

(11) EP 3 731 256 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

28.10.2020 Bulletin 2020/44

(51) Int Cl.:

H01J 37/147 (2006.01)

H01J 37/26 (2006.01)

(21) Application number: 20164280.8

(22) Date of filing: 19.03.2020

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 25.04.2019 JP 2019084296

(71) Applicant: Jeol Ltd.

Akishima-shi, Tokyo 196-8558 (JP)

(72) Inventors:

 YAMAZAKI, Kazuya Akishima, Tokyo 196-8558 (JP)

- SHIMIZU, Yuko Akishima, Tokyo 196-8558 (JP)
- IIJIMA, Hirofumi Akishima, Tokyo 196-8558 (JP)
- FUKUMURA, Takuma Akishima, Tokyo 196-8558 (JP)
- HOSOGI, Naoki Akishima, Tokyo 196-8558 (JP)
- NAKAMICHI, Tomohiro Akishima, Tokyo 196-8558 (JP)
- (74) Representative: Boult Wade Tennant LLP Salisbury Square House 8 Salisbury Square London EC4Y 8AP (GB)

(54) CHARGED PARTICLE BEAM DEVICE AND CONTROL METHOD OF OPTICAL SYSTEM OF CHARGED PARTICLE BEAM DEVICE

A charged particle beam device includes: a charged particle source (10); an optical system (20) which acts on a charged particle beam emitted from the charged particle source; a control unit (40) which controls the optical system (20); and a storage unit (50) which stores previous setting values of the optical system (20). the optical system (20) including a first optical element (24) and a second optical element (22) for controlling a state of the charged particle beam to be incident on the first optical element (24), wherein the control unit (40) performs: processing of obtaining an initial value of a setting value of the second optical element (22) based on previous setting values of the second optical element (22) which are stored in the storage unit (50); and processing of changing a state of the charged particle beam by changing the setting value of the second optical element (22) from the obtained initial value and obtaining the setting value of the second optical element (22) based on the change in the state of the charged particle beam.

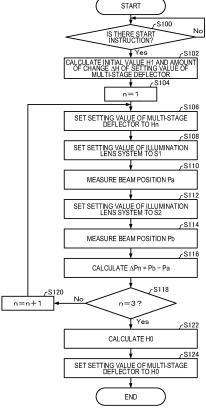


FIG. 2

P 3 731 256 A

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a charged particle beam device and to a control method of an optical system of a charged particle beam device.

1

[0002] In charged particle beam devices such as a transmission electron microscope and a scanning electron microscope, adjustment of an optical system is performed prior to performing observation and analysis. For example, adjustment of a deflector which controls a position and an angle of an electron beam is performed so that the electron beam is incident along an optical axis of a probe-forming lens. In addition, for example, with a transmission electron microscope, adjustment of a lens that controls an illumination angle of an electron beam is performed so that the electron beam is incident in parallel to a specimen.

[0003] For example, JP-A-2017-10608 discloses, as a method of correcting a minute tilt angle of a charged particle beam, arranging a reflector between a charged particle source and an objective lens and performing tilt correction of the charged particle beam based on information related to a scanned image created by emitted charged particles which are emitted from a specimen and obtained by the reflector.

[0004] Such adjustments of an optical system are preferably performed accurately within a short period of time.

SUMMARY

[0005] According to a first aspect of the invention, there is provided a charged particle beam device including:

a charged particle source;

an optical system which acts on a charged particle beam emitted from the charged particle source; a control unit which controls the optical system; and a storage unit which stores previous setting values of the optical system,

the optical system including:

a first optical element; and

a second optical element for controlling a state of the charged particle beam to be incident on the first optical element,

the control unit performing:

processing of obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and

processing of changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtaining

the setting value of the second optical element based on the change in the state of the charged particle beam.

According to a second aspect of the invention, there is provided a control method of an optical system of a charged particle beam device which includes: a charged particle source; an optical system which acts on a charged particle beam emitted from the charged particle source; and a storage unit which stores previous setting values of the optical system, the optical system including a first optical element and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element,

the control method including:

obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and

changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtaining the setting value of the second optical element based on the change in the state of the charged particle beam.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

35 [0006]

25

30

40

FIG. 1 is a diagram illustrating a configuration of an electron microscope according to a first embodiment.

FIG. 2 is a flow chart illustrating an example of optimization processing of an incidence position.

FIG. 3 is a diagram for explaining an operation of an optical system during optimization processing of an incidence position.

FIG. 4 is a diagram for explaining an operation of an optical system during optimization processing of an incidence position.

FIG. 5 is a diagram for explaining an operation of an optical system during optimization processing of an incidence position.

FIG. 6 is a diagram for explaining a calculation method of an initial value H1 and an amount of change ΔH . FIG. 7 is a diagram for explaining a calculation method of the initial value H1 and the amount of change ΔH

FIG. 8 is a diagram for explaining a calculation method of a setting value H0.

FIG. 9 is a diagram for explaining a calculation meth-

2

15

20

25

30

35

40

45

50

od of the setting value H0.

FIG. 10 is a diagram for explaining a calculation method of the setting value H0.

FIG. 11 is a flow chart illustrating an example of optimization processing of an incidence angle.

FIG. 12 is a diagram for explaining an operation of an optical system during optimization processing of an incidence angle.

FIG. 13 is a diagram for explaining an operation of an optical system during optimization processing of an incidence angle.

FIG. 14 is a diagram for explaining an operation of an optical system during optimization processing of an incidence angle.

FIG. 15 is a diagram for explaining a calculation method of an initial value D1 and an amount of change ΔD .

FIG. 16 is a diagram illustrating a configuration of an electron microscope according to a third embodiment.

FIG. 17 is a flow chart illustrating an example of optimization processing of an illumination angle.

FIG. 18 is a diagram for explaining an operation of an optical system during optimization processing of an illumination angle.

FIG. 19 is a diagram for explaining an operation of an optical system during optimization processing of an illumination angle.

FIG. 20 is a diagram for explaining an operation of an optical system during optimization processing of an illumination angle.

FIG. 21 is a diagram for explaining a calculation method of an initial value I1 and an amount of change

FIG. 22 is a diagram for explaining a calculation method of a setting value 10.

FIG. 23 is a diagram for explaining a calculation method of the setting value 10.

FIG. 24 is a diagram for explaining a calculation method of the setting value 10.

DETAILED DESCRIPTION OF THE EMBODIMENT

[0007]

(1) According to an embodiment of the invention, there is provided a charged particle beam device including:

a charged particle source;

an optical system which acts on a charged particle beam emitted from the charged particle source:

a control unit which controls the optical system;

a storage unit which stores previous setting values of the optical system,

the optical system including:

a first optical element; and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element, the control unit performing:

processing of obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and processing of changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtaining the setting value of the second optical element based on the change in the state of the charged par-

With such a charged particle beam device, since the control unit obtains the initial value of the setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit, an adjustment of the second optical element can be accurately performed in a short period of time.

(2) According to an embodiment of the invention, there is provided a control method of an optical system of a charged particle beam device which includes: a charged particle source; an optical system which acts on a charged particle beam emitted from the charged particle source; and a storage unit which stores previous setting values of the optical system, the optical system including a first optical element and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element,

ticle beam.

the control method including:

obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and

by changing the setting value of the second optical element from the obtained initial value and obtaining the setting value of the second optical element based on the change in the state of the charged particle beam.

[0008] With such a control method of an optical system of a charged particle beam device, since the initial value of the setting value of the second optical element is obtained based on previous setting values of the second optical element which are stored in the storage unit, an

adjustment of the second optical element can be accurately performed in a short period of time.

[0009] Preferred embodiments of the invention are described in detail below with reference to the drawings. Note that the following embodiments do not unduly limit the scope of the invention as stated in the claims. In addition, all of the elements described below are not necessarily essential requirements of the invention.

[0010] Furthermore, while the charged particle beam device according to the invention will be described below using an electron microscope that performs an observation and an analysis of a specimen by illuminating the specimen with an electron beam as an example, the charged particle beam device according to the invention may be an apparatus that performs an observation and an analysis of a specimen by irradiating a charged particle beam (such as an ion beam) other than an electron beam. Examples of such a charged particle beam device include a transmission electron microscope, a scanning transmission electron microscope, a scanning electron microscope, and a focused ion-beam device.

1. First Embodiment

1.1. Configuration of Electron Microscope

[0011] First, an electron microscope according to a first embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of an electron microscope 100 according to the first embodiment.

[0012] As illustrated in FIG. 1, the electron microscope 100 includes an electron source 10 which is an example of the charged particle source, an optical system 20, a detector 30, a control unit 40, and a storage unit 50.

[0013] The electron source 10 generates electron beams. The electron source 10 is, for example, an electron gun which accelerates electrons emitted from a cathode by an anode and which emits the accelerated electrons as an electron beam.

[0014] The optical system 20 acts on an electron beam emitted from the electron source 10. The optical system 20 includes a multi-stage deflector 22, an illumination lens system 24, and an imaging lens system 26. It should be noted that the illumination lens system 24 is an example of the first optical element and the multi-stage deflector 22 is an example of the second optical element.

