Field of the Invention
[0001] The present disclosure concerns an apparatus and method for the fabrication of three
dimensional (3D) articles utilizing powder materials. More particularly, the present
disclosure concerns an apparatus and method for maintaining proper operation of a
powder dispensing and metering system.
Background
[0002] Three dimensional (3D) printing systems are in rapidly increasing use for purposes
such as prototyping and manufacturing. One type of three dimensional printer utilizes
a layer-by-layer process to form a three dimensional article of manufacture from powdered
materials. Each layer of powdered material is selectively fused using an energy beam
such as a laser, electron, or particle beam. One challenge in operating a system is
maintaining uniformity and quality of the dispensed layers of powder.
[0003] US 2015/0258733 A1 discloses a three-dimensional structure manufacturing apparatus which manufactures
a three-dimensional structure by laminating layers formed using three-dimensional
formation compositions containing three-dimensional formation powders, the apparatus
comprising:
a formadoll unit in which the three-dimensional structure is formed;
a first supply unit and a second supply unit which supply the three-dimensional formation
compositions to the formation unit;
a first layer formation unit and a second layer formation unit which form the layers
configured with the three-dimensional formation compositions an the formation unit;
and
a discharge unit which discharges a binding solution to the layer,
wherein the discharge unit discharges the binding solution to the layers while relatively
moving with respect to the layer, and
the first supply unit, the first layer formation unit, the discharge unit, the second
layer formation unit, and the second supply unit are arranged in this order, along
a movement direction of the discharge unit.
Brief Description of the Figures
[0004]
FIG. 1 is a side view schematic of an embodiment of a three-dimensional printing system
for fabricating a three-dimensional article.
FIG. 2 is a plan view schematic diagram of some portions of an embodiment of a three-dimensional
printing system including a build chamber, two overflow chambers, and a powder coater.
The powder coater includes a vibration generator.
FIG. 3 is an isometric drawing of an embodiment of a powder coater.
FIG. 3A is detail taken from FIG. 3 with portions of an outer housing shown transparently.
FIG. 4 is a flowchart depicting an embodiment of a method of manufacturing a three-dimensional
article.
Summary
[0005] In a first aspect of the disclosure, a three-dimensional printing system for manufacturing
a three-dimensional article includes a build chamber, an overflow chamber adjacent
to the build chamber, a motorized build plate, a powder coater including a vibration
generator, a lateral movement mechanism coupled to the powder coater, and a controller.
The controller is configured to perform a process to remove accumulated powder from
surfaces of the powder coater according to the steps: (1) operate the lateral movement
mechanism to position the powder coater over a location that is laterally outside
of the build chamber; (2) operate the vibration generator to shake the accumulated
powder from the powder coater and onto the location that is laterally outside of the
build chamber. The location that is laterally outside of the build chamber can be
over the overflow chamber.
[0006] In one implementation, the three-dimensional printing system further includes a hopper
and a beam system. The controller is configured to accrete a layer of selectively
fused powder over an upper surface according to the steps: (1) position the motorized
build plate with the upper surface proximate to a build plane to receive another layer
of powder; (2a) scan the powder coater over the upper surface; (2b) concurrent with
scanning, meter a layer of unfused powder onto the upper surface; (3) operate the
beam system to selectively fuse the metered layer. The upper surface as defined is
either the upper surface of the build plate (for selectively fusing the first layer
of powder) or the upper surface of the latest dispensed layer of powder. The controller
can be configured to accrete at least two layers of selectively fused powder between
performing the accumulated powder removal process. The controller can be configured
to accrete at least four, at least eight, at least 16, at least 32, or more layers
of selectively fused powder between performing the accumulated powder removal process.
The hopper can be located above the overflow chamber.
[0007] In another implementation the powder coater is configured to scan along a scan axis
X. The powder coater has a major axis along a transverse axis Y that is normal to
the scan axis X. The vibration generator is positioned or located proximate to one
end of the powder coater with respect to the transverse axis Y. The vibration generator
can be motor coupled to an eccentric weight. The motor axis can be aligned with the
scan axis.
