TECHNICAL FIELD
[0001] The present invention relates to a smoking substitute system and particularly, although
not exclusively, to a smoking substitute system comprising a device which comprises
a cleaning tool to clean the device.
BACKGROUND
[0002] The smoking of tobacco is generally considered to expose a smoker to potentially
harmful substances. It is generally thought that a significant amount of the potentially
harmful substances are generated through the heat caused by the burning and/or combustion
of the tobacco and the constituents of the burnt tobacco in the tobacco smoke itself.
[0003] Conventional combustible smoking articles, such as cigarettes, typically comprise
a cylindrical rod of tobacco comprising shreds of tobacco which is surrounded by a
wrapper, and usually also a cylindrical filter axially aligned in an abutting relationship
with the wrapped tobacco rod. The filter typically comprises a filtration material
which is circumscribed by a plug wrap. The wrapped tobacco rod and the filter are
joined together by a wrapped band of tipping paper that circumscribes the entire length
of the filter and an adjacent portion of the wrapped tobacco rod. A conventional cigarette
of this type is used by lighting the end opposite to the filter, and burning the tobacco
rod. The smoker receives mainstream smoke into their mouth by drawing on the mouth
end or filter end of the cigarette.
[0004] Combustion of organic material such as tobacco is known to produce tar and other
potentially harmful by-products. There have been proposed various smoking substitute
systems (or "substitute smoking systems") in order to avoid the smoking of tobacco.
[0005] Such smoking substitute systems can form part of nicotine replacement therapies aimed
at people who wish to stop smoking and overcome a dependence on nicotine.
[0006] Smoking substitute systems include electronic systems that permit a user to simulate
the act of smoking by producing an aerosol (also referred to as a "vapour") that is
drawn into the lungs through the mouth (inhaled) and then exhaled. The inhaled aerosol
typically bears nicotine and/or flavourings without, or with fewer of, the odour and
health risks associated with traditional smoking.
[0007] In general, smoking substitute systems are intended to provide a substitute for the
rituals of smoking, whilst providing the user with a similar experience and satisfaction
to those experienced with traditional smoking and with combustible tobacco products.
Some smoking substitute systems use smoking substitute articles (also referred to
as "consumables") that are designed to resemble a traditional cigarette and are cylindrical
in form with a mouthpiece at one end.
[0008] The popularity and use of smoking substitute systems has grown rapidly in the past
few years. Although originally marketed as an aid to assist habitual smokers wishing
to quit tobacco smoking, consumers are increasingly viewing smoking substitute systems
as desirable lifestyle accessories.
[0009] There are a number of different categories of smoking substitute systems, each utilising
a different smoking substitute approach.
[0010] One approach for a smoking substitute system is the so-called Heated Tobacco ("HT")
approach in which tobacco (rather than an "e-liquid") is heated or warmed to release
vapour. HT is also known as "heat not burn" ("HNB"). The tobacco may be leaf tobacco
or reconstituted tobacco. The vapour may contain nicotine and/or flavourings. In the
HT approach the intention is that the tobacco is heated but not burned, i.e. the tobacco
does not undergo combustion.
[0011] A typical HT smoking substitute system may include a device and a consumable. The
consumable may include the tobacco material. The device and consumable may be configured
to be physically coupled together. In use, heat may be imparted to the tobacco material
by a heating element of the device, wherein airflow through the tobacco material causes
components in the tobacco material to be released as vapour. A vapour may also be
formed from a carrier in the tobacco material (this carrier may for example include
propylene glycol and/or vegetable glycerine) and additionally volatile compounds released
from the tobacco. The released vapour may be entrained in the airflow drawn through
the tobacco.
[0012] As the vapour passes through the consumable (entrained in the airflow) from the location
of vaporisation to an outlet of the consumable (e.g. a mouthpiece), the vapour cools
and condenses to form an aerosol for inhalation by the user. The aerosol will normally
contain the volatile compounds.
[0013] In HT smoking substitute systems, heating as opposed to burning the tobacco material
is believed to cause fewer, or smaller quantities, of the more harmful compounds ordinarily
produced during smoking. Consequently, the HT approach may reduce the odour and/or
health risks that can arise through the burning, combustion and pyrolytic degradation
of tobacco.
[0014] Such HT smoking substitute systems generate aerosols which can condense or "stick"
onto parts of the device during use, which can cause the gradual blockage of parts
of the device, having a detrimental effect on the user experience. There may be a
need for improved design of smoking substitute systems, in particular HT smoking substitute
systems, to enhance the user experience and improve the function of the HT smoking
substitute system
[0015] The present disclosure has been devised in the light of the above considerations.
SUMMARY OF THE INVENTION
[0016] At its most general, the present invention relates to a smoking substitute device
having a cleaning tool secured in the device.
[0017] According to a first aspect of the present invention, there is provided a smoking
substitute device, the device comprising: a body comprising a cavity that is accessible
through an opening in an outer wall of the body; and a cleaning tool comprising: a
base and an elongate pick extending from the base, the elongate pick receivable in
the cavity by insertion through the opening.
[0018] By providing a device comprising an elongate pick which may be received through an
opening in wall of the body, the invention provides a convenient means to quickly
clean the device. As needed, the user can withdraw the cleaning tool from the cavity
of the device and use the tool to remove any residue buildup from the device to ensure
continued functioning of the device and an improved user experience. Since the tool
resides within a cavity of the device when not being used, the tool is always at hand
and the risk of losing the tool is reduced, which provides an advantage over the use
of separate cleaning tools which do not engage with the device and which may need
to be carried around separately from the device.
[0019] Optional features will now be set out. These are applicable singly or in any combination
with any aspect.
[0020] Optionally, the cavity in the body comprises a tube adapted to receive the pick.