[0015] The multi-stage deflector 22 causes an electron beam emitted from the electron source 10 to be deflected two-dimensionally. In the illustrated example, the multi-stage deflector 22 is constituted by two deflection coils arranged along an optical axis. It should be noted that, alternatively, the multi-stage deflector 22 may be constituted by three or more deflection coils arranged along the optical axis.

[0016] The multi-stage deflector 22 is used in order to control a state of an electron beam to be incident on the illumination lens system 24. Specifically, the multi-stage

deflector 22 is used in order to control an incidence position of an electron beam with respect to the illumination lens system 24 and an incidence angle of the electron beam with respect to an optical axis of the illumination lens system 24.

[0017] The illumination lens system 24 causes the electron beam emitted from the electron source 10 to converge and illuminates a specimen S with the converged electron beam. The illumination lens system 24 is a multi-stage lens system. In the illustrated example, the illumination lens system 24 is constituted by two illumination lenses arranged along an optical axis. In other words, the illumination lens system 24 is a two-stage lens system. It should be noted that, alternatively, the illumination lens system 24 may be constituted by three or more illumination lenses arranged along the optical axis. [0018] Although not illustrated, the electron microscope 100 is equipped with a specimen stage for holding the specimen S. The specimen S can be positioned by the specimen stage.

[0019] The imaging lens system 26 forms a transmission electron microscope image (a TEM image) with electrons having been transmitted through the specimen S. The detector 30 photographs a TEM image formed by the imaging lens system 26. For example, the detector 30 is a digital camera such as a charge coupled device (CCD) camera. The TEM image photographed by the detector 30 is sent to the control unit 40 and stored in the storage unit 50.

[0020] The control unit 40 controls the electron source 10, the optical system 20, and the detector 30. As will be described later, the control unit 40 performs: processing of obtaining an initial value of a setting value of the multistage deflector 22; and processing of changing a state of an electron beam by changing a setting value of the multi-stage deflector 22 from the initial value and obtaining a setting value of the multi-stage deflector 22 based on the change in the state of the electron beam. In the first embodiment, the state of the electron beam refers to an incidence position of the electron beam with respect to the illumination lens system 24. In other words, the control unit 40 performs processing of controlling the incidence position of the electron beam with respect to the illumination lens system 24. Details of the processing performed by the control unit 40 will be described later.

[0021] Functions of the control unit 40 can be realized by, for example, having various processors (a central processing unit (CPU) and the like) execute programs. Alternatively, at least a part of the functions of the control unit 40 may be realized by a dedicated circuit.

[0022] The storage unit 50 serves as a work area for the control unit 40, and functions thereof can be realized by a random access memory (RAM), a read only memory (ROM), a hard disk, or the like. The storage unit 50 stores programs, data, and the like that enable the control unit 40 to perform various control processes and calculation processes. In addition, the storage unit 50 is also used to temporarily store results of calculations and the like

35

45

performed by the control unit 40 according to various programs. The storage unit 50 stores previous setting values of the optical system 20.

1.2. Control Method of Optical System

[0023] Next, a control method of the optical system of the electron microscope 100 according to the first embodiment will be described.

1.2.1. Optimization Processing of Incidence Position

[0024] In the electron microscope 100, the optical system 20 is controlled by the control unit 40. Hereinafter, processing will be described in which the control unit 40 controls the multi-stage deflector 22 so that an incidence position of an electron beam with respect to the illumination lens system 24 assumes an optimal position. Hereinafter, this processing will also be referred to as optimization processing of an incidence position.

[0025] When an electron beam is incident on a center of the illumination lens system 24 along an optical axis, a position of the electron beam having passed through the illumination lens system 24 does not change even if a setting value of the illumination lens system 24 is changed. Therefore, an optimal incidence position is an incidence position where a change in a position of an electron beam having passed through the illumination lens system 24 is minimized even if the setting value of the illumination lens system 24 is changed.

[0026] FIG. 2 is a flow chart illustrating an example of the optimization processing of an incidence position. FIGS. 3 to 5 are diagrams for explaining an operation of the optical system 20 during the optimization processing of an incidence position. It should be noted that, in FIGS. 3 to 5, only the electron source 10, the multi-stage deflector 22, the illumination lens system 24, and the specimen S are illustrated for the sake of brevity.

[0027] The control unit 40 determines whether or not a user has issued an instruction (a start instruction) to start the optimization processing of an incidence position (S100). For example, the control unit 40 determines that the user has issued a start instruction when a press operation of a start button for issuing an instruction to start the optimization processing of an incidence position is performed or when a start instruction is input from an input device or the like.

[0028] When it is determined that the start instruction has been issued (Yes in S100), the control unit 40 calculates an initial value H1 of a setting value Hn of the multi-stage deflector 22 and an amount of change ΔH of the setting value Hn of the multi-stage deflector 22 (S102). The setting value Hn of the multi-stage deflector 22 is a value that controls the incidence position of an electron beam with respect to the illumination lens system 24. A calculation method of the initial value H1 and the amount of change ΔH will be described later.

[0029] Next, the control unit 40 sets the setting value

of the multi-stage deflector 22 to the initial value H1 and obtains a first amount of change $\Delta P1$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S106 to S116).

[0030] Specifically, first, assuming that n = 1 is true (S104), the control unit 40 sets the setting value of the multi-stage deflector 22 to the initial value H1 (S106). As the initial value H1, the value calculated in the processing of step S102 is used.

[0031] Next, the control unit 40 sets the setting value of the illumination lens system 24 to a setting value S 1 (S108). The setting value S 1 is, for example, a value that maximizes a beam diameter of the electron beam on the specimen S. In a state where the setting value of the multi-stage deflector 22 is set to the initial value H1 and the setting value of the illumination lens system 24 is set to the setting value S 1, the control unit 40 measures a position Pa of the electron beam on the specimen S as illustrated in FIG. 3 (S110). For example, the control unit 40 acquires a TEM image photographed by the detector 30 and measures the position Pa from the acquired TEM image.

[0032] Next, the control unit 40 sets the setting value of the illumination lens system 24 to a setting value S2 (S112). The setting value S2 is expressed as S2 = S1 + Δ S. The setting value S2 is, for example, a value that minimizes the beam diameter of the electron beam on the specimen S. In a state where the setting value of the multi-stage deflector 22 is set to the initial value H1 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures a position Pb of the electron beam on the specimen S as illustrated in FIG. 3 (S114). For example, the control unit 40 acquires a TEM image photographed by the detector 30 and measures the position Pb from the acquired TEM image.

[0033] Next, the control unit 40 calculates the first amount of change $\Delta P1$ = Pb - Pa (S116). According to the steps described above, the first amount of change $\Delta P1$ can be obtained.

[0034] Next, the control unit 40 determines whether or not n=3 is true (S118), and when it is determined that n=3 is false (No in S118), the control unit 40 assumes that n=n+1 is true (S120) and returns to step S106. Subsequently, the control unit 40 sets the setting value of the multi-stage deflector 22 to a setting value H2 which represents a change by the amount of change ΔH from the initial value H1 and obtains a second amount of change $\Delta P2$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S106 to S116).

[0035] Specifically, first, the control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value H2 (S 106). The setting value H2 is a value as a result of changing the initial value H1 by the amount of

change ΔH obtained in step S102. For example, H2 = H1 + ΔH . By having the control unit 40 change the setting value of the multi-stage deflector 22 from the setting value H1 to the setting value H2, the incidence position of the electron beam with respect to the illumination lens system 24 changes.

[0036] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S1 (S 108). In a state where the setting value of the multistage deflector 22 is set to the setting value H2 and the setting value of the illumination lens system 24 is set to the setting value S1, the control unit 40 measures the position Pa of the electron beam on the specimen S as illustrated in FIG. 4 (S110).

[0037] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S2 (S 112). In a state where the setting value of the multistage deflector 22 is set to the setting value H2 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures the position Pb of the electron beam on the specimen S as illustrated in FIG. 4 (S114).

[0038] Next, the control unit 40 calculates the second amount of change $\Delta P2$ = Pb - Pa (S116). According to the steps described above, the second amount of change $\Delta P2$ can be obtained.

[0039] Next, the control unit 40 determines whether or not n = 3 is true (S 118), and when it is determined that n = 3 is false (No in S 118), the control unit 40 assumes that n = n + 1 is true (S120) and returns to step S106. Subsequently, the control unit 40 sets the setting value of the multi-stage deflector 22 to a setting value H3 which represents a change by the amount of change ΔH from the initial value H1 and obtains a third amount of change $\Delta P3$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S106 to S116).

[0040] Specifically, first, the control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value H3 (S 106). The setting value H3 is a value as a result of changing the initial value H1 by the amount of change ΔH obtained in step S102. For example, H3 = H1 - ΔH . By having the control unit 40 change the setting value of the multi-stage deflector 22 from the setting value H2 to the setting value H3, the incidence position of the electron beam with respect to the illumination lens system 24 changes.

[0041] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S1 (S 108). In a state where the setting value of the multistage deflector 22 is set to the setting value H3 and the setting value of the illumination lens system 24 is set to the setting value S1, the control unit 40 measures the position Pa of the electron beam on the specimen S as illustrated in FIG. 5 (S110).

[0042] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S2

(S 112). In a state where the setting value of the multistage deflector 22 is set to the setting value H3 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures the position Pb of the electron beam on the specimen S as illustrated in FIG. 5 (S114).

[0043] Next, the control unit 40 calculates the third amount of change $\Delta P3 = Pb - Pa$ (S 116). According to the steps described above, the third amount of change $\Delta P3$ can be obtained.

[0044] The control unit 40 determines whether or not n = 3 is true (S 118), and when it is determined that n = 3 is true (Yes in S118), the control unit 40 obtains a setting value H0 of the multi-stage deflector 22 at which an amount of change of the position of the electron beam having passed through the illumination lens system 24 becomes zero when the setting value of the illumination lens system 24 is changed based on the first amount of change $\Delta P1$, the second amount of change $\Delta P2$, and the third amount of change $\Delta P3$ (S 122). A calculation method of the setting value H0 will be described later.

[0045] The control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value H0 obtained in step S122 (S 124). Subsequently, the control unit 40 ends the processing.

1.2.2. Calculation of Initial Value H1 and Amount of Change ΔH

[0046] Next, a calculation method of the initial value H1 and the amount of change ΔH in step S102 will be described.

[0047] The control unit 40 obtains the initial value H1 and the amount of change ΔH based on previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50. FIG. 6 is a diagram for explaining the calculation method of the initial value H1 and the amount of change ΔH . An abscissa of a graph in FIG. 6 represents a time point T and an ordinate of the graph represents the setting value H0 of the multi-stage deflector 22.

[0048] The control unit 40 causes the storage unit 50 to store a setting value of the multi-stage deflector 22 at set time intervals. In addition, the control unit 40 causes the storage unit 50 to store, together with the setting value, a time point at which the setting value had been stored. In the example in FIG. 6, the setting value H0 of the multi-stage deflector 22 is stored in the storage unit 50 at a time interval ΔT . Specifically, the setting values H0 at a time point T_1 , a time point T_2 , a time point T_3 , a time point T_4 , a time point T_5 , a time point T_6 , and a time point T_7 are stored in the storage unit 50. The time interval ΔT can be arbitrarily set. For example, the time interval ΔT may be 24 hours or 168 hours.

[0049] For example, the control unit 40 reads the setting values H0 stored in the storage unit 50, calculates a time average HT of the setting values H0, and adopts the calculated time average HT as the initial value H1.

40

15

In other words, H1 = HT. In this manner, the setting value H0 at a present time point Tnow is estimated from previous setting values H0 to determine the initial value H1. In addition, for example, the control unit 40 calculates a standard deviation σ of the setting values H0 and adopts the calculated standard deviation σ as the amount of change $\Delta H.$ In other words, $\Delta H = \sigma.$ In this manner, a variation in the setting value H0 is estimated from a variation in previous setting values H0 to determine the amount of change $\Delta H.$

[0050] While a case where the control unit 40 causes the storage unit 50 to store the time point T and the setting value H0 at the time point T at a time interval ΔT has been explained in the example described above, a timing at which the storage unit 50 is caused to store the time point T and the setting value H0 is not limited thereto.

[0051] For example, as illustrated in FIG. 7, the control unit 40 need not cause the storage unit 50 to store the time point T and the setting value H0 at constant time intervals. For example, after the optimization processing of an incidence position illustrated in FIG. 2 is finished, the control unit 40 may cause the storage unit 50 to store the setting value H0 obtained in the processing. In other words, the control unit 40 causes the storage unit 50 to store the setting value H0 at a timing where the optimization processing of an incidence position is finished. For example, the control unit 40 causes the storage unit 50 to store the setting value H0 as soon as the optimization processing of an incidence position is finished.

[0052] Alternatively, the control unit 40 may cause the storage unit 50 to store the time point T and the setting value H0 at the time interval ΔT and, after the optimization processing of an incidence position is finished, the control unit 40 may cause the storage unit 50 to store the time point T and the setting value H0 obtained in the processing.

1.2.3. Calculation Method of Setting Value H0

[0053] Next, a calculation method of the setting value H0 in step S122 will be described.

[0054] FIGS. 8 to 10 are diagrams for explaining a calculation method of the setting value H0.

[0055] The setting value H1, the setting value H2, and the setting value H3 and the first amount of change $\Delta P1$, the second amount of change $\Delta P2$, and the third amount of change $\Delta P3$ are in a linear relationship. Therefore, a relational expression is obtained from these values to obtain the setting value H0 of the multi-stage deflector 22 at which an amount of change ΔP of the position of the electron beam having passed through the illumination lens system 24 becomes zero when the setting value of the illumination lens system 24 is changed.

[0056] For example, first, a1, a2, b1, and b2 expressed by the following equations are obtained.

$$a1 = (\Delta P2 - \Delta P1)/(H2 - H1)$$

$$a2 = (\Delta P3 - \Delta P2)/(H3 - H2)$$

$$b1 = (H2 \times \Delta P1 - H1 \times \Delta P2)/(H2 - H1)$$

$$b2 = (H3 \times \Delta P2 - H2 \times \Delta P3)/(H3 - H2)$$

[0057] In this case, as illustrated in FIG. 8, when a1 = a2, the setting value H0 is obtained by the following equation.

$$H0 = |b1/a1|$$

[0058] In addition, as illustrated in FIG. 9, when |a1| > |a2|, the setting value H0 is obtained by the following equation.

$$H0 = |b1/a1|$$

[0059] In addition, as illustrated in FIG. 10, when |a1| < |a2|, the setting value H0 is obtained by the following equation.

$$H0 = |b2/a2|$$

[0060] It should be noted that the calculation method of the setting value H0 is not limited to the example described above.

[0061] For example, while the setting value of the multistage deflector 22 is changed such that H1, H2 = H1 + Δ H, and H3 = H1 - Δ H in the example described above, the setting value of the multi-stage deflector 22 may be changed such that H1, H2 = H1 + Δ H, and H3 = H1 + 2 \times Δ H. Alternatively, for example, the setting value of the multi-stage deflector 22 may be changed such that H1, H2 = H1 - Δ H, and H3 = H1 - 2 \times Δ H.

[0062] In addition, while the setting value H0 is obtained by obtaining a relational expression from the three points of the first amount of change $\Delta P1$, the second amount of change $\Delta P2$, and the third amount of change $\Delta P3$ in the example described above, for example, the setting value H0 may be obtained by obtaining a relational expression from two points or the setting value H0 may be obtained by obtaining a relational expression from four or more points.

1.3. Effects

[0063] For example, the electron microscope 100 has

40

the following effects.

[0064] In the electron microscope 100, the control unit 40 performs: processing of obtaining the initial value H1 of a setting value of the multi-stage deflector 22; and processing of changing a state of an electron beam by changing a setting value of the multi-stage deflector 22 from the initial value H1 and obtaining a setting value of the multi-stage deflector 22 based on the change in the state of the electron beam. In addition, in the processing of obtaining the initial value H1 of the setting value of the multi-stage deflector 22, the control unit 40 obtains the initial value H1 based on previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50.

[0065] In this manner, since the control unit 40 obtains the initial value H1 in optimization processing of an incidence position based on previous setting values of the multi-stage deflector 22, a setting value estimated from previous setting values can be adopted as the initial value H1. Therefore, with the electron microscope 100, an adjustment of the multi-stage deflector 22 can be accurately performed in a short period of time. Furthermore, in the electron microscope 100, since the control unit 40 performs the optimization processing of an incidence position, an observation and an analysis can be performed at an optimal incidence position of an electron beam without the user having to perform an adjustment. In addition, for example, when the user manually performs an adjustment of the multi-stage deflector 22, a variation may occur among settings due to the user's skill. By comparison, in the electron microscope 100, a variation among settings due to the user's skill does not occur.

[0066] In the electron microscope 100, the initial value H1 is a time average of previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50. Therefore, with the electron microscope 100, an adjustment of the multi-stage deflector 22 can be accurately performed in a short period of time.

[0067] In the electron microscope 100, the control unit 40 performs processing of obtaining the amount of change ΔH from the initial value H1, and in the processing of obtaining a setting value of the multi-stage deflector 22, the setting value of the multi-stage deflector 22 is changed from the initial value H1 by the obtained amount of change ΔH . In addition, in the processing of obtaining the amount of change ΔH , the control unit 40 obtains the amount of change ΔH based on previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50. Furthermore, the amount of change ΔH is a standard deviation of previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50. As a result, the amount of change ΔH can be obtained from a variation in the setting value as predicted from the variation in previous setting values. Therefore, with the electron microscope 100, an adjustment of the multi-stage deflector 22 can be accurately performed in a short period of time.