[0008] In yet another implementation, the vibration generator can include a transducer such
as a piezoelectric device and/or an ultrasonic transducer.
[0009] In a second aspect of the disclosure, a method of manufacturing a three-dimensional
article includes the steps: (A) Accreting a layer of selectively fused powder onto
an upper surface. The upper surface is one of an upper surface of a build plate and
an upper surface of a powder layer. Accreting includes the steps of (1) positioning
the upper surface proximate to a build plane; (2a) scanning a powder coater over the
upper surface along a scan axis; (2b) concurrent with scanning, metering a layer of
unfused powder onto the upper surface; (3) operating a beam system to selectively
fuse the metered layer of powder. (B) Repeat accreting layers of powder above the
build plate. (C) After accreting N layers, in which N is at least one, remove accumulated
powder residue from surfaces of the powder coater according to the steps of (1) positioning
the powder coater over a location that is laterally outside of the build plane; (2)
operating a vibration generator to shake the accumulated powder onto the location
outside of the build plane. N can be at least two, at least four, at least eight,
at least 16, at least 32, or a higher number depending upon a rate of accumulation
of powder upon the powder coater.
[0010] In one implementation the vibration generator is a motor coupled to an eccentric
weight. Operating the vibration generator includes spinning the eccentric weight along
an axis that is parallel to the scan axis.
[0011] In a third aspect of the disclosure, a three-dimensional printing system for manufacturing
a three-dimensional article includes a build chamber, an overflow chamber adjacent
to the build chamber, a motorized build plate, a powder coater including a vibration
generator, a powder hopper, a lateral movement mechanism, a beam system, and a controller.
The controller is configured to: (1) position an upper surface proximate to a build
plane; the upper surface is one of an upper surface of a build plate and an upper
surface of a previously deposited powder layer; (2) operate the lateral movement mechanism
to scan the powder coater over the build plane; (3) concurrent with scanning, operate
the powder coater to meter a layer of unfused powder onto the upper surface; (4) operate
the beam system to selectively fuse the metered layer of powder; (5) repeat (1)-(4)
until the three-dimensional article is fabricated; (6) replenish the powder coater
with powder using the powder hopper after metering and/or selectively fusing M layers,
M is at least one; (7) move the powder coater to the overflow chamber and operate
the vibration generator after metering and/or selectively fusing N layers, N is at
least two. M can equal two. N can be a positive nonzero integer multiple of M. N can
equal at least four, at least eight, at least 16, or a larger positive integer value.
Detailed Description of the Preferred Embodiments
[0012] FIG. 1 is a side view schematic diagram of an embodiment of a three-dimensional printing
system 2 for fabricating a three-dimensional article 4. In describing system 2, mutually
orthogonal axes X, Y, and Z can be used. Axes X and Y are lateral axes and generally
horizontal. Axis Z is a vertical axis that is generally aligned with a gravitational
reference. By "generally" we mean that a measure such as a quantity, a dimensional
comparison, or an orientation comparison is by design and within manufacturing tolerances
but as such may not be exact. The axis X can be referred to as a scan axis. The axis
Y can be referred to as a transverse axis.
[0013] System 2 includes a build chamber 6 containing a motorized build plate 8. The motorized
build plate 8 includes a vertical positioning mechanism 10 for adjusting a position
of an upper surface 12. In referring to upper surface 12, it is either an upper surface
12 of build plate 8 or of a previously dispensed layer of powder 14.
[0014] An overflow chamber 16 is positioned adjacent to the build chamber 6. While illustrated
on one side of build chamber 6, the overflow chamber 16 can include more than one
chamber and can be present on two, three, or all four sides of the build chamber 6.
[0015] A powder coater 18 includes a lateral movement mechanism 20. The lateral movement
mechanism is configured to scan the powder coater along the scan axis X. Concurrent
with the scanning, the powder coater 18 is configured to meter a layer of powder onto
the upper surface 12. The powder coater 18 typically will hold enough powder to provide
one or two layers of powder 14. Thus, powder coater 18 needs to be resupplied periodically.
