiten Strömungskanalabschnitt, und Sammelbehälter, d.h. im Bereich der Strömungsumlenkung realisierbar sind.

[0046] In den dargestellten Ausführungsbeispielen ragen die Trennwand 14 sowie erstrecken sich der erste und der zweite Strömungskanalabschnitt 5 bzw. 7 von oben in den Sammelbehälter 8 hinein, während der Bereich der Strömungsumlenkung 6 unterhalb der Trennwand 14 im Sammelbehälter vorgesehen ist. Dabei ist in den beiden Strömungskanalabschnitten beidseitig der Trennwand im Sammelbehälter je eine Koronaentladungselektrode angeordnet, die beidseitig der Trennwand angeordnet ebenfalls in den Sammelbehälter hineinragen. Damit verschiebt sich der Bereich der Innenwandung des Strömungskanals, der den Koronaentladungselektroden am nächsten liegt, an das untere Teil der Trennwand und wie dieser ebenfalls in den Sammelbehälter.

[0047] Damit wird zumindest ein Teil der Abscheideflächen zu den Innenwandungen des Sammelbehälters verschoben, womit in vorteilhafter Weise die Partikelablagerungen direkt in den Sammelbehälter erfolgen und sind mit diesem direkt aus dem elektrostatischen Abscheider entnehmbar. Außerdem sind nach einem Abnehmen des Sammelbehälters die Koronaentladungselektroden für eine Reinigung, beispielsweise von Ablagerungen im Bereich der Hochspannungsleitung, zugänglich.

Bezugszeichenliste



[0048] 
1
Gehäuse
2
Gaseinlass
3
Gasauslass
4
Strömungsrichtung
5
erster Strömungskanalabschnitt
6
Strömungsumlenkung
7
zweiter Strömungskanalabschnitt
8
Sammelbehälter
9
erste Koronaentladungselektrode
10
zweite Koronaentladungselektrode
11
Abscheideflächen
12
umlaufendes elektrisches Feld
13
starrer Träger
14
Trennwand
15
Hochspannungsleitung
16
Hochspannungsquelle
17
Hochspannungsdurchführung
18
keramisches Element
19
Silikonschlauch
20
Schlauchende
21
Spalt
22
Partikelschüttung
23
Partikelablagerung
24
Temperaturerfassungssensor
25
Elektrodenspitzen



Ansprüche

1. Elektrostatischer Abscheider für die Reinigung von Rauchgasen, umfassend:

a) ein Gehäuse (1) mit einem abnehmbaren Sammelbehälter (8) für abgeschiedene Partikel, einem Gaseintritt (2) und einem Gasaustritt (3) und dazwischen im Gehäuse angeordneten am Sammelbehälter vorbeigeleiteten Strömungskanal,

b) ein dem Gaseintritt (2) stromabwärts folgenden nach unten gerichteten ersten Strömungskanalabschnitt (5) des Strömungskanals,

c) eine dem ersten Strömungskanalabschnitt folgenden Strömungsumlenkung (6) in einen nach oben gerichteten zweiten Strömungskanalabschnitt (7) des Strömungskanals, wobei der zweite Strömungskanalabschnitt in den Gasaustritt (3) ausmündet sowie

d) eine Koronaentladungsanordnung im Strömungskanal, umfassend mindestens eine scheibenförmige Koronaentladungselektrode (9, 10) und Abscheideflächen (11), geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes (12) zwischen der mindestens einen Koronaentladungselektrode (9,10) und den Abscheideflächen (11),
dadurch gekennzeichnet, dass

e) die Abscheideflächen (11) geerdet sind und ganz oder teilweise durch Innenwandungen des Sammelbehälters (8) gebildet sind.


 
2. Elektrostatischer Abscheider nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine der, vorzugsweise alle scheibenförmigen Koronaentladungselektroden (9, 10) im Sammelbehälter (8) angeordnet sind.
 
3. Elektrostatischer Abscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) durch eine starre Hochspannungsleitung (15) im Strömungskanal fixiert ist und über diese an eine Hochspannungsquelle (16) außerhalb des Gehäuses (1) angeschlossen ist.
 
4. Elektrostatischer Abscheider nach Anspruch 3, dadurch gekennzeichnet, dass die starre Hochspannungsleitung (15) axial im ersten Strömungskanalabschnitt (5) ausgerichtet ist und über eine gasundurchlässige Hochspannungsdurchführung (17) abseits dem Gaseintritt (2) aus dem Strömungskanal ausmündet.
 