Such a tube provides a barrier between the cavity and parts of the device, to ensure
that the end of the pick cannot come into contact with internal parts of the device
which could cause damage e.g. to delicate electronic components. In some embodiments
the inner wall of the tube comprises metal, to provide a barrier of increased resilience
to protect the internal components of the device.
[0021] In some embodiments, the cavity in the body may be formed parallel to the longitudinal
axis of the device. This allows for accommodation of a longer cleaning tool which
is then more useful for cleaning deeper internal components of the device.
[0022] In some embodiments the base may be exposed outside of the body when the cleaning
tool is fully engaged in the cavity. In this way, easy access to the tool is provided
for the user, to facilitate withdrawal of the cleaning tool from the device.
[0023] Optionally, a groove may be defined between the base of the cleaning tool and the
body when the pick is received in cavity. Such a groove provides easier access to
the base of the tool for the user, so that the user can more easily extract the cleaning
tool from the device. For example, the groove may permit the user access behind the
base and apply force to the base to extract the tool.
[0024] In some embodiments the groove may allow the user to grasp the pick from the cavity
with a fingernail or thumbnail.
[0025] In some embodiments, the groove has a width of from 0.2 to 0.8 mm, for example 0.2
to 0.7 mm, 0.3 to 0.7 mm, 0.4 to 0.7 mm, 0.4 to 0.6 mm or 0.45 to 0.55 mm. In some
embodiments, the groove is a continuation of a groove in the outer surface of the
device housing, defined by a join between a base cap of the housing and a side wall.
This provides an easier way to locate the tool by running a finger along the join
until the position of the tool is found, and also provides a more discreet appearance
since the groove which is adjacent the base of the tool to provide easy extraction
blends with existing features of the device.
[0026] In some embodiments, the cleaning tool may have an enlarged base with respect to
the pick. This allows the tool to include a narrow pick portion for easier cleaning
of small parts, but a larger base which is easier to locate and grasp/hold during
extraction of the tool or cleaning of the device.
[0027] In some embodiments, the cleaning tool may be detachable from the device.
[0028] Optionally, the cleaning tool may be located in the bottom of the device adjacent
to the USB charging port.
[0029] Optionally, the pick may slide longitudinally inside the cavity and be retained in
it.
[0030] In some embodiments, the elongate pick has a substantially circular cross-section.
In some embodiments, the pick includes a portion of length which tapers towards the
end distal the base. In this way, a more useful cleaning tool is provided with a pointed-tapered
end which can more easily remove small amounts of residue from difficult-to-reach
parts of the device. The circular cross-section makes insertion and withdrawal of
the tool easier since exact orientation within the cavity is less important. In some
embodiments, the pick comprises a first portion of length, extending from the base,
of constant cross-section, followed by a terminal portion of length which tapers towards
the end distal the base. This provides a better (more snug) fit between the pick and
the cavity in the device, due to interference between the first portion of length
and the cavity wall, while still providing the benefits of a narrow tip provided by
the tapered portion.
[0031] In some embodiments, the base of the tool is adapted to conform with the local outside
surface of the device when the tool is fully engaged with the device. This provides
a discreet and aesthetically pleasing cleaning tool which does not interfere with
the day-to-day use of the device. Additionally, this provides fewer protruding surfaces
of the tool when engaged with the device, which reduces the risk that it becomes accidentally
caught on an external object and removed from the device inadvertently.
[0032] In some embodiments, the pick portion of the cleaning tool has a cross-section which
is less than 6 mm wide at its widest point, for example less than 5.5 mm, less than
5 mm, less than 4.5 mm or less than 4 mm. This makes the tool more useful for inserting
into small openings of the device during cleaning.
[0033] In some embodiments, the tool is made from plastics material. For example, the tool
may be made from PEEK. In some embodiments, the tool (pick and base) in a single integral
component made by e.g. injection moulding.
[0034] In some embodiments, an interference fit is provided between the tool and the inner
wall of the cavity when the tool is fully inserted into the cavity. The interference
fit prevents the tool from accidentally coming loose from the device and falling out.
In some embodiments, the interference fit is between the base of the tool and part
of the device. In some embodiments, the interference fit is facilitated by friction
between the outside surface of the base of the cleaning tool and the outside surface
of the device.
[0035] The device may comprise an elongate body. An end of the elongate body may be configured
for engagement with an aerosol-forming article. For example, the body may be configured
for engagement with a heated tobacco (HT) consumable (or heat-not-burn (HNB) consumable).
The terms "heated tobacco" and "heat-not-burn" are used interchangeably herein to
describe a consumable that is of the type that is heated rather than combusted (or
are used interchangeably to describe a device for use with such a consumable). The
device may comprise a cavity that is configured for receipt of at least a portion
of the consumable (i.e. for engagement with the consumable). The aerosol-forming article
may be of the type that comprises an aerosol former (e.g. carried by an aerosol-forming
substrate).
[0036] The device may comprise a heater for heating the aerosol-forming article. The heater
may comprise a heating element, which may be in the form of a rod that extends from
the body of the device. The heating element may extend from the end of the body that
is configured for engagement with the aerosol-forming article.
[0037] The heater (and thus the heating element) may be rigidly mounted to the body. The
heating element may be elongate so as to define a longitudinal axis and may, for example,
have a transverse profile (i.e. transverse to a longitudinal axis of the heating element)
that is substantially circular (i.e. the heating element may be generally cylindrical).
Alternatively, the heating element may have a transverse profile that is rectangular
(i.e. the heater may be a "blade heater"). The heating element may alternatively be
in the shape of a tube (i.e. the heater may be a "tube heater"). The heating element
may take other forms (e.g. the heating element may have an elliptical transverse profile).
The shape and/or size (e.g. diameter) of the transverse profile of the heating element
may be generally consistent for the entire length (or substantially the entire length)
of the heating element.
[0038] The heating element may be between 15 mm and 25 mm long, e.g. between 18 mm and 20
mm long, e.g. around 19 mm long. The heating element may have a diameter of between
1.5 mm and 2.5 mm, e.g. a diameter between 2 mm and 2.3 mm, e.g. a diameter of around
2.15 mm.
[0039] The heating element may be formed of ceramic. The heating element may comprise a
core (e.g. a ceramic core) comprising Al2O3. The core of the heating element may have
a diameter of 1.8 mm to 2.1 mm, e.g. between 1.9 mm and 2 mm. The heating element
may comprise an outer layer (e.g. an outer ceramic layer) comprising Al2O3. The thickness
of the outer layer may be between 160 µm and 220 µm, e.g. between 170 µm and 190 µm,
e.g. around 180 µm. The heating element may comprise a heating track, which may extend
longitudinally along the heating element. The heating track may be sandwiched between
the outer layer and the core of the heating element. The heating track may comprise
tungsten and/or rhenium. The heating track may have a thickness of around 20 µm.
[0040] The heating element may be located in the cavity (of the device), and may extend
(e.g. along a longitudinal axis) from an internal base of the cavity towards an opening
of the cavity. The length of the heating element (i.e. along the longitudinal axis
of the heater) may be less than the depth of the cavity. Hence, the heating element
may extend for only a portion of the length of the cavity. That is, the heating element
may not extend through (or beyond) the opening of the cavity.
[0041] The heating element may be configured for insertion into an aerosol-forming article
(e.g. a HT consumable) when an aerosol-forming article is received in the cavity.
In that respect, a distal end (i.e. distal from a base of the heating element where
it is mounted to the device) of the heating element may comprise a tapered portion,
which may facilitate insertion of the heating element into the aerosol-forming article.
The heating element may fully penetrate an aerosol-forming article when the aerosol-forming
article is received in the cavity. That is, the entire length, or substantially the
entire length, of the heating element may be received in the aerosol-forming article.
[0042] The heating element may have a length that is less than, or substantially the same
as, an axial length of an aerosol-forming substrate forming part of an aerosol-forming
article (e.g. a HT consumable). Thus, when such an aerosol-forming article is engaged
with the device, the heating element may only penetrate the aerosol-forming substrate,
rather than other components of the aerosol-forming article. The heating element may
penetrate the aerosol-forming substrate for substantially the entire axial length
of the aerosol forming-substrate of the aerosol-forming article. Thus, heat may be
transferred from (e.g. an outer circumferential surface of) the heating element to
the surrounding aerosol-forming substrate, when penetrated by the heating element.
That is, heat may be transferred radially outwardly (in the case of a cylindrical
heating element) or e.g. radially inwardly (in the case of a tube heater).
[0043] Where the heater is a tube heater, the heating element of the tube heater may surround
at least a portion of the cavity. When the portion of the aerosol-forming article
is received in the cavity, the heating element may surround a portion of the aerosol-forming
article (i.e. so as to heat that portion of the aerosol-forming article). In particular,
the heating element may surround an aerosol forming substrate of the aerosol-forming
article. That is, when an aerosol-forming article is engaged with the device, the
aerosol forming substrate of the aerosol-forming article may be located adjacent an
inner surface of the (tubular) heating element. When the heating element is activated,
heat may be transferred radially inwardly from the inner surface of the heating element
to heat the aerosol forming substrate.
[0044] The cavity may comprise a (e.g. circumferential) wall (or walls) and the (tubular)
heating element may extend around at least a portion of the wall(s). In this way,
the wall may be located between the inner surface of the heating element and an outer
surface of the aerosol-forming article. The wall (or walls) of the cavity may be formed
from a thermally conductive material (e.g. a metal) to allow heat conduction from
the heating element to the aerosol-forming article. Thus, heat may be conducted from
the heating element, through the cavity wall (or walls), to the aerosol-forming substrate
of an aerosol-forming article received in the cavity.
[0045] In some embodiments the device may comprise a cap disposed at the end of the body
that is configured for engagement with an aerosol-forming article. Where the device
comprises a heater having a heating element, the cap may at least partially enclose
the heating element. The cap may be moveable between an open position in which access
is provided to the heating element, and a closed position in which the cap at least
partially encloses the heating element. The cap may be slideably engaged with the
body of the device, and may be slideable between the open and closed positions.
[0046] The cap may define at least a portion of the cavity of the device. That is, the cavity
may be fully defined by the cap, or each of the cap and body may define a portion
of the cavity. Where the cap fully defines the cavity, the cap may comprise an aperture
for receipt of the heating element into the cavity (when the cap is in the closed
position). The cap may comprise an opening to the cavity. The opening may be configured
for receipt of at least a portion of an aerosol-forming article. That is, an aerosol-forming
article may be inserted through the opening and into the cavity (so as to be engaged
with the device).
[0047] The cap may be configured such that when an aerosol-forming article is engaged with
the device (e.g. received in the cavity), only a portion of the aerosol-forming article
is received in the cavity. That is, a portion of the aerosol-forming article (not
received in the cavity) may protrude from (i.e. extend beyond) the opening. This (protruding)
portion of the aerosol-forming article may be a terminal (e.g. mouth) end of the aerosol-forming
article, which may be received in a user's mouth for the purpose of inhaling aerosol
formed by the device.
[0048] The device may comprise a power source or may be connectable to a power source (e.g.
a power source separate to the device). The power source may be electrically connectable
to the heater. In that respect, altering (e.g. toggling) the electrical connection
of the power source to the heater may affect a state of the heater. For example, toggling
the electrical connection of the power source to the heater may toggle the heater
between an on state and an off state. The power source may be a power store. For example,
the power source may be a battery or rechargeable battery (e.g. a lithium ion battery).
[0049] The device may comprise an input connection (e.g. a USB port, Micro USB port, USB-C
port, etc.). The input connection may be configured for connection to an external
source of electrical power, such as a mains electrical supply outlet. The input connection
may, in some cases, be used as a substitute for an internal power source (e.g. battery
or rechargeable battery). That is, the input connection may be electrically connectable
to the heater (for providing power to the heater). Hence, in some forms, the input
connection may form at least part of the power source of the device.
[0050] Where the power source comprises a rechargeable power source (such as a rechargeable
battery), the input connection may be used to charge and recharge the power source.
[0051] The device may comprise a user interface (UI). In some embodiments the UI may include
input means to receive operative commands from the user. The input means of the UI
may allow the user to control at least one aspect of the operation of the device.
In some embodiments the input means may comprise a power button to switch the device
between an on state and an off state.
[0052] In some embodiments the UI may additionally or alternatively comprise output means
to convey information to the user. In some embodiments the output means may comprise
a light to indicate a condition of the device (and/or the aerosol-forming article)
to the user. The condition of the device (and/or aerosol-forming article) indicated
to the user may comprise a condition indicative of the operation of the heater. For
example, the condition may comprise whether the heater is in an off state or an on
state. In some embodiments, the UI unit may comprise at least one of a button, a display,
a touchscreen, a switch, a light, and the like. For example, the output means may
comprise one or more (e.g. two, three, four, etc.) light-emitting diodes ("LEDs")
that may be located on the body of the device.
[0053] The device may further comprise a puff sensor (e.g. airflow sensor), which form part
of the input means of the UI. The puff sensor may be configured to detect a user drawing
on an end (i.e. a terminal (mouth) end) of the aerosol-forming article. The puff sensor
may, for example, be a pressure sensor or a microphone. The puff sensor may be configured
to produce a signal indicative of a puff state. The signal may be indicative of the
user drawing (an aerosol from the aerosol-forming article) such that it is e.g. in
the form of a binary signal. Alternatively or additionally, the signal may be indicative
of a characteristic of the draw (e.g. a flow rate of the draw, length of time of the
draw, etc).
[0054] The device may comprise a controller, or may be connectable to a controller that
may be configured to control at least one function of the device. The controller may
comprise a microcontroller that may e.g. be mounted on a printed circuit board (PCB).
The controller may also comprise a memory, e.g. non-volatile memory. The memory may
include instructions, which, when implemented, may cause the controller to perform
certain tasks or steps of a method. Where the device comprises an input connection,
the controller may be connected to the input connection.
[0055] The controller may be configured to control the operation of the heater (and e.g.
the heating element). Thus, the controller may be configured to control vaporisation
of an aerosol forming part of an aerosol-forming article engaged with the device.
The controller may be configured to control the voltage applied by power source to
the heater. For example, the controller may be configured to toggle between applying
a full output voltage (of the power source) to the heater and applying no voltage
to the heater. Alternatively or additionally, the control unit may implement a more
complex heater control protocol.
[0056] The device may further comprise a voltage regulator to regulate the output voltage
supplied by the power source to form a regulated voltage. The regulated voltage may
subsequently be applied to the heater.
[0057] In some embodiments, where the device comprises a UI, the controller may be operatively
connected to one or more components of the UI. The controller may be configured to
receive command signals from an input means of the UI. The controller may be configured
to control the heater in response to the command signals. For example, the controller
may be configured to receive "on" and "off command signals from the UI and, in response,
may control the heater so as to be in a corresponding on or off state.
[0058] The controller may be configured to send output signals to a component of the UI.
The UI may be configured to convey information to a user, via an output means, in
response to such output signals (received from the controller). For example, where
the device comprises one or more LEDs, the LEDs may be operatively connected to the
controller. Hence, the controller may configured to control the illumination of the
LEDs (e.g. in response to an output signal). For example, the controller may be configured
to control the illumination of the LEDs according to (e.g. an on or off) state of
the heater.
[0059] Where the device comprises a sensor (e.g. a puff/airflow sensor), the controller
may be operatively connected to the sensor. The controller may be configured to receive
a signal from the sensor (e.g. indicative of a condition of the device and/or engaged
aerosol-forming article). The controller may be configured to control the heater,
or an aspect of the output means, based on the signal from the sensor.
[0060] The device may comprise a wireless interface configured to communicate wirelessly
(e.g. via Bluetooth (e.g. a Bluetooth low-energy connection) or Wi-Fi) with an external
device. Similarly, the input connection may be configured for wired connection to
an external device so as to provide communication between the device and the external
device.
[0061] The external device may be a mobile device. For example, the external device may
be a smart phone, tablet, smart watch, or smart car. An application (e.g. app) may
be installed on the external device (e.g. mobile device). The application may facilitate
communication between the device and the external device via the wired or wireless
connection.
[0062] The wireless or wired interface may be configured to transfer signals between the
external device and the controller of the device. In this respect, the controller
may control an aspect of the device in response to a signal received from an external
device. Alternatively or additionally, an external device may respond to a signal
received from the device (e.g. from the controller of the device).
[0063] According to a second aspect of the present invention, there is provided a smoking
substitute device, the device comprising a cleaning tool having a base and an elongate
pick extending from the base, the pick comprising at least a portion of length of
cylindrical cross-section.
[0064] Optionally the pick of the cleaning tool may have a tapered tip.
[0065] According to a third aspect of the present invention, there is provided a smoking
substitute device, the device comprising: a body comprising a cavity, and a cleaning
tool comprising an elongate cleaning portion extending from an enlarged base, the
elongate cleaning portion receivable in the cavity and wherein, when the cleaning
portion is received therein, the base remains outside of the cavity to allow removal
of the cleaning portion from the cavity by grasping the base.
[0066] According to a fourth aspect of the invention there is provided a smoking substitute
device, the device comprising: a body comprising a cavity that is accessible through
an opening in an outer wall of the body; wherein the cavity is adapted to receive
a cleaning tool comprising a base and an elongate pick extending from the base. The
invention includes the combination of the aspects and preferred features described
except where such a combination is clearly impermissible or expressly avoided.
[0067] The skilled person will appreciate that except where mutually exclusive, a feature
or parameter described in relation to any one of the above aspects may be applied
to any other aspect. Furthermore, except where mutually exclusive, any feature or
parameter described herein may be applied to any aspect and/or combined with any other
feature or parameter described herein.
SUMMARY OF THE FIGURES
[0068] So that the invention may be understood, and so that further aspects and features
thereof may be appreciated, embodiments illustrating the principles of the invention
will now be discussed in further detail with reference to the accompanying figures,
in which:
Figure 1A is a schematic of a smoking substitute system;
Figure 1B is a schematic of a variation of the smoking substitute system of Figure
1A;
Figure 2A is a front view of a first embodiment of a smoking substitute system with
the consumable engaged with the device;
Figure 2B is a front view of the first embodiment of the smoking substitute system
with the consumable disengaged from the device;
Figure 2C is a section view of the consumable of the first embodiment of the smoking
substitute system;
Figure 2D is a detailed view of an end of the device of the first embodiment of the
smoking substitute system;
Figure 2E is a section view of the first embodiment of the substitute smoking system;
Figure 3A is a perspective view of the smoking substitute device with cleaning tool
secured in the device.
Figure 3B is a perspective view of the smoking substitute device with cleaning tool
detached from the device.
Figure 3C is a perspective view of the cleaning tool.
Figure 3D is a front view of the cleaning tool.
DETAILED DESCRIPTION OF THE INVENTION
[0069] Aspects and embodiments of the present invention will now be discussed with reference
to the accompanying figures. Further aspects and embodiments will be apparent to those
skilled in the art. All documents mentioned in this text are incorporated herein by
reference.
[0070] Figure 1A is a schematic providing a general overview of a smoking substitute system
100. The system 100 includes a substitute smoking device 101 and an aerosol-forming
article in the form of a consumable 102, which comprises an aerosol former 103. The
system is configured to vaporise the aerosol former by heating the aerosol former
103 (so as to form a vapour/aerosol for inhalation by a user).
[0071] In the illustrated system, the heater 104 forms part of the consumable 102 and is
configured to heat the aerosol former 103. In this variation, the heater 104 is electrically
connectable to the power source 105, for example, when the consumable 102 is engaged
with the device 101. Heat from the heater 104 vaporises the aerosol former 103 to
produce a vapour. The vapour subsequently condenses to form an aerosol, which is ultimately
inhaled by the user.
[0072] The system 100 further comprises a power source 105 that forms part of the device
101. In other embodiments the power source 105 may be external to (but connectable
to) the device 101. The power source 105 is electrically connectable to the heater
104 such that it is able to supply power to the heater 104 (i.e. for the purpose of
heating the aerosol former 103). Thus, control of the electrical connection of the
power source 105 to the heater 104 provides control of the state of the heater 104.
The power source 105 may be a power store, for example a battery or rechargeable battery
(e.g. a lithium ion battery).
[0073] The system 100 further comprises an I/O module comprising a connector 106 (e.g. in
the form of a USB port, Micro USB port, USB-C port, etc.). The connector 106 is configured
for connection to an external source of electrical power, e.g. a mains electrical
supply outlet. The connector 106 may be used in substitution for the power source
105. That is the connector 106 may be electrically connectable to the heater 104 so
as to supply electricity to the heater 104. In such embodiments, the device may not
include a power source, and the power source of the system may instead comprise the
connector 106 and an external source of electrical power (to which the connector 106
provides electrical connection).
[0074] In some embodiments, the connector 106 may be used to charge and recharge the power
source 105 where the power source 105 includes a rechargeable battery.
[0075] The system 100 also comprises a user interface (Ul) 107. Although not shown, the
UI 107 may include input means to receive commands from a user. The input means of
the UI 107 allows the user to control at least one aspect of the operation of the
system 100. The input means may, for example, be in the form of a button, touchscreen,
switch, microphone, etc.
[0076] The UI 107 also comprises output means to convey information to the user. The output
means may, for example, comprise lights (e.g. LEDs), a display screen, speaker, vibration
generator, etc.
[0077] The system 100 further comprises a controller 108 that is configured to control at
least one function of the device 101, and a memory 109 coupled to the controller 108.
In the illustrated embodiment, the controller 108 is a component of the device 101,
but in other embodiments may be separate from (but connectable to) the device 101.
The controller 108 is configured to control at least one function of the device 101.
The memory 109 stores controller-executable instructions that causes the controller
109 to perform one or more functions. The controller 108 is configured to control
the operation of the heater 104 and, for example, may be configured to control the
voltage applied from the power source 105 to the heater 104. The controller 108 may
be configured to toggle the supply of power to the heater 104 between an on state,
in which the full output voltage of the power source 105 is applied to the heater
104, and an off state, in which the no voltage is applied to the heater 104.
[0078] Although not shown, the system 100 may also comprise a voltage regulator to regulate
the output voltage from the power source 105 to form a regulated voltage. The regulated
voltage may then be applied to the heater 104.
[0079] In addition to being connected to the heater 104, the controller 108 is operatively
connected to the UI 107. Thus, the controller 108 may receive an input signal from
the input means of the UI 107. Similarly, the controller 108 may transmit output signals
to the UI 107. In response, the output means of the UI 107 may convey information,
based on the output signals, to a user. The controller also comprises a memory 109,
which is a non-volatile memory. The memory 109 includes instructions, which, when
implemented, cause the controller to perform certain tasks or steps of a method.
[0080] Figure 1B is a schematic showing a variation of the system 100 of Figure 1A. In the
system 100' of Figure 1B, the heater 104 forms part of the device 101, rather than
the consumable 102. In this variation, the heater 104 is electrically connected to
the power source 105.
[0081] Figures 2A and 2B illustrate a heated-tobacco (HT) smoking substitute system 200.
The system 200 is an example of the systems 100, 100' described in relation to Figures
1A or 1B. System 200 includes an HT device 201 and an HT consumable 202. The description
of Figures 1A and 1B above is applicable to the system 200 of Figures 2A and 2B, and
will thus not be repeated.
[0082] The device 201 and the consumable 202 are configured such that the consumable 202
can be engaged with the device 201. Figure 2A shows the device 201 and the consumable
202 in an engaged state, whilst Figure 2B shows the device 201 and the consumable
202 in a disengaged state.
[0083] The device 201 comprises a body 209 and cap 210. In use the cap 210 is engaged at
an end of the body 209. Although not apparent from the figures, the cap 210 is moveable
relative to the body 209. In particular, the cap 210 is slideable and can slide along
a longitudinal axis of the body 209.
[0084] The device 201 comprises an output means (forming part of the UI of the device 201)
in the form of a plurality of light-emitting diodes (LEDs) 211 arranged linearly along
the longitudinal axis of the device 201 and on an outer surface of the body 209 of
the device 201. A button 212 is also arranged on an outer surface of the body 209
of the device 201 and is axially spaced (i.e. along the longitudinal axis) from the
plurality of LEDs 211.
[0085] Figure 2C show a detailed section view of the consumable of 202 of the system 200.
The consumable 202 generally resembles a cigarette. In that respect, the consumable
202 has a generally cylindrical form with a diameter of 7 mm and an axial length of
70 mm. The consumable 202 comprises an aerosol forming substrate 213, a terminal filter
element 214, an upstream filter element 215 and a spacer element 216. In other embodiments,
the consumable may further comprise a cooling element. A cooling element may exchange
heat with vapour that is formed by the aerosol-forming substrate 213 in order to cool
the vapour so as to facilitate condensation of the vapour.
[0086] The aerosol-forming substrate 213 is substantially cylindrical and is located at
an upstream end 217 of the consumable 202, and comprises the aerosol former of the
system 200. In that respect, the aerosol forming substrate 213 is configured to be
heated by the device 201 to release a vapour. The released vapour is subsequently
entrained in an airflow flowing through the aerosol-forming substrate 213. The airflow
is produced by the action of the user drawing on a downstream 218 (i.e. terminal or
mouth) end of the consumable 202.
[0087] In the present embodiment, the aerosol forming substrate 213 comprises tobacco material
that may, for example, include any suitable parts of the tobacco plant (e.g. leaves,
stems, roots, bark, seeds and flowers). The tobacco may comprise one or more of leaf
tobacco, stem tobacco, tobacco powder, tobacco dust, tobacco derivatives, expanded
tobacco, homogenised tobacco, shredded tobacco, extruded tobacco, cut rag tobacco
and/or reconstituted tobacco (e.g. slurry recon or paper recon). For example, the
aerosol-forming substrate 213 may comprise a gathered sheet of homogenised (e.g. paper/slurry
recon) tobacco or gathered shreds/strips formed from such a sheet.
[0088] In order to generate an aerosol, the aerosol forming substrate 213 comprises at least
one volatile compound that is intended to be vaporised/aerosolised and that may provide
the user with a recreational and/or medicinal effect when inhaled. The aerosol-forming
substrate 213 may further comprise one or more additives. For example, such additives
may be in the form of humectants (e.g. propylene glycol and/or vegetable glycerine),
flavourants, fillers, aqueous/non-aqueous solvents and/or binders.
[0089] The terminal filter element 214 is also substantially cylindrical, and is located
downstream of the aerosol forming substrate 213 at the downstream end 218 of the consumable
202. The terminal filter element 214 is in the form of a hollow bore filter element
having a bore 219 (e.g. for airflow) formed therethrough. The diameter of the bore
219 is 2 mm. The terminal filter element 214 is formed of a porous (e.g. monoacetate)
filter material. As set forth above, the downstream end 218 of the consumable 202
(i.e. where the terminal filter 214 is located) forms a mouthpiece portion of the
consumable 202 upon which the user draws. Airflow is drawn from the upstream end 217,
thorough the components of the consumable 202, and out of the downstream end 218.
The airflow is driven by the user drawing on the downstream end 218 (i.e. the mouthpiece
portion) of the consumable 202.
[0090] The upstream filter element 215 is located axially adjacent to the aerosol-forming
substrate 213, between the aerosol-forming substrate 213 and the terminal filter element
214. Like the terminal filter 214, the upstream filter element 215 is in the form
of a hollow bore filter element, such that it has a bore 220 extending axially therethrough.
In this way, the upstream filter 215 may act as an airflow restrictor. The upstream
filter element 215 is formed of a porous (e.g. monoacetate) filter material. The bore
220 of the upstream filter element 215 has a larger diameter (3 mm) than the terminal
filter element 214.
[0091] The spacer 216 is in the form of a cardboard tube, which defines a cavity or chamber
between the upstream filter element 215 and the terminal filter element 214. The spacer
216 acts to allow both cooling and mixing of the vapour/aerosol from the aerosol-forming
substrate 213. The spacer has an external diameter of 7 mm and an axial length of
14 mm.
[0092] Although not apparent from the figure, the aerosol-forming substrate 213, upstream
filter 215 and spacer 216 are circumscribed by a paper wrapping layer. The terminal
filter 214 is circumscribed by a tipping layer that also circumscribes a portion of
the paper wrapping layer (so as to connect the terminal filter 214 to the remaining
components of the consumable 202). The upstream filter 215 and terminal filter 214
are circumscribed by further wrapping layers in the form of plug wraps.
[0093] Returning now to the device 201, Figure 2D illustrates a detailed view of the end
of the device 201 that is configured to engage with the consumable 202. The cap 210
of the device 201 includes an opening 221 to an internal cavity 222 (more apparent
from Figure 2D) defined by the cap 210. The opening 221 and the cavity 222 are formed
so as to receive at least a portion of the consumable 202. During engagement of the
consumable 202 with the device 201, a portion of the consumable 202 is received through
the opening 221 and into the cavity 222. After engagement (see Figure 2B), the downstream
end 218 of the consumable 202 protrudes from the opening 221 and thus also protrudes
from the device 201. The opening 221 includes laterally disposed notches 226. When
a consumable 202 is received in the opening 221, these notches 226 remain open and
could, for example, be used for retaining a cover in order to cover the end of the
device 201.
[0094] Figure 2E shows a cross section through a central longitudinal plane through the
device 201. The device 201 is shown with the consumable 202 engaged therewith.
[0095] The device 201 comprises a heater 204 comprising heating element 223. The heater
204 forms part of the body 209 of the device 201 and is rigidly mounted to the body
209. In the illustrated embodiment, the heater 204 is a rod heater with a heating
element 223 having a circular transverse profile. In other embodiments the heater
may be in the form of a blade heater (e.g. heating element with a rectangular transverse
profile) or a tube heater (e.g. heating element with a tubular form).
[0096] The heating element 223 of the heater 204 projects from an internal base of the cavity
222 along a longitudinal axis towards the opening 221. As is apparent from the figure,
the length (i.e. along the longitudinal axis) of the heating element is less than
a depth of the cavity 222. In this way, the heating element 223 does not protrude
from or extend beyond the opening 221.
[0097] When the consumable 202 is received in the cavity 222 (as is shown in Figure 2E),
the heating element 223 penetrates the aerosol-forming substrate 213 of the consumable
202. In particular, the heating element 223 extends for nearly the entire axial length
of the aerosol-forming substrate 213 when inserted therein. Thus, when the heater
204 is activated, heat is transferred radially from an outer circumferential surface
the heating element 223 to the aerosol-forming substrate 213.
[0098] The device 201 further comprises an electronics cavity 224. A power source, in the
form of a rechargeable battery 205 (a lithium ion battery), is located in electronics
cavity 224.
[0099] The device 201 includes a connector (i.e. forming part of an IO module of the device
201) in the form of a USB port 206. The connector may alternatively be, for example,
a micro-USB port or a USB-C port for examples. The USB port 206 may be used to recharge
the rechargeable battery 205.
[0100] The device 201 includes a controller (not shown) located in the electronics cavity
224. The controller comprises a microcontroller mounted on a printed circuit board
(PCB). The USB port 206 is also connected to the controller 208 (i.e. connected to
the PCB and microcontroller).
[0101] The controller 208 is configured to control at least one function of the device 202.
For example, the controller 208 is configured to control the operation of the heater
204. Such control of the operation of the heater 204 may be accomplished by the controller
toggling the electrical connection of the rechargeable battery 205 to the heater 204.
For example, the controller 208 is configured to control the heater 204 in response
to a user depressing the button 212. Depressing the button 212 may cause the controller
to allow a voltage (from the rechargeable battery 205) to be applied to the heater
204 (so as to cause the heating element 223 to be heated).
[0102] The controller is also configured to control the LEDs 211 in response to (e.g. a
detected) a condition of the device 201 or the consumable 202. For example, the controller
may control the LEDs to indicate whether the device 201 is in an on state or an off
state (e.g. one or more of the LEDs may be illuminated by the controller when the
device is in an on state).
[0103] The device 201 comprises a further input means (i.e. in addition to the button 212)
in the form of a puff sensor 225. The puff sensor 225 is configured to detect a user
drawing (i.e. inhaling) at the downstream end 218 of the consumable 202. The puff
sensor 225 may, for example, be in the form of a pressure sensor, flowmeter or a microphone.
The puff sensor 225 is operatively connected to the controller 208 in the electronics
cavity 224, such that a signal from the puff sensor 225, indicative of a puff state
(i.e. drawing or not drawing), forms an input to the controller 208 (and can thus
be responded to by the controller 208).
[0104] Figures 3A and 3B are a perspective views of the smoking substitute device 201 specifically
showing the bottom view of the device 201. Referring to Figure 3B, the body 209 of
the device 201 comprises a cavity 225 which is formed parallel to longitudinal axis
of the device 201 and is configured to receive a cleaning tool 300 inside the cavity
225. The cavity 225 in the device 201 includes a tube (not shown in figure) to receive
the cleaning tool 300. The tube is made of metal; however, the tube may be formed
of any material. The cleaning tool 300 sits inside tube to prevent damage to internal
components of the device 201 such as internal electronics. The cavity 225 in the body
209 is accessible through an opening 226 formed in the end cap 227 of the device 201.
[0105] Figure 3C is a perspective view of the cleaning tool 300 and Figure 3D is a front
view of the cleaning tool 300. The cleaning tool 300 allows users to quickly clean
the base of the heating element conveniently. The cleaning tool 300 would be located
in the bottom of the device 201 adjacent to a USB charger 229 The cleaning tool 300
is detachable from the device 201 and allows user to remove the cleaning tool 300
when required. The cleaning tool 300 gives the user an opportunity to quick clean
the device 201. For example, the user may use the cleaning tool 300 to access the
consumable cavity through opening in the cap, or the base of the rod heater through
window exposed by lifting the cap. The cleaning tool may also be easily replaced easily
if lost as it is made of simple plastic components such as PEEK.
[0106] The cleaning tool 300 comprises a base 301 and an elongate pick 302 extending from
the base 301. The cleaning tool 300 has an enlarged base 301 with respect to the pick
302. The pick 302 of the cleaning tool 300 is of cylindrical shape having constant
cross section for the portion of length which extends from the base to a location
close to the end distal the base. The cleaning tool 300 also comprises a tapered tip
303 which is not sharp enough to damage the rod heater but provides an effective means
to target the areas which requires cleaning. The base also includes a shoulder section
304 of a cross-sectional size slightly larger than the pick, which sits within an
outer portion of the cavity 225 when the cleaning tool is fully engaged with the device.
Due to the corresponding shapes and sizes of the shoulder section 304 and the outermost
section of the cavity 225, an interference fit between the cleaning tool 300 and the
device 201 is provided to hold the cleaning tool in place and prevent inadvertent
removal or loss.
[0107] Referring to Figure 3A which illustrates the perspective view of the device when
the cleaning tool is secured in the cavity the base 301 of the cleaning tool is exposed
outside of the body 209 and the pick 302 along with the tapered tip 303 is secured
inside the cavity when the pick is received in cavity. As is evident from the Figure,
the surface of the base 301 is adapted in shape and size to conform with the surrounding
portion of the surface of the base cap 227 of the device 201. This creates a smooth
transition from the surface of the device to the surface of the base of the cleaning
tool when the tool is engaged. This is not only aesthetically pleasing but reduces
the risk that the base 301 of the tool 300 becomes accidentally caught on an external
object and removed from the device. A groove 228 is defined between the base 301 of
the cleaning tool 300 and the body 209 when the cleaning tool is received in cavity
225. The groove 228 has a width of around 0.5 mm and a portion 228A of the groove
228 is aligned with the join 230 between the base cap 227 of the device 201 and the
body 209 of the body of the device 201. Together, the groove at the join 230 and the
groove 228A circumscribe the device 201 between the base cap 227 and the body 209.
The groove 228 allows user to grasp the cleaning tool 300 from the cavity with a fingernail
and detach the cleaning tool from the device so to clean the device. The base 301
of the cleaning tool 300 may be gripped by the user at the time of removing the cleaning
tool 300 from the device.
[0108] When the user wishes to extract the cleaning tool 300 from the device 201 in order
to clean the device, the user can use a thumbnail, fingernail or small object such
as a coin which they can insert into the portion 228A of the groove 228 around the
base 301 of the tool 300. Pushing the base 301 away from the device 201 will then
overcome the friction in the interference fit between the shoulder 304 and the cavity
225 and extract the cleaning tool slightly from the device. The tool will then be
"loose" within the cavity 225 and can be easily withdrawn from the device by hand.
After use, the user inserts the tip 303 of the pick 302 into the cavity 225 and pushes
the tool 300 into the cavity. A firm push to fully engage the tool will create the
interference fit between the shoulder 304 of the tool 300 and the inner wall of the
cavity 225, to prevent inadvertent removal of the tool 300.
[0109] The features disclosed in the foregoing description, or in the following claims,
or in the accompanying drawings, expressed in their specific forms or in terms of
a means for performing the disclosed function, or a method or process for obtaining
the disclosed results, as appropriate, may, separately, or in any combination of such
features, be utilised for realising the invention in diverse forms thereof.
[0110] While the invention has been described in conjunction with the exemplary embodiments
described above, many equivalent modifications and variations will be apparent to
those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments
of the invention set forth above are considered to be illustrative and not limiting.
Various changes to the described embodiments may be made without departing from the
spirit and scope of the invention.
[0111] For the avoidance of any doubt, any theoretical explanations provided herein are
provided for the purposes of improving the understanding of a reader. The inventors
do not wish to be bound by any of these theoretical explanations.
[0112] Any section headings used herein are for organizational purposes only and are not
to be construed as limiting the subject matter described.
[0113] Throughout this specification, including the claims which follow, unless the context
requires otherwise, the words "have", "comprise", and "include", and variations such
as "having", "comprises", "comprising", and "including" will be understood to imply
the inclusion of a stated integer or step or group of integers or steps but not the
exclusion of any other integer or step or group of integers or steps.
[0114] It must be noted that, as used in the specification and the appended claims, the
singular forms "a," "an," and "the" include plural referents unless the context clearly
dictates otherwise. Ranges may be expressed herein as from "about" one particular
value, and/or to "about" another particular value. When such a range is expressed,
another embodiment includes from the one particular value and/or to the other particular
value. Similarly, when values are expressed as approximations, by the use of the antecedent
"about," it will be understood that the particular value forms another embodiment.
The term "about" in relation to a numerical value is optional and means, for example,
+/- 10%.
[0115] The words "preferred" and "preferably" are used herein refer to embodiments of the
invention that may provide certain benefits under some circumstances. It is to be
appreciated, however, that other embodiments may also be preferred under the same
or different circumstances. The recitation of one or more preferred embodiments therefore
does not mean or imply that other embodiments are not useful, and is not intended
to exclude other embodiments from the scope of the disclosure, or from the scope of
the claims.