(19)
(11) EP 3 740 656 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
26.01.2022 Bulletin 2022/04

(21) Application number: 18707591.6

(22) Date of filing: 15.02.2018
(51) International Patent Classification (IPC): 
F01D 5/14(2006.01)
(52) Cooperative Patent Classification (CPC):
F01D 5/143; F05D 2250/293; F05D 2250/292; F05D 2250/184; F05D 2250/192; F05D 2250/193
(86) International application number:
PCT/US2018/018270
(87) International publication number:
WO 2019/160547 (22.08.2019 Gazette 2019/34)

(54)

ARTICLE OF MANUFACTURE

HERSTELLUNGSARTIKEL

ARTICLE DE FABRICATION


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
25.11.2020 Bulletin 2020/48

(73) Proprietor: Siemens Energy Global GmbH & Co. KG
81739 München (DE)

(72) Inventors:
  • GUSTAFSON, Ross
    Charlotte, North Carolina 28210 (US)
  • WONG, Li Shing
    Oviedo, Florida 32765 (US)
  • TAREMI, Farzad
    Palm Beach Gardens, Florida 33410 (US)

(74) Representative: Isarpatent 
Patent- und Rechtsanwälte Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56) References cited: : 
EP-A1- 0 902 167
EP-A2- 1 798 374
US-A1- 2013 004 315
EP-A2- 1 674 659
WO-A1-2015/088699
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to an article of manufacture, more explicitly to rotating turbine blades or stationary turbine vanes for gas turbine engines, and in particular to platforms of turbine blades or vanes.

    BACKGROUND ART



    [0002] In a turbomachine, such as a gas turbine engine, air is pressurized in a compressor section and then mixed with fuel and burned in a combustor section to generate hot combustion gases. The working medium, comprising hot combustion gases is expanded within a turbine section of the engine where energy is extracted to power the compressor section and to produce useful work, such as turning a generator to produce electricity. The working medium travels through a series of turbine stages within the turbine section. A turbine stage may include a row of stationary vanes, followed by a row of rotating blades, where the blades extract energy from the hot combustion gases for providing output.

    [0003] A turbine blade or vane unit typically comprises at least one airfoil extending span-wise from a platform. In some cases, for example, in stationary vanes, the airfoil(s) may extend between two platforms, namely an outer diameter platform and an inner diameter platform. Each platform has a pair of mate faces on laterally opposite ends, which extend from a platform leading edge to a platform trailing edge. Each mate face of the platform engages with an opposite mate face of a circumferentially adjacent blade or vane unit, to form an assembly of a row of turbine blades or vanes. The platforms define an endwall for a flow path of the working medium between circumferentially adjacent airfoils.

    [0004] A turbine blade or a vane unit may be manufactured, for example, by casting, which may be optionally followed by a post-machining process. Manufacturing variation and machining tolerances may lead to a step in the flow path at the interface of the mate faces of the platforms of two circumferentially adjacent airfoils, which may potentially affect engine performance.

    [0005] EP 0 902 167 A1 discloses a segment arrangement for shroud bands, in particular in a gas turbine. The segment arrangement comprises segments arranged next to one another and in each case separated from one another by a gap. The hot-gas stream, in at least one section of the gap, has a velocity component perpendicular to the direction of the gap from a first segment to a second segment. In this case, in said section, along that edge of the first segment which faces the gap, at least one film-cooling bore connects a cooling-air chamber, allocated to the first segment, to the surface subjected to the hot-gas stream.

    [0006] Further, EP 1 798 374 A2 discloses a turbine engine component, such as a turbine blade, which has an airfoil portion, a plurality of cooling passages within the airfoil portion with each of the cooling passages having an inlet for a cooling fluid. Each inlet has a flared bellmouth inlet portion.

    [0007] WO 20015/088699 A1 discloses an array of components in a gas turbine engine which include first and second structures respectively including first and second surfaces that are arranged adjacent to one another to provide a gap. The first and second surfaces respectively have first and second rounded edges at the gap that are arranged in staggered relationship relative to one another.

    [0008] In EP 1 674 659 A2 a turbine airfoil is disclosed which includes opposite pressure and suction sides extending in span from a flowpath surface. The flowpath surface has chordally opposite forward and aft edges and laterally opposite first and second endfaces corresponding with the airfoil pressure and suction sides.

    [0009] Further, US 2013/0004315 A1 discloses a gas turbine engine. In gas turbine engines adjoining pairs of airfoil structures include airfoils mounted to respective platforms. The platforms have side edges defining mate faces that form a mate face gap extending from an upstream edge of the platforms to a downstream edge of the platforms. A flow field of working gas adjacent to endwalls of the platform comprises streamlines extending generally transverse to the axial direction from a first airfoil toward an adjacent second airfoil. The mate face gap has portions oriented transverse to the streamlines and oriented aligned with the streamlines.

    SUMMARY



    [0010] Briefly, aspects of the present invention provide a chambered mate face for turbine blades and vanes. The embodiments described may minimize impact of manufacturing variation on engine performance.

    [0011] According to the invention, an article of manufacture is provided as claimed in claim 1. Advantageous aspects of the invention are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] The invention is shown in more detail by help of figures. The figures show specific configurations and do not limit the scope of the invention.

    FIG. 1 is a perspective view of a turbine blade usable in a gas turbine engine, where embodiments of the present invention may be incorporated;

    FIG. 2 is a schematic sectional view, looking in an axial direction of the gas turbine engine, illustrating a forward facing step at a platform mat face caused by manufacturing variation;

    FIG. 3 is a schematic radial top view of a pair of turbine blades or vanes illustrating an embodiment of the present invention;

    FIG. 4 is a sectional view along the section IV-IV of FIG. 3;

    FIG. 5 is a sectional view along the section V-V of FIG. 3; and

    FIG. 6 is a sectional view, looking in a tangential direction, illustrating a wavy mate face having a chamfered or filleted portion according to an embodiment of the present invention.


    DETAILED DESCRIPTION



    [0013] In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present invention.

    [0014] In the description and drawings, the directional axes A, R and C respectively denote an axial direction, a radial direction and a circumferential direction of a gas turbine engine.

    [0015] Referring now to FIG. 1, a turbine blade 10 is illustrated, wherein an embodiment of the present invention may be implemented. The turbine blade 10 comprises an airfoil 12 extending span-wise radially outward from a platform 14 in relation to a rotation axis A. The blade 10 further comprises a root portion 16 extending radially inward from the platform 14, and being configured to attach the blade 10 to a rotor disk (not shown). The airfoil 12 is formed of an outer wall 18 that delimits a generally hollow airfoil interior. The outer wall 18 includes a generally concave pressure side 20 and a generally convex suction side 22, which are joined at an airfoil leading edge 24 and at an airfoil trailing edge 26. The platform 14 comprises a radially outer surface 15 defining a radially inner boundary for a flow path of a working medium. The platform 14 thereby defines inner diameter endwall for the flow path. The platform 14 extends from a platform leading edge 28 to a platform trailing edge 30. The platform 14 also includes a first mate face 32 and a second mate face 34 spaced in a circumferential or pitch-wise direction C. Each of the mate faces 32 and 34 extends from the platform leading edge 28 to the platform trailing edge 30, with the first mate face 32 being proximal to the suction side 22 of the airfoil 12 and the second mate face 34 being proximal to the pressure side 20 of the airfoil 12. The mate faces 32 and 34 extend radially inward from the radially outer surface 15 of the platform 14 and interface with correspondingly opposite mate faces of circumferentially adjacent platforms to form an assembly of a row of turbine blades.

    [0016] FIG. 2 schematically illustrates a portion of an assembly 100 of a row of turbine blades 10. The assembly 100 includes a first blade 10a having a first airfoil 12a extending from a first platform 14a, and a circumferentially adjacent second blade 10b having a second airfoil 12b extending from a second platform 14b. The first platform 14a has a first mate face 32 proximal to the suction side 22 of the first airfoil 12a. The second platform has a second mate face 34 proximal to the pressure side 20 of the second airfoil 12b. The first and second mate faces 32 and 34 face each other and are separated by a mate face gap G. In the shown example, the radial thickness ta of the first mate face 32 is greater than a design mate thickness t within a manufacturing tolerance, while, the radial thickness tb of the second mate face 34 is lesser than the design mate thickness t within the manufacturing tolerance. Such a manufacturing variation may lead to a step in the flow path at the interface of the mate faces of the platforms of two circumferentially adjacent blades.

    [0017] It has been observed that at least in some regions of the flow path between circumferentially adjacent blades, the mean velocity of the working medium is not purely axial but also has a pitch-wise component, i.e., directed from one platform to the circumferentially adjacent platform. In the example shown in FIG. 2, the mean velocity F of the working medium at the given section has a component which is directed from the second platform 14b to the first platform 14a, whereby a forward facing step is defined at the interface of the mate faces 32, 34. In general, a forward facing step may be said to formed when the mate face of the downstream platform (in relation to the direction of the mean velocity F) extends further into the flow path than the mate face of the upstream platform. The present inventors have recognized that especially a forward facing step, as shown in the example of FIG. 2, may cause aerodynamic losses and heat transfer problems due to flow separation and vortex formation at the platform mate faces. Embodiments of the present invention address at least the above described technical problem. In particular, the embodiments illustrated in FIG. 3-5 are directed to providing a chamfer and/or fillet along a portion of the mate face of one of the platforms, which is at a downstream position with respect to a circumferentially adjacent platform, in relation to the direction of the mean velocity of the working medium.

    [0018] FIG. 3 illustrates portion of an assembly 100 of turbine blades 10 according to one embodiment of the present invention. Each blade 10 may include one or more airfoils 12 extending from a platform 14. In the example shown, a first airfoil 12a extends span-wise from a first platform 14a and a second airfoil 12b extends span-wise from a second platform 14b circumferentially adjacent to the first platform 14a. Each of the airfoils 12a, 12b comprises a respective outer wall 18 formed of a pressure side 20 and a suction side 22 joined at a respective airfoil leading edge 24 and at a respective airfoil trailing edge 26. Each of the first and second platforms 14a and 14b extends from a respective platform leading edge 28 to a respective platform trailing edge 30. Each of the platforms 14a and 14b further includes a pair of mate faces 32, 34 spaced in a circumferential or pitch-wise direction C. The pair of mate faces include a first mate face 32 proximal to the suction side 22 of the respective airfoil 12a or 12b, and a second mate face 34 proximal to the pressure side 20 of the respective airfoil 12a or 12b. The first mate face 32 of the first platform 14a is parallel to and faces the second mate face 34 of the second platform 14b along a platform splitline 80 extending between the platform leading and trailing edges 28, 30. A flow path for a working medium is defined between the suction side 22 of the first airfoil 12a and the pressure side 20 of the second airfoil 12b. The working medium flows in a generally axial direction from the platform leading edge 28 to the platform trailing edge 30, with the mean velocity varying in direction, as may be represented by the directional arrow F for the purpose of illustration.

    [0019] It has been observed that especially toward the aft end of the interface between the mate faces 32, 34, the mean velocity F is typically directed from the second platform 14b to the first platform 14a, with the flow Mach numbers being highest near the platform trailing edge 30. In the present embodiment, as shown in FIG. 4 with continued reference to FIG. 3, the first mate face 32 of the first platform 14a may be chamfered or filleted along an aft portion 36 thereof. In particular, the first mate face 32 may be chamfered or filleted to an extent such that the chamfered or filleted portion 36 lies in a region in the flow path where a mean velocity F of the working medium is directed from the second platform 14b to the first platform 14a. The second mate face 34 of the second platform 14b may be unchamfered and unfilleted along the extent thereof that lies directly opposite to the chamfered or filleted portion 36 of the first mate face 32 of the first platform 14a.

    [0020] In particular, as shown in FIG. 3, the chamfered or filleted portion 36 of the first mate face 32 of the first platform 14a extends from the platform trailing edge 30 of the first platform 14a to a first intermediate point 42 on the first mate face 32 of the first platform 14a. The first intermediate point 42 is located between the platform leading edge 28 and the platform trailing edge 30 of the first platform 14a. The location of the first intermediate point 42 may be based, for example, on the determination of a point of inflection 82 on the first mate face 32. In an exemplary embodiment, such a point 82 may be determined by first determining a point 90 of tangency of a line 32' parallel to the first mate face 32 to the mean camber line 40 of one of the airfoils, and projecting said point 90 on the first mate face 32 along the circumferential direction C to locate the point 82 on the first mate face 32, as shown in FIG. 3. The first intermediate point 42 on the first mate face 32 may lie at or aft of the point 82. In other embodiments, the extent of the chamfered or filleted portion 36 on the first mate face 32 may be determined by other means, including, for example, consideration of flow velocities during engine operation.

    [0021] As shown in FIG. 4, in one embodiment, the chamfered portion of the first mate face 32 of the first platform 14a comprises a chamfered surface 50 extending radially from a first chamfer edge 52 to a second chamfer edge 54 at a chamfer angle α1, which may be, for example and without limitation, 30 to 70 degrees, particularly about 40 to 50 degrees, with respect to the radial direction R. In an alternate embodiment, a similar technical effect may be realized by providing a fillet comprising a rounded surface 50' (shown with dashed lines) with predefined radius r1 extending between the edges 52, 54. The radial height t1 of the chamfered or filleted surface 50, 50' may dependent on the manufacturing process tolerances. In some embodiments, the chamfer height t1 may range from 0.5% to 2% pitch distance of the blade/vane assembly. The chamfered or filleted surface 50, 50' on the mate face 32 of the downstream platform 14a may reduce flow separation and vortex formation at the interface of the mate faces 32, 34, thereby minimizing aerodynamic losses and heat transfer issues that may be potentially caused by a forward facing step due to manufacturing variation. Referring to FIG. 3, the first mate face 32 of the second platform 14b may be provided with a similarly chamfered or filleted portion 36 at an aft portion, while the second mate face 34 of the first platform 14a may be provided with a corresponding unchamfered and unfilleted portion along an extent of the second mate face 34 that lies pitch-wise directly opposite to the chamfered or filleted portion 36 of the first mate face 32.

    [0022] In a further embodiment, as shown in FIG. 3 and 5, the second mate face 34 of the second platform 14b may be chamfered or filleted along a forward portion 38 thereof. This embodiment may be applicable to configurations in which the mean velocity F of the working medium has a pitch-wise component directed from the first platform 14a to the second platform 14b at a forward portion of the interface of the mate faces 32, 34. Accordingly, the second mate face 34 of the second platform 14b may be chamfered or filleted to an extent such that that the chamfered or filleted portion 38 lies in a region in the flow path where a mean velocity F of the working medium is directed from the first platform 14a to the second platform 14b. The first mate face 32 of the first platform 14a may be unchamfered and unfilleted along the extent thereof that lies directly opposite to the chamfered or filleted portion 38 of the second mate face 34 of the second platform 14b. The choice of having the chamfered (or filleted) portion 38 on the second mate face 34 may depend, for example, on a combination of blade geometry and engine flow parameters. For example, in some configurations, the mean velocity in the flow path may be substantially axial in the forward portion, whereby the need for chamfering or filleting a forward portion of the second mate face 34 may be obviated.

    [0023] In the illustrated embodiment as shown in FIG. 3, the chamfered or filleted portion 38 of the second mate face 34 of the second platform 14b extends between the platform leading edge 28 of the second platform 14b and a second intermediate point 44 on the second mate face 34 of the second platform 14b. The second intermediate point 44 is located between the platform leading edge 28 and the platform trailing edge 30 of the second platform 14b. The chamfered or filleted portion 38 of the second mate face 34 may extend all the way up to the platform leading edge 28 of the second platform 14b or may stop short at a distance therefrom. The location of the second intermediate point 44 may be based, for example, on the determination of a point of inflection 84 on the second mate face 34. In an exemplary embodiment, such a point 84 may be determined by first determining a point 90 of tangency of a line 34' parallel to the second mate face 34 to the mean camber line 40 of one of the airfoils 12, and projecting the point 90 on the second mate face 34 along the circumferential direction C to locate the point 84 on the second mate face 34, as shown in FIG. 3. The second intermediate point 44 on the second mate face 34 may lie at or forward of the point 84. In other embodiments, the extent of the chamfered or filleted portion 38 on the second mate face 34 may be determined by other means, including, for example, consideration of flow velocities during engine operation.

    [0024] As shown in FIG. 5, in one embodiment, the chamfered portion of the second mate face 34 of the second platform 14b comprises a chamfered surface 60 extending radially from a first chamfer edge 62 to a second chamfer edge 64 at a chamfer angle α2, which may be, for example and without limitation, 30 to 70 degrees, particularly about 40 to 50 degrees, with respect to the radial direction R. In an alternate embodiment, a similar technical effect may be realized by providing a fillet comprising a rounded surface 60' (shown with dashed lines) with predefined radius r2 extending between the edges 62, 64. The radial height t2 of the chamfered or filleted surface 60, 60' may dependent on the manufacturing process tolerances. In some embodiments, the chamfer height t2 may range from 0.5% to 2% pitch distance of the blade/vane assembly. The chamfered or filleted surface 60, 60' on the mate face 34 of the downstream platform 14b may reduce flow separation and vortex formation at the interface of the mate faces 32, 34, thereby minimizing aerodynamic losses and heat transfer issues that may be potentially caused by a forward facing step due to manufacturing variation. Referring to FIG. 3, the second mate face 34 of the first platform 14a may be provided with a similarly chamfered or filleted portion 38 at a forward portion, while the first mate face 32 of the second platform 14b may be provided with a corresponding unchamfered and unfilleted portion along an extent of the first mate face 32 that lies pitch-wise directly opposite to the chamfered or filleted portion 38 of the second mate face 34.

    [0025] In a still further embodiment, the platforms 14a, 14b may define a contoured endwall facing the flow path, which is non-axisymmetric about the engine axis. In particular, a non-axisymmetric endwall may comprise one or more hills 48 and /or troughs 46 formed on the endwall, as shown by dashed lines in FIG. 3. A hill be may be defined as a contour wherein the endwall extends into the flow path in relation to a nominal radius of the endwall, whereas a trough may be defined as a contour wherein the endwall extends away from the flow path in relation to the nominal radius of the end wall. In one embodiment, at least one hill 48 and/or trough 46 may extend across the platform splitline 80, as shown in FIG. 3. In such a case, manufacturing variations caused by standard tolerances may lead to a steeper forward facing step than in a configuration without endwall contouring. The provision of a chamfer at the downstream platform is especially advantageous for contoured endwalls, to maximize the aerodynamic benefits provided by the contouring of the endwall. As shown in FIG. 6, on account of the non-axisymmetric endwall contouring, the first mate face 32 and/or the second mate face 34 have a wavy contour 70, in a direction from the platform leading edge 28 to the platform trailing edge 30. The wavy contour 70 comprises a radial amplitude. In accordance with one embodiment, the chamfered or filleted portions 36, 38 respectively of the first and second mate faces 32, 34 may have a respective chamfer surface 50/50', 60/60' that follows said wavy contour 70, that is, the first chamfer/fillet edge 52, 62 is parallel to the respective second chamfer/fillet edge 54, 64, as shown in FIG. 6.

    [0026] The above-described embodiments relate to inner diameter platforms of rotating turbine blades, wherein the first and second platforms 14a and 14b define an inner diameter endwall for the flow path of the working medium. In alternate embodiments, aspects of the present invention may be applied to inner or outer diameter platforms of stationary turbine vanes, wherein the platforms may define an inner or an outer diameter endwall for the flow path of the working medium.

    [0027] While specific embodiments have been described in detail, those with ordinary skill in the art will appreciate that various modifications and alternative to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims.


    Claims

    1. An article of manufacture, wherein the article of manufacture is a turbine blade (10) or a turbine vane, wherein the article of manufacture comprises:

    at least one platform (14) of the turbine blade and the vane, respectively;

    one or more airfoils (12) extending span-wise from the platform (14);

    wherein each of said one or more airfoils (12) comprises an outer wall (18) formed of a pressure side (20) and a suction side (22) joined at an airfoil leading edge (24) and at an airfoil trailing edge (26),

    wherein the platform (14) extends from a platform leading edge (28) to a platform trailing edge (30),

    wherein the platform (14) comprises a first mate face (32) and a second mate face (34) spaced along a pitch-wise direction (C), the first mate face (32) being proximal to the suction side (22) of one of the airfoils (12) and the second mate face (34) being proximal to the pressure side (20) of the same airfoil (12) or a different airfoil of said one or more airfoils (12), the first (32) and second (34) mate faces extending between the platform leading edge (28) and the platform trailing edge (30),

    wherein the first mate face (32) is chamfered or filleted along an aft portion (36) thereof, the chamfered or filleted portion (36) of the first mate face (32) extending from the platform trailing edge (30) to a first intermediate point (42) on the first mate face (32) located between the platform leading edge (28) and the platform trailing edge (30),

    wherein the first (32) and the second (34) mate faces have a wavy contour (70) in a direction from the respective platform leading edge (28) to the respective platform trailing edge (30),

    wherein the wavy contour (70) comprises a radial amplitude,

    wherein a chamfered or filleted portion (36, 38) of the first mate face (32) and the second mate face (34) have a chamfer or filleted surface (50, 60; 50', 60'),

    wherein the chamfer surface (50, 60) of the first mate face (32) and the second mate face (34) extends radially from a first chamfer edge (52, 62) to a second chamfer edge (54, 64) of the first (32) and the second (34) mate faces at a chamfer angle (α1, α2) with respect to the radial direction R, and

    wherein the filleted surface (50', 60') of the first mate face (32) and the second mate face (34) comprises a rounded surface (50', 60') extending between a first and second fillet edge (52, 62; 54, 64),

    wherein the chamfer or filleted surface (50, 60; 50', 60') of the first mate face (32) and the second mate face (34) follows said wavy contour (70), wherein the first chamfer edge (52, 62) is parallel to the second chamfer edge (54, 64) and the first fillet edge (52, 62) is parallel to the second fillet edge (54, 64).


     
    2. The article of manufacture (10) according to claim 1, wherein the first intermediate point (42) lies at or aft of a point (82) of tangency of a line (32') parallel to the first mate face (32) to a mean camber line (40) of the airfoil (12), as projected on the first mate face (32) along the pitch-wise direction (C).
     
    3. The article of manufacture (10) according to any of claims 1 and 2, wherein the second mate face (34) is chamfered or filleted along a forward portion (38) thereof,

    wherein the chamfered or filleted portion (38) of the second mate face (34) extends partially or entirely between the platform leading edge (28) and a second intermediate point (44) on the second mate face (34) located between the platform leading edge (28) and the platform trailing edge (30) of the second platform (14b),

    wherein the second intermediate point (44) lies at or forward of a point (84) of tangency of a line (34') parallel to the second mate face (34) to a mean camber line (40) of the airfoil (12), as projected on the second mate face (34) along the pitch-wise direction (C).


     
    4. The article of manufacture (10) according to any of claim 1 to 3, comprising

    a first platform (14a) and a second platform (14b) of the turbine blade and the vane, respectively;

    a first airfoil (12a) extending span-wise from a first platform (14a) and a second airfoil (12b) extending span-wise from a second platform (14b),

    wherein each of the first (12a) and second (12b) airfoils comprises the respective outer wall (18) formed of the pressure side (20) and the suction side (22) joined at the respective airfoil leading edge (24) and at the respective airfoil trailing edge (26),

    wherein each of the first (14a) and second (14b) platforms extends from the respective platform leading edge (28) to the respective platform trailing edge (30),

    wherein the first platform (14a) comprises the first mate face (32) proximal to the suction side (22) of the first airfoil (12a) and the second platform (14b) comprises the second mate face (34) proximal to the pressure side (20) of the second airfoil (12b), the first mate face (32) facing the second mate face (34) along a platform splitline (80) extending between the platform leading (28) and trailing (30) edges of the first (14a) and second (14b) platforms,

    wherein a flow path for a working medium is defined between the suction side (22) of the first airfoil (12a) and the pressure side (20) of the second airfoil (12b),

    wherein the first mate face (32) is chamfered or filleted along the aft portion (36) thereof, the chamfered or filleted portion (36) of the first mate face (32) lying in a region in the flow path where a mean velocity (F) of the working medium is directed from the second platform (14b) to the first platform (14a),

    wherein the first (14a) and second (14b) platforms define a contoured endwall facing the flow path, the contoured endwall being non-axisymmetric about a central axis (A) of an assembly of turbine blades (10) or vanes, wherein the contoured endwall comprises at least one trough (46) or hill (48) that extends across the platform splitline (80),

    wherein the first (32) and the second (34) mate faces have the wavy contour (70) in a direction from the respective platform leading edge (28) to the respective platform trailing edge (30),

    wherein the chamfered or filleted portion (36, 38) of the first mate face (32) and the second mate face (34) have the respective chamfer surface (50/50', 60/60') that follows said wavy contour (70).


     
    5. The article of manufacture (10) according to claim 4, wherein the chamfered or filleted portion (36) of the first mate face (32) extends from the platform trailing edge (30) of the first platform (14a) to a first intermediate point (42) on the first mate face (32) located between the platform leading edge (28) and the platform trailing edge (30) of the first platform (14a).
     
    6. The article of manufacture (10) according to claim 5, wherein the first intermediate point (42) lies at or aft of a point (82) of tangency of a line (32') parallel to the first mate face (32) to a mean camber line (40) of the first and second airfoils (12a, 12b), as projected on the first mate face (32) along a circumferential direction (C) of the assembly of turbine blades (10) or vanes.
     
    7. The article of manufacture (10) according to any of claims 4 to 6, wherein second mate face (34) is chamfered or filleted along a forward portion (38) thereof, the chamfered or filleted portion (38) of the second mate face (34) lying in a region in the flow path where a mean velocity (F) of the working medium is directed from the first platform (14a) to the second platform (14b).
     
    8. The article of manufacture (10) according to claim 7, wherein the chamfered or filleted portion (38) of the second mate face (34) extends between the platform leading edge (28) of the second platform (14b) and a second intermediate point (44) on the second mate face (34) located between the platform leading edge (28) and the platform trailing edge (30) of the second platform (14b).
     
    9. The article of manufacture (10) according to claim 8, wherein the second intermediate point (44) lies at or forward of a point (84) of tangency of a line (34') parallel to the second mate face (34) to a mean camber line (40) of the first and second airfoils (12a, 12b), as projected on the second mate face (34) along a circumferential direction (C) of the assembly of turbine blades (10) or vanes.
     
    10. The article of manufacture (10) according to any of claims 4 to 9, wherein the article of manufacture (10) is the assembly of turbine blades, wherein the first and second platforms define an inner diameter endwall for the flow path.
     
    11. The article of manufacture (10) according to any of claims 4 to 9, wherein the article of manufacture (10) is the assembly of turbine vanes, wherein the first and second platforms define an inner or an outer diameter endwall for the flow path.
     


    Ansprüche

    1. Herstellungsartikel, wobei der Herstellungsartikel eine Turbinenschaufel (10) oder eine Turbinenleitschaufel ist,
    wobei der Herstellungsartikel umfasst:

    mindestens eine Plattform (14) der Turbinenschaufel bzw. der Leitschaufel;

    ein oder mehrere Schaufelblätter (12), die sich spannweitenwärtig von der Plattform (14) erstrecken;

    wobei jedes des einen oder der mehreren Schaufelblätter (12) eine Außenwand (18) umfasst, die aus einer Druckseite (20) und einer Saugseite (22) ausgebildet ist, die an einer Schaufelblattvorderkante (24) und an einer Schaufelblatthinterkante (26) verbunden sind,

    wobei sich die Plattform (14) von einer Plattformvorderkante (28) zu einer Plattformhinterkante (30) erstreckt,

    wobei die Plattform (14) eine erste Passfläche (32) und eine zweite Passfläche (34) umfasst, die entlang einer Steigungsrichtung (C) beabstandet sind, wobei die erste Passfläche (32) proximal zu der Saugseite (22) eines der Schaufelblätter (12) ist und die zweite Passfläche (34) proximal zu der Druckseite (20) desselben Schaufelblatts (12) oder eines anderen Schaufelblatts des einen oder der mehreren Schaufelblätter (12) ist, wobei sich die ersten (32) und zweiten (34) Passflächen zwischen der Plattformvorderkante (28) und der Plattformhinterkante (30) erstrecken,

    wobei die erste Passfläche (32) entlang eines hinteren Abschnitts (36) davon gefast oder gekehlt ist, wobei sich der gefaste oder gekehlte Abschnitt (36) der ersten Passfläche (32) von der Plattformhinterkante (30) zu einem ersten Zwischenpunkt (42) auf der ersten Passfläche (32) erstreckt, der sich zwischen der Plattformvorderkante (28) und der Plattformhinterkante (30) befindet,

    wobei die ersten (32) und die zweiten (34) Passflächen eine wellenförmige Kontur (70) in einer Richtung von der jeweiligen Plattformvorderkante (28) zu der jeweiligen Plattformhinterkante (30) aufweisen, wobei die wellenförmige Kontur (70) eine radiale Amplitude umfasst,

    wobei ein gefaster oder gekehlter Abschnitt (36, 38) der ersten Passfläche (32) und der zweiten Passfläche (34) eine gefaste oder gekehlte Oberfläche (50, 60; 50', 60') aufweist,

    wobei sich die Fasenoberfläche (50, 60) der ersten Passfläche (32) und der zweiten Passfläche (34) radial von einer ersten Fasenkante (52, 62) zu einer zweiten Fasenkante (54, 64) der ersten (32) und der zweiten (34) Passflächen in einem Fasenwinkel (α1, α2) in Bezug auf die radiale Richtung R erstreckt, und

    wobei die gekehlte Oberfläche (50', 60') der ersten Passfläche (32) und der zweiten Passfläche (34) eine abgerundete Oberfläche (50', 60') umfasst, die sich zwischen einer ersten und zweiten Kehlungskante (52, 62; 54, 64) erstreckt,

    wobei die gefaste oder gekehlte Oberfläche (50, 60; 50', 60') der ersten Passfläche (32) und der zweiten Passfläche (34) der wellenförmigen Kontur (70) folgt, wobei die erste Fasenkante (52, 62) parallel zu der zweiten Fasenkante (54, 64) ist und die erste Kehlungskante (52, 62) parallel zu der zweiten Kehlungskante (54, 64) ist.


     
    2. Herstellungsartikel (10) nach Anspruch 1, wobei der erste Zwischenpunkt (42) an oder hinter einem Tangentialpunkt (82) einer Linie (32') parallel zu der ersten Passfläche (32) zu einer mittleren Krümmungslinie (40) des Schaufelblatts (12), projiziert auf der ersten Passfläche (32) entlang der Steigungsrichtung (C), liegt.
     
    3. Herstellungsartikel (10) nach einem der Ansprüche 1 und 2, wobei die zweite Passfläche (34) entlang eines vorderen Abschnitts (38) davon gefast oder gekehlt ist,

    wobei sich der gefaste oder gekehlte Abschnitt (38) der zweiten Passfläche (34) teilweise oder vollständig zwischen der Plattformvorderkante (28) und einem zweiten Zwischenpunkt (44) auf der zweiten Passfläche (34) erstreckt, der sich zwischen der Plattformvorderkante (28) und der Plattformhinterkante (30) der zweiten Plattform (14b) befindet,

    wobei der zweite Zwischenpunkt (44) an oder vor einem Tangentialpunkt (84) einer Linie (34') parallel zu der zweiten Passfläche (34) zu einer mittleren Krümmungslinie (40) des Schaufelblatts (12), projiziert auf der zweiten Passfläche (34) entlang der Steigungsrichtung (C), liegt.


     
    4. Herstellungsartikel (10) nach einem der Ansprüche 1 bis 3, umfassend

    eine erste Plattform (14a) und eine zweite Plattform (14b) der Turbinenschaufel bzw. der Leitschaufel;

    ein erstes Schaufelblatt (12a), das sich spannweitenwärtig von einer ersten Plattform (14a) erstreckt, und ein zweites Schaufelblatt (12b), das sich spannweitenwärtig von einer zweiten Plattform (14b) erstreckt,

    wobei jedes der ersten (12a) und zweiten (12b) Schaufelblätter die jeweilige Außenwand (18) umfasst, die aus der Druckseite (20) und der Saugseite (22) ausgebildet ist, die an der jeweiligen Schaufelblattvorderkante (24) und an der jeweiligen Schaufelblatthinterkante (26) verbunden sind,

    wobei sich jede der ersten (14a) und zweiten (14b) Plattformen von der jeweiligen Plattformvorderkante (28) zu der jeweiligen Plattformhinterkante (30) erstreckt,

    wobei die erste Plattform (14a) die erste Passfläche (32) proximal zu der Saugseite (22) des ersten Schaufelblatts (12a) umfasst und die zweite Plattform (14b) die zweite Passfläche (34) proximal zu der Druckseite (20) des zweiten Schaufelblatts (12b) umfasst, wobei die erste Passfläche (32) der zweiten Passfläche (34) entlang einer Plattformteilungslinie (80) zugewandt ist, die sich zwischen den Plattformvorder- (28) und -hinter(30)-Kanten der ersten (14a) und zweiten (14b) Plattformen erstreckt,

    wobei ein Strömungsweg für ein Arbeitsmedium zwischen der Saugseite (22) des ersten Schaufelblatts (12a) und der Druckseite (20) des zweiten Schaufelblatts (12b) definiert ist,

    wobei die erste Passfläche (32) entlang des hinteren Abschnitts (36) davon gefast oder gekehlt ist, wobei der gefaste oder gekehlte Abschnitt (36) der ersten Passfläche (32) in einer Region in dem Strömungsweg liegt, wo eine mittlere Geschwindigkeit (F) des Arbeitsmediums von der zweiten Plattform (14b) zu der ersten Plattform (14a) gerichtet ist,

    wobei die ersten (14a) und zweiten (14b) Plattformen eine konturierte Endwand definieren, die dem Strömungsweg zugewandt ist, wobei die konturierte Endwand nicht-achsensymmetrisch um eine Mittelachse (A) einer Baugruppe von Turbinenschaufeln (10) oder Leitschaufeln ist, wobei die konturierte Endwand mindestens eine Vertiefung (46) oder Erhöhung (48) umfasst, die sich über die Plattformteilungslinie (80) erstreckt,

    wobei die ersten (32) und die zweiten (34) Passflächen die wellenförmige Kontur (70) in einer Richtung von der jeweiligen Plattformvorderkante (28) zu der jeweiligen Plattformhinterkante (30) aufweisen,

    wobei der gefaste oder gekehlte Abschnitt (36, 38) der ersten Passfläche (32) und der zweiten Passfläche (34) die jeweilige Fasenoberfläche (50/50', 60/60') aufweist, die der wellenförmigen Kontur (70) folgt.


     
    5. Herstellungsartikel (10) nach Anspruch 4, wobei sich der gefaste oder gekehlte Abschnitt (36) der ersten Passfläche (32) von der Plattformhinterkante (30) der ersten Plattform (14a) zu einem ersten Zwischenpunkt (42) an der ersten Passfläche (32) erstreckt, der sich zwischen der Plattformvorderkante (28) und der Plattformhinterkante (30) der ersten Plattform (14a) befindet.
     
    6. Herstellungsartikel (10) nach Anspruch 5, wobei der erste Zwischenpunkt (42) an oder hinter einem Tangentialpunkt (82) einer Linie (32') parallel zu der ersten Passfläche (32) zu einer mittleren Krümmungslinie (40) der ersten und zweiten Schaufelblätter (12a, 12b), projiziert auf der ersten Passfläche (32) entlang einer Umfangsrichtung (C) der Baugruppe von Turbinenschaufeln (10) oder Leitschaufeln, liegt.
     
    7. Herstellungsartikel (10) nach einem der Ansprüche 4 bis 6, wobei die zweite Passfläche (34) entlang eines vorderen Abschnitts (38) davon gefast oder gekehlt ist, wobei der gefaste oder gekehlte Abschnitt (38) der zweiten Passfläche (34) in einer Region in dem Strömungsweg liegt, wo eine mittlere Geschwindigkeit (F) des Arbeitsmediums von der ersten Plattform (14a) zu der zweiten Plattform (14b) gerichtet ist.
     
    8. Herstellungsartikel (10) nach Anspruch 7, wobei sich der gefaste oder gekehlte Abschnitt (38) der zweiten Passfläche (34) zwischen der Plattformvorderkante (28) der zweiten Plattform (14b) und einem zweiten Zwischenpunkt (44) auf der zweiten Passfläche (34) erstreckt, der sich zwischen der Plattformvorderkante (28) und der Plattformhinterkante (30) der zweiten Plattform (14b) befindet.
     
    9. Herstellungsartikel (10) nach Anspruch 8, wobei der zweite Zwischenpunkt (44) an oder vor einem Tangentialpunkt (84) einer Linie (34') parallel zu der zweiten Passfläche (34) zu einer mittleren Krümmungslinie (40) der ersten und zweiten Schaufelblätter (12a, 12b), projiziert auf der zweiten Passfläche (34) entlang einer Umfangsrichtung (C) der Baugruppe von Turbinenschaufeln (10) oder Leitschaufeln, liegt.
     
    10. Herstellungsartikel (10) nach einem der Ansprüche 4 bis 9, wobei der Herstellungsartikel (10) die Baugruppe von Turbinenschaufeln ist, wobei die ersten und zweiten Plattformen eine Innendurchmesserendwand für den Strömungsweg definieren.
     
    11. Herstellungsartikel (10) nach einem der Ansprüche 4 bis 9, wobei der Herstellungsartikel (10) die Baugruppe von Turbinenleitschaufeln ist, wobei die ersten und zweiten Plattformen eine Innen- oder eine Außendurchmesserendwand für den Strömungsweg definieren.
     


    Revendications

    1. Article de fabrication, dans lequel l'article de fabrication est une aube de turbine (10) ou une ailette de turbine,
    dans lequel l'article de fabrication comprend :

    au moins une plate-forme (14) de l'aube de turbine et de l'ailette, respectivement ;

    un ou plusieurs profils aérodynamiques (12) s'étendant dans le sens de l'envergure depuis la plate-forme (14) ;

    dans lequel chacun desdits un ou plusieurs profils aérodynamiques (12) comprend une paroi extérieure (18) formée d'un côté refoulement (20) et d'un côté aspiration (22) joints au niveau d'un bord d'attaque de profil aérodynamique (24) et au niveau d'un bord de fuite de profil aérodynamique (26),

    dans lequel la plate-forme (14) s'étend depuis un bord d'attaque de plate-forme (28) jusqu'à un bord de fuite de plate-forme (30),

    dans lequel la plate-forme (14) comprend une première face d'accouplement (32) et une seconde face d'accouplement (34) espacées le long d'un sens de pas (C), la première face d'accouplement (32) étant proximale au côté aspiration (22) d'un des profils aérodynamiques (12) et la seconde face d'accouplement (34) étant proximale au côté refoulement (20) du même profil aérodynamique (12) ou d'un profil aérodynamique différent desdits un ou plusieurs profils aérodynamiques (12), les première (32) et seconde (34) faces d'accouplement s'étendant entre le bord d'attaque de plate-forme (28) et le bord de fuite de plate-forme (30),

    dans lequel la première face d'accouplement (32) est en chanfrein ou en congé le long d'une partie arrière (36) de celle-ci, la partie en chanfrein ou en congé (36) de la première face d'accouplement (32) s'étendant depuis le bord de fuite de plate-forme (30) jusqu'à un premier point intermédiaire (42), sur la première face d'accouplement (32), situé entre le bord d'attaque de plate-forme (28) et le bord de fuite de plate-forme (30),

    dans lequel la première (32) et la seconde (34) faces d'accouplement ont un contour ondulé (70) dans une direction depuis le bord d'attaque de plate-forme respectif (28) jusqu'au bord de fuite de plate-forme respectif (30),

    dans lequel le contour ondulé (70) comprend une amplitude radiale,

    dans lequel une partie en chanfrein ou en congé (36, 38) de la première face d'accouplement (32) et de la seconde face d'accouplement (34) a une surface en chanfrein ou en congé (50, 60 ; 50', 60'),

    dans lequel la surface en chanfrein (50, 60) de la première face d'accouplement (32) et de la seconde face d'accouplement (34) s'étend radialement depuis un premier bord de chanfrein (52, 62) jusqu'à un second bord de chanfrein (54, 64) de la première (32) et de la seconde (34) faces d'accouplement à un angle de chanfrein (α1, α2) par rapport à la direction radiale R, et

    dans lequel la surface en congé (50', 60') de la première face d'accouplement (32) et de la seconde face d'accouplement (34) comprend une surface arrondie (50', 60') s'étendant entre un premier et un second bord de congé (52, 62 ; 54, 64),

    dans lequel la surface en chanfrein ou en congé (50, 60 ; 50', 60') de la première face d'accouplement (32) et de la seconde face d'accouplement (34) suit ledit contour ondulé (70), dans lequel le premier bord de chanfrein (52, 62) est parallèle au second bord de chanfrein (54, 64) et le premier bord de congé (52, 62) est parallèle au second bord de congé (54, 64).


     
    2. Article de fabrication (10) selon la revendication 1, dans lequel le premier point intermédiaire (42) se trouve à un point (82), ou à l'arrière de ce dernier, de tangence d'une ligne (32'), parallèle à la première face d'accouplement (32), par rapport à une ligne de cambrure moyenne (40) du profil aérodynamique (12), telle que projetée sur la première face d'accouplement (32) le long de la sens de pas (C).
     
    3. Article de fabrication (10) selon l'une quelconque des revendications 1 et 2, dans lequel la seconde face d'accouplement (34) est en chanfrein ou en congé le long d'une partie avant (38) de celle-ci,

    dans lequel la partie en chanfrein ou en congé (38) de la seconde face d'accouplement (34) s'étend partiellement ou entièrement entre le bord d'attaque de plate-forme (28) et un second point intermédiaire (44), sur la seconde face d'accouplement (34), situé entre le bord d'attaque de plate-forme (28) et le bord de fuite de plate-forme (30) de la seconde plate-forme (14b),

    dans lequel le second point intermédiaire (44) se trouve à un point (84), ou à l'avant de ce dernier, de tangence d'une ligne (34'), parallèle à la seconde face d'accouplement (34), par rapport à une ligne de cambrure moyenne (40) du profil aérodynamique (12), telle que projetée sur la seconde face d'accouplement (34) le long de la sens de pas (C).


     
    4. Article de fabrication (10) selon l'une quelconque des revendications 1 à 3, comprenant

    une première plate-forme (14a) et une seconde plate-forme (14b) de l'aube de turbine et de l'ailette, respectivement ;

    un premier profil aérodynamique (12a) s'étendant dans le sens de l'envergure depuis une première plate-forme (14a) et un second profil aérodynamique (12b) s'étendant dans le sens de l'envergure depuis une seconde plate-forme (14b),

    dans lequel chacun des premier (12a) et second (12b) profils aérodynamiques comprend la paroi extérieure respective (18) formée du côté refoulement (20) et du côté aspiration (22) joints au niveau du bord d'attaque de profil aérodynamique respectif (24) et au niveau du bord de fuite de profil aérodynamique respectif (26),

    dans lequel chacune des première (14a) et seconde (14b) plates-formes s'étend depuis le bord d'attaque de plate-forme respectif (28) jusqu'au bord de fuite de plate-forme respectif (30),

    dans lequel la première plate-forme (14a) comprend la première face d'accouplement (32) proximale au côté aspiration (22) du premier profil aérodynamique (12a) et la seconde plate-forme (14b) comprend la seconde face d'accouplement (34) proximale au côté refoulement (20) du second profil aérodynamique (12b), la première face d'accouplement (32) faisant face à la seconde face d'accouplement (34) le long d'une ligne de division de plate-forme (80) s'étendant entre les bords d'attaque (28) et de fuite (30) de plate-forme des première (14a) et seconde (14b) plates-formes,

    dans lequel un chemin d'écoulement pour un fluide de travail est défini entre le côté aspiration (22) du premier profil aérodynamique (12a) et le côté refoulement (20) du second profil aérodynamique (12b),

    dans lequel la première face d'accouplement (32) est en chanfrein ou en congé le long de la partie arrière (36) de celle-ci, la partie en chanfrein ou en congé (36) de la première face d'accouplement (32) se trouvant dans une région dans le chemin d'écoulement où une vitesse moyenne (F) du fluide de travail est dirigée depuis la seconde plate-forme (14b) vers la première plate-forme (14a),

    dans lequel les première (14a) et seconde (14b) plates-formes définissent une paroi d'extrémité profilée faisant face au chemin d'écoulement, la paroi d'extrémité profilée étant non axisymétrique autour d'un axe central (A) d'un ensemble d'aubes (10) ou d'ailettes de turbine, dans lequel la paroi d'extrémité profilée comprend au moins un enfoncement (46) ou une saillie (48) qui s'étend à travers la ligne de division de plate-forme (80),

    dans lequel la première (32) et la seconde (34) faces d'accouplement ont le contour ondulé (70) dans une direction depuis le bord d'attaque de plate-forme respectif (28) jusqu'au bord de fuite de plate-forme respectif (30),

    dans lequel la partie en chanfrein ou en congé (36, 38) de la première face d'accouplement (32) et de la seconde face d'accouplement (34) a la surface en chanfrein respective (50/50', 60/60') qui suit ledit contour ondulé (70).


     
    5. Article de fabrication (10) selon la revendication 4, dans lequel la partie en chanfrein ou en congé (36) de la première face d'accouplement (32) s'étend depuis le bord de fuite de plate-forme (30) de la première plate-forme (14a) jusqu'à un premier point intermédiaire (42), sur la première face d'accouplement (32), situé entre le bord d'attaque de plate-forme (28) et le bord de fuite de plate-forme (30) de la première plate-forme (14a).
     
    6. Article de fabrication (10) selon la revendication 5, dans lequel le premier point intermédiaire (42) se trouve à un point (82), ou à l'arrière de ce dernier, de tangence d'une ligne (32'), parallèle à la première face d'accouplement (32), par rapport à une ligne de cambrure moyenne (40) des premier et second profils aérodynamiques (12a, 12b), telle que projetée sur la première face d'accouplement (32) le long d'une direction circonférentielle (C) de l'ensemble d'aubes (10) ou d'ailettes de turbine.
     
    7. Article de fabrication (10) selon l'une quelconque des revendications 4 à 6, dans lequel la seconde face d'accouplement (34) est en chanfrein ou en congé le long d'une partie avant (38) de celle-ci, la partie en chanfrein ou en congé (38) de la seconde face d'accouplement (34) se trouvant dans une région dans le chemin d'écoulement où une vitesse moyenne (F) du fluide de travail est dirigée depuis la première plate-forme (14a) vers la seconde plate-forme (14b).
     
    8. Article de fabrication (10) selon la revendication 7, dans lequel la partie en chanfrein ou en congé (38) de la seconde face d'accouplement (34) s'étend entre le bord d'attaque de plate-forme (28) de la seconde plate-forme (14b) et un second point intermédiaire (44), sur la seconde face d'accouplement (34), situé entre le bord d'attaque de plate-forme (28) et le bord de fuite de plate-forme (30) de la seconde plate-forme (14b).
     
    9. Article de fabrication (10) selon la revendication 8, dans lequel le second point intermédiaire (44) se trouve à un point (84), ou à l'avant de ce dernier, de tangence d'une ligne (34'), parallèle à la seconde face d'accouplement (34), par rapport à une ligne de cambrure moyenne (40) des premier et second profils aérodynamiques (12a, 12b), telle que projetée sur la seconde face d'accouplement (34) le long d'une direction circonférentielle (C) de l'ensemble d'aubes (10) ou ailettes de turbine.
     
    10. Article de fabrication (10) selon l'une quelconque des revendications 4 à 9, dans lequel l'article de fabrication (10) est l'ensemble d'aubes de turbine, dans lequel les première et seconde plates-formes définissent une paroi d'extrémité diamétrale intérieure pour le chemin d'écoulement.
     
    11. Article de fabrication (10) selon l'une quelconque des revendications 4 à 9, dans lequel l'article de fabrication (10) est l'ensemble d'ailette de turbines, dans lequel les première et seconde plates-formes définissent une paroi d'extrémité diamétrale intérieure ou extérieure pour le chemin d'écoulement.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description