(19)
(11) EP 3 741 543 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.08.2023 Bulletin 2023/34

(21) Application number: 20170276.8

(22) Date of filing: 20.04.2020
(51) International Patent Classification (IPC): 
B29C 64/321(2017.01)
B33Y 40/00(2020.01)
B33Y 10/00(2015.01)
B22F 12/60(2021.01)
B29C 64/165(2017.01)
B29C 64/153(2017.01)
B33Y 30/00(2015.01)
B22F 3/105(2006.01)
B22F 10/28(2021.01)
B22F 12/52(2021.01)
(52) Cooperative Patent Classification (CPC):
B29C 64/321; B29C 64/153; B29C 64/165; B33Y 40/00; B33Y 10/00; B33Y 30/00; Y02P 10/25; B22F 2999/00; B22F 10/28; B22F 12/52; B22F 12/60; D06F 75/12; D06F 75/26
 
C-Sets:
B22F 2999/00, B22F 12/60, B22F 2202/01;

(54)

THREE-DIMENSIONAL PRINTING SYSTEM WITH SELF-MAINTAINING POWDER DISTRIBUTION SUBSYSTEM

SYSTEM ZUM DREIDIMENSIONALEN DRUCKEN MIT SELBSTWARTENDEM PULVERVERTEILUNGSSUBSYSTEM

SYSTÈME D'IMPRESSION TRIDIMENSIONNELLE AVEC SOUS-SYSTÈME DE DISTRIBUTION DE POUDRE À ENTRETIEN AUTOMATIQUE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 20.05.2019 EP 19175380

(43) Date of publication of application:
25.11.2020 Bulletin 2020/48

(73) Proprietor: LayerWise N.V.
3001 Heverlee (BE)

(72) Inventors:
  • Ray, Nachiketa
    3000 Leuven (BE)
  • Geboes, Peter
    3000 Leuven (BE)
  • Valkenborgs, Brawley
    3000 Leuven (BE)
  • Plas, Jan
    3012 Wilsele (BE)
  • Raeymaekers, Rudy
    2370 Arendonk (BE)

(74) Representative: dompatent von Kreisler Selting Werner - Partnerschaft von Patent- und Rechtsanwälten mbB 
Deichmannhaus am Dom Bahnhofsvorplatz 1
50667 Köln
50667 Köln (DE)


(56) References cited: : 
DE-A1-102014 010 951
US-A1- 2016 368 214
US-A1- 2015 258 733
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present disclosure concerns an apparatus and method for the fabrication of three dimensional (3D) articles utilizing powder materials. More particularly, the present disclosure concerns an apparatus and method for maintaining proper operation of a powder dispensing and metering system.

    Background



    [0002] Three dimensional (3D) printing systems are in rapidly increasing use for purposes such as prototyping and manufacturing. One type of three dimensional printer utilizes a layer-by-layer process to form a three dimensional article of manufacture from powdered materials. Each layer of powdered material is selectively fused using an energy beam such as a laser, electron, or particle beam. One challenge in operating a system is maintaining uniformity and quality of the dispensed layers of powder.

    [0003] US 2015/0258733 A1 discloses a three-dimensional structure manufacturing apparatus which manufactures a three-dimensional structure by laminating layers formed using three-dimensional formation compositions containing three-dimensional formation powders, the apparatus comprising:

    a formadoll unit in which the three-dimensional structure is formed;

    a first supply unit and a second supply unit which supply the three-dimensional formation compositions to the formation unit;

    a first layer formation unit and a second layer formation unit which form the layers configured with the three-dimensional formation compositions an the formation unit; and

    a discharge unit which discharges a binding solution to the layer,

    wherein the discharge unit discharges the binding solution to the layers while relatively moving with respect to the layer, and
    the first supply unit, the first layer formation unit, the discharge unit, the second layer formation unit, and the second supply unit are arranged in this order, along a movement direction of the discharge unit.


    Brief Description of the Figures



    [0004] 

    FIG. 1 is a side view schematic of an embodiment of a three-dimensional printing system for fabricating a three-dimensional article.

    FIG. 2 is a plan view schematic diagram of some portions of an embodiment of a three-dimensional printing system including a build chamber, two overflow chambers, and a powder coater. The powder coater includes a vibration generator.

    FIG. 3 is an isometric drawing of an embodiment of a powder coater.

    FIG. 3A is detail taken from FIG. 3 with portions of an outer housing shown transparently.

    FIG. 4 is a flowchart depicting an embodiment of a method of manufacturing a three-dimensional article.


    Summary



    [0005] In a first aspect of the disclosure, a three-dimensional printing system for manufacturing a three-dimensional article includes a build chamber, an overflow chamber adjacent to the build chamber, a motorized build plate, a powder coater including a vibration generator, a lateral movement mechanism coupled to the powder coater, and a controller. The controller is configured to perform a process to remove accumulated powder from surfaces of the powder coater according to the steps: (1) operate the lateral movement mechanism to position the powder coater over a location that is laterally outside of the build chamber; (2) operate the vibration generator to shake the accumulated powder from the powder coater and onto the location that is laterally outside of the build chamber. The location that is laterally outside of the build chamber can be over the overflow chamber.

    [0006] In one implementation, the three-dimensional printing system further includes a hopper and a beam system. The controller is configured to accrete a layer of selectively fused powder over an upper surface according to the steps: (1) position the motorized build plate with the upper surface proximate to a build plane to receive another layer of powder; (2a) scan the powder coater over the upper surface; (2b) concurrent with scanning, meter a layer of unfused powder onto the upper surface; (3) operate the beam system to selectively fuse the metered layer. The upper surface as defined is either the upper surface of the build plate (for selectively fusing the first layer of powder) or the upper surface of the latest dispensed layer of powder. The controller can be configured to accrete at least two layers of selectively fused powder between performing the accumulated powder removal process. The controller can be configured to accrete at least four, at least eight, at least 16, at least 32, or more layers of selectively fused powder between performing the accumulated powder removal process. The hopper can be located above the overflow chamber.

    [0007] In another implementation the powder coater is configured to scan along a scan axis X. The powder coater has a major axis along a transverse axis Y that is normal to the scan axis X. The vibration generator is positioned or located proximate to one end of the powder coater with respect to the transverse axis Y. The vibration generator can be motor coupled to an eccentric weight. The motor axis can be aligned with the scan axis.

    [0008] In yet another implementation, the vibration generator can include a transducer such as a piezoelectric device and/or an ultrasonic transducer.

    [0009] In a second aspect of the disclosure, a method of manufacturing a three-dimensional article includes the steps: (A) Accreting a layer of selectively fused powder onto an upper surface. The upper surface is one of an upper surface of a build plate and an upper surface of a powder layer. Accreting includes the steps of (1) positioning the upper surface proximate to a build plane; (2a) scanning a powder coater over the upper surface along a scan axis; (2b) concurrent with scanning, metering a layer of unfused powder onto the upper surface; (3) operating a beam system to selectively fuse the metered layer of powder. (B) Repeat accreting layers of powder above the build plate. (C) After accreting N layers, in which N is at least one, remove accumulated powder residue from surfaces of the powder coater according to the steps of (1) positioning the powder coater over a location that is laterally outside of the build plane; (2) operating a vibration generator to shake the accumulated powder onto the location outside of the build plane. N can be at least two, at least four, at least eight, at least 16, at least 32, or a higher number depending upon a rate of accumulation of powder upon the powder coater.

    [0010] In one implementation the vibration generator is a motor coupled to an eccentric weight. Operating the vibration generator includes spinning the eccentric weight along an axis that is parallel to the scan axis.

    [0011] In a third aspect of the disclosure, a three-dimensional printing system for manufacturing a three-dimensional article includes a build chamber, an overflow chamber adjacent to the build chamber, a motorized build plate, a powder coater including a vibration generator, a powder hopper, a lateral movement mechanism, a beam system, and a controller. The controller is configured to: (1) position an upper surface proximate to a build plane; the upper surface is one of an upper surface of a build plate and an upper surface of a previously deposited powder layer; (2) operate the lateral movement mechanism to scan the powder coater over the build plane; (3) concurrent with scanning, operate the powder coater to meter a layer of unfused powder onto the upper surface; (4) operate the beam system to selectively fuse the metered layer of powder; (5) repeat (1)-(4) until the three-dimensional article is fabricated; (6) replenish the powder coater with powder using the powder hopper after metering and/or selectively fusing M layers, M is at least one; (7) move the powder coater to the overflow chamber and operate the vibration generator after metering and/or selectively fusing N layers, N is at least two. M can equal two. N can be a positive nonzero integer multiple of M. N can equal at least four, at least eight, at least 16, or a larger positive integer value.

    Detailed Description of the Preferred Embodiments



    [0012] FIG. 1 is a side view schematic diagram of an embodiment of a three-dimensional printing system 2 for fabricating a three-dimensional article 4. In describing system 2, mutually orthogonal axes X, Y, and Z can be used. Axes X and Y are lateral axes and generally horizontal. Axis Z is a vertical axis that is generally aligned with a gravitational reference. By "generally" we mean that a measure such as a quantity, a dimensional comparison, or an orientation comparison is by design and within manufacturing tolerances but as such may not be exact. The axis X can be referred to as a scan axis. The axis Y can be referred to as a transverse axis.

    [0013] System 2 includes a build chamber 6 containing a motorized build plate 8. The motorized build plate 8 includes a vertical positioning mechanism 10 for adjusting a position of an upper surface 12. In referring to upper surface 12, it is either an upper surface 12 of build plate 8 or of a previously dispensed layer of powder 14.

    [0014] An overflow chamber 16 is positioned adjacent to the build chamber 6. While illustrated on one side of build chamber 6, the overflow chamber 16 can include more than one chamber and can be present on two, three, or all four sides of the build chamber 6.

    [0015] A powder coater 18 includes a lateral movement mechanism 20. The lateral movement mechanism is configured to scan the powder coater along the scan axis X. Concurrent with the scanning, the powder coater 18 is configured to meter a layer of powder onto the upper surface 12. The powder coater 18 typically will hold enough powder to provide one or two layers of powder 14. Thus, powder coater 18 needs to be resupplied periodically.

    [0016] A powder supply subsystem 22 is for supplying powder to the powder coater 18 to "recharge" the powder coater 18 with powder 14. The powder supply subsystem includes powder reservoir 24, powder transport 26, and a hopper 28. The powder transport 26 can include a system of auger conveyors that rotate and transport powder from the powder reservoir 24 to the hopper 28. The hopper 28 is configured to dispense a quantity of powder 14 into the powder coater 18. In the illustrated embodiment, the powder hopper 28 is disposed above the overflow chamber 16.

    [0017] When a new layer of powder 14 has been metered onto the upper surface 12, a beam system 30 is configured to selectively fuse the powder layer to accrete a layer onto the article 4. The beam system 30 generates an energy beam that can include one or more of a radiation beam, an electron beam, or a particle beam.

    [0018] In an illustrative embodiment, the beam system 30 generates and scans a plurality of laser radiation beams 32 that scan across a build plane 34. The build plane 34 defines a location of the new layer of powder to be selectively fused.

    [0019] In an illustrative embodiment, the powder 14 is a metal powder such as titanium alloy, steel, Ni alloy, Co alloy or an aluminum alloy. In other embodiments, the powder 14 is a polymer powder.

    [0020] For metal powders, a high power laser for melting and fusing the powder typically outputs a radiative power of at least 50 watts. In various embodiments, the laser can output power of 500 watts or 1000 watts. For systems employing polymer powders, the power level can be considerably lower.

    [0021] A controller 36 is coupled to and configured to operate the vertical positioning mechanism 10, the powder coater 18, the lateral movement mechanism 20, the powder supply subsystem 22, and the beam system 30. The controller 36 includes a processor coupled to a computer-readable storage apparatus. The computer-readable storage apparatus includes a non-transitory or non-volatile storage medium that stores software instructions. When executed by the processor, the software instructions operate various portions of system 2.

    [0022] FIG. 2 is a plan view schematic diagram of some portions of an embodiment of system 2 including the build chamber 6, two overflow chambers 16, and the powder coater 18. The two overflow chambers 16 are at opposing ends of build chamber 16 with respect to scan axis X. The powder coater 18 is shown positioned above one of the overflow chambers 16. During operation of system 2, powder will tend to accumulate on surfaces of the powder coater 18. The accumulated powder will sometimes randomly fall from the powder coater 18. If this happens while a layer of powder is being metered, the result can be a defect in the metered layer.

    [0023] To eliminate this problem, a vibration generator 38 is integrated into the powder coater 18. The concern with the accumulated powder can be resolved by positioning the powder coater 18 over a location outside of the build chamber and then operating the vibration generator 38 to shake off the powder at this location. In the illustrated embodiment, the powder coater 18 is positioned over the overflow chamber 16 before operating the vibration generator 38. The vibrations cause the powder to fall into the overflow chamber 16.

    [0024] In the illustrated embodiment, the front of the machine is to the right (in a direction of -Y). The vibration generator 38 is located toward a rearward side of the powder coater 18. The scan axis X, as viewed from the front of the machine, is from left to right and/or right to left.

    [0025] FIG. 3 is an isometric drawing of an embodiment of the powder coater 18. Powder coater 18 has a major axis that is parallel to the transverse axis Y, an intermediate axis that is parallel to the scan axis X, and a minor axis that is parallel to vertical axis Z. An inlet slot 40 is disposed along the transverse axis Y for receiving powder dispensed from hopper 28 when the powder coater is recharged with powder 14. The vibration generator 38 is inside an opening 42 in the powder coater 18 which is positioned proximate to one end of the powder coater 18 with respect to the transverse axis Y. A cover (not shown) would be positioned over the opening 42 when the powder coater 18 is in use.

    [0026] FIG. 3A is detail taken from FIG 3 with portions of an outer housing 44 of the powder coater shown transparently. In the illustrated embodiment, the vibration generator 38 includes a motor 46 coupled to a semicircular eccentric weight 48. The motor 46 has a rotational axis 49 that is parallel to the scan axis X. This version of the vibration generator 38 can be referred to as a vibration motor 38.

    [0027] In an illustrative embodiment, the vibration motor 38 can operate with an input voltage range of about 2 to 14 volts. Within this input voltage range, the rotational frequency varies from about 20 Hertz to about 130 Hertz. Other vibration motors 38 can be used and this is but one example. Other motors may operate with different input voltages and/or with different frequency ranges and still be useful for this application. Yet other vibration generators 38 can be used such as piezoelectric and/or ultrasonic transducers.

    [0028] FIG. 4 is a flowchart depicting an embodiment of a method 50 of manufacturing a three-dimensional article 4 using the three-dimensional printing system 2. Method 50 is illustrative of the execution of software steps by a processor within the controller 36. The actual number of software steps may be much greater than the illustrated flowchart however.

    [0029] Steps 52, 54, and 56 are steps for accreting a layer of selectively fused powder upon the upper surface 12. According to 52, the motorized build plate is operated to position the upper surface 12 proximate to the build plane 34. According to 54, the powder coater 18 is scanned above the build plane 34 along the scan axis X. Concurrent with scanning, the powder coater 18 is operated to meter a layer of powder 14 upon the upper surface 12. According to 56, the beam system 30 is operated to selectively fuse the metered layer of powder 14. As indicated by the upper loop, steps 52-56 can be repeated M times based upon a capacity of powder coater 18. In an illustrative embodiment, M = 2.

    [0030] According to 58, the powder coater 18 is positioned under the hopper 28. Hopper 28 then dispenses powder 14 into the inlet slot 40 to recharge the powder coater 18. As indicated by the middle loop, steps 52-56 repeat for the accretion of N selectively fused layers of the article 4. Typically N is a multiple of M. In an illustrative embodiment, N = 12, and the powder coater 18 is recharged six times during the accretion of four selectively fused layers. During formation of the 12 layers, powder may accumulate on an upper surface 45 (FIG. 3) of the powder coater.

    [0031] According to 60, the powder coater 18 is positioned over the overflow chamber 16. In one illustrative embodiment, the hopper 28 is also above the overflow chamber 16. According to 62, the vibration generator 38 is operated to shake the accumulated powder from the powder coater 18 and into the overflow chamber 16. Then the process proceeds back to step 52 to be repeated for another N layers, and this process continues until fabrication of article 4 is complete.

    [0032] Generally speaking, M can be one or more. N can equal M or be any nonzero positive integer multiple of M. Selection of M is based upon a capacity of the powder coater 18 and selection of N is based upon a rate of accumulation of powder upon the powder coater 18 outer surfaces.

    [0033] The specific embodiments and applications thereof described above are for illustrative purposes only and do not preclude modifications and variations encompassed by the scope of the following claims.


    Claims

    1. A three-dimensional printing system (2) for manufacturing a three-dimensional article (4) comprising:

    a build chamber (6);

    an overflow chamber (16) adjacent to the build chamber (6);

    a motorized build plate (8);

    a powder coater (18) including a vibration generator (38);

    a lateral movement mechanism (20) coupled to the powder coater (18); and

    a controller (36) characterized in that the controller is configured to perform a process to remove accumulated powder (14) from surfaces of the powder coater (18) according to the steps:

    operate the lateral movement mechanism (20) to position the powder coater (18) over a location outside of the build chamber (6); and

    operate the vibration generator (38) to shake the accumulated powder onto the location outside of the build chamber (6).


     
    2. The three-dimensional printing system (2) of claim 1 further comprising a hopper (28) and a beam system (30), the controller is configured to accrete a layer of selectively fused powder over an upper surface according to the steps:

    position the motorized build plate (8) with the upper surface proximate to a build plane (34) to receive another layer of powder (14);

    scan the powder coater (18) over the upper surface;

    concurrent with scanning, meter a layer of unfused powder onto the upper surface; and

    operate the beam system (30) to selectively fuse the metered layer.


     
    3. The three-dimensional printing system (2) of claim 2 wherein the controller (36) is configured to accrete at least two layers, preferably at least 10 layers, of selectively fused powder between performing the accumulated powder removal process.
     
    4. The three-dimensional printing system (2) of claim 2 or 3 wherein the hopper (28) is located above the overflow chamber (16).
     
    5. The three-dimensional printing system (2) of one or more of claims 1 to 4 wherein the powder coater (18) is configured to scan along a scan axis and has a major axis along a transverse axis that is normal to the scan axis, the vibration generator is positioned proximate to one end of the powder coater (18) with respect to the transverse axis.
     
    6. The three-dimensional printing system (2) of one or more of claims 1 to 5 wherein the vibration generator (38) is a motor coupled to an eccentric weight, the motor axis is aligned with the scan axis.
     
    7. The three-dimensional printing system (2) of one or more of claims 1 to 6 wherein the location outside of the build chamber (6) is defined by the overflow chamber (16).
     
    8. A three-dimensional printing system (2) according to claim 1 further comprising:

    a powder hopper (28);

    a beam system (30); and wherein

    the process to remove accumulated powder (14) from surfaces of the powder coater (18), to which the controller (36) is configured to, comprises the steps to:

    (1) position an upper surface proximate to a build plane, the upper surface is one of an upper surface of a build plate and an upper surface of a previously deposited powder layer;

    (2) operate the lateral movement mechanism to scan the powder coater (18) over the build plane;

    (3) concurrent with scanning, operate the powder coater (18) to meter a layer of unfused powder onto the upper surface;

    (4) operate the beam system (30) to selectively fuse the metered layer of powder;

    (5) repeat (1)-(4) until the three-dimensional article (4) is fabricated;

    (6) replenish the powder coater (18) with powder using the powder hopper (28) after selectively fusing M layers, M is at least one; and

    (7) move the powder coater (18) to the overflow chamber (16) and operate the vibration generator (38) after selectively fusing N layers, N is at least two.


     
    9. The three-dimensional printing system (2) of claim 8 wherein M equals two and/or wherein N is at least 10.
     
    10. The three-dimensional printing system (2) of claim 8 or 9 wherein the powder coater (18) is configured to scan along a scan axis and has a major axis along a transverse axis that is normal to the scan axis, the vibration generator (38) is positioned at one end of the power coater (18) with respect to the transverse axis.
     
    11. The three-dimensional printing system (2) of one or more of claims 8 to 10 wherein the vibration generator (38) is a motor (46) coupled to an eccentric weight (48), the motor axis is aligned with the scan axis.
     
    12. A method of manufacturing a three-dimensional article (4) comprising:

    accreting a layer of selectively fused powder onto an upper surface, the upper surface is one of an upper surface of a build plate and an upper surface of a powder layer, according to the steps of:

    positioning the upper surface proximate to a build plane;

    scanning a powder coater (18) over the upper surface along a scan axis;

    concurrent with scanning, metering a layer of unfused powder onto the upper surface; and

    operating a beam system (30) to selectively fuse the metered layer of powder;

    repeat accreting layers of powder above the build plate; and

    after accreting N layers, in which N is at least one, remove accumulated powder residue from surfaces of the powder coater (18) according to the steps of:

    positioning the powder coater (18) over a location that is laterally outside of the build plane; and

    operating a vibration generator to shake the accumulated powder onto the location outside of the build plane.


     
    13. The method of claim 12, wherein N is at least 2, preferably N is at least 10.
     
    14. The method of claim 12 or 13, wherein the vibration generator (38) is a motor coupled to an eccentric weight, operating the vibration generator (38) includes spinning the eccentric weight along an axis that is parallel to the scan axis.
     
    15. The method of one or more of claims 12 to 14, wherein the location outside of the build plane includes an overflow chamber (16).
     


    Ansprüche

    1. 3D-Drucksystem (2) zur Fertigung eines dreidimensionalen Gegenstands (4), umfassend:

    eine Baukammer (6);

    eine Überlaufkammer (16), die der Baukammer (6) benachbart ist;

    eine motorisierte Bauplatte (8);

    einen Pulverbeschichter (18), der einen Schwingungserreger (38) umfasst;

    einen Seitenbewegungsmechanismus (20), der an den Pulverbeschichter (18) gekoppelt ist; und

    ein Steuerungsgerät (36);

    dadurch gekennzeichnet, dass das Steuerungsgerät so konfiguriert ist, dass es ein Verfahren zum Entfernen von akkumuliertem Pulver (14) von Flächen des Pulverbeschichters (18) gemäß den folgenden Schritten durchführen kann:

    Betreiben des Seitenbewegungsmechanismus (20) in einer solchen Weise, dass der Pulverbeschichter (18) über eine Stelle außerhalb der Baukammer (6) bewegt wird; und

    Betreiben des Schwingungserregers (38) in einer solchen Weise, dass das akkumulierte Pulver auf die Stelle außerhalb der Baukammer (6) geschüttelt wird.


     
    2. 3D-Drucksystem (2) gemäß Anspruch 1, weiterhin umfassend einen Trichter (28) und ein Strahlsystem (30), wobei das Steuerungsgerät so konfiguriert ist, dass es eine Schicht aus selektiv geschmolzenem Pulver über einer oberen Fläche sammeln kann, gemäß den Schritten:

    Positionieren der motorisierten Bauplatte (8) mit der oberen Fläche nächst einer Bauebene (34), um eine weitere Pulverschicht (14) aufzunehmen;

    den Pulverbeschichter (18) in einem Raster über die obere Fläche zu führen;

    gleichzeitig mit dem Führen, Dosieren einer Schicht aus ungeschmolzenem Pulver auf die obere Fläche; und

    Betreiben des Strahlsystems (30) in einer solchen Weise, dass die dosierte Schicht selektiv geschmolzen wird.


     
    3. 3D-Drucksystem (2) gemäß Anspruch 2, wobei die Steuerungseinrichtung (36) so konfiguriert ist, dass sie zwischen der Durchführung des Verfahrens zum Entfernen von akkumuliertem Pulver wenigstens zwei Schichten, vorzugsweise wenigstens 10 Schichten, aus selektiv geschmolzenem Pulver sammelt.
     
    4. 3D-Drucksystem (2) gemäß Anspruch 2 oder 3, wobei sich der Trichter (28) oberhalb der Überlaufkammer (16) befindet.
     
    5. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 4, wobei der Pulverbeschichter (18) so konfiguriert ist, dass er sich in einem Raster entlang einer Scan-Achse bewegen kann, und eine Hauptachse entlang einer Querachse, die senkrecht zur Scan-Achse steht, aufweist, sich der Schwingungserreger nächst einem Ende des Pulverbeschichters (18) in Bezug auf die Querachse befindet.
     
    6. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 5, wobei der Schwingungserreger (38) ein an ein exzentrisches Gewicht gekoppelter Motor ist, wobei die Motorachse mit der Scan-Achse ausgerichtet ist.
     
    7. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 6, wobei die Stelle außerhalb der Baukammer (6) durch die Überlaufkammer (16) definiert wird.
     
    8. 3D-Drucksystem (2) gemäß Anspruch 1, weiterhin umfassend:

    einen Pulvertrichter (28);

    ein Strahlsystem (30); wobei

    das Verfahren zum Entfernen von akkumuliertem Pulver (14) von Flächen des Pulverbeschichters (18), für das das Steuerungsgerät (36) konfiguriert ist, die folgenden Schritte umfasst:

    (1) Positionieren einer oberen Fläche nächst einer Bauebene, wobei die obere Fläche entweder eine obere Fläche einer Bauplatte oder eine obere Fläche einer zuvor abgeschiedenen Pulverschicht ist;

    (2) Betreiben des Seitenbewegungsmechanismus in einer solchen Weise, dass der Pulverbeschichter (18) in einem Raster über die Bauebene geführt wird;

    (3) gleichzeitig mit dem Führen, Betreiben des Pulverbeschichters (18) in einer solchen Weise, dass eine Schicht aus ungeschmolzenem Pulver auf die obere Fläche dosiert wird;

    (4) Betreiben des Strahlsystems (30) in einer solchen Weise, dass die dosierte Pulverschicht selektiv geschmolzen wird;

    (5) (1)-(4) Wiederholen, bis der dreidimensionale Artikel (4) gefertigt ist;

    (6) Wiederauffüllen des Pulverbeschichters (18) mit Pulver unter Verwendung des Pulvertrichters (28), nachdem M Schichten selektiv geschmolzen wurden, wobei M wenigstens eins ist; und

    (7) Bewegen des Pulverbeschichters (18) zu der Überlaufkammer (16) und Betreiben des Schwingungserregers (38), nachdem N Schichten selektiv geschmolzen wurden, wobei N wenigstens zwei beträgt.


     
    9. 3D-Drucksystem (2) gemäß Anspruch 8, wobei M gleich zwei ist und/oder wobei N wenigstens 10 beträgt.
     
    10. 3D-Drucksystem (2) gemäß Anspruch 8 oder 9, wobei der Pulverbeschichter (18) so konfiguriert ist, dass er sich in einem Raster entlang einer Scan-Achse bewegen kann, und eine Hauptachse entlang einer Querachse, die senkrecht zur Scan-Achse steht, aufweist, sich der Schwingungserreger (38) an einem Ende des Pulverbeschichters (18) in Bezug auf die Querachse befindet.
     
    11. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 8 bis 10, wobei der Schwingungserreger (38) ein an ein exzentrisches Gewicht (48) gekoppelter Motor (46) ist, wobei die Motorachse mit der Scan-Achse ausgerichtet ist.
     
    12. Verfahren zur Herstellung eines dreidimensionalen Artikels (4), umfassend:
    das Ansammeln einer Schicht aus selektiv geschmolzenem Pulver auf einer oberen Fläche, wobei die obere Fläche entweder eine obere Fläche einer Bauplatte oder eine obere Fläche einer Pulverschicht ist, gemäß den folgenden Schritten:

    Positionieren der oberen Fläche nächst einer Bauebene;

    Führen eines Pulverbeschichters (18) in einem Raster über die obere Fläche entlang einer Scan-Achse;

    gleichzeitig mit dem Führen, Dosieren einer Schicht aus ungeschmolzenem Pulver auf die obere Fläche; und

    Betreiben eines Strahlsystems (30) in einer solchen Weise, dass die dosierte Pulverschicht selektiv geschmolzen wird;

    Wiederholen des Ansammelns von Schichten aus Pulver oberhalb der Bauplatte; und

    nach dem Ansammeln von N Schichten, wobei N wenigstens eins ist, Entfernen von Resten des akkumulierten Pulvers von Flächen des Pulverbeschichters (18) gemäß den folgenden Schritten:

    Bewegen des Pulverbeschichters (18) über eine Stelle, die sich seitlich außerhalb der Bauebene befindet; und

    Betreiben eines Schwingungserregers in einer solchen Weise, dass das akkumulierte Pulver auf die Stelle außerhalb der Bauebene geschüttelt wird.


     
    13. Verfahren gemäß Anspruch 12, wobei N wenigstens 2 beträgt, vorzugsweise N wenigstens 10 beträgt.
     
    14. Verfahren gemäß Anspruch 12 oder 13, wobei der Schwingungserreger (38) ein an ein exzentrisches Gewicht gekoppelter Motor ist, das Betreiben des Schwingungserregers (38) das Rotierenlassen des exzentrischen Gewichts entlang einer Achse, die parallel zur Scan-Achse verläuft, umfasst.
     
    15. Verfahren gemäß einem oder mehreren der Ansprüche 12 bis 14, wobei die Stelle außerhalb der Bauebene eine Überlaufkammer (16) umfasst.
     


    Revendications

    1. Système d'impression en 3D (2) pour fabriquer un article tridimensionnel (4), comprenant :

    une chambre de construction (6),

    une chambre de débordement (16) adjacent à ladite chambre de construction (6),

    une plaque de construction motorisée (8),

    une machine de revêtement de poudre (18) incluant un générateur de vibrations (38),

    un mécanisme de mouvement latéral (20) couplé à la machine de revêtement de poudre (18), et

    un dispositif de commande (36), caractérisé en ce que l'unité de commande est configurée pour effectuer un procédé pour enlever la poudre accumulée (14) de surfaces de la machine de revêtement de poudre (18) selon les étapes suivantes consistant à :

    opérer ledit mécanisme de mouvement latéral (20) pour positionner ladite machine de revêtement de poudre (18) au-dessus d'un endroit à l'extérieur de la chambre de construction (6), et

    opérer ledit générateur de vibrations (38) pour secouer la poudre accumulée sur l'endroit à l'extérieur de la chambre de construction (6).


     
    2. Système d'impression en 3D (2) selon la revendication 1, comprenant en outre une trémie (28) et un système d'irradiation (30), l'unité de commande est configurée pour accumuler une couche de poudre sélectivement fondue sur une surface supérieure selon les étapes consistant à :

    positionner la plaque de construction motorisée (8) avec sa surface supérieure proximale à un plan de construction (34) pour recevoir encore une couche de poudre (14),

    faire balayer la machine de revêtement de poudre (18) au-dessus de la surface supérieure,

    au même temps que le balayage, fournir une couche de poudre non fondue sur la surface supérieure, et

    opérer le système d'irradiation (30) pour sélectivement fondre la couche fournie.


     
    3. Système d'impression en 3D (2) selon la revendication 2, dans lequel ladite unité de commande (36) est configurée pour accumuler au moins deux couches, de préférence au moins 10 couches, de poudre sélectivement fondue entre la réalisation du procédé pour éliminer la poudre accumulée.
     
    4. Système d'impression en 3D (2) selon la revendication 2 ou 3, dans lequel ladite trémie (28) se trouve au-dessus de la chambre de débordement (16).
     
    5. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 4, dans lequel ladite machine de revêtement de poudre (18) est configurée pour balayer le long d'un axe de balayage, et présente un axe majeur le long d'un axe transversal qui est perpendiculaire à l'axe de balayage, ledit générateur de vibrations est positionné proximal à une extrémité de ladite machine de revêtement de poudre (18) par rapport à l'axe transversal.
     
    6. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 5, dans lequel ledit générateur de vibrations (38) est un moteur couplé à un poids excentrique, l'axe de moteur est aligné avec l'axe de balayage.
     
    7. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 6, dans lequel l'endroit à l'extérieur de la chambre de construction (6) est défini par la chambre de débordement (16).
     
    8. Système d'impression en 3D (2) selon la revendication 1, comprenant en outre :

    une trémie de poudre (28),

    un système d'irradiation (30), et dans lequel

    ledit procédé pour enlever la poudre accumulée (14) de surfaces de la machine de revêtement de poudre (18), pour laquelle ledit dispositif de commande (36) est configuré, comprend les étapes consistant à :

    (1) positionner une surface supérieure proximale à un plan de construction, ladite surface supérieure étant soit une surface supérieure d'une plaque de construction soit une surface supérieure d'une couche de poudre préalablement déposée,

    (2) opérer ledit mécanisme de mouvement latéral pour faire balayer la machine de revêtement de poudre (18) au-dessus du plan de construction,

    (3) et au même temps que le balayage, opérer ladite machine de revêtement de poudre (18) pour fournir une couche de poudre non fondue sur la surface supérieure,

    (4) opérer le système d'irradiation (30) pour sélectivement fondre la couche de poudre fournie,

    (5) répéter les étapes (1)-(4) jusqu'à ce que l'article tridimensionnel soit fabriqué,

    (6) recharger ladite machine de revêtement de poudre (18) avec la poudre en utilisant ladite trémie de poudre (28), après que M couches ont été sélectivement fondues, où M est au moins 1, et

    (7) déplacer ladite machine de revêtement de poudre (18) à la chambre de débordement (16), et opérer le générateur de vibrations (38), après la fusion sélective de N couches, N est au moins deux.


     
    9. Système d'impression en 3D (2) selon la revendication 8, dans lequel M est égal à deux, et/ou dans lequel N est au moins 10.
     
    10. Système d'impression en 3D (2) selon la revendication 8 ou 9, dans lequel ladite machine de revêtement de poudre (18) est configurée pour balayer le long d'un axe de balayage, et présente un axe majeur le long d'un axe transversal qui est perpendiculaire à l'axe de balayage, ledit générateur de vibrations (38) est positionné à une extrémité de ladite machine de revêtement de poudre (18) par rapport à l'axe transversal.
     
    11. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 8 à 10, dans lequel ledit générateur de vibrations (38) est un moteur (46) couplé à un poids excentrique (48), l'axe de moteur est aligné avec l'axe de balayage.
     
    12. Procédé pour fabriquer un article tridimensionnel (4), comprenant les étapes consistant à :
    accumuler une couche de poudre sélectivement fondue sur une surface supérieure, ladite surface supérieure étant soit une surface supérieure d'une plaque de construction soit une surface supérieure d'une couche de poudre, selon les étapes consistant à :

    positionner la surface supérieure proximale à un plan de construction,

    faire balayer une machine de revêtement de poudre (18) au-dessus de la surface supérieure le long d'un axe de balayage,

    et au même temps que le balayage, fournir une couche de poudre non fondue sur la surface supérieure, et

    opérer un système d'irradiation (30) pour sélectivement fondre la couche de poudre fournie,

    répéter l'accumulation de couches de poudre au-dessus de la plaque de construction, et

    après l'accumulation de N couches, où N est au moins 1, enlever les résidus de la poudre accumulée de surfaces de la machine de revêtement de poudre (18) selon les étapes consistant à :

    positionner ladite machine de revêtement de poudre (18) au-dessus d'un endroit qui est latéralement à l'extérieur du plan de construction, et

    opérer un générateur de vibrations pour secouer la poudre accumulée sur l'endroit à l'extérieur du plan de construction.


     
    13. Procédé selon la revendication 12, dans lequel N est au moins 2, de préférence N est au moins 10.
     
    14. Procédé selon la revendication 12 ou 13, dans lequel ledit générateur de vibrations (38) est un moteur couplé à un poids excentrique, l'étape consistant à opérer ledit générateur de vibrations (38) comprend la rotation du poids excentrique le long d'un axe qui est parallèle à l'axe de balayage.
     
    15. Procédé selon l'une ou plusieurs des revendications 12 à 14, dans lequel ledit endroit à l'extérieur du plan de construction comprend une chambre de débordement (16).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description