(11) EP 3 725 733 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

21.10.2020 Bulletin 2020/43

(21) Application number: 20176631.8

(22) Date of filing: 11.11.2016

(51) Int Cl.: **B66F** 9/075 (2006.01) **B66F** 11/04 (2006.01)

B66F 17/00 (2006.01)

(22) Bate of ming. Thirtizoro

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO

PL PT RO RS SE SI SK SM TR

(30) Priority: 24.11.2015 US 201514950845

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

16198347.3 / 3 173 369

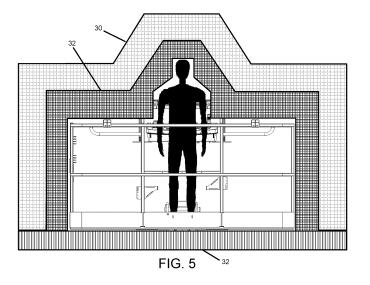
(71) Applicant: JLG Industries, Inc.
McConnellsburg, PA 17233 (US)

(72) Inventors:

 LOMBARDO, David. W McConnellsberg, PA Pennsylvania 17233-9533 (US) PUSZKIEWICZ, Ignacy McConnellsburg, PA Pennsylvania 17233-9533 (US)

(74) Representative: Secerna LLP
 The Old Fire Station
 18 Clifford Street

York YO1 9RD (GB)


Remarks:

This application was filed on 26-05-2020 as a divisional application to the application mentioned under INID code 62.

(54) WORKING PLATFORM WITH PROTECTION AGAINST SUSTAINED INVOLUNTARY OPERATION

(57) An aerial work platform (10) includes a control panel (14) with operator controls for manipulating the platform, a control module (26) communicating with the operator controls and controlling manipulation of the platform based on signals from the control panel, and an obstruction sensing system (20). The obstruction sensing system includes a sensor (22) mounted in a vicinity of the platform that monitors an operator area, the plat-

form, and an area around the platform. A processor (24) processes the signal to determine a position of an operator on the platform and a proximity of objects in the area around the platform. The control module is in communication with the processor and is programmed to control the manipulation of the platform or machine based on signals from the processor and input from the operator.

EP 3 725 733 A1

Description

BACKGROUND OF THE INVENTION

[0001] The invention relates to work platforms and, more particularly, to a work platform including an obstruction sensing system to reduce the possibility of collision with an obstruction or structure.

[0002] Lift vehicles including aerial work platforms, telehandlers such as rough terrain telescoping fork trucks with work platform attachments, and truck mounted aerial lifts are known and typically include an extendible flexible configuration boom, which may be positioned at different angles relative to the ground, and a work platform at an end of the boom. On or adjacent the platform, there is typically provided a control console including various control elements that may be manipulated by the operator to control such functions as boom angle, boom extension, rotation of the boom and/or platform on a vertical axis, engine or other type of power source, and where the lift vehicle is of the self-propelled type, there are also provided steering, drive speed and direction and braking controls.

[0003] A safety hazard can occur in a lift vehicle including a work platform when an operator is positioned between the platform and a structure that may be located overhead or behind the operator, among other places. Collision avoidance is also desirable with objects around the platform for example glass surfaces, aircraft structures, and other more fragile or delicate structures.

BRIEF SUMMARY OF THE INVENTION

[0004] A camera sensor or the like may be mounted to the aerial work platform to observe the platform, the area around the platform, and the operator. The system processes data from the sensor to determine whether the operator is present and if the operator is in a proper operating position and also to determine the proximity of objects above, behind and to the sides of and below the platform. Based on data from the sensor, a control module permits, modifies or prevents operation and/or manipulation of the platform.

[0005] In a first aspect, the present invention comprises a combined work platform and system for detecting proximate obstacles, the work platform including a control panel with operating components that control a position of the platform, the combined work platform and system comprising: a sensor mounted in a vicinity of the platform, the sensor monitoring at least one of an operator area, the platform, and an area around the platform; a processor receiving a signal from the sensor, the processor processing the signal to determine at least one of a position of an operator on the platform and a proximity of objects in the area around the platform; and a control module communicating with the processor and the operating components and modifying control signals from the control panel based on communication with the processor

essor; characterised in that the sensor is programmed to distinguish the area around the platform between a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone; wherein the processor determines that an object is present in the warning zone, and the control module is programmed to permit operation of the platform at creep speed based on the determination that the object is present in the warning zone; and wherein the sensor is programmed to adjust a depth of at least one of the warning zone and the danger zone based on operating characteristics of the platform.

[0006] The processor may determine that the operator is not present or is not in a proper operating position, and the control module is programmed to prevent operation of the platform that would cause motion of the platform.

[0007] The processor may determine that the operator is leaning over the control panel, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform.

[0008] The processor may determine that the operator is leaning over the control panel for a predetermined time, and the control module is programmed to reverse a last operating function of the platform.

[0009] The processor may determine that an object is present in the danger zone, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform based on the determination that the object is present in the danger zone.

[0010] In certain embodiments, the combined work platform and system further comprises an override switch connected with the control module, wherein the control module is programmed to permit operation of the platform at creep speed based on activation of the override switch.

[0011] The operating characteristics may comprise a number of operators on the platform, a direction in which the platform is traveling, and a speed of the platform.

[0012] The control module may detect a speed of the platform, and wherein the processor is programmed to process signals from the sensor relating to the platform speed toward one of the objects in the area of the platform, the control module being programmed to slow active functions at a rate relative to the speed at which the platform is approaching the one of the objects in the area of the platform.

[0013] The control module may be programmed to reduce a commanded operation speed based on a proximity to one of the objects in the area of the platform.

[0014] In a second aspect, the present invention comprises a method of controlling an aerial work platform, the method comprising: (a) monitoring with a sensor mounted in a vicinity of the platform an operator area, the platform, and an area around the platform; (b) detecting with a processor receiving a signal from the sensor a position of an operator on the platform and a proximity of objects in the area around the platform; and (c) a con-

25

30

35

40

45

trol module modifying control signals from an operator control panel based on communication with the processor and based on the detection in step (b).

[0015] Step (c) may be practiced by preventing operation of the platform when an operator is not present or is not in a proper operating position.

[0016] Step (b) may be practiced to determine whether the operator is leaning over a control panel for a predetermined period of time, and wherein step (c) is practiced by preventing operation of the platform during the predetermined period of time and after the predetermined period of time, reversing a last operating function of the platform.

[0017] The area around the platform may include a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein step (c) is practiced by permitting operation of the platform at creep speed when an object is detected in the warning zone, and by preventing operation of the platform when an object is detected in the danger zone.

[0018] In an exemplary embodiment, a work platform is combined with a system for detecting obstacles. The work platform includes a control panel with operating components that control a position of the platform. The combined work platform and system include a sensor mounted in a vicinity of the platform that monitors at least one of an operator area, the platform, and an area around the platform, and a processor receiving a signal from the sensor that processes the signal to determine at least one of a position of an operator on the platform and a proximity of objects in the area around the platform. A control module communicating with the processor and the operating components modifies control signals from the control panel based on communication with the processor.

[0019] The processor may determine that the operator is not present or is not in a proper operating position, and the control module may be programmed to prevent operation of the platform that would cause motion of the platform. An override switch may be connected with the control module, where the control module may be programmed to permit operation of the platform at very slow or creep speed based on activation of the override switch. The processor may determine that the operator is leaning over the control panel, and the control module may be programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform. The processor may determine that the operator is leaning over the control panel for a predetermined time, and the control module may be programmed to reverse a last operating function of the platform. The processor may determine that the operator is present and in a proper operating position and that there are no objects in the area around the platform, and the control module may be programmed to permit normal operation of the platform.

[0020] In one embodiment, the sensor may be programmed to distinguish the area around the platform be-

tween a warning zone and a danger zone, where the danger zone is closer to the platform than the warning zone. The processor may determine that an object is present in the warning zone, and the control module may be programmed to permit operation of the platform at creep speed based on the determination that the object is present in the warning zone. The processor may determine that an object is present in the danger zone, and the control module may be programmed to prevent operation of the platform based on the determination that the object is present in the danger zone. The sensor may be programmed to adjust a depth of at least one of the warning zone and the danger zone based on operating characteristics of the platform. Exemplary operating characteristics may include a number of operators on the platform, a direction in which the platform is traveling, and a speed of the platform. The control module may detect a speed of the platform, wherein the processor is programmed to process signals from the sensor relating to the platform speed toward one of the objects in the area of the platform. In this context, the control module may be programmed to slow active functions at a rate relative to the speed at which the platform is approaching the one of the objects in the area of the platform. The control module may be programmed to reduce a commanded operation speed based on a proximity to one of the objects in the area of the platform.

[0021] The sensor may include multiple sensing elements secured in the vicinity of the platform. In one arrangement, the platform may include a platform railing, where the sensor is mounted on the platform railing. The sensor may be one of an optical sensor, a radar sensor, and an acoustic sensor. The sensor may be attached to a manipulation device such as a pan and/or tilt mechanism or a mirror that displaces or rotates the sensor field of view.

[0022] In another exemplary embodiment, an aerial work platform includes a control panel including operator controls for manipulating the platform, a control module communicating with the operator controls and controlling manipulation of the platform based on signals from the control panel, and an obstruction sensing system. The obstruction sensing system includes a sensor mounted in a vicinity of the platform that monitors an operator area, the platform, and an area around the platform, and a processor receiving a signal from the sensor that processes the signal to determine a position of an operator on the platform and a proximity of objects in the area around the platform. The control module is in communication with the processor and is programmed to modify control signals from the operator controls based on communication with the processor.

[0023] In yet another exemplary embodiment, a method of controlling an aerial work platform includes the steps of (a) monitoring with a sensor mounted in a vicinity of the platform an operator area, the platform, and an area around the platform; (b) detecting with a processor receiving a signal from the sensor a position of an oper-

ator on the platform and a proximity of objects in the area around the platform; and (c) a control module modifying control signals from an operator control panel based on communication with the processor and based on the detection in step (b). Step (c) may be practiced by preventing operation of the platform when an operator is not present or is not in a proper operating position. Step (b) may be practiced to determine whether the operator is leaning over a control panel for a predetermined period of time, and step (c) may be practiced by preventing operation of the platform during the predetermined period of time and after the predetermined period of time, reversing a last operating function of the platform. Step (c) may be practiced by permitting operation of the platform at creep speed when an object is detected in the warning zone, and by preventing operation of the platform when an object is detected in the danger zone.

[0024] In yet another embodiment there is provided a combined work platform and system for detecting proximate obstacles, the work platform including a control panel with operating components that control a position of the platform, the combined work platform and system comprising: a sensor mounted in a vicinity of the platform, the sensor monitoring at least one of an operator area, the platform, and an area around the platform; a processor receiving a signal from the sensor, the processor processing the signal to determine at least one of a position of an operator on the platform and a proximity of objects in the area around the platform; and a control module communicating with the processor and the operating components and modifying control signals from the control panel based on communication with the processor.

[0025] Aptly the processor determines that the operator is not present or is not in a proper operating position, and the control module is programmed to prevent operation of the platform that would cause motion of the platform.

[0026] Aptly the combined work platform and system comprises an override switch connected with the control module, wherein the control module is programmed to permit operation of the platform at creep speed based on activation of the override switch.

[0027] Aptly the processor determines that the operator is leaning over the control panel, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform.

[0028] Aptly the processor determines that the operator is leaning over the control panel for a predetermined time, and the control module is programmed to reverse a last operating function of the platform.

[0029] Aptly the processor determines that the operator is present and in a proper operating position and that there are no objects in the area around the platform, and the control module is programmed to permit normal operation of the platform.

[0030] Aptly the sensor is programmed to distinguish

the area around the platform between a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein the processor determines that an object is present in the warning zone, and the control module is programmed to permit operation of the platform at creep speed based on the determination that the object is present in the warning zone.

[0031] Aptly the processor determines that an object is present in the danger zone, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform based on the determination that the object is present in the danger zone.

[0032] Aptly the combined work platform and system further comprises an override switch connected with the control module, wherein the control module is programmed to permit operation of the platform at creep speed based on activation of the override switch.

[0033] Aptly the sensor is programmed to adjust a depth of at least one of the warning zone and the danger zone based on operating characteristics of the platform. [0034] Aptly the operating characteristics comprise a number of operators on the platform, a direction in which the platform is traveling, and a speed of the platform.

[0035] Aptly the control module detects a speed of the platform, and wherein the processor is programmed to process signals from the sensor relating to the platform speed toward one of the objects in the area of the platform, the control module being programmed to slow active functions at a rate relative to the speed at which the platform is approaching the one of the objects in the area of the platform.

[0036] Aptly the control module is programmed to reduce a commanded operation speed based on a proximity to one of the objects in the area of the platform.

[0037] Aptly the sensor comprises multiple sensing elements secured in the vicinity of the platform.

[0038] Aptly the platform comprises a platform railing, and wherein the sensor is mounted on the platform railing.

[0039] Aptly the sensor comprises one of an optical sensor, a radar sensor, and an acoustic sensor.

[0040] Aptly the combined work platform and system further comprises a manipulation device to which the sensor is attached.

[0041] Aptly the manipulation device comprises a pan and/or a tilt mechanism.

[0042] Aptly the manipulation device comprises a mirror that displaces or rotates the sensor field of view.

[0043] In yet another embodiment there is provided an aerial work platform comprising: a control panel including operator controls for manipulating the platform; a control module communicating with the operator controls and controlling manipulation of the platform based on signals from the control panel; and an obstruction sensing system comprising: a sensor mounted in a vicinity of the platform, the sensor monitoring an operator area, the

55

15

20

platform, and an area around the platform, and a processor receiving a signal from the sensor, the processor processing the signal to determine a position of an operator on the platform and a proximity of objects in the area around the platform, wherein the control module is in communication with the processor and is programmed to modify control signals from the operator controls based on communication with the processor.

[0044] Aptly the sensor is programmed to distinguish the area around the platform between a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein the control module is programmed to control operation of the platform differently depending on whether objects are detected in the warning zone or the danger zone.

[0045] Aptly the control module is programmed to prevent operation of the platform when the operator is not present or is not in a proper operating position and when an object is detected in the danger zone, wherein the control module is programmed to permit operation of the platform at creep speed when an object is detected in the warning zone, and wherein the control module is programmed to permit normal operation of the platform when no object is detected in the warning zone or the danger zone and when the operator is present and in the proper operating position.

[0046] Aptly the sensor comprises multiple sensing elements secured in the vicinity of the platform.

[0047] In yet another embodiment there is provided a method of controlling an aerial work platform, the method comprising: (a) monitoring with a sensor mounted in a vicinity of the platform an operator area, the platform, and an area around the platform; (b) detecting with a processor receiving a signal from the sensor a position of an operator on the platform and a proximity of objects in the area around the platform; and (c) a control module modifying control signals from an operator control panel based on communication with the processor and based on the detection in step (b).

[0048] Aptly step (c) is practiced by preventing operation of the platform when an operator is not present or is not in a proper operating position.

[0049] Aptly step (b) is practiced to determine whether the operator is leaning over a control panel for a predetermined period of time, and wherein step (c) is practiced by preventing operation of the platform during the predetermined period of time and after the predetermined period of time, reversing a last operating function of the platform.

[0050] Aptly the area around the platform includes a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein step (c) is practiced by permitting operation of the platform at creep speed when an object is detected in the warning zone, and by preventing operation of the platform when an object is detected in the danger zone.

BRIEF DESCRIPTION OF THE DRAWINGS

[0051] These and other aspects and advantages will be described in detail with reference to the accompanying drawings, in which:

FIG. 1 shows an exemplary aerial lift vehicle including a work platform;

FIG. 2 is a perspective view of the work platform and obstruction sensing system according to preferred embodiments of the invention;

FIGS. 3-16 show the platform and the non-adaptive and adaptive areas monitored by the sensor; and FIGS. 17-21 show an exemplary pan/tilt mechanism and functionality for the sensor unit.

DETAILED DESCRIPTION OF THE INVENTION

[0052] FIG. 1 illustrates an exemplary typical aerial lift vehicle including a vehicle chassis 2 supported on vehicle wheels 4. Although the vehicle shown includes a telescoping boom, the invention is equally applicable to other vehicles including, for example, articulated booms without telescoping or extendable booms. A turntable and counterweight 6 are secured for rotation on the chassis 2, and an extendible (flexible arrangement) boom assembly is pivotably attached at one end to the turntable 6. An aerial work platform 10 is attached at an opposite end of the extendible boom 8. The illustrated lift vehicle is of the self-propelled type and thus also includes a driving/control system (illustrated schematically in FIG. 1 at 12) and a control console 14 on the platform 10 with various control elements that may be manipulated by the operator to control such functions as boom angle, boom extension, rotation of the boom and/or platform on a vertical axis, and engine, steering, drive speed and direction and braking controls, etc.

[0053] FIG. 2 shows the combined work platform 10 and system 20 for detecting obstructions such as obstacles around the platform including overhead obstacles. A sensor 22 is mounted in a vicinity of the platform and monitors at least one of an operator area, the platform, and an area around the platform. The sensor 22 may be a stereo camera sensor that provides a data stream consisting of pixel data (RGB value and range) to a computer or processor 24 mounted on the platform 10. An exemplary stereo camera sensor is MultiSense S21 available from Carnegie Robotics. Those of ordinary skill in the art will appreciate alternative sensors that may be suitable, and the invention is not meant to be limited to a specific sensor type.

[0054] The obstruction sensing system 20 may include multiple sensors 22 that are cooperable together and mounted in various areas in the vicinity of the platform 10. In an exemplary construction, the platform 10 includes a platform railing, and the sensor 22 is mounted on the platform railing. Mounting on the platform provides for a static view of the platform through the full range of

boom articulation. Sensors may alternatively or additionally be mounted to boom structure to allow for a larger field of view of the platform and/or mounted to platform support structure other than the railing. For example, as shown, the sensor 22 may be mounted on a dedicated bracket 23 secured to the platform, or the sensor 22 may be secured adjacent the control panel 14.

[0055] The computer or processor 24 processes the pixel range data to determine at least one of a position of an operator on the platform 10 and a proximity of objects in the area around the platform 10. A control module 26 in the control panel 14 forms part of the driving/control system 12 and communicates with the processor 24 to control operation of the platform based on a signal from the processor 24. In some arrangements, the control module 26 communicates with the driving/control system 12, which controls overall operation of the machine. In this arrangement, the control module 26 may gather input from control devices such as joysticks, switches, etc. and communicate operator commands to the driving/control system 12.

[0056] In some embodiments, the processor 24 determines whether the operator is not present or is not in a proper operating position, and if so, the control module 26 is programmed to prevent operation of the platform 10. That is, if the operator is not detected, the computer 24 sends a data message to the control module 26 that prevents motion or operation, or stops all active functions of the work platform 10. The system may also include an override button 28, where the platform 10 may be operated at creep speed if the override button 28 is activated. [0057] The processor 24 may determine that the operator is leaning over the control panel 14, in which case, the control module 26 is programmed to prevent operation of the platform 10. If the processor 24 determines that the operator is leaning over the control panel for a predetermined time, the control module 26 is programmed to reverse a last operating function of the platform. In this instance, the system may also sound an alarm and turn on a warning beacon.

[0058] Indicator lamps 29 may be secured to the platform railing and around the control panel to communicate system status to the operator. Exemplary locations for the indicator lamps 29 are shown in FIG. 2. The control module 26 may cause the indicator lamps 29 to illuminate when the control module 26 is in any way affecting machine control.(e.g., when the sensors 22 indicate that the machine is getting too close to an obstacle).

[0059] FIGS. 3-8 show exemplary sensing areas for detecting the proximity of objects above, behind, below and to the sides of the platform 10. The sensor 22 is programmed to distinguish the area around the platform between a warning zone (Zone A) 30 and a danger zone (Zones B and C) 32, where the danger zone 32 is closer to the platform 10 than the warning zone 30 as shown. If the processor 24 determines that an object is present in the warning zone, the control module 26 is programmed to permit operation of the platform 10 at creep

speed. If the processor 24 determines that an object is present in the danger zone 32, the control module 26 is programmed to prevent operation of the platform 10 (i.e., stop all active functions and/or prevent the start or continuation of any operation). At any time when the control module 26 prevents operation of the platform 10 that would cause motion of the platform 10, activation of the override switch 28 will permit operation of the platform 10 at creep speed. If the processor 24 determines that the operator is present and in a proper operating position and that there are no objects in the area around the platform 10 (i.e., in proximity defined by proscribed zones), the control module 26 permits normal, unrestricted operation of the platform 10. If no operator is present, operation of the platform that would cause motion of the platform is prevented unless overridden with the override switch 28.

[0060] Because the processor 24 is interpreting shape and distance from an obstacle in real time, the processor 24 can be programmed to estimate direction and speed of movement of the platform in relation to recognized obstacles. The processor 24 can be programmed to take action even when those obstacles are outside of the warning zone 30. For example, the processor 24 can be programmed to signal the driving/control system 12 to slow down machine functions such as drive when the processor 24 recognizes that the operator is driving the machine at full speed in the direction of potential obstacle. As another example, the boom functions (or drive function) can be slowed down more aggressively if the processor determines that the machine is moving fast toward a collision point.

[0061] With reference to FIGS. 5-8, the warning zone 30 and the danger zone 32 may be configured as adaptive zones, where based on the picture of the surrounding environment, the control module 26 can adjust the size and shape of the respective zones 30, 32. Adaptive zones are calculated by the control module based on sensor system/controller ability to recognize, among other things, the number of people in the platform, or the combination of people and materials (tools, equipment) present in the platform. FIGS. 7 and 8 illustrate results of the controller module calculation. In FIGS. 5 and 6, the zones 30, 32 are adapted according to a specific operator. In FIG. 7, the zones 30, 32 are adapted according to the presence of two operators, and in FIG. 8, the zones are adapted according to an operator and equipment on the platform.

[0062] Various methods may be used for reducing the platform speed based on detected object distance. In a "speed limiting" method, a limit for the maximum commandable speed is set based on the distance to the detected object (see, e.g., FIGS. 5-13). In a "speed reducing" method, the operator input is scaled down based on the distance to the detected obstacle (see, e.g., FIGS. 14-16). These two methods may result in different machine behavior.

[0063] The zones may be adapted to speed and direc-

35

40

45

tion of machine movement. Zones can be adjusted to become deeper if it is determined that the machine is moving faster than a threshold speed, or the zones can be "deeper" in the main direction of travel when activating the swing or other direction function. The control module may adjust the sensors to penetrate deeper into the direction of the side of platform. FIGS. 9-13 show variations in a depth of the warning zone and/or the danger zone based on platform speed and direction. More specifically, FIG. 9 shows the platform traveling to the right with each of the right side warning zone and danger zone having an increased depth. FIG. 10 shows the platform descending with the warning and/or danger zones having an increased depth in the direction of platform movement. The system may be programmed to adjust the depth of the zones based on the speed of the platform. FIGS. 11-13 show a proportionally increased depth with increasing platform speed.

[0064] In a related context, the adaptive zones may incorporate proportional speed reduction zones as shown in FIGS. 14-16. In FIG. 14, the percent of commanded speed is reduced according to the proximity of the potential obstacle to the platform. The speed reduction zones are shown in discrete steps but may alternatively be continuous. In FIG. 15, the proportional speed reduction zones are combined with the zones adapted for speed and direction. In FIG. 15, the platform is traveling to the right, and the depth of the zones is modified accordingly. In FIG. 16, an object is detected in the 60% zone with the platform traveling to the right. The function speed is reduced to 60% of the commanded speed.

[0065] Communication between the sensor 22 and the processor 24 may be via digital packets (CANbus) or discrete signaling (digital or analog output). Other forms of digital communication may be used, allowing the sensor to provide information needed to evaluate environmental awareness. Examples include, without limitation, Ethernet, I2C, RS232/485, digital pulse width modulation (PWM), etc. The control module 26 interprets the data to determine if and how the machine should react to the sensor data. The processor 24 based on signals from the sensors 22 can determine if they need to be cleaned via a built-in test (BIT). The sensing elements 22 can be based on optical, radar or acoustic (ultrasonic) sensing. The sensing elements 22 can be a single device or multiple devices with the same or complementary technologies. This provides redundancy and tolerance to a range of environmental conditions, contamination on the sensors, and objects to be detected. Sensors may be passive (stereo camera, single camera) or active (light detection and ranging (LiDAR), laser detection and ranging (LA-DAR), 3D vision sensor), radar or acoustic (ultrasonic). Any suitable type of sensor(s) may be used, and the invention is not meant to be limited to the described exemplary embodiments. Alternative sensor arrangements that achieve the same functionality are also contemplated including, for example, sensors that react to an emitter

(via electromagnetic waves or other signals), reflective tape (on the machine and/or incorporated into the operator's protective gear), etc.

[0066] With reference to FIGS. 17-21, the sensor 22 (camera, LiDAR, RADAR, etc.) can be manipulated either by mechanical rotation (pan/tilt) of the entire sensor using a suitable pan/tilt mechanism 34 (an exemplary pan/tilt mechanism is the Multisense S21 available from Carnegie Robotics), or by mechanical displacement/rotation of the field of view via a polygon reflector 36, single reflector 38, pair of reflectors 40 (optical mirror(s) for camera and LiDAR, metal plate(s) for radar and acoustic), etc. The manipulation device can be controlled either by the processor 24, control module 26, sensor 22, or be self-contained in the manipulation device. Manipulating a sensor or sensor field of view allows each sensor to cover more of the surrounding area around the platform and/or boom structure.

[0067] The platform and obstruction sensing system endeavor to avoid collisions between the moving platform and obstacles in the vicinity of the platform. The proactive system according to preferred embodiments is advantageous as compared to reactive systems that make adjustments after an obstacle has made contact with the operator and/or platform structure.

[0068] While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications included within the scope of the appended claims.

[0069] Also described is the subject matter defined by the following numbered paragraphs:

1. A combined work platform and system for detecting proximate obstacles, the work platform including a control panel with operating components that control a position of the platform, the combined work platform and system comprising:

a sensor mounted in a vicinity of the platform, the sensor monitoring at least one of an operator area, the platform, and an area around the platform;

a processor receiving a signal from the sensor, the processor processing the signal to determine at least one of a position of an operator on the platform and a proximity of objects in the area around the platform; and

a control module communicating with the processor and the operating components and modifying control signals from the control panel based on communication with the processor.

2. A combined work platform and system according to paragraph 1, wherein the processor determines that the operator is not present or is not in a proper

20

25

30

35

40

45

operating position, and the control module is programmed to prevent operation of the platform that would cause motion of the platform.

- 3. A combined work platform and system according to paragraph 2, further comprising an override switch connected with the control module, wherein the control module is programmed to permit operation of the platform at creep speed based on activation of the override switch.
- 4. A combined work platform and system according to paragraph 2, wherein the processor determines that the operator is leaning over the control panel, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform.
- 5. A combined work platform and system according to paragraph 4, wherein the processor determines that the operator is leaning over the control panel for a predetermined time, and the control module is programmed to reverse a last operating function of the platform.
- 6. A combined work platform and system according to paragraph 1, wherein the processor determines that the operator is present and in a proper operating position and that there are no objects in the area around the platform, and the control module is programmed to permit normal operation of the platform.
- 7. A combined work platform and system according to paragraph 1, wherein the sensor is programmed to distinguish the area around the platform between a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein the processor determines that an object is present in the warning zone, and the control module is programmed to permit operation of the platform at creep speed based on the determination that the object is present in the warning zone.
- 8. A combined work platform and system according to paragraph 7, wherein the processor determines that an object is present in the danger zone, and the control module is programmed to stop active functions and prevent further operation of the platform that would cause motion of the platform based on the determination that the object is present in the danger zone.
- 9. A combined work platform and system according to paragraph 8, further comprising an override switch connected with the control module, wherein the control module is programmed to permit operation of the platform at creep speed based on activation of the override switch.
- 10. A combined work platform and system according to paragraph 7, wherein the sensor is programmed to adjust a depth of at least one of the warning zone and the danger zone based on operating characteristics of the platform.
- 11. A combined work platform and system according to paragraph 10, wherein the operating characteris-

tics comprise a number of operators on the platform, a direction in which the platform is traveling, and a speed of the platform.

- 12. A combined work platform and system according to paragraph 1, wherein the control module detects a speed of the platform, and wherein the processor is programmed to process signals from the sensor relating to the platform speed toward one of the objects in the area of the platform, the control module being programmed to slow active functions at a rate relative to the speed at which the platform is approaching the one of the objects in the area of the platform.
- 13. A combined work platform and system according to paragraph 1, wherein the control module is programmed to reduce a commanded operation speed based on a proximity to one of the objects in the area of the platform.
- 14. A combined work platform and system according to paragraph 1, wherein the sensor comprises multiple sensing elements secured in the vicinity of the platform.
- 15. A combined work platform and system according to paragraph 1, wherein the platform comprises a platform railing, and wherein the sensor is mounted on the platform railing.
- 16. A combined work platform and system according to paragraph 1, wherein the sensor comprises one of an optical sensor, a radar sensor, and an acoustic sensor
- 17. A combined work platform and system according to paragraph 1, further comprising a manipulation device to which the sensor is attached.
- 18. A combined work platform and system according to paragraph 17, wherein the manipulation device comprises a pan and/or a tilt mechanism.
- 19. A combined work platform and system according to paragraph 17, wherein the manipulation device comprises a mirror that displaces or rotates the sensor field of view.
- 20. An aerial work platform comprising:
 - a control panel including operator controls for manipulating the platform;
 - a control module communicating with the operator controls and controlling manipulation of the platform based on signals from the control panel; and
 - an obstruction sensing system comprising:
 - a sensor mounted in a vicinity of the platform, the sensor monitoring an operator area, the platform, and an area around the platform, and
 - a processor receiving a signal from the sensor, the processor processing the signal to determine a position of an operator on the platform and a proximity of objects in the

area around the platform,

wherein the control module is in communication with the processor and is programmed to modify control signals from the operator controls based on communication with the processor.

21. An aerial work platform according to paragraph 20, wherein the sensor is programmed to distinguish the area around the platform between a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein the control module is programmed to control operation of the platform differently depending on whether objects are detected in the warning zone or the danger zone.

22. An aerial work platform according to paragraph 21, wherein the control module is programmed to prevent operation of the platform when the operator is not present or is not in a proper operating position and when an object is detected in the danger zone, wherein the control module is programmed to permit operation of the platform at creep speed when an object is detected in the warning zone, and wherein the control module is programmed to permit normal operation of the platform when no object is detected in the warning zone or the danger zone and when the operator is present and in the proper operating position.

23. An aerial work platform according to paragraph 20, wherein the sensor comprises multiple sensing elements secured in the vicinity of the platform.

24. A method of controlling an aerial work platform, the method comprising:

(a) monitoring with a sensor mounted in a vicinity of the platform an operator area, the platform, and an area around the platform;

- (b) detecting with a processor receiving a signal from the sensor a position of an operator on the platform and a proximity of objects in the area around the platform; and
- (c) a control module modifying control signals from an operator control panel based on communication with the processor and based on the detection in step (b).
- 25. A method according to paragraph 24, wherein step (c) is practiced by preventing operation of the platform when an operator is not present or is not in a proper operating position.

26. A method according to paragraph 25, wherein step (b) is practiced to determine whether the operator is leaning over a control panel for a predetermined period of time, and wherein step (c) is practiced by preventing operation of the platform during the predetermined period of time and after the predetermined period of time, reversing a last operating

function of the platform.

27. A method according to paragraph 25, wherein the area around the platform includes a warning zone and a danger zone, the danger zone being closer to the platform than the warning zone, and wherein step (c) is practiced by permitting operation of the platform at creep speed when an object is detected in the warning zone, and by preventing operation of the platform when an object is detected in the danger zone.

Claims

15

20

25

35

40

45

50

55

 A combined work platform (10) and system (20) for detecting proximate obstacles, the work platform including a control panel (14) with operating components that control a position of the platform, the combined work platform and system comprising:

> a sensor (22) mounted in a vicinity of the platform, the sensor monitoring at least one of an operator area, the platform, and an area around the platform;

> a processor (24) receiving a signal from the sensor (22), the processor (24) processing the signal to determine at least one of a position of an operator on the platform (10) and a proximity of objects in the area around the platform; and a control module (26) communicating with the processor (24) and the operating components and modifying control signals from the control panel (14) based on communication with the processor (24);

characterised in that the sensor (22) is programmed to distinguish the area around the platform (10) between a warning zone (30) and a danger zone (32), the danger zone (23) being closer to the platform (10) than the warning zone (30):

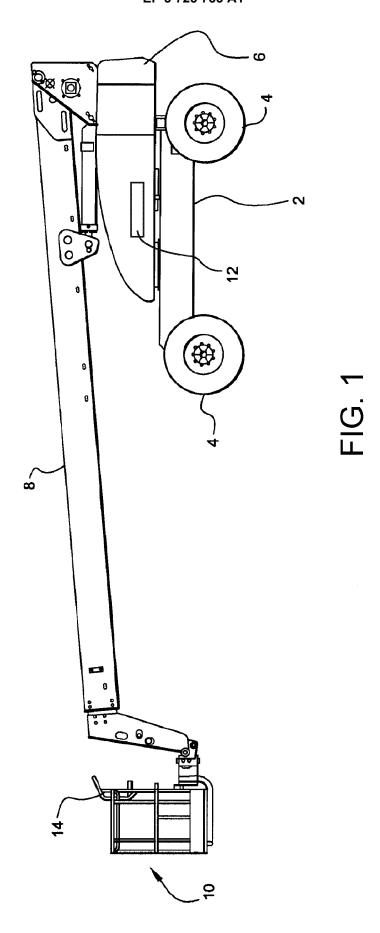
wherein the processor (24) determines that an object is present in the warning zone (30), and the control module (26) is programmed to permit operation of the platform (10) at creep speed based on the determination that the object is present in the warning zone (30); and wherein the sensor (22) is programmed to adjust a depth of at least one of the warning zone (30)

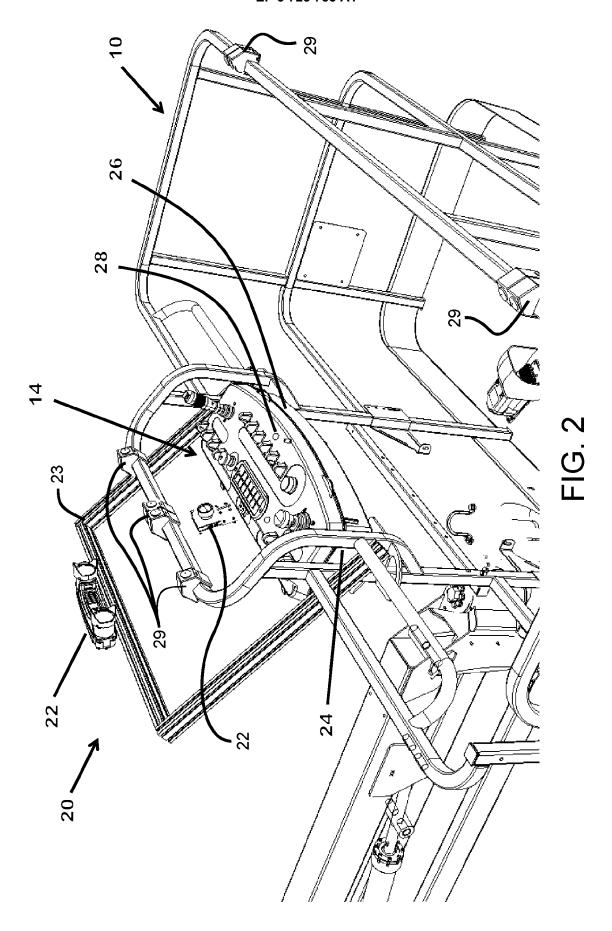
a depth of at least one of the warning zone (30) and the danger zone (32) based on operating characteristics of the platform.

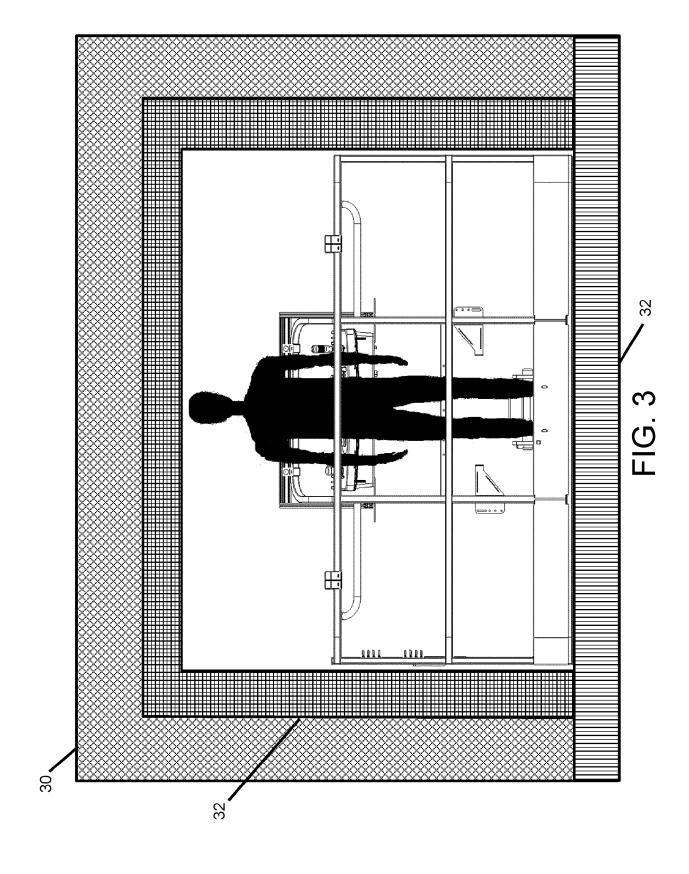
2. A combined work platform and system according to claim 1, wherein the processor (24) determines that the operator is not present or is not in a proper operating position, and the control module (26) is programmed to prevent operation of the platform (10) that would cause motion of the platform.

25

30


35


40


45

- 3. A combined work platform and system according to claim 2, wherein the processor (24) determines that the operator is leaning over the control panel (14), and the control module (26) is programmed to stop active functions and prevent further operation of the platform (10) that would cause motion of the platform.
- 4. A combined work platform and system according to claim 3, wherein the processor (24) determines that the operator is leaning over the control panel (14) for a predetermined time, and the control module (26) is programmed to reverse a last operating function of the platform (10).
- 5. A combined work platform and system according to claim 1, wherein the processor (24) determines that an object is present in the danger zone (32), and the control module (26) is programmed to stop active functions and prevent further operation of the platform (10) that would cause motion of the platform based on the determination that the object is present in the danger zone.
- 6. A combined work platform and system according to claim 2 or claim 5, further comprising an override switch (28) connected with the control module (26), wherein the control module (26) is programmed to permit operation of the platform (10) at creep speed based on activation of the override switch (28).
- 7. A combined work platform and system according to claim 1, wherein the operating characteristics comprise a number of operators on the platform (10), a direction in which the platform (10) is traveling, and a speed of the platform (10).
- 8. A combined work platform and system according to claim 1, wherein the control module (26) detects a speed of the platform (10), and wherein the processor (24) is programmed to process signals from the sensor (22) relating to the platform speed toward one of the objects in the area of the platform, the control module (26) being programmed to slow active functions at a rate relative to the speed at which the platform (10) is approaching the one of the objects in the area of the platform (10).
- **9.** A combined work platform and system according to claim 1, wherein the control module (26) is programmed to reduce a commanded operation speed based on a proximity to one of the objects in the area of the platform (10).
- **10.** A method of controlling an aerial work platform, the method comprising:
 - (a) monitoring with a sensor (22) mounted in a

- vicinity of the platform (10) an operator area, the platform, and an area around the platform; (b) detecting with a processor (24) receiving a signal from the sensor (22) a position of an operator on the platform (10) and a proximity of objects in the area around the platform; and (c) a control module (26) modifying control signals from an operator control panel (14) based on communication with the processor (24) and based on the detection in step (b).
- **11.** A method according to claim 10, wherein step (c) is practiced by preventing operation of the platform (10) when an operator is not present or is not in a proper operating position.
- 12. A method according to claim 11, wherein step (b) is practiced to determine whether the operator is leaning over a control panel (14) for a predetermined period of time, and wherein step (c) is practiced by preventing operation of the platform (10) during the predetermined period of time and after the predetermined period of time, reversing a last operating function of the platform.
- 13. A method according to claim 11, wherein the area around the platform (10) includes a warning zone (30) and a danger zone (32), the danger zone being closer to the platform than the warning zone, and wherein step (c) is practiced by permitting operation of the platform at creep speed when an object is detected in the warning zone (30), and by preventing operation of the platform when an object is detected in the danger zone (32).

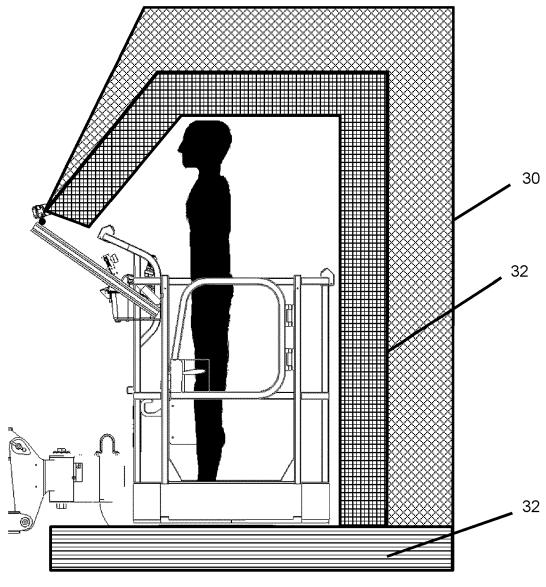
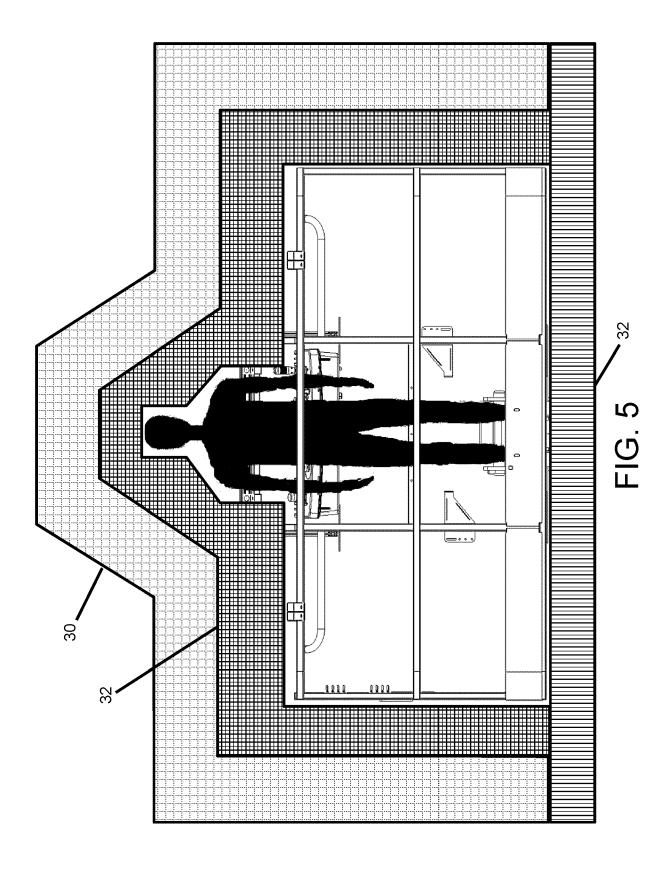
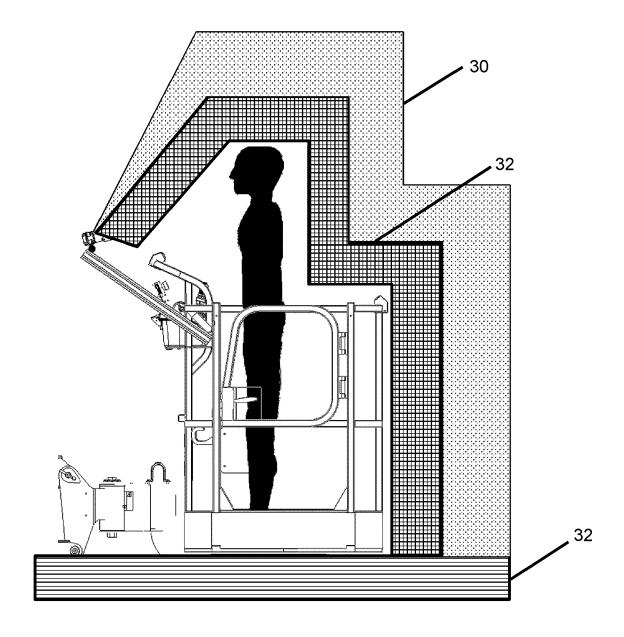
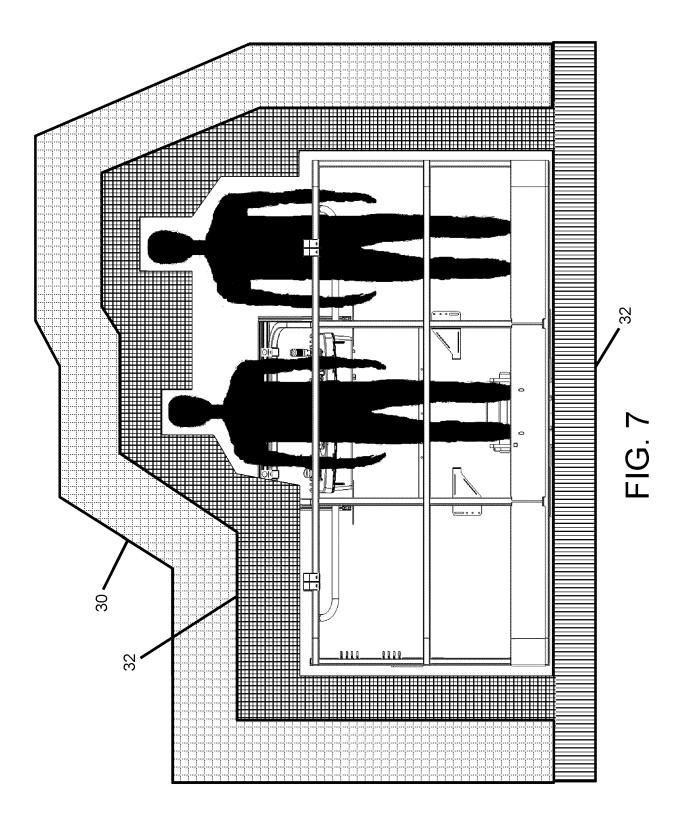
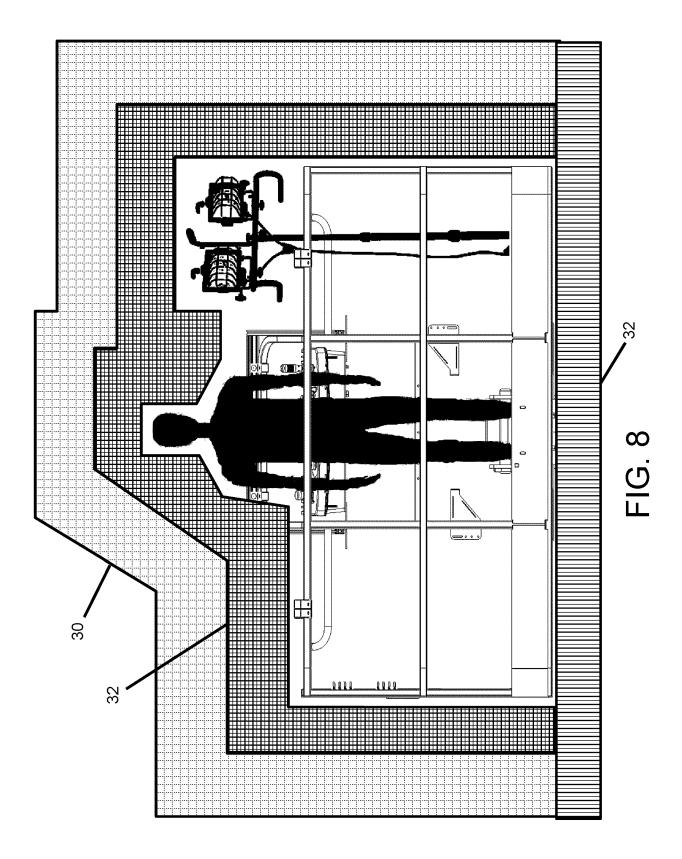
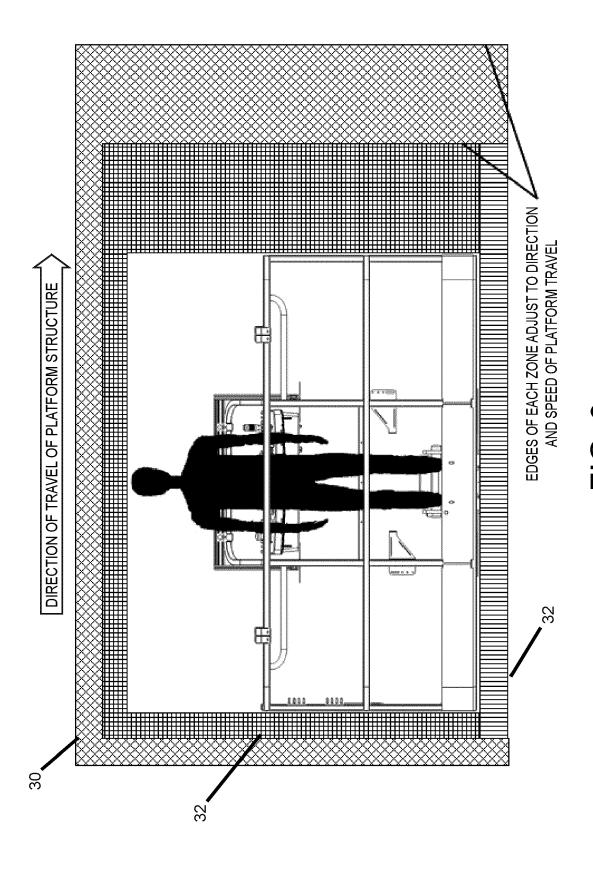
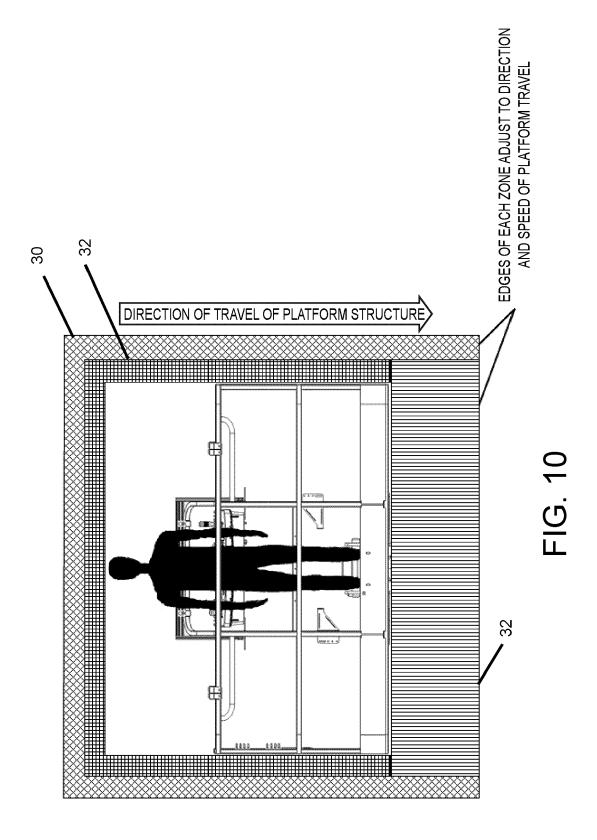



FIG. 4


FIG. 6

19

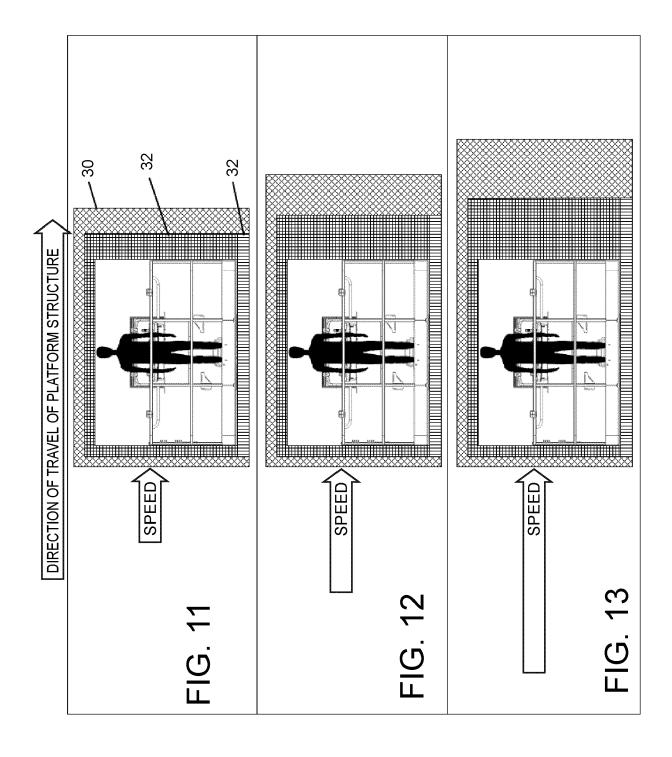


FIG. 14

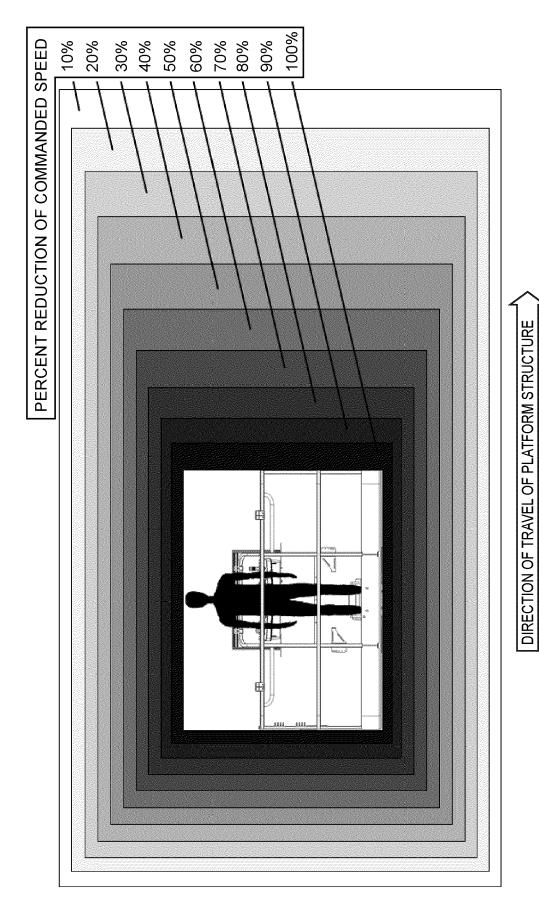


FIG. 15

FIG. 16

DIRECTION OF TRAVEL OF PLATFORM STRUCTURE

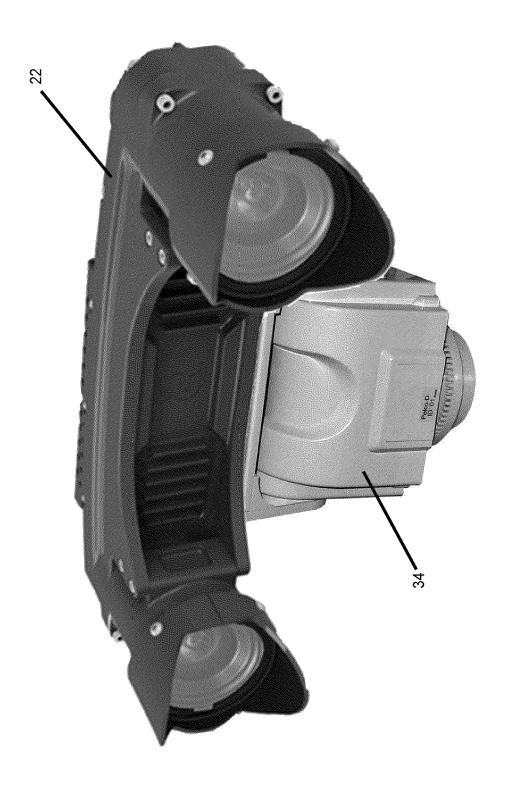
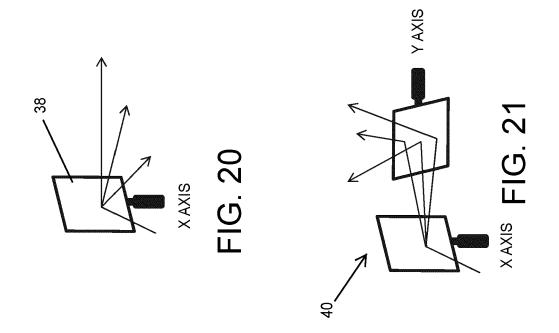
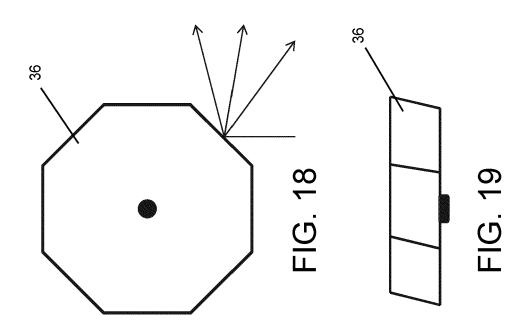




FIG. 17

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 20 17 6631

1	0		

А	GB 2 495 158 A (RIC	ULADDO DALLI FODI		I	
	<pre>3 April 2013 (2013- * abstract; figures * page 1 - page 11</pre>	04-03) 1-4 *) 1	13	INV. B66F9/075 B66F17/00 B66F11/04
Α	US 2015/027808 A1 (ET AL) 29 January 2 * abstract; figure * paragraph [0004]	015 (2015-01-29 1 *		,12	
Α	JP H05 124800 A (JA 21 May 1993 (1993-0 * abstract; figures * paragraph [0024]	5-21)			
Α	FR 2 836 468 A1 (PI 29 August 2003 (200 * the whole documen	3-08-29)	[FR]) 1	.2	
Α	JP 2011 063352 A (0 31 March 2011 (2011 * abstract; figures	-03-31)	POWER) 1	13	TECHNICAL FIELDS SEARCHED (IPC)
Α	CN 202 030 492 U (H INDUSTRY CO LTD) 9 November 2011 (20 * figure 4 *		EAVY 1	,12	Воог
	The present search report has I	· ·			Evanian
	Place of search The Hague	Date of completion 10 Septe	of the search nber 2020	Ver	heul, Omiros
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure		E : ea af ner D : do L : do 	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons 8: member of the same patent family, corresponding		

EP 3 725 733 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 17 6631

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

10-09-2020

10	Patent document cited in search report		Publication date	Patent family Publicati member(s) date	on
15	GB 2495158	A	03-04-2013	DE 202012104857 U1 20-03- FR 2984295 A3 21-06- GB 2495158 A 03-04- NL 2009942 C2 21-08- US 2013153333 A1 20-06-	2013 2013 2013
20	US 2015027808	A1	29-01-2015	EP 3050041 A1 03-08- US 2015027808 A1 29-01- US 2019092613 A1 28-03- WO 2015013333 A1 29-01-	2015 2019
	JP H05124800	Α	21-05-1993	JP H0749360 B2 31-05- JP H05124800 A 21-05-	
25	FR 2836468	A1	29-08-2003	NONE	
	JP 2011063352	A	31-03-2011	NONE	
30	CN 202030492	U 	09-11-2011	NONE	
35					
40					
45					
50					
55	FORM P0459				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82