[0016] A powder supply subsystem 22 is for supplying powder to the powder coater 18 to "recharge"
the powder coater 18 with powder 14. The powder supply subsystem includes powder reservoir
24, powder transport 26, and a hopper 28. The powder transport 26 can include a system
of auger conveyors that rotate and transport powder from the powder reservoir 24 to
the hopper 28. The hopper 28 is configured to dispense a quantity of powder 14 into
the powder coater 18. In the illustrated embodiment, the powder hopper 28 is disposed
above the overflow chamber 16.
[0017] When a new layer of powder 14 has been metered onto the upper surface 12, a beam
system 30 is configured to selectively fuse the powder layer to accrete a layer onto
the article 4. The beam system 30 generates an energy beam that can include one or
more of a radiation beam, an electron beam, or a particle beam.
[0018] In an illustrative embodiment, the beam system 30 generates and scans a plurality
of laser radiation beams 32 that scan across a build plane 34. The build plane 34
defines a location of the new layer of powder to be selectively fused.
[0019] In an illustrative embodiment, the powder 14 is a metal powder such as titanium alloy,
steel, Ni alloy, Co alloy or an aluminum alloy. In other embodiments, the powder 14
is a polymer powder.
[0020] For metal powders, a high power laser for melting and fusing the powder typically
outputs a radiative power of at least 50 watts. In various embodiments, the laser
can output power of 500 watts or 1000 watts. For systems employing polymer powders,
the power level can be considerably lower.
[0021] A controller 36 is coupled to and configured to operate the vertical positioning
mechanism 10, the powder coater 18, the lateral movement mechanism 20, the powder
supply subsystem 22, and the beam system 30. The controller 36 includes a processor
coupled to a computer-readable storage apparatus. The computer-readable storage apparatus
includes a non-transitory or non-volatile storage medium that stores software instructions.
When executed by the processor, the software instructions operate various portions
of system 2.
[0022] FIG. 2 is a plan view schematic diagram of some portions of an embodiment of system
2 including the build chamber 6, two overflow chambers 16, and the powder coater 18.
The two overflow chambers 16 are at opposing ends of build chamber 16 with respect
to scan axis X. The powder coater 18 is shown positioned above one of the overflow
chambers 16. During operation of system 2, powder will tend to accumulate on surfaces
of the powder coater 18. The accumulated powder will sometimes randomly fall from
the powder coater 18. If this happens while a layer of powder is being metered, the
result can be a defect in the metered layer.
[0023] To eliminate this problem, a vibration generator 38 is integrated into the powder
coater 18. The concern with the accumulated powder can be resolved by positioning
the powder coater 18 over a location outside of the build chamber and then operating
the vibration generator 38 to shake off the powder at this location. In the illustrated
embodiment, the powder coater 18 is positioned over the overflow chamber 16 before
operating the vibration generator 38. The vibrations cause the powder to fall into
the overflow chamber 16.
[0024] In the illustrated embodiment, the front of the machine is to the right (in a direction
of -Y). The vibration generator 38 is located toward a rearward side of the powder
coater 18. The scan axis X, as viewed from the front of the machine, is from left
to right and/or right to left.
[0025] FIG. 3 is an isometric drawing of an embodiment of the powder coater 18. Powder coater
18 has a major axis that is parallel to the transverse axis Y, an intermediate axis
that is parallel to the scan axis X, and a minor axis that is parallel to vertical
axis Z. An inlet slot 40 is disposed along the transverse axis Y for receiving powder
dispensed from hopper 28 when the powder coater is recharged with powder 14. The vibration
generator 38 is inside an opening 42 in the powder coater 18 which is positioned proximate
to one end of the powder coater 18 with respect to the transverse axis Y. A cover
(not shown) would be positioned over the opening 42 when the powder coater 18 is in
use.
[0026] FIG. 3A is detail taken from FIG 3 with portions of an outer housing 44 of the powder
coater shown transparently. In the illustrated embodiment, the vibration generator
38 includes a motor 46 coupled to a semicircular eccentric weight 48. The motor 46
has a rotational axis 49 that is parallel to the scan axis X. This version of the
vibration generator 38 can be referred to as a vibration motor 38.
[0027] In an illustrative embodiment, the vibration motor 38 can operate with an input voltage
range of about 2 to 14 volts. Within this input voltage range, the rotational frequency
varies from about 20 Hertz to about 130 Hertz. Other vibration motors 38 can be used
and this is but one example. Other motors may operate with different input voltages
and/or with different frequency ranges and still be useful for this application. Yet
other vibration generators 38 can be used such as piezoelectric and/or ultrasonic
transducers.
[0028] FIG. 4 is a flowchart depicting an embodiment of a method 50 of manufacturing a three-dimensional
article 4 using the three-dimensional printing system 2. Method 50 is illustrative
of the execution of software steps by a processor within the controller 36. The actual
number of software steps may be much greater than the illustrated flowchart however.
[0029] Steps 52, 54, and 56 are steps for accreting a layer of selectively fused powder
upon the upper surface 12. According to 52, the motorized build plate is operated
to position the upper surface 12 proximate to the build plane 34. According to 54,
the powder coater 18 is scanned above the build plane 34 along the scan axis X. Concurrent
with scanning, the powder coater 18 is operated to meter a layer of powder 14 upon
the upper surface 12. According to 56, the beam system 30 is operated to selectively
fuse the metered layer of powder 14. As indicated by the upper loop, steps 52-56 can
be repeated M times based upon a capacity of powder coater 18. In an illustrative
embodiment, M = 2.
[0030] According to 58, the powder coater 18 is positioned under the hopper 28. Hopper 28
then dispenses powder 14 into the inlet slot 40 to recharge the powder coater 18.
As indicated by the middle loop, steps 52-56 repeat for the accretion of N selectively
fused layers of the article 4. Typically N is a multiple of M. In an illustrative
embodiment, N = 12, and the powder coater 18 is recharged six times during the accretion
of four selectively fused layers. During formation of the 12 layers, powder may accumulate
on an upper surface 45 (FIG. 3) of the powder coater.
[0031] According to 60, the powder coater 18 is positioned over the overflow chamber 16.
In one illustrative embodiment, the hopper 28 is also above the overflow chamber 16.
According to 62, the vibration generator 38 is operated to shake the accumulated powder
from the powder coater 18 and into the overflow chamber 16. Then the process proceeds
back to step 52 to be repeated for another N layers, and this process continues until
fabrication of article 4 is complete.
[0032] Generally speaking, M can be one or more. N can equal M or be any nonzero positive
integer multiple of M. Selection of M is based upon a capacity of the powder coater
18 and selection of N is based upon a rate of accumulation of powder upon the powder
coater 18 outer surfaces.
[0033] The specific embodiments and applications thereof described above are for illustrative
purposes only and do not preclude modifications and variations encompassed by the
scope of the following claims.
1. A three-dimensional printing system (2) for manufacturing a three-dimensional article
(4) comprising:
a build chamber (6);
an overflow chamber (16) adjacent to the build chamber (6);
a motorized build plate (8);
a powder coater (18) including a vibration generator (38);
a lateral movement mechanism (20) coupled to the powder coater (18); and
a controller (36) characterized in that the controller is configured to perform a process to remove accumulated powder (14)
from surfaces of the powder coater (18) according to the steps:
operate the lateral movement mechanism (20) to position the powder coater (18) over
a location outside of the build chamber (6); and
operate the vibration generator (38) to shake the accumulated powder onto the location
outside of the build chamber (6).
2. The three-dimensional printing system (2) of claim 1 further comprising a hopper (28)
and a beam system (30), the controller is configured to accrete a layer of selectively
fused powder over an upper surface according to the steps:
position the motorized build plate (8) with the upper surface proximate to a build
plane (34) to receive another layer of powder (14);
scan the powder coater (18) over the upper surface;
concurrent with scanning, meter a layer of unfused powder onto the upper surface;
and
operate the beam system (30) to selectively fuse the metered layer.