5. Elektrostatischer Abscheider nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass um die starre Hochspannungsleitung (15) im Strömungskanal ein rohrförmiger elektrischer Isolator (19) angeordnet ist.
 
6. Elektrostatischer Abscheider nach Anspruch 5, dadurch gekennzeichnet, dass der rohrförmige elektrische Isolator (19) einen Innendurchmesser größer dem Außendurchmesser der starren Hochspannungsleitung (15) aufweist, an der gasundurchlässigen Hochspannungsdurchführung (17) aufgehängt ist und aus einen Schlauch aus einem elastischen oder biegeschlaffen Material ist.
 
7. Elektrostatischer Abscheider nach Anspruch 6, dadurch gekennzeichnet, dass das Material Silikone umfassen oder Silikone ist.
 
8. Elektrostatischer Abscheider nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der rohrförmige elektrische Isolator (19) mit einem vorgebbaren fixen Abstand (H) vor einer ersten der mindestens einen Koronaentladungselektrode (9) endet.
 
9. Elektrostatischer Abscheider nach Anspruch 6, dadurch gekennzeichnet, dass der vorgebbaren fixen Abstand (H) zwischen 2 und 15 cm beträgt.
 
10. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Koronaentladungsanordnung zwei Koronaentladungselektroden (9, 10) aufweist, wobei je eine vor und eine nach der Strömungsumlenkung angeordnet ist und die beiden Koronaentladungselektroden durch einen elektrisch leitfähigen starren Träger (13) entlang der Strömungsumlenkung (6) miteinander verbunden sind.
 
11. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) umlaufend radial vorstehenden Elektrodenspitzen (25) aufweist, wobei der Abstand (A) der Elektrodenspitzen zu jeweils der nächstliegenden Abscheidefläche (11) einheitlich gleich ist.
 
12. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) orthogonal zu dem ersten und/oder dem zweiten Strömungskanalabschnitt (5, 7) ausgerichtet sind.
 
13. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der ersten und der zweite Strömungskanalabschnitt (5, 7) parallel zueinander angeordnet sind.
 
14. Elektrostatischer Abscheider nach Anspruch 13, dadurch gekennzeichnet, dass der erste und der zweite Strömungskanalabschnitt (5, 7) vertikal und/oder die mindestens eine Koronaentladungselektrode (9,10) horizontal ausgerichtet sind.
 
15. Elektrostatischer Abscheider nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Gehäuse (1) ein zylinderförmiges Innenvolumen einschließt, das oberhalb der Strömungsumlenkung (6) durch eine Trennwand (14) mit elektrisch leitfähigen und geerdeten Oberfläche als ein Teil der Abscheideflächen (11) in zwei halbzylinderförmige Teilvolumina unterteilt ist, wobei je eines der Teilvolumina den ersten und den zweiten Strömungskanalabschnitt (5, 7) bildet.
 
16. Elektrostatischer Abscheider nach Anspruch 15, dadurch gekennzeichnet, dass die Trennwand (14) sowie sich der erste und der zweite Strömungskanalabschnitt (5, 7) von oben in den Sammelbehälter (8) hineinragt bzw. erstrecken, die Umlenkung (6) unterhalb der Trennwand im Sammelbehälter vorgesehen ist und in den beiden Strömungskanalabschnitten (5, 7) beidseitig der Trennwand im Sammelbehälter je eine Koronaentladungselektrode (9, 10) angeordnet ist.
 
17. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Sammelbehälter (8) in Verlängerung zum Gehäuse (1) topfförmig gestaltet ist über einen mechanischen Verschluss, vorzugsweise einen Bajonettverschluss mit dem Gehäuse (1) dichtend verbindbar ist.
 
18. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass im ersten Strömungskanalabschnitt (5) oder am Gehäuse (1) nahe des ersten Strömungskanalabschnitts ein Temperaturerfassungssensor (24) angeordnet ist.
 
19. Elektrostatischer Abscheider nach Anspruch 18, dadurch gekennzeichnet, dass der Temperaturerfassungssensor (24) oberhalb des Gaseintritts (2) im oder am ersten Strömungskanalabschnitt (5) angeordnet ist.
 




Zeichnung



















Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente