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(57) A method (100) for adapting a neural network
(1), which is pre-trained to handle input data of dimen-
sionality N, to the handling of input data (1a) of dimen-
sionality M, with M > N, the method (100) comprising: for
at least one layer (11) of the neural network (1) that ac-
ceptsinputdata (11a) of dimensionality n and maps these
input data (11a) to output data (11c) of dimensionality o
with a processing function characterized by a set (11b)
of weights, scaling and/or augmenting (110) the process-
ing function so that it accommodates input data (11a) of
a dimensionality m > n while remaining characterized by
the same set (11b) of weights.

A method (200) for processing input data (1a) of di-
mensionality M with a neural network (1) that was trained
to handle input data (1a) of dimensionality N < M.

A method (300) for further training a pre-trained neu-
ral network (1).
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Description

[0001] The present invention relates to neural net-
works, particularly neural networks for use inimage clas-
sification tasks.

Background

[0002] Deep learning of neural networks has improved
the performance of many real world image classification
applications. For example, image classification is vital in
control systems for at least partially automated vehicles
that quickly have to react to objects appearing in their
surroundings. US 2019/033 865 A1 gives one example
of a control system that employs multiple such networks.
[0003] Training of very deep models requires a large
amount of computation resources. For example, training
a model of the well-known "Resnet-101" type may take
weeks even on a powerful GPU. Once such a training
effort has been expended, it is desirable to re-use the
trained model in as many cases as possible, so as to
shorten the time and reduce the financial effort for the
concrete task at hand. To this end, popular neural net-
work software packages like MATLAB and Keras come
with pre-trained neural networks.

Disclosure of the invention

[0004] The inventors have developed a method for
adapting a neural network, which is-pre-trained to handle
input data of dimensionality N, to the handling of input
data of dimensionality M, with M > N.

[0005] The inventors have found that in order to save
computational resources, the pre-training of neural net-
works is often limited to rather low dimensionalities of the
input data compared with the dimensionalities occurring
in real-world applications. For example, when a network
is used for processing images as input data, the image
resolution is often limited to a mere 256x256 pixels that
correspond to a dimensionality of 65,536. But in real-
world applications, such as object recognition in the en-
vironment of a vehicle, images of 2048x2048 pixels that
correspond to a dimensionality of 4,194,304 are not un-
common. Of course, an input image may be scaled down
so that the input layer of the neural network may accom-
modate it, e.g., to 256x256 pixels. However, such scaling
may obliterate small but important details in the input
image.

[0006] Therefore, according to the method, for at least
one layer of the neural network that accepts input data
of dimensionality n and maps these input data to output
data of dimensionality o with a processing function char-
acterized by a set of weights, this processing function is
scaled and/or augmented so that it accommodates input
data of a dimensionality m > n while remaining charac-
terized by the same set of weights.

[0007] In this manner, the training that has already
gone into the network may be directly used on the higher-
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dimensional data, so that the previously expended effort
may be re-used. For example, this permits directly work-
ing on a high-resolution image without having to scale
this image down to an image size with which the neural
network was pre-trained, so as to immediately obtain in-
ference results.

[0008] Also, the neural network may be trained further
using the higher dimensional data. For example, a neural
network that has been pre-trained with fairly generic input
data may be trained further using input data that is more
specific to the task at hand. For example, a neural net-
work that is used for image classification may have been
pre-trained using a large but very generic set of images
thatis "labelled" with the types of objects contained there-
in. It may then be trained at the image resolution that
occurs in the specific task at hand. This alleviates several
bottlenecks in the training to this specific task.

[0009] First, when starting the training of a neural net-
work from scratch, a fairly large set of input data and
corresponding "ground truth" is required for the neural
network to become proficient at its task. For example, to
train a network for image classification, several tens of
thousands, or several hundreds of thousands, training
images may be required.

[0010] For the actual task at hand, such as locating
defects in a particular product or classifying a potential
medical condition from a medical image, such a large set
of training data may not be readily available. Obtaining
training data for defects in products may require manu-
facturing a sufficient number of units of the product first,
creating a chicken-and-egg problem. Obtaining training
data for classifying medical conditions may require the
labelling of medical images by a clinical expert.

[0011] On the other hand, generic sets of labelled im-
ages for training image classification are readily availa-
ble. However, such data sets are typically only available
at a lower resolution.

[0012] The combination of the generic pre-training and
the specific further training is somewhat akin to human
learning. When a child learns how to use roller skates
and ice skates, it learns some basics about how to keep
the balance when the feet are in some mobility aids that
swiftly move relative to the ground. When the child later
moves on to skiing, the skis fall under the same generic
class of "mobility aids that swiftly move relative to the
ground". So learning how to skiis much easier if the child
has previously learned how to use roller skates and ice
skates.

[0013] Second, the further training still works on the
same number of weights that were originally used during
the pre-training. This means that during the further train-
ing, the memory requirement for the model is much less
than if the model was trained from scratch on the higher-
dimensional data. When training on a GPU, the model
as a whole, including all weights in all layers, must fit into
the video RAM of this GPU. Either it fits in there, or the
training is limited to CPU only. The price for the GPU
increases disproportionately with the amount of video
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RAM.

[0014] The adaptation of the network itself does not
depend on the nature of the data that is being handled.
However, in a major use case, the data is physical meas-
urement data captured by at least one sensor, such as
images. It may then be the job of the neural network to
draw some kind of conclusion from the data. This con-
clusion, such as a classification of objects that the image
shows, typically has a much lower dimensionality than
the input data.

[0015] Inaparticularly advantageous embodiment, the
layer whose processing function is scaled and/or aug-
mented is chosen to be an input layer of the neural net-
work that was trained to handle input data of dimension-
ality N. The processing function of this layer is scaled
and/or augmented to accommodate input data of dimen-
sionality M. In this manner, no pre-processing of the high-
er-dimensional input data is necessary before inputting
this data to the neural network, so no information is lost.
[0016] In a further particularly advantageous embodi-
ment, the processing function of the layer is scaled and/or
augmented in a manner that the dimensionality of the
output data it produces remains o. In this manner, all
subsequent layers may use the output of the layer as
they did before.

[0017] For example, the processing function of layer,
e.g., an input layer, of the neural network may be scaled
and/or augmented so that, rather than mapping input da-
ta of dimensionality N to output data of dimensionality o,
it now maps input data of dimensionality M to output data
of dimensionality o.

[0018] One way to tailor the processing function of the
affected layer to accommodate higher-dimensional input
data, while keeping the dimensionality of the output data
constant, is to upsample a kernel of the layer and to com-
mensurately adapt the stride with which this kernel is
applied to the input data.

[0019] Therefore, in a particularly advantageous em-
bodiment, the layer is a convolutional layer or a pooling
layer. The scaling and/or augmenting of the processing
function of the layer comprises upsampling of the con-
volution kernel, respectively of the pooling window. At
the same time, the stride with which this convolution ker-
nel, respectively this pooling window, is applied to the
input data is increased by an amount commensurate with
said upsampling.

[0020] In one exemplary embodiment, the input layer
of the pre-trained neural network may be configured to
accommodate images comprising AXA pixels as input
data, corresponding to a dimensionality of N=A2Z. The
method may then be used to adapt the neural network
to handle images comprising B XB pixels, corresponding
to a dimensionality of M=B2. A convolution or pooling
kernel may initially have a receptive field comprising F X F
pixels. To this end, a scaling factor S may be determined
as S=floor(B/A). The convolution or pooling kernel may
then be upsampled to (S*F) X (S*F) pixels, and the stride
with which this kernel is applied to the image data, i.e.,
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moved across the image data along each coordinate ax-
is, may be multiplied by S. In case B is not divisible by
A, the images may be resized to (A*S) X (A*S) pixels. Any
suitable method, such as linear interpolation, polynomial
interpolation or spline interpolation, may be used for the
upsampling.

[0021] In a further particularly advantageous embodi-
ment, the layer is a fully connected layer. The scaling
and/or augmenting of the processing function of this layer
comprises upsampling the assignment of the weights to
connections in the layer, so that the same set of weights
characterizes the increased amount of connections
caused by the adapting to input data of dimensionality m
> n. This is more of an "augmenting" of the processing
function of the layer than it is a "scaling", as the layer
actually gets additional neurons. The universal concept
of upsampling the processing function so that the
processing of a larger amount of input data still depends
on the original set of weights is not limited to convolutional
or pooling layers having some sort of kernel.

[0022] In a further particularly advantageous embodi-
ment, the neural network comprises a combination of:

e a convolutional layer that accepts input data of di-
mensionality n and delivers output data of dimen-
sionality o, and

e apooling layer that accepts input data of dimension-
ality p < o and maps them to output data of dimen-
sionality r < o.

Herein, the pooling layer may be directly adjacent to the
convolutional layer. In this case, p is equal to o. But this
is not required. Rather, there may be further layers be-
tween the convolutional layer and the pooling layer that
reduce the dimensionality from a value of o to a value of
p<o.

[0023] The processing function of the convolutional
layer is scaled so that it accommodates input data of
dimensionality m > n and delivers output data of dimen-
sionality o’ > 0. The processing function of the pooling
layer is scaled and/or augmented so that it still delivers
output data of dimensionality r. That is, the adapting of
the convolutional layer only bridges a part of the dimen-
sionality gap between the new input dimensionality m
and the desired dimensionality r that the combination of
the convolutional layer and the pooling layer as a whole
isto deliver. Therest of this gap is bridged by the adapting
of the pooling layer.

[0024] In the mentioned example of the input data be-
ing images, if a large scaling factor S is needed, then this
may be decomposed into two scaling factors S1 and S2
with S1*S2=S. S1 may then be used as a scaling factor
for adapting the convolutional layer, and S2 may be used
as a scaling factor for adapting the pooling layer. For
example, if the neural network was pre-trained forimages
comprising 256 X256 pixels, and it shall now handle im-
ages comprising 1024 X 1024 pixels, then a scaling factor
S=4 is needed. This may be decomposed into S1=2 for
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the adapting of the convolutional layer and S2=2 for the
adapting of the pooling layer.

[0025] It should be noted that the mentioned examples
only assume the inputimages to be square for simplicity.
The method may just as well be used on rectangular im-
ages. For example, if the network has been pre-trained
to handle images comprising A1XA2 pixels and having
dimensionality N=A1*A2, and itis to be adapted to handle
images comprising B1xXB2 pixels and having dimension-
ality M=B1*B2, then two different scaling factors
S,=floor(B1/A1) and Sy=floor(BZ/A2) may be computed
with respect to the two coordinate axes x and y. The input
images may then be scaled to (SX*N1)><(Sy*N2) pixels,
and convolution and/or pooling kernels comprising
F1XF2 pixels may be scaled to (S,"F1)X(S,*F2) pixels.
[0026] Furthermore, the mentioned examples shall not
be interpreted in the sense that the method is limited to
two-dimensional images, or that it is limited to images at
all. Rather, the method may be applied to any case where
the network has been pre-trained to handle input data of
dimensionality N and is to be adapted to handle input
data of dimensionality M. For example, the method may
be applied to neural networks that handle images whose
pixels are arranged in a three-dimensional space, or it
may be applied to neural networks that handle different
kinds of data, such as audio data or other physical meas-
urement data that is present in the form of a time-series.
[0027] In a further particularly advantageous embodi-
ment, the method further comprises scaling the input data
of dimensionality M down to a dimensionality M’ < M be-
fore inputting it into an input layer of the neural network.
When a given gap between a dimensionality M of to-be-
processed input data and a dimensionality N of the train-
ing data with which the neural network was trained is
present, scaling the input data down, the "ideal" solution
would be to retrain the network from scratch so that it
can handle input data of dimensionality M. Compared
with this "ideal" solution, scaling the input data down pro-
duces a lower average error than scaling the processing
function of a layer up, and/or augmenting such a process-
ing function, to handle input data of the higher dimen-
sionality M. The scaling down may even eliminate some
noise. But as already mentioned, there is a limit to the
scaling. The lower average error is of no use if the fea-
tures that are to be detected, such as tiny defects in a
product, are obliterated by the scaling. Therefore, the
optimal solution is to scale the input data down to a di-
mensionality M’ < M where the relevant features for the
application at hand are still clearly discernible in the input
data. The neural network, pre-trained for handling input
data of dimensionality N < M’, may then be adapted to
handle input data of dimensionality M’, rather than input
data of dimensionality M.

[0028] The invention also provides a method for
processing input data of dimensionality M with a neural
network that was trained to handle input data of dimen-
sionality N < M. In the course of this method, the neural
network is adapted to handle input data of dimensionality
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M using the method described above. The input data is
then processed with the adapted neural network.
[0029] Asdescribed above, this method permits to bet-
ter re-use a pre-training that has already gone into the
training of the neural network. The output data that is
produced may not necessarily be the "perfect" output da-
ta that would be obtained if the neural network was
trained from scratch to handle input data of dimension-
ality M. Rather, this output data will be a reasonable ap-
proximation of the "perfect" output data based on the
existing training.

[0030] If the neural network is a fully convolutional net-
work, then it might also be used directly to process the
input data of dimensionality M without first being adapted.
But even in this case, first adapting the neural network
has the advantage that the inference requires far less
memory than when using the un-adapted network.
[0031] The invention also provides a further method
for further training a neural network that was pre-trained
to handle input data of dimensionality N. In the course of
this method, the neural network is adapted to handle input
data of dimensionality M > N using the first method de-
scribed above. The neural network is then further trained
with training data of dimensionality M.

[0032] Asdiscussedbefore, amajoruse caseis to build
upon a neural network that has received a generic pre-
training, and further train this network for a task that is a
special case of the task to which it was pre-trained. In
this manner, a large set of available generic training data
may be used for the generic pre-training, and a relatively
small set of application-specific training data may then
suffice for the further training. For example, a generic
training for the generic task of object classification in im-
ages may use tens of thousands, or hundreds of thou-
sands, images from all walks of life. After that, a few hun-
dred application-specific training images may suffice to
further train the network to, for example, spot defects in
a product. That is, while the pre-training comprises train-
ing examples that teach the neural network how to dis-
tinguish dogs from cats and from chairs, the further train-
ing may build on this and teach the network to distinguish
defect-free products from defective products.

[0033] The output of the neural network may, for ex-
ample, comprise a classification of images with regards
to at least one property of interest. In automated optical
inspection, the property may be the presence or absence
of certain defects, or simply a binary classification as de-
fect-free or defective. In medical image analysis, the
property may be a tell-tale sign that is an indicator for a
medical condition. In remote sensing image analysis,
e.g., satellite image analysis, the property may be a fea-
ture that indicates a certain property of the ground (e.g.,
the presence of minerals or water). In the control and/or
surveillance of at least partially automated vehicles, the
property may be the presence or absence of certain types
of objects, such as objects with which the vehicle should
not collide. In video surveillance, the property may be the
presence and/or movement of people, which shall trigger
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a recording or an alarm that should not be triggered if
only animals and/or plants are moving in the image.
[0034] Therefore, in a further advantageous embodi-
ment, at least one input image is processed with the
adapted neural network, and based on the outcome of
the classification, at least one automated optical inspec-
tion apparatus, at least one vehicle, at least one medical
imaging system, at least one remote-sensing imaging
system, and/or at least one video surveillance system,
is actuated.

[0035] As discussed before, upsampling of the convo-
lution kernel of a convolutional layer causes the same
set of weights that characterize the convolution kernel to
act upon more input data than before. This is a "finger-
print" that may indicate, on a given neural network, that
one or more of the methods described above have been
applied to it. The invention therefore also relates to a
neural network that comprises at least one convolutional
layer with a convolution kernel. The number of independ-
ent weights of the convolution kernel is less than the
number of independentinputs in the receptive field of the
convolution kernel. Specifically, for example, the number
of independent weights of the convolution kernel may be
at most half the number of independent inputs in the re-
ceptive field of the convolution kernel.

[0036] The invention may be at least partially imple-
mented in a software, which has the immediate useful
effect of enabling suitable hardware to perform one or
more of the methods described above. The invention
therefore alsorelates to a computer program with instruc-
tions that, when executed by one or more computers,
and/or by a control unit, and/or an embedded system,
cause the one or more computers, and/or the control unit,
and/or the embedded system, to carry out one or more
of the methods as described above. The invention also
relates to a non-transitory machine-readable storage me-
dium, and/or to a download product, with this computer
program.

[0037] The invention also relates to one or more com-
puter, a control unit, and/or an embedded system, with
the computer program and/or with the machine-readable
storage medium and/or download product as described
above. Alternatively or in combination, the computer, the
control unit, and/or the embedded system, may be spe-
cifically adapted in any other way to perform one or more
of the methods as described above. Such adaptation
may, for example, comprise implementation of at least
parts of the method in one or more field programmable
gate arrays, FPGAs, or application-specific integrated
circuits, ASIC.

[0038] In the following, further advantageous embod-
iments of the methods are illustrated using Figures with-
out any intention to limit the scope of the invention.

Embodiments

[0039] The Figures show:
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Figure 1 Exemplary neural network 1 in original state
(Figure 1a); adapted neural network 1’ produced by
applying an exemplary embodiment of method 100
(Figure 1b);

Figure 2 Exemplary embodiments of method 100 for
adapting a neural network 1, method 200 for
processing input data 1a, and method 300 for further
training a neural network 1;

Figure 3 Effect of method 100 on convolution kernel
11d or pooling kernel 1e of layer 11 in neural network
1;

Figure 4 Potentially detrimental effect of scaling on
the detection of a defect9ain apart9, which is avoid-
ed by the methods 100, 200, 300;

[0040] Figure 1a shows a simple example of a neural
network 1. The neural network 1 comprises only two lay-
ers, namely a convolutional layer 11 and a pooling layer
12. The network 1 as a whole accommodates input data
1a of dimensionality N and delivers output data 1c of
dimensionality r.

[0041] To this end, the input data 1a of the network 1
as a whole is supplied as input data 11a to the convolu-
tional layer 11. In this example, the dimensionality n of
the data 11a is equal to the dimensionality N of the data
1a; however, this is not mandatory. Rather, there may
be a pre-processing before the convolutional layer 11
that already reduces the dimensionality n of the input
data 11a to a value smaller than N.

[0042] The convolutional layer 11 maps the input data
11a of dimensionality n to output data 11c of dimension-
ality o. This mapping is characterized by a set 11b of
weights in the convolutional layer 11. The output data
11c of the convolutional layer 11 is supplied as input data
12atothe poolinglayer 12. The poolinglayer 12 produces
condensed output data 12c with dimensionality r. This is
also the outputdata 1c of the neural network 1 as a whole.
[0043] Figure 1b shows the adapted network 1’ that
results when an exemplary embodiment of the method
100 is applied. The processing function of the convolu-
tional layer 11 is scaled so that the convolutional layer
11a now accepts input of dimensionality m=M, which is
much larger than N in this example. The output data 11c
of the convolutional layer has a new dimensionality o’
that is larger than the previous value o. Consequently,
the processing function of the pooling layer 12 is scaled
as well, so that it will transform input data 12a of the
higher dimensionality o’ to output data 12c¢ that still has
the same dimensionality r as before. The end result is
that the adapted neural network 1’ as a whole now ac-
commodates input data 1a of the much higher dimen-
sionality M, but still delivers output data 1c¢ of the same
dimensionality r as the original neural network 1 did be-
fore.

[0044] Figure 2 combines embodiments of method 100
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for adapting a neural network 1, method 200 for process-
ing input data 1a, and method 300 for further training a
neural network 1 for better understanding. Within method
100, which as a whole forms the first step 210 of method
200 and also the first step 310 of method 300, the
processing function of at least one layer 11 of the neural
network 1 is scaled and/or augmented in step 110. In the
example shown in Figure 2, in step 120, the processing
function of a pooling layer 12 further downstream is
scaled as well. In this manner, when the neural network
1 is adapted to accommodate input data 1a of dimen-
sionality M (rather than N as previously), part of the work
is done in the convolutional layer 11, and part of the work
is done in the pooling layer 12.

[0045] Optionally, in step 105, the input data 1a of di-
mensionality M may be scaled down to dimensionality
M’, where N < M’ < M. As discussed before, this improves
the accuracy of the finally obtained results.

[0046] Inside step 110, the convolution kernel 11d of
the convolutional layer 11 is upsampled according to
block 111. According to block 112, the stride with which
this convolution kernel 11d is applied to the input data
11ais scaled by an amount commensurate with said up-
sampling.

[0047] If the layer 11 is a fully connected layer rather
than a convolutional layer, then, according to block 113,
the assignment of weights 11b to connections in the layer
11 is upsampled, so that the same set 11b of weights
characterizes the increased amount of connections
caused by the adapting to input data 11a of dimension-
ality m > n.

[0048] After step 120, the adapted neural network 1’
results, and method 100 is finished. The adapted neural
network 1" may now be used in methods 200 and 300.
[0049] In step 220 of method 200, the adapted neural
network 1’ may be directly used forinference, i.e., to con-
vert input data 1a to output data 1c.

[0050] In step 320 of method 300, the adapted neural
network 1" may be trained further using training data of
the higher dimensionality M to which it has been adapted.
According to block 321, this further training may be per-
formed for a task that is a special case of the task to
which the neural network 1 was pre-trained. After the
further training 320, the adapted neural network 1° may
again be used for inference. l.e., it may be used to map
input data 1a of dimensionality M to output data 1c.
[0051] Accordingto step 420, based on the output data
1cthatis, in this example, an outcome of a classification
performed by the adapted neural network 1’, at least one
automated optical inspection apparatus 2, at least one
vehicle 3, atleast one medical imaging system 4, at least
one remote-sensing imaging system 5, and/or at least
one video surveillance system 6 may be actuated.
[0052] Figure 3 details how convolution kernels 11d,
pooling kernels 11e and their respective strides are mod-
ified in the course of method 100, as well as the effects
that the respective modifications have.

[0053] On the left-hand side of Figure 3, the state of
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the layer 11 where it accepts input data 11 of the old
dimensionality n is shown. The convolution kernel 11d
has a receptive field of 3x3 pixels, and it is moved along
coordinate axes x and y with a stride of 2 pixels . In the
output data 11c produced by layer 11, for each possible
position of the receptive field of the convolution kernel
11d, the convolution of the pixel values of the input data
11a with the weights 11b in the convolution kernel 11d
(shown as different shadings in the receptive field) is re-
corded.

[0054] Likewise, the pixel values inside the receptive
field of pooling window 11e are pooled, and the result is
recorded in the output data 11c in a position correspond-
ing to the position of the receptive field of the pooling
window 11e.

[0055] The borders between a convolution kernel 11d
and a pooling window 11e are fuzzy. For example, a con-
volution kernel 11d having weights 11b that are all equal
works akin to an average pooling window 11e. Therefore,
both the case of a convolution kernel 11d and the case
of a pooling window 11e have been drawn in one Figure
3, rather than drawing two separate Figures for the two
cases.

[0056] The right-hand side of Figure 3 shows the effect
of the upsampling 111 of the convolution kernel 11d, re-
spectively of the pooling window 11e. The input data 11a
of the layer 11 now has a higher dimensionality m; the
same area is divided into more image pixels. Along each
coordinate axis, the size of the convolution kernel 11d,
respectively of the pooling window 11e, has been dou-
bled from 3 to 6 pixels. Also, the strides have been dou-
bled from 2 to 4 pixels. However, the convolution kernel
11d still depends on the same set 11b of weights. That
is, each of the nine different weights 11b is now applied
to four pixels of the input data 11a, rather than to only
one pixel.

[0057] The endresultis that the output data 11c of the
layer 11, which represents the "feature map" of this layer
11 in the case of a convolutional layer, still has the same
dimensionality o despite the input data 11a being of a
much higher dimensionality m.

[0058] Figure 4 illustrates the benefit of the methods
100, 200, 300 on one schematic example. Figure 4a il-
lustrates a high-resolution image of a machine part 9 with
a small defect 9a in it. In this high-resolution image, the
defect 9a is clearly visible.

[0059] Figure 4b illustrates a low-resolution version of
this image, which may result from scaling the high-reso-
lution image down in order to fit the resolution with which
aneural network 1 was pre-trained. In this low-resolution
version, the defect 9a is barely noticeable and may easily
get lost altogether in the discretization of the image
processing. If this happens, an automated optical inspec-
tion system has no more way of knowing that a defect is
present.

[0060] This illustrates the advantage of scaling down
only to the extent that important features, like the defect
9a, can still be clearly discerned, and increasing the di-
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mensionality of the input data 1a that the neural network
1 can accommodate so that at least an image of this
minimum resolution may be processed.

Claims

1. A method (100) for adapting a neural network (1),
which is pre-trained to handle input data of dimen-
sionality N, to the handling of input data (1a) of di-
mensionality M, with M > N, the method (100) com-
prising: for at least one layer (11) of the neural net-
work (1) that accepts input data (11a) of dimension-
ality n and maps these input data (11a) to output
data (11c) of dimensionality o with a processing func-
tion characterized by a set (11b) of weights, scaling
and/or augmenting (110) the processing function so
that it accommodates input data (11a) of a dimen-
sionality m > n while remaining characterized by
the same set (11b) of weights.

2. The method (100) of claim 1, wherein the layer (11)
is chosen to be an input layer of the neural network
(1) that was trained to handle input data (11a) of
dimensionality N, and the processing function of this
layer (11) is scaled and/or augmented to accommo-
date input data (11a) of dimensionality M.

3. Themethod (100)of any one of claims 1 to 2, wherein
the processing function of the layer (11) is scaled
and/or augmented in a manner that the dimension-
ality of the output data (11c) it produces remains o.

4. The method (100) of claim 3, wherein the layer (11)
is a convolutional layer or a pooling layer, and the
scaling and/or augmenting (110) of the processing
function of this layer (11) comprises: upsampling
(111) of the convolution kernel (11d), respectively of
the pooling window (11e), of this layer (11), and in-
creasing (112) the stride with which this convolution
kernel (11d), respectively this pooling window (1e),
is applied to the input data (11a) by an amount com-
mensurate with said upsampling.

5. Themethod (100)ofany one of claims 1to 4, wherein
the layer (11)is a fully connected layer, and the scal-
ing and/or augmenting (110) of the processing func-
tion of this layer (11) comprises: upsampling (113)
the assignment of the weights (11b) to connections
inthelayer (11), so thatthe same set (11b) of weights
characterizes the increased amount of connections
caused by the adapting to input data (11a) of dimen-
sionality m > n.

6. Themethod (100)ofanyone ofclaims 1to 5, wherein
the neural network (1) comprises a convolutional lay-
er(11)thatacceptsinputdata (11a) of dimensionality
n and delivers output data (11c) of dimensionality o,
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10.

1.

12.

and a pooling layer (12) that accepts input data (12a)
of dimensionality p <o and maps them to output data
(12c) of dimensionality r < o, and the method (100)
comprises:

« scaling and/or augmenting (110) the process-
ing function of the convolutional layer (11) so
that it accommodates input data (11a) of dimen-
sionality m > n and delivers output data (11c) of
dimensionality o’, with o’ > o;

« scaling and/or augmenting (120) the process-
ing function of the pooling layer (12) so that it
stilldelivers outputdata (12c) of dimensionality r.

The method (100) of any one of claims 1 to 6, further
comprising: scaling (105) the input data (1a) of di-
mensionality M down to a dimensionality M’ < M be-
fore inputting it into an input layer of the neural net-
work (1).

A method (200) for processing input data (1a) of di-
mensionality M with a neural network (1) that was
trained to handle input data (1a) of dimensionality N
< M, comprising the steps of:

+ adapting (210), using the method (100) of any
one of claims 1 to 7, the neural network (1) to
handle input data (1a) of dimensionality M; and
* processing (220) the input data (1a) with the
adapted neural network (1°).

A method (300) for further training a neural network
(1) that was pre-trained to handle input data (1a) of
dimensionality N, comprising the steps of:

« adapting (310), using the method (100) of any
one of claims 1 to 7, the neural network (1) to
handle input data of dimensionality M; and

« further training (320) the adapted neural net-
work (1”) with training data of dimensionality M.

The method (300) of claim 9, wherein the further
training (320) is performed (321) for a task that is a
special case of the task to which the neural network
(1) was pre-trained.

The method (100, 200, 300) of any one of claims 1
to 10, wherein the input data (1a) of the neural net-
work (1) comprises images and the output data (1c)
of the neural network (1) comprises a classification
of the images with regards to at least one property.

The method (100, 200, 300) of claim 11, further com-
prising:

processing (220, 410) at least one input image (1a)
with the adapted neural network (1’), and actuating
(420), based on the outcome (1c) of the classifica-
tion, at least one automated optical inspection ap-
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paratus (2), atleastone vehicle (3), at least one med-
icalimaging system (4), at least one remote-sensing
imaging system (5), and/or at least one video sur-
veillance system (6).

A neural network (1), comprising at least one con-
volutional layer (11) with a convolution kernel (11d),
where the number of independent weights of the con-
volution kernel (11d) is less than the number of in-
dependent inputs in the receptive field of the convo-
lution kernel (11d).

A computer program, comprising instructions that,
when executed by one or more computers, and/or
by a control unit, and/or an embedded system, cause
the one or more computers, and/or the control unit,
and/or the embedded system, to carry out a method
(100, 200, 300) of any one of claims 1 to 12.

Anon-transitory machine-readable storage medium,
and/or a download product, with the computer pro-
gram of claim 14.

One or more computers, a control unit, and/or an
embedded system, with the computer program of
claim 14, with the non-transitory machine-readable
storage medium of claim 15, and/or specifically
adapted in another way to perform a method (100,
200, 300) of any one of claims 1 to 12.

Amended claims in accordance with Rule 137(2)
EPC.

A computer-implemented method (100) for adapting
a neural network (1), which is pre-trained to handle
inputdata of dimensionality N, to the handling ofinput
data (1a) of dimensionality M, with M > N, the method
(100) comprising: for at least one layer (11) of the
neural network (1) that accepts input data (11a) of
dimensionality n and maps these input data (11a) to
output data (11c) of dimensionality o with a process-
ing function characterized by a set (11b) of weights,
scaling and/or augmenting (110) the processing
function so that it accommodates input data (11a) of
a dimensionality m > n while remaining character-
ized by the same set (11b) of weights, wherein

« the processing function of the layer (11) is
scaled and/or augmented in a manner that the
dimensionality of the output data (11c¢) it produc-
es remains o. and

 the layer (11) is a convolutional layer or a pool-
ing layer, and the scaling and/or augmenting
(110) of the processing function of this layer (11)
comprises: upsampling (111) of the convolution
kernel (11d), respectively of the pooling window
(11e), of this layer (11), and increasing (112) the
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stride with which this convolution kernel (11d),
respectively this pooling window (1e), is applied
to the input data (11a) by an amount commen-
surate with said upsampling.

The method (100) of claim 1, wherein the layer (11)
is chosen to be an input layer of the neural network
(1) that was trained to handle input data (11a) of
dimensionality N, and the processing function of this
layer (11) is scaled and/or augmented to accommo-
date input data (11a) of dimensionality M.

The method (100) of any one of claims 1to 2, wherein
the layer (11) is a fully connected layer, and the scal-
ing and/or augmenting (110) of the processing func-
tion of this layer (11) comprises: upsampling (113)
the assignment of the weights (11b) to connections
inthelayer(11), sothat the same set (11b) of weights
characterizes the increased amount of connections
caused by the adapting to input data (11a) of dimen-
sionality m > n.

The method (100) of any one of claims 1to 3, wherein
the neural network (1) comprises a convolutional lay-
er(11)thatacceptsinputdata (11a) of dimensionality
n and delivers output data (11c) of dimensionality o,
and a pooling layer (12) that accepts input data (12a)
of dimensionality p <o and maps them to output data
(12c) of dimensionality r < o, and the method (100)
comprises:

« scaling and/or augmenting (110) the process-
ing function of the convolutional layer (11) so
that it accommodates input data (11a) of dimen-
sionality m > n and delivers output data (11c) of
dimensionality o’, with o’ > o;

« scaling and/or augmenting (120) the process-
ing function of the pooling layer (12) so that it
stilldelivers outputdata (12c) of dimensionality r.

The method (100) of any one of claims 1 to 4, further
comprising: scaling (105) the input data (1a) of di-
mensionality M down to a dimensionality M’ < M be-
fore inputting it into an input layer of the neural net-
work (1).

A method (200) for processing input data (1a) of di-
mensionality M with a neural network (1) that was
trained to handle input data (1a) of dimensionality N
< M, comprising the steps of:

« adapting (210), using the method (100) of any
one of claims 1 to 5, the neural network (1) to
handle input data (1a) of dimensionality M; and
* processing (220) the input data (1a) with the
adapted neural network (1°).

A method (300) for further training a neural network
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(1) that was pre-trained to handle input data (1a) of
dimensionality N, comprising the steps of:

« adapting (310), using the method (100) of any
one of claims 1 to 5, the neural network (1) to
handle input data of dimensionality M; and

« further training (320) the adapted neural net-
work (1”) with training data of dimensionality M.

The method (300) of claim 7, wherein the further
training (320) is performed (321) for a task that is a
special case of the task to which the neural network
(1) was pre-trained.

The method (100, 200, 300) of any one of claims 1
to 8, whereinthe input data (1a) of the neural network
(1) comprises images and the output data (1c) of the
neural network (1) comprises a classification of the
images with regards to at least one property.

The method (100, 200, 300) of claim 9, further com-
prising: processing (220, 410) at least one input im-
age (1a) with the adapted neural network (1), and
actuating (420), based on the outcome (1c) of the
classification, atleast one automated optical inspec-
tion apparatus (2), at least one vehicle (3), at least
one medical imaging system (4), at least one remote-
sensing imaging system (5), and/or at least one vid-
eo surveillance system (6).

A computer program, comprising instructions that,
when executed by one or more computers, and/or
by a control unit, and/or an embedded system, cause
the one or more computers, and/or the control unit,
and/or the embedded system, to carry out a method
(100, 200, 300) of any one of claims 1 to 10.

Anon-transitory machine-readable storage medium,
and/or a download product, with the computer pro-
gram of claim 11.

One or more computers, a control unit, and/or an
embedded system, with the computer program of
claim 11, with the non-transitory machine-readable
storage medium of claim 12, and/or specifically
adapted in another way to perform a method (100,
200, 300) of any one of claims 1 to 10.
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