3. The three-dimensional printing system (2) of claim 2 wherein the controller (36) is
configured to accrete at least two layers, preferably at least 10 layers, of selectively
fused powder between performing the accumulated powder removal process.
4. The three-dimensional printing system (2) of claim 2 or 3 wherein the hopper (28)
is located above the overflow chamber (16).
5. The three-dimensional printing system (2) of one or more of claims 1 to 4 wherein
the powder coater (18) is configured to scan along a scan axis and has a major axis
along a transverse axis that is normal to the scan axis, the vibration generator is
positioned proximate to one end of the powder coater (18) with respect to the transverse
axis.
6. The three-dimensional printing system (2) of one or more of claims 1 to 5 wherein
the vibration generator (38) is a motor coupled to an eccentric weight, the motor
axis is aligned with the scan axis.
7. The three-dimensional printing system (2) of one or more of claims 1 to 6 wherein
the location outside of the build chamber (6) is defined by the overflow chamber (16).
8. A three-dimensional printing system (2) according to claim 1 further comprising:
a powder hopper (28);
a beam system (30); and wherein
the process to remove accumulated powder (14) from surfaces of the powder coater (18),
to which the controller (36) is configured to, comprises the steps to:
(1) position an upper surface proximate to a build plane, the upper surface is one
of an upper surface of a build plate and an upper surface of a previously deposited
powder layer;
(2) operate the lateral movement mechanism to scan the powder coater (18) over the
build plane;
(3) concurrent with scanning, operate the powder coater (18) to meter a layer of unfused
powder onto the upper surface;
(4) operate the beam system (30) to selectively fuse the metered layer of powder;
(5) repeat (1)-(4) until the three-dimensional article (4) is fabricated;
(6) replenish the powder coater (18) with powder using the powder hopper (28) after
selectively fusing M layers, M is at least one; and
(7) move the powder coater (18) to the overflow chamber (16) and operate the vibration
generator (38) after selectively fusing N layers, N is at least two.
9. The three-dimensional printing system (2) of claim 8 wherein M equals two and/or wherein
N is at least 10.
10. The three-dimensional printing system (2) of claim 8 or 9 wherein the powder coater
(18) is configured to scan along a scan axis and has a major axis along a transverse
axis that is normal to the scan axis, the vibration generator (38) is positioned at
one end of the power coater (18) with respect to the transverse axis.
11. The three-dimensional printing system (2) of one or more of claims 8 to 10 wherein
the vibration generator (38) is a motor (46) coupled to an eccentric weight (48),
the motor axis is aligned with the scan axis.
12. A method of manufacturing a three-dimensional article (4) comprising:
accreting a layer of selectively fused powder onto an upper surface, the upper surface
is one of an upper surface of a build plate and an upper surface of a powder layer,
according to the steps of:
positioning the upper surface proximate to a build plane;
scanning a powder coater (18) over the upper surface along a scan axis;
concurrent with scanning, metering a layer of unfused powder onto the upper surface;
and
operating a beam system (30) to selectively fuse the metered layer of powder;
repeat accreting layers of powder above the build plate; and
after accreting N layers, in which N is at least one, remove accumulated powder residue
from surfaces of the powder coater (18) according to the steps of:
positioning the powder coater (18) over a location that is laterally outside of the
build plane; and
operating a vibration generator to shake the accumulated powder onto the location
outside of the build plane.
13. The method of claim 12, wherein N is at least 2, preferably N is at least 10.
14. The method of claim 12 or 13, wherein the vibration generator (38) is a motor coupled
to an eccentric weight, operating the vibration generator (38) includes spinning the
eccentric weight along an axis that is parallel to the scan axis.
15. The method of one or more of claims 12 to 14, wherein the location outside of the
build plane includes an overflow chamber (16).
1. 3D-Drucksystem (2) zur Fertigung eines dreidimensionalen Gegenstands (4), umfassend:
eine Baukammer (6);
eine Überlaufkammer (16), die der Baukammer (6) benachbart ist;
eine motorisierte Bauplatte (8);
einen Pulverbeschichter (18), der einen Schwingungserreger (38) umfasst;
einen Seitenbewegungsmechanismus (20), der an den Pulverbeschichter (18) gekoppelt
ist; und
ein Steuerungsgerät (36);
dadurch gekennzeichnet, dass das Steuerungsgerät so konfiguriert ist, dass es ein Verfahren zum Entfernen von
akkumuliertem Pulver (14) von Flächen des Pulverbeschichters (18) gemäß den folgenden
Schritten durchführen kann:
Betreiben des Seitenbewegungsmechanismus (20) in einer solchen Weise, dass der Pulverbeschichter
(18) über eine Stelle außerhalb der Baukammer (6) bewegt wird; und
Betreiben des Schwingungserregers (38) in einer solchen Weise, dass das akkumulierte
Pulver auf die Stelle außerhalb der Baukammer (6) geschüttelt wird.
2. 3D-Drucksystem (2) gemäß Anspruch 1, weiterhin umfassend einen Trichter (28) und ein
Strahlsystem (30), wobei das Steuerungsgerät so konfiguriert ist, dass es eine Schicht
aus selektiv geschmolzenem Pulver über einer oberen Fläche sammeln kann, gemäß den
Schritten:
Positionieren der motorisierten Bauplatte (8) mit der oberen Fläche nächst einer Bauebene
(34), um eine weitere Pulverschicht (14) aufzunehmen;
den Pulverbeschichter (18) in einem Raster über die obere Fläche zu führen;
gleichzeitig mit dem Führen, Dosieren einer Schicht aus ungeschmolzenem Pulver auf
die obere Fläche; und
Betreiben des Strahlsystems (30) in einer solchen Weise, dass die dosierte Schicht
selektiv geschmolzen wird.
3. 3D-Drucksystem (2) gemäß Anspruch 2, wobei die Steuerungseinrichtung (36) so konfiguriert
ist, dass sie zwischen der Durchführung des Verfahrens zum Entfernen von akkumuliertem
Pulver wenigstens zwei Schichten, vorzugsweise wenigstens 10 Schichten, aus selektiv
geschmolzenem Pulver sammelt.
4. 3D-Drucksystem (2) gemäß Anspruch 2 oder 3, wobei sich der Trichter (28) oberhalb
der Überlaufkammer (16) befindet.
5. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 4, wobei der Pulverbeschichter
(18) so konfiguriert ist, dass er sich in einem Raster entlang einer Scan-Achse bewegen
kann, und eine Hauptachse entlang einer Querachse, die senkrecht zur Scan-Achse steht,
aufweist, sich der Schwingungserreger nächst einem Ende des Pulverbeschichters (18)
in Bezug auf die Querachse befindet.
6. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 5, wobei der Schwingungserreger
(38) ein an ein exzentrisches Gewicht gekoppelter Motor ist, wobei die Motorachse
mit der Scan-Achse ausgerichtet ist.
7. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 1 bis 6, wobei die Stelle
außerhalb der Baukammer (6) durch die Überlaufkammer (16) definiert wird.
8. 3D-Drucksystem (2) gemäß Anspruch 1, weiterhin umfassend:
einen Pulvertrichter (28);
ein Strahlsystem (30); wobei
das Verfahren zum Entfernen von akkumuliertem Pulver (14) von Flächen des Pulverbeschichters
(18), für das das Steuerungsgerät (36) konfiguriert ist, die folgenden Schritte umfasst:
(1) Positionieren einer oberen Fläche nächst einer Bauebene, wobei die obere Fläche
entweder eine obere Fläche einer Bauplatte oder eine obere Fläche einer zuvor abgeschiedenen
Pulverschicht ist;
(2) Betreiben des Seitenbewegungsmechanismus in einer solchen Weise, dass der Pulverbeschichter
(18) in einem Raster über die Bauebene geführt wird;
(3) gleichzeitig mit dem Führen, Betreiben des Pulverbeschichters (18) in einer solchen
Weise, dass eine Schicht aus ungeschmolzenem Pulver auf die obere Fläche dosiert wird;
(4) Betreiben des Strahlsystems (30) in einer solchen Weise, dass die dosierte Pulverschicht
selektiv geschmolzen wird;
(5) (1)-(4) Wiederholen, bis der dreidimensionale Artikel (4) gefertigt ist;
(6) Wiederauffüllen des Pulverbeschichters (18) mit Pulver unter Verwendung des Pulvertrichters
(28), nachdem M Schichten selektiv geschmolzen wurden, wobei M wenigstens eins ist;
und
(7) Bewegen des Pulverbeschichters (18) zu der Überlaufkammer (16) und Betreiben des
Schwingungserregers (38), nachdem N Schichten selektiv geschmolzen wurden, wobei N
wenigstens zwei beträgt.
9. 3D-Drucksystem (2) gemäß Anspruch 8, wobei M gleich zwei ist und/oder wobei N wenigstens
10 beträgt.
10. 3D-Drucksystem (2) gemäß Anspruch 8 oder 9, wobei der Pulverbeschichter (18) so konfiguriert
ist, dass er sich in einem Raster entlang einer Scan-Achse bewegen kann, und eine
Hauptachse entlang einer Querachse, die senkrecht zur Scan-Achse steht, aufweist,
sich der Schwingungserreger (38) an einem Ende des Pulverbeschichters (18) in Bezug
auf die Querachse befindet.
11. 3D-Drucksystem (2) gemäß einem oder mehreren der Ansprüche 8 bis 10, wobei der Schwingungserreger
(38) ein an ein exzentrisches Gewicht (48) gekoppelter Motor (46) ist, wobei die Motorachse
mit der Scan-Achse ausgerichtet ist.
12. Verfahren zur Herstellung eines dreidimensionalen Artikels (4), umfassend:
das Ansammeln einer Schicht aus selektiv geschmolzenem Pulver auf einer oberen Fläche,
wobei die obere Fläche entweder eine obere Fläche einer Bauplatte oder eine obere
Fläche einer Pulverschicht ist, gemäß den folgenden Schritten:
Positionieren der oberen Fläche nächst einer Bauebene;
Führen eines Pulverbeschichters (18) in einem Raster über die obere Fläche entlang
einer Scan-Achse;
gleichzeitig mit dem Führen, Dosieren einer Schicht aus ungeschmolzenem Pulver auf
die obere Fläche; und
Betreiben eines Strahlsystems (30) in einer solchen Weise, dass die dosierte Pulverschicht
selektiv geschmolzen wird;
Wiederholen des Ansammelns von Schichten aus Pulver oberhalb der Bauplatte; und
nach dem Ansammeln von N Schichten, wobei N wenigstens eins ist, Entfernen von Resten
des akkumulierten Pulvers von Flächen des Pulverbeschichters (18) gemäß den folgenden
Schritten:
Bewegen des Pulverbeschichters (18) über eine Stelle, die sich seitlich außerhalb
der Bauebene befindet; und
Betreiben eines Schwingungserregers in einer solchen Weise, dass das akkumulierte
Pulver auf die Stelle außerhalb der Bauebene geschüttelt wird.
13. Verfahren gemäß Anspruch 12, wobei N wenigstens 2 beträgt, vorzugsweise N wenigstens
10 beträgt.
14. Verfahren gemäß Anspruch 12 oder 13, wobei der Schwingungserreger (38) ein an ein
exzentrisches Gewicht gekoppelter Motor ist, das Betreiben des Schwingungserregers
(38) das Rotierenlassen des exzentrischen Gewichts entlang einer Achse, die parallel
zur Scan-Achse verläuft, umfasst.
15. Verfahren gemäß einem oder mehreren der Ansprüche 12 bis 14, wobei die Stelle außerhalb
der Bauebene eine Überlaufkammer (16) umfasst.
1. Système d'impression en 3D (2) pour fabriquer un article tridimensionnel (4), comprenant
:
une chambre de construction (6),
une chambre de débordement (16) adjacent à ladite chambre de construction (6),
une plaque de construction motorisée (8),
une machine de revêtement de poudre (18) incluant un générateur de vibrations (38),
un mécanisme de mouvement latéral (20) couplé à la machine de revêtement de poudre
(18), et
un dispositif de commande (36), caractérisé en ce que l'unité de commande est configurée pour effectuer un procédé pour enlever la poudre
accumulée (14) de surfaces de la machine de revêtement de poudre (18) selon les étapes
suivantes consistant à :
opérer ledit mécanisme de mouvement latéral (20) pour positionner ladite machine de
revêtement de poudre (18) au-dessus d'un endroit à l'extérieur de la chambre de construction
(6), et
opérer ledit générateur de vibrations (38) pour secouer la poudre accumulée sur l'endroit
à l'extérieur de la chambre de construction (6).
2. Système d'impression en 3D (2) selon la revendication 1, comprenant en outre une trémie
(28) et un système d'irradiation (30), l'unité de commande est configurée pour accumuler
une couche de poudre sélectivement fondue sur une surface supérieure selon les étapes
consistant à :
positionner la plaque de construction motorisée (8) avec sa surface supérieure proximale
à un plan de construction (34) pour recevoir encore une couche de poudre (14),
faire balayer la machine de revêtement de poudre (18) au-dessus de la surface supérieure,
au même temps que le balayage, fournir une couche de poudre non fondue sur la surface
supérieure, et
opérer le système d'irradiation (30) pour sélectivement fondre la couche fournie.
3. Système d'impression en 3D (2) selon la revendication 2, dans lequel ladite unité
de commande (36) est configurée pour accumuler au moins deux couches, de préférence
au moins 10 couches, de poudre sélectivement fondue entre la réalisation du procédé
pour éliminer la poudre accumulée.
4. Système d'impression en 3D (2) selon la revendication 2 ou 3, dans lequel ladite trémie
(28) se trouve au-dessus de la chambre de débordement (16).
5. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 4,
dans lequel ladite machine de revêtement de poudre (18) est configurée pour balayer
le long d'un axe de balayage, et présente un axe majeur le long d'un axe transversal
qui est perpendiculaire à l'axe de balayage, ledit générateur de vibrations est positionné
proximal à une extrémité de ladite machine de revêtement de poudre (18) par rapport
à l'axe transversal.
6. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 5,
dans lequel ledit générateur de vibrations (38) est un moteur couplé à un poids excentrique,
l'axe de moteur est aligné avec l'axe de balayage.
7. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 1 à 6,
dans lequel l'endroit à l'extérieur de la chambre de construction (6) est défini par
la chambre de débordement (16).
8. Système d'impression en 3D (2) selon la revendication 1, comprenant en outre :
une trémie de poudre (28),
un système d'irradiation (30), et dans lequel
ledit procédé pour enlever la poudre accumulée (14) de surfaces de la machine de revêtement
de poudre (18), pour laquelle ledit dispositif de commande (36) est configuré, comprend
les étapes consistant à :
(1) positionner une surface supérieure proximale à un plan de construction, ladite
surface supérieure étant soit une surface supérieure d'une plaque de construction
soit une surface supérieure d'une couche de poudre préalablement déposée,
(2) opérer ledit mécanisme de mouvement latéral pour faire balayer la machine de revêtement
de poudre (18) au-dessus du plan de construction,
(3) et au même temps que le balayage, opérer ladite machine de revêtement de poudre
(18) pour fournir une couche de poudre non fondue sur la surface supérieure,
(4) opérer le système d'irradiation (30) pour sélectivement fondre la couche de poudre
fournie,
(5) répéter les étapes (1)-(4) jusqu'à ce que l'article tridimensionnel soit fabriqué,
(6) recharger ladite machine de revêtement de poudre (18) avec la poudre en utilisant
ladite trémie de poudre (28), après que M couches ont été