[0068] In the electron microscope 100, the control unit

40 causes the storage unit 50 to store a setting value of the multi-stage deflector 22 at set time intervals. As a result, a change over time of the setting value of the multi-stage deflector 22 can be stored. Therefore, with the electron microscope 100, an adjustment of the multi-stage deflector 22 can be accurately performed in a short period of time.

[0069] In the electron microscope 100, after the control unit 40 performs the processing of obtaining the setting value of the multi-stage deflector 22, the control unit 40 causes the storage unit 50 to store the obtained setting value of the multi-stage deflector 22. Therefore, the storage unit 50 can be caused to store a change over time of the setting value of the multi-stage deflector 22. In addition, the storage unit 50 can be caused to store a setting value in a state where an incidence position of an electron beam has been further optimized.

2. Second Embodiment

2.1. Electron Microscope

[0070] Next, an electron microscope according to a second embodiment will be described. A configuration of the electron microscope according to the second embodiment is the same as the configuration of the electron microscope 100 according to the first embodiment illustrated in FIG. 1 and, therefore, a description thereof will be omitted.

2.2. Control Method of Optical System

[0071] Next, a control method of an optical system of the electron microscope according to the second embodiment will be described. The following description will focus on points that differ from the example of the control method of the optical system of the electron microscope according to the first embodiment described above, and a description of similar points will be omitted.

2.2.1. Optimization Process of Incidence Angle

[0072] In the first embodiment described above, processing has been described in which a setting value of the multi-stage deflector 22 is a value that controls an incidence position of an electron beam with respect to the illumination lens system 24 and the control unit 40 controls the multi-stage deflector 22 so that the incidence position of the electron beam with respect to the illumination lens system 24 assumes an optimal position.

[0073] In contrast, in the second embodiment, a setting value of the multi-stage deflector 22 is a value that controls an incidence angle of an electron beam with respect to an optical axis of the illumination lens system 24 and the control unit 40 performs processing of controlling the multi-stage deflector 22 so that the incidence angle of the electron beam with respect to the illumination lens system 24 assumes an optimal incidence angle. Herein-

after, this processing will also be referred to as optimization processing of an incidence angle.

[0074] In this case, an optimal incidence angle is an incidence angle where a change in a position of an electron beam having passed through the illumination lens system 24 is minimized even if the setting value of the illumination lens system 24 is changed.

[0075] FIG. 11 is a flow chart illustrating an example of the optimization processing of an incidence angle. FIGS. 12 to 14 are diagrams for explaining an operation of the optical system 20 during the optimization processing of an incidence angle. It should be noted that, in FIGS. 12 to 14, only the electron source 10, the multi-stage deflector 22, the illumination lens system 24, and the specimen S are illustrated for the sake of brevity.

[0076] The control unit 40 determines whether or not the user has issued an instruction to start optimization processing of an incidence angle (S200).

[0077] When it is determined that a start instruction has been issued (Yes in S200), the control unit 40 calculates an initial value D1 of a setting value Dn of the multi-stage deflector 22 and an amount of change ΔD of the setting value Dn of the multi-stage deflector 22 (S202). The setting value Dn of the multi-stage deflector 22 is a value that controls the incidence angle of the electron beam with respect to an optical axis of the illumination lens system 24. A calculation method of the initial value D1 and the amount of change ΔD will be described later.

[0078] Next, the control unit 40 sets the setting value of the multi-stage deflector 22 to the initial value D1 and obtains the first amount of change $\Delta P1$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S206 to S216).

[0079] Specifically, first, assuming that n=1 is true (S204), the control unit 40 sets the setting value of the multi-stage deflector 22 to the initial value D1 (S206). As the initial value D1, the value calculated in the processing of step S202 is used.

[0080] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S1 (S208). In a state where the setting value of the multistage deflector 22 is set to the initial value D1 and the setting value of the illumination lens system 24 is set to the setting value S1, the control unit 40 measures the position Pa of the electron beam on the specimen S as illustrated in FIG. 12 (S210).

[0081] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S2 (S212). In a state where the setting value of the multistage deflector 22 is set to the initial value D1 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures the position Pb of the electron beam on the specimen S as illustrated in FIG. 12 (S214).

[0082] Next, the control unit 40 calculates the first

amount of change $\Delta P1$ = Pb - Pa (S216). According to the steps described above, the first amount of change $\Delta P1$ can be obtained.

[0083] Next, the control unit 40 determines whether or not n = 3 is true (S218), and when it is determined that n = 3 is false (No in S218), the control unit 40 assumes that n = n + 1 is true (S220) and returns to step S206. Subsequently, the control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value D2 which represents a change by the amount of change ΔD from the initial value D1 and obtains the second amount of change $\Delta P2$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S206 to S216). [0084] Specifically, first, the control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value D2 (S206). The setting value D2 is a value as a result of changing the initial value D1 by the amount of change ΔD obtained in step S202. For example, D2 = D1 + ΔD . By having the control unit 40 change the setting value of the multi-stage deflector 22 from the setting value D1 to the setting value D2, the incidence angle of the electron beam with respect to the optical axis of the illumination lens system 24 changes.

[0085] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S1 (S208). In a state where the setting value of the multistage deflector 22 is set to the setting value D2 and the setting value of the illumination lens system 24 is set to the setting value S1, the control unit 40 measures the position Pa of the electron beam on the specimen S as illustrated in FIG. 13 (S210).

[0086] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S2 (S212). In a state where the setting value of the multistage deflector 22 is set to the setting value D2 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures the position Pb of the electron beam on the specimen S as illustrated in FIG. 13 (S214).

[0087] Next, the control unit 40 calculates the second amount of change $\Delta P2 = Pb - Pa$ (S216). According to the steps described above, the second amount of change $\Delta P2$ can be obtained.

[0088] Next, the control unit 40 determines whether or not n = 3 is true (S218), and when it is determined that n = 3 is false (No in S218), the control unit 40 assumes that n = n + 1 is true (S220) and returns to step S206. Subsequently, the control unit 40 sets the setting value of the multi-stage deflector 22 to a setting value D3 which represents a change by the amount of change ΔD from the initial value D1 and obtains the third amount of change $\Delta P3$ which is an amount of change of the position of the electron beam having passed through the illumination lens system 24 when the setting value of the illumination lens system 24 is changed (S206 to S216).

[0089] Specifically, first, the control unit 40 sets the set-

40

ting value of the multi-stage deflector 22 to the setting value D3 (S206). The setting value D3 is a value as a result of changing the initial value D1 by the amount of change ΔD obtained in step S202. For example, D3 = D1 + ΔD . By having the control unit 40 change the setting value of the multi-stage deflector 22 from the setting value H2 to the setting value H3, the incidence position of the electron beam with respect to the illumination lens system 24 changes.

[0090] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S1 (S208). In a state where the setting value of the multistage deflector 22 is set to the setting value D3 and the setting value of the illumination lens system 24 is set to the setting value S1, the control unit 40 measures the position Pa of the electron beam on the specimen S as illustrated in FIG. 14 (S210).

[0091] Next, the control unit 40 sets the setting value of the illumination lens system 24 to the setting value S2 (S212). In a state where the setting value of the multistage deflector 22 is set to the setting value D3 and the setting value of the illumination lens system 24 is set to the setting value S2, the control unit 40 measures the position Pb of the electron beam on the specimen S as illustrated in FIG. 14 (S214).

[0092] Next, the control unit 40 calculates the third amount of change $\Delta P3$ = Pb - Pa (S216). According to the steps described above, the third amount of change $\Delta P3$ can be obtained.

[0093] The control unit 40 determines whether or not n = 3 is true (S218), and when it is determined that n = 3 is true (Yes in S218), the control unit 40 obtains a setting value D0 of the multi-stage deflector 22 at which an amount of change of the position of the electron beam having passed through the illumination lens system 24 becomes zero when the setting value of the illumination lens system 24 is changed based on the first amount of change Δ P1, the second amount of change Δ P2, and the third amount of change Δ P3 (S222). A calculation method of the setting value D0 will be described later.

[0094] The control unit 40 sets the setting value of the multi-stage deflector 22 to the setting value D0 determined in step S222 (S224). Subsequently, the control unit 40 ends the processing.

2.2.2. Calculation of Initial Value D1 and Amount of Change ΔD

[0095] Next, a calculation method of the initial value D1 and the amount of change ΔD in step S202 will be described. FIG. 15 is a diagram for explaining the calculation method of the initial value D1 and the amount of change ΔD .

[0096] The calculation method of the initial value D1 and the amount of change ΔD is similar to the calculation method of the initial value H1 and the amount of change ΔH described above. Specifically, the control unit 40 obtains the initial value D1 and the amount of change ΔD

based on previous setting values of the multi-stage deflector 22 which are stored in the storage unit 50.

[0097] For example, the control unit 40 causes the storage unit 50 to store the setting value D0 of the multi-stage deflector 22 at set time intervals as illustrated in FIG. 15. In addition, the control unit 40 causes the storage unit 50 to store, together with the setting value D0, a time point at which the setting value D0 had been stored.

[0098] The control unit 40 reads the setting values D0 stored in the storage unit 50, calculates a time average DT of the setting values D0, and adopts the calculated time average DT as the initial value D1. In other words, D1 = DT. In this manner, the setting value D0 at a present time point Tnow is estimated from previous setting values D0 to determine the initial value D1. In addition, for example, the control unit 40 calculates a standard deviation σ of the setting values D0 and adopts the calculated standard deviation σ as the amount of change Δ D. In other words, Δ D = σ . In this manner, a variation in the setting value D0 is estimated from a variation in previous setting values D0 to determine the amount of change Δ D.

2.2.3. Calculation Method of Setting Value D0

[0099] Next, a calculation method of the setting value D0 in step S222 will be described.

[0100] The calculation method of the setting value D0 is similar to the calculation method of the setting value H0 described above. Specifically, taking advantage of the fact that the setting value D1, the setting value D2, and the setting value D3 and the first amount of change Δ P1, the second amount of change Δ P2, and the third amount of change Δ P3 are in a linear relationship, a relational expression is obtained from these values. In addition, from the relational expression, the setting value D0 of the multi-stage deflector 22 is obtained at which the amount of change Δ P becomes zero when the setting value of the illumination lens system 24 is changed.

[0101] For example, first, a1, a2, b1, and b2 expressed by the following equations are obtained.

$$a1 = (\Delta P2 - \Delta P1)/(D2 - D1)$$

$$a2 = (\Delta P3 - \Delta P2)/(D3 - D2)$$

$$b1 = (D2 \times \Delta P1 - D1 \times \Delta P2)/(D2 - D1)$$

$$b2 = (D3 \times \Delta P2 - D2 \times \Delta P3)/(D3 - D2)$$

[0102] In this case, when a1 = a2, the setting value D0 is obtained by the following equation.

35

40

45

$$D0 = |b1/a1|$$

[0103] In addition, when |a1| > |a2|, the setting value D0 is obtained by the following equation.

$$D0 = |b1/a1|$$

[0104] Furthermore, when |a1| < |a2|, the setting value D0 is obtained by the following equation.

$$D0 = |b2/a2|$$

2.3. Effects

[0105] For example, the electron microscope 100 according to the second embodiment has the following effects.

[0106] With the electron microscope according to the second embodiment, since the control unit 40 obtains the initial value D1 and the amount of change ΔD in the optimization processing of an incidence angle based on previous setting values of the multi-stage deflector 22, an adjustment of the multi-stage deflector 22 can be accurately performed within a short period of time.

3. Third Embodiment

3.1 Electron Microscope

[0107] Next, an electron microscope according to a third embodiment will be described with reference to the drawings. FIG. 16 is a diagram illustrating a configuration of an electron microscope 300 according to the third embodiment. Hereinafter, in the electron microscope 300 according to the third embodiment, members having similar functions to the components of the electron microscope 100 according to the first embodiment will be denoted by same reference characters and a detailed description thereof will be omitted.

[0108] In the electron microscope 300, the illumination lens system 24 has a dose adjustment lens 240 and an illumination lens 242. It should be noted that the illumination lens 242 is an example of the first optical element and the dose adjustment lens 240 is an example of the second optical element.

[0109] The dose adjustment lens 240 is a lens for controlling a dose of an electron beam with respect to the specimen S by controlling an illumination angle of the electron beam or, in other words, a divergence angle of the electron beam. The illumination lens 242 is a lens for illuminating the specimen S with the electron beam. For example, the illumination lens 242 is arranged to the rear of the dose adjustment lens 240. In the illustrated example, the illumination lens 242 is arranged directly above

the specimen S.

[0110] For example, the dose adjustment lens 240 is used to parallelly illuminate the specimen S with the electron beam. In other words, with the electron microscope 300, Koehler illumination can be realized by the dose adjustment lens 240.

3.2. Control Method of Optical System

[0111] Next, a control method of an optical system of an electron microscope according to the third embodiment will be described. The following description will focus on points that differ from the example of the control method of the optical system of the electron microscope according to the first embodiment described above, and a description of similar points will be omitted.

3.2.1. Optimization Process of Illumination Angle

[0112] In the electron microscope 300, the optical system 20 is controlled by the control unit 40. Hereinafter, processing will be described in which the control unit 40 controls the dose adjustment lens 240 so that an illumination angle of an electron beam which illuminates the specimen S assumes an optimal angle. Hereinafter, this processing will also be referred to as optimization processing of an illumination angle.

[0113] The optimal illumination angle can be set to an arbitrary angle. Hereinafter, a case will be described in which the dose adjustment lens 240 is adjusted so that an electron beam parallelly illuminates the specimen S. [0114] FIG. 17 is a flow chart illustrating an example of the optimization processing of an illumination angle. FIGS. 18 to 20 are diagrams for explaining an operation of the optical system 20 during the optimization processing of an illumination angle. It should be noted that, in FIGS. 18 to 20, only the electron source 10, the dose adjustment lens 240, the illumination lens 242, the imaging lens system 26, and the detector 30 are illustrated for the sake of brevity.

[0115] The control unit 40 determines whether or not the user has issued an instruction to start the optimization processing of an illumination angle (S300).

[0116] When it is determined that a start instruction has been issued (Yes in S300), the control unit 40 calculates an initial value I1 of a setting value In of the dose adjustment lens 240 and an amount of change ΔI of the setting value In of the dose adjustment lens 240 (S302). The setting value In of the dose adjustment lens 240 is a value that controls an illumination angle of an electron beam. A calculation method of the initial value I1 and the amount of change ΔI will be described later.

[0117] Next, the control unit 40 sets the setting value of the dose adjustment lens 240 to the initial value I1 and obtains a first amount of change $\Delta R1$ which is an amount of change of a beam diameter of the electron beam having passed through the illumination lens 242 when the setting value of the illumination lens 242 is changed

(S306 to S316).

[0118] Specifically, first, assuming that n=1 is true (S304), the control unit 40 sets the setting value of the dose adjustment lens 240 to the initial value I1 (S306). As the initial value I1, the value calculated in the processing of step S302 is used.

[0119] Next, the control unit 40 sets the setting value of the illumination lens 242 to a setting value O1 (S308). The setting value O1 can be set to an arbitrary value. In a state where the setting value of the dose adjustment lens 240 is set to the initial value I1 and the setting value of the illumination lens 242 is set to the setting value O1, the control unit 40 measures a beam diameter Ra of the electron beam on the detector 30 as illustrated in FIG. 18 (S310). For example, the control unit 40 acquires a TEM image photographed by the detector 30 and measures the beam diameter Ra from the acquired TEM image.

[0120] Next, the control unit 40 sets the setting value of the illumination lens 242 to a setting value O2 (S312). The setting value O2 is expressed as O2 = O1 + Δ O. The amount of change Δ O can be set to an arbitrary value. The setting value O2 is set to a value that differs from the setting value O1. In a state where the setting value of the dose adjustment lens 240 is set to the initial value I1 and the setting value of the illumination lens 242 is set to the setting value O2, the control unit 40 measures a beam diameter Rb of the electron beam on the detector 30 as illustrated in FIG. 18 (S314). For example, the control unit 40 acquires a TEM image photographed by the detector 30 and measures the beam diameter Rb from the acquired TEM image.

[0121] Next, the control unit 40 calculates a first amount of change $\Delta R1$ = Rb - Ra (S316). According to the steps described above, the first amount of change $\Delta R1$ can be obtained.

[0122] Next, the control unit 40 determines whether or not n = 3 is true (S318), and when it is determined that n = 3 is false (No in S318), the control unit 40 assumes that n = n + 1 is true (S320) and returns to step S306. In addition, the control unit 40 sets the setting value of the dose adjustment lens 240 to a setting value I2 which represents a change by the amount of change ΔI from the initial value I1 and obtains a second amount of change $\Delta R2$ which is an amount of change of the beam diameter of the electron beam having passed through the illumination lens 242 when the setting value of the illumination lens 242 is changed (S306 to S316).

[0123] Specifically, first, the control unit 40 sets the setting value of the dose adjustment lens 240 to the setting value I2 (S306). The setting value I2 is a value as a result of changing the initial value I1 by the amount of change ΔI obtained in step S302. For example, I2 = I1 + ΔI . By having the control unit 40 change the setting value of the dose adjustment lens 240 from the setting value I1 to the setting value 12, the illumination angle of the electron beam changes.

[0124] Next, the control unit 40 sets the setting value

of the illumination lens 242 to the setting value O1 (S308). In a state where the setting value of the dose adjustment lens 240 is set to the setting value I2 and the setting value of the illumination lens 242 is set to the setting value O1, the control unit 40 measures the beam diameter Ra of the electron beam on the detector 30 as illustrated in FIG. 19 (S310).

[0125] Next, the control unit 40 sets the setting value of the illumination lens 242 to the setting value O2 (S312). In a state where the setting value of the dose adjustment lens 240 is set to the setting value I2 and the setting value of the illumination lens 242 is set to the setting value O2, the control unit 40 measures the beam diameter Rb of the electron beam on the detector 30 as illustrated in FIG. 19 (S314)

[0126] Next, the control unit 40 calculates a second amount of change $\Delta R2 = Rb - Ra$ (S316). According to the steps described above, the second amount of change $\Delta R2$ can be obtained.

[0127] Next, the control unit 40 determines whether or not n = 3 is true (S318), and when it is determined that n = 3 is false (No in S318), the control unit 40 assumes that n = n + 1 is true (S320) and returns to step S306. In addition, the control unit 40 sets the setting value of the dose adjustment lens 240 to a setting value I3 which represents a change by an amount of change ΔI from the initial value I1 and obtains a third amount of change $\Delta R3$ which is an amount of change of the beam diameter of the electron beam having passed through the illumination lens 242 when the setting value of the illumination lens 242 is changed (S306 to S316).

[0128] Specifically, first, the control unit 40 sets the setting value of the dose adjustment lens 240 to the setting value I3 (S306). The setting value I3 is a value as a result of changing the initial value I1 by the amount of change ΔI obtained in step S302. For example, I3 = I1 - ΔI . By having the control unit 40 change the setting value of the dose adjustment lens 240 from the setting value I2 to the setting value 13, the illumination angle of the electron beam changes.

[0129] Next, the control unit 40 sets the setting value of the illumination lens 242 to the setting value O1 (S308). In a state where the setting value of the dose adjustment lens 240 is set to the setting value I3 and the setting value of the illumination lens 242 is set to the setting value O1, the control unit 40 measures the beam diameter Ra of the electron beam on the detector 30 as illustrated in FIG. 20 (S310).

[0130] Next, the control unit 40 sets the setting value of the illumination lens 242 to the setting value O2 (S312). In a state where the setting value of the dose adjustment lens 240 is set to the setting value I3 and the setting value of the illumination lens 242 is set to the setting value O2, the control unit 40 measures the beam diameter Rb of the electron beam on the detector 30 as illustrated in FIG. 20 (S314).

[0131] Next, the control unit 40 calculates a third amount of change $\Delta R3 = Rb - Ra$ (S316). According to

20

40

the steps described above, the third amount of change ΔR3 can be obtained.

[0132] The control unit 40 determines whether or not n = 3 is true (S318), and when it is determined that n = 3 is true (Yes in S318), the control unit 40 obtains a setting value 10 of the dose adjustment lens 240 at which an amount of change of the beam diameter of the electron beam having passed through the illumination lens 242 becomes zero when the setting value of the illumination lens 242 is changed based on the first amount of change Δ R1, the second amount of change Δ R2, and the third amount of change Δ R3 (S322). A calculation method of the setting value 10 will be described later.

[0133] The control unit 40 sets the setting value of the dose adjustment lens 240 to the setting value I0 determined in step S322 (S324). Subsequently, the control unit 40 ends the processing.

3.2.2. Calculation of Initial Value I1 and Amount of Change ΔI

[0134] Next, a calculation method of the initial value I1 and the amount of change ΔI in step S302 will be described. FIG. 21 is a diagram for explaining the calculation method of the initial value I1 and the amount of change ΔI .

[0135] The calculation method of the initial value I1 and the amount of change ΔI is similar to the calculation method of the initial value H1 and the amount of change ΔI described above. Specifically, the control unit 40 obtains the initial value I1 and the amount of change ΔI based on previous setting values of the dose adjustment lens 240 which are stored in the storage unit 50.

[0136] The control unit 40 causes the storage unit 50 to store a setting value of the dose adjustment lens 240 at set time intervals. In addition, the control unit 40 causes the storage unit 50 to store, together with the setting value 10, a time point at which the setting value 10 had been stored.

[0137] For example, the control unit 40 reads the setting values I0 stored in the storage unit 50, calculates a time average IT of the setting value 10, and adopts the calculated time average IT as the initial value I1. In other words, I1 = IT. In this manner, the setting value I0 at a present time point Tnow is estimated from previous setting values I0 to determine the initial value I1. In addition, for example, the control unit 40 calculates a standard deviation σ of the setting values I0 and adopts the calculated standard deviation σ as the amount of change ΔI . In other words, $\Delta I = \sigma$. In this manner, a variation in the setting value I0 is estimated from a variation in previous setting values I0 to determine the amount of change ΔI

3.2.3. Calculation Method of Setting Value I0

[0138] Next, a calculation method of the setting value I0 in step S322 will be described.

[0139] FIGS. 22 to 24 are diagrams for explaining a calculation method of the setting value 10.

[0140] The setting value I1, the setting value 12, and the setting value I3 and the first amount of change $\Delta R1$, the second amount of change $\Delta R2$, and the third amount of change $\Delta R3$ are in a linear relationship. Therefore, a relational expression is obtained from these values to obtain the setting value I0 of the dose adjustment lens 240 at which the amount of change ΔR of the beam diameter of an electron beam having passed through the illumination lens 242 becomes zero when the setting value of the illumination lens 242 is changed.

[0141] For example, first, a1, a2, b1, and b2 expressed by the following equations are obtained.

$$a1 = (\Delta R2 - \Delta R1)/(I2 - I1)$$

$$a2 = (\Delta R3 - \Delta R2)/(I3 - I2)$$

$$b1 = (I2 \times \Delta R1 - I1 \times \Delta R2)/(I2 - I1)$$

$$b2 = (I3 \times \Delta R2 - I2 \times \Delta R3)/(I3 - I2)$$

[0142] In this case, as illustrated in FIG. 22, when a1 = a2, the setting value I0 is obtained by the following equation.

$$I0 = |b1/a1|$$

[0143] In addition, as illustrated in FIG. 23, when |a1| > |a2|, the setting value I0 is obtained by the following equation.

$$I0 = |b1/a1|$$

[0144] In addition, as illustrated in FIG. 24, when |a1| < |a2|, the setting value I0 is obtained by the following equation.

$$IO = |b2/a2|$$

[0145] It should be noted that the calculation method of the setting value I0 is not limited to the example described above. For example, while the setting value of the dose adjustment lens 240 is changed such that I1, $I2 = I1 + \Delta I$, and $I3 = I1 - \Delta I$ in the example described above, the setting value of the dose adjustment lens 240 may be changed such that I1, $I2 = I1 + \Delta I$, and $I3 = I1 + 2 \times \Delta I$. Alternatively, for example, the setting value of the dose adjustment lens 240 may be changed such that I1,

 $12 = 11 - \Delta I$, and $13 = 11 - 2 \times \Delta I$.

3.3. Effects

[0146] For example, the electron microscope 300 has the following effects.

[0147] With the electron microscope 300, since the control unit 40 obtains the initial value I1 and the amount of change ΔI in the optimization processing of an illumination angle based on previous setting values of the dose adjustment lens 240, an adjustment of the dose adjustment lens 240 can be accurately performed within a short period of time.

3.4. Modifications

[0148] While a case in which the dose adjustment lens 240 is adjusted so that an electron beam parallelly illuminates the specimen S as optimization processing of an illumination angle has been explained in the example described above, the illumination angle can also be set to an arbitrary angle in the optimization processing of an illumination angle. As described above, the setting value I1, the setting value 12, and the setting value I3 and the first amount of change AR1, the second amount of change $\Delta R2$, and the third amount of change $\Delta R3$ are in a linear relationship. Therefore by obtaining a relationship between the amount of change ΔR and the illumination angle in advance, the dose adjustment lens 240 can also be adjusted so as to realize a desired illumination angle in the optimization processing of an illumination angle.

[0149] It should be noted that the embodiments and the modifications described above are merely examples and the invention is not limited thereto. For example, the respective embodiments and the respective modifications may be combined as deemed appropriate.

[0150] The invention is not limited to the embodiments described above and various modifications can be further made. For example, the invention includes configurations that are substantially the same (for example, in function and method) as the configurations described in the embodiments. The invention also includes configurations in which non-essential elements described in the embodiments are replaced by other elements. The invention further includes configurations obtained by adding known art to the configurations described in the embodiments. [0151] Some embodiments of the invention have been described in detail above, but a person skilled in the art will readily appreciate that various modifications can be made from the embodiments without materially departing from the novel teachings and effects of the invention. Accordingly, all such modifications are assumed to be included in the scope of the invention.

Claims

1. A charged particle beam device comprising:

a charged particle source;

an optical system which acts on a charged particle beam emitted from the charged particle source:

a control unit which controls the optical system; and

a storage unit which stores previous setting values of the optical system,

the optical system including:

a first optical element; and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element, the control unit performing:

processing of obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and processing of changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtaining the setting value of the second optical element based on the change in the state of the charged particle beam.

35 **2.** The charged particle beam device according to claim 1, wherein

the initial value is a time average of the previous setting values of the second optical element which are stored in the storage unit.

The charged particle beam device according to claim 1 or 2, wherein

the control unit performs processing of obtaining an amount of change of the setting value of the second optical element from the initial value based on the previous setting values of the second optical element which are stored in the storage unit, and in the processing of obtaining the setting value of the

second optical element, the control unit changes the setting value of the second optical element by the obtained amount of change.

4. The charged particle beam device according to claim 3. wherein

the amount of change is a standard deviation of the previous setting values of the second optical element which are stored in the storage unit.

40

45

50

15

20

25

5. The charged particle beam device according to any one of claims 1 to 4, wherein the control unit causes the storage unit to store the setting value of the second optical element at predetermined time intervals.

6. The charged particle beam device according to any one of claims 1 to 4, wherein after performing the processing of obtaining the setting value of the second optical element, the control unit causes the storage unit to store the obtained setting value of the second optical element.

7. The charged particle beam device according to any

one of claims 1 to 6, wherein in the processing of obtaining the setting value of the second optical element, the control unit obtains a first amount of change which is an amount of change of a position of the charged particle beam which has passed through the first optical element when a setting value of the first optical element has been changed by setting the setting value of the second optical element to the initial value,

the control unit obtains a second amount of change which is an amount of change of the position of the charged particle beam which has passed through the first optical element when the setting value of the first optical element has been changed by changing the setting value of the second optical element from the initial value, and

the control unit obtains the setting value of the second optical element which makes an amount of change of the position of the charged particle beam which has passed through the first optical element zero when the setting value of the first optical element has been changed based on the first amount of change and the second amount of change.

8. The charged particle beam device according to claim 7, wherein

the first optical element is a multi-stage lens system, the second optical element is a multi-stage deflector, and

the setting value of the second optical element is a value which controls an incidence position of the charged particle beam with respect to the first optical element.

The charged particle beam device according to claim
 , wherein

the first optical element is a multi-stage lens system, the second optical element is a multi-stage deflector, and

the setting value of the second optical element is a value which controls an incidence angle of the charged particle beam with respect to an optical axis of the first optical element.

10. The charged particle beam device according to any one of claims 1 to 6, wherein

the first optical element is an illumination lens which illuminates a specimen with the charged particle beam,

the second optical element is a dose adjustment lens for adjusting an illumination angle of the charged particle beam,

the setting value of the second optical element is a value which controls an illumination angle of the charged particle beam, and

in the processing of obtaining the setting value of the second optical element,

the control unit obtains a first amount of change which is an amount of change of a beam diameter of the charged particle beam which has passed through the first optical element when a setting value of the first optical element has been changed by setting the setting value of the second optical element to the initial value,

the control unit obtains a second amount of change which is an amount of change of the beam diameter of the charged particle beam which has passed through the first optical element when the setting value of the first optical element has been changed by changing the setting value of the second optical element from the initial value, and

the control unit obtains the setting value of the second optical element which makes an amount of change of the beam diameter of the charged particle beam which has passed through the first optical element zero when the setting value of the first optical element has been changed based on the first amount of change and the second amount of change.

11. A control method of an optical system of a charged particle beam device which includes: a charged particle source; an optical system which acts on a charged particle beam emitted from the charged particle source; and a storage unit which stores previous setting values of the optical system, the optical system including a first optical element and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element

the control method comprising:

obtaining an initial value of a setting value of the second optical element based on previous setting values of the second optical element which are stored in the storage unit; and changing a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtaining the setting value of the second optical element based on the change in the state of the charged particle beam.

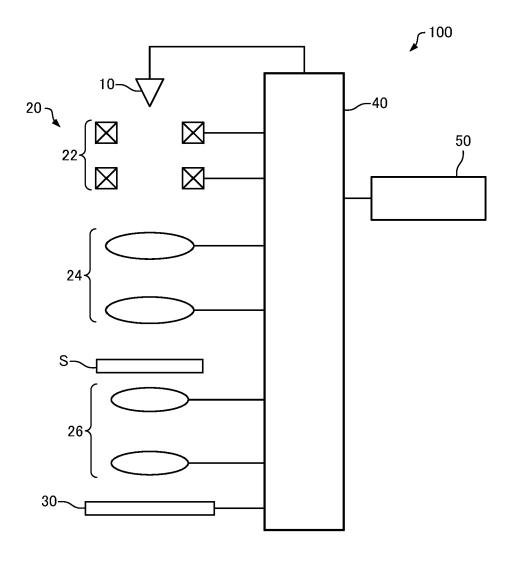
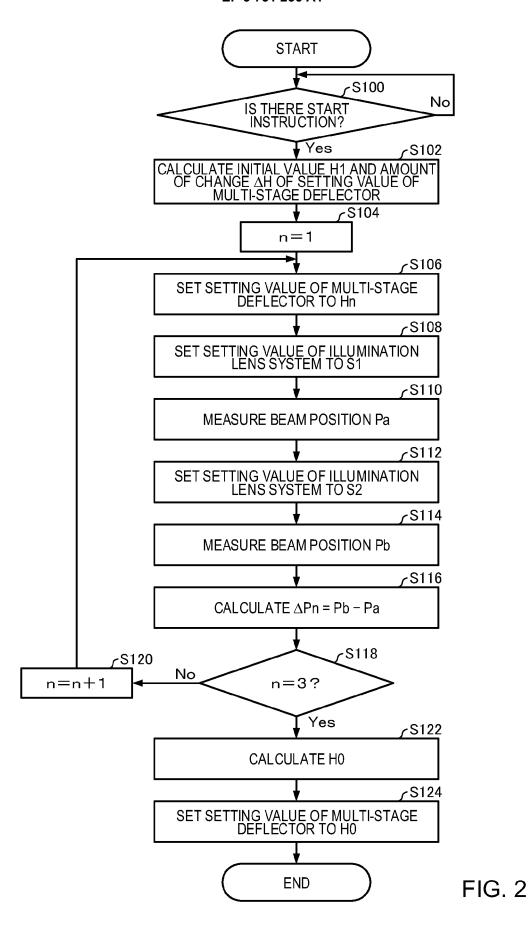



FIG. 1

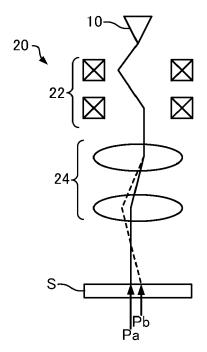


FIG. 3

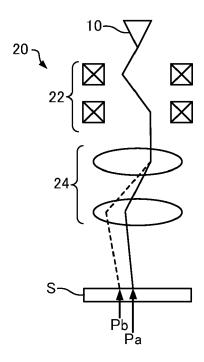
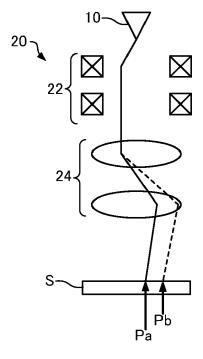
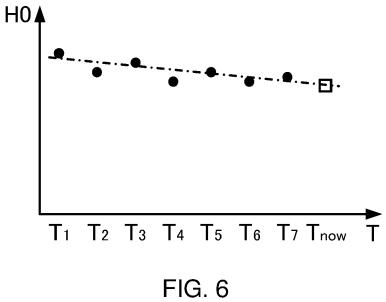




FIG. 4

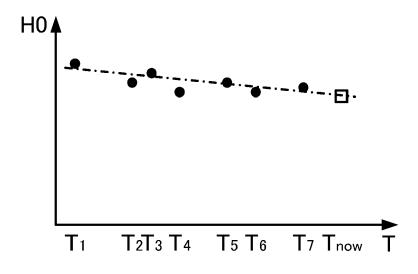


FIG. 7

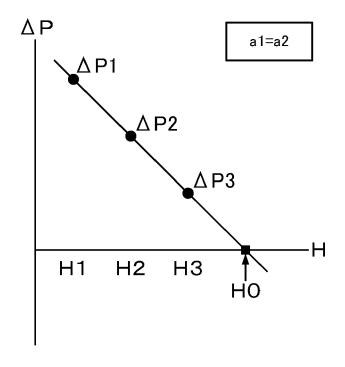


FIG. 8

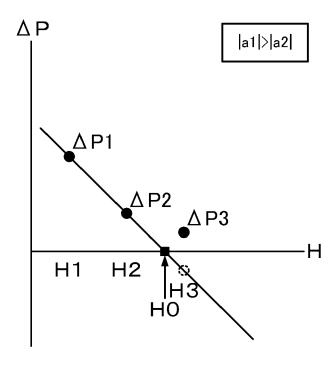


FIG. 9

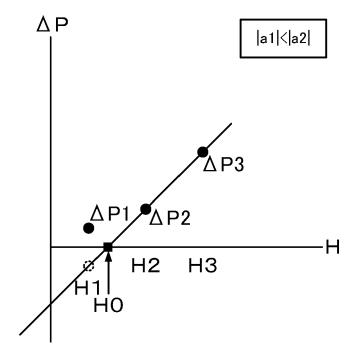


FIG. 10

FIG. 11

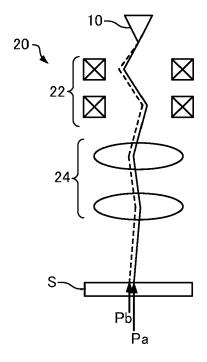


FIG. 12

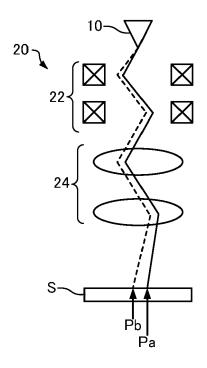


FIG. 13

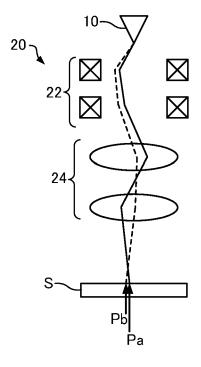


FIG. 14

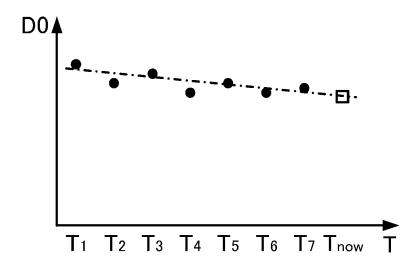


FIG. 15

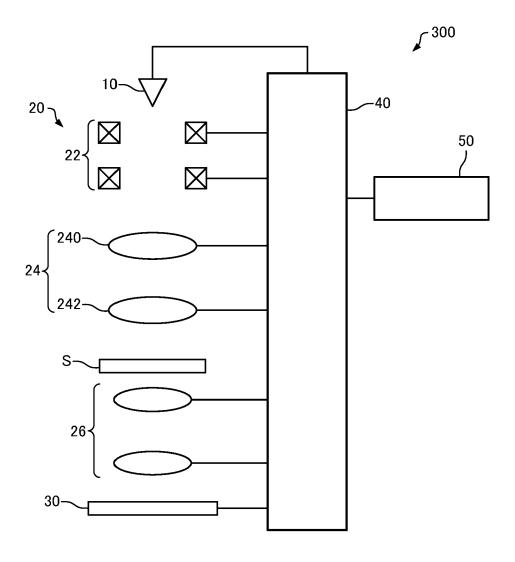
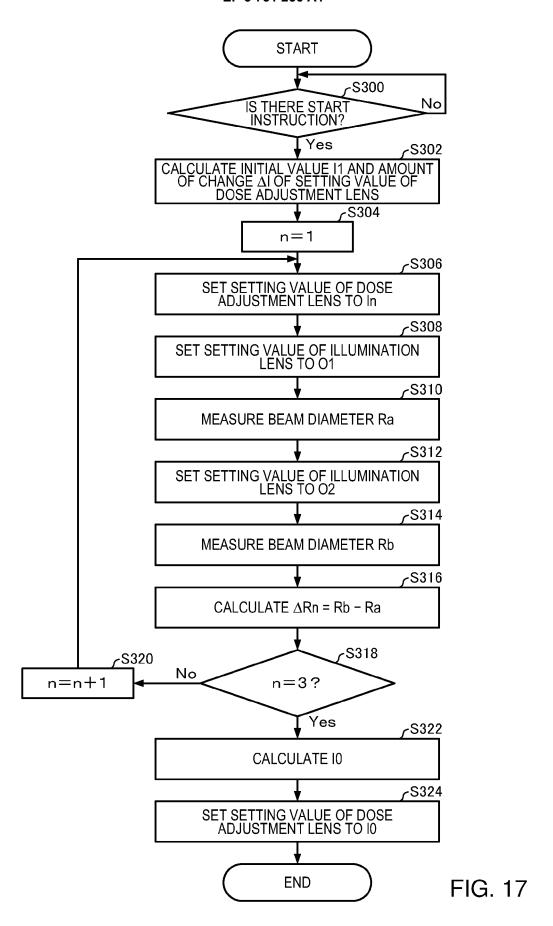



FIG. 16

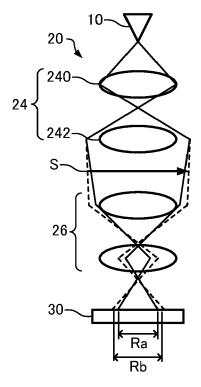


FIG. 18

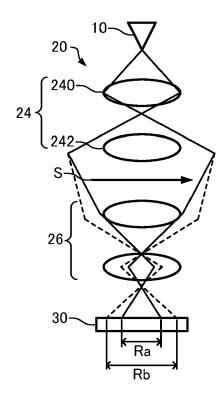


FIG. 19

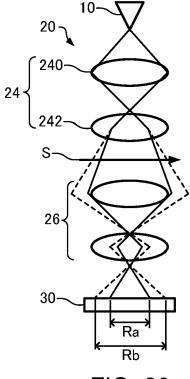
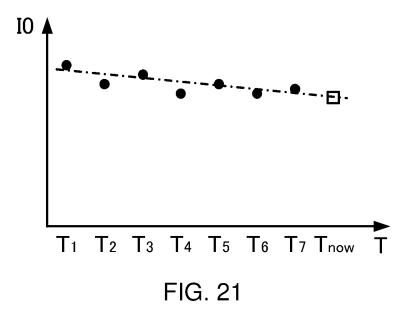



FIG. 20

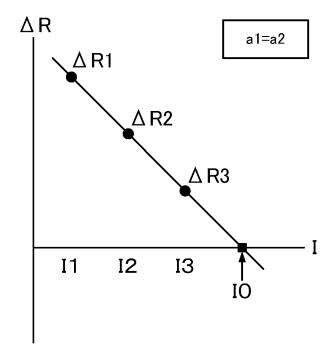


FIG. 22

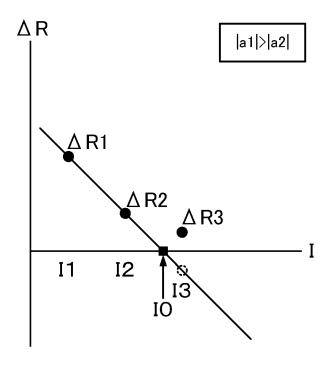
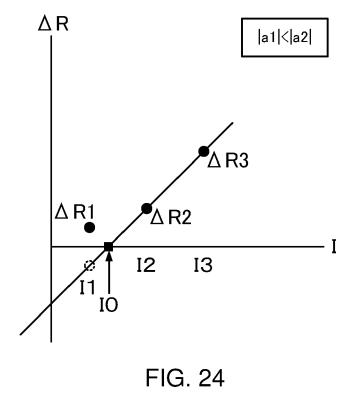



FIG. 23

EUROPEAN SEARCH REPORT

Application Number EP 20 16 4280

5

		DOCUMENTS CONSID						
	Category	Citation of document with in	Relevant	CLASSIFICATION OF THE				
10	Y	US 5 831 265 A (SHI 3 November 1998 (19 * column 1, line 52	NKAWA TAKAO [JP])	1,7-11 2-6	INV. H01J37/147 H01J37/26			
15	Y A	EP 2 672 503 A2 (JE 11 December 2013 (2 * paragraphs [0042]		1,7-11 2-6				
20	Y	ET AL) 18 April 201	 NAKAYAMA TAKAHITO [JP] 9 (2019-04-18) , [0089]; figure 17 *	9				
25	A	EP 1 263 018 A2 (HI 4 December 2002 (20 * paragraphs [0029] [0079]; figures 2,4	02-12-04) , [0066] - [0073],	1-11				
30	A	US 2016/093466 A1 ([JP]) 31 March 2016 * paragraphs [0008] [0033]; figures 1,3	(2016-03-31) - [0012], [0031],	1-11	TECHNICAL FIELDS SEARCHED (IPC)			
35								
40								
45								
2	2	The present search report has be Place of search		Examiner				
50	(10)	Munich	·	Date of completion of the search 15 September 2020 Zuc				
5	X:par Y:par doc A:teo	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anoth ument of the same category nological background 1-written disclosure	nvention shed on, or corresponding					
((P:inte	P : intermediate document document						

EP 3 731 256 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 16 4280

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-09-2020

Oite	Patent document ed in search report		Publication date		Patent family member(s)		Publication date
US	5831265	A	03-11-1998	JP US	H1027563 5831265		27-01-19 03-11-19
EP	2672503	A2	11-12-2013	EP JP US	2672503 2013251225 2013320210	Α	11-12-20 12-12-20 05-12-20
US	2019115185	A1	18-04-2019	JP JP KR TW US US US	6087154 2014138175 20140093638 201445243 2014203185 2016071682 2018076002 2019115185	A A A1 A1 A1	01-03-20 28-07-20 28-07-20 01-12-20 24-07-20 10-03-20 15-03-20 18-04-20
EP	1263018	A2	04-12-2002	EP EP US US	1263018 2309530 2002179851 2004124364 2010006755	A2 A1 A1	04-12-20 13-04-20 05-12-20 01-07-20 14-01-20
US	2016093466	A1	31-03-2016	JP KR TW US	2016072497 20160038779 201624521 2016093466	A A	09-05-20 07-04-20 01-07-20 31-03-20

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 731 256 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2017010608 A [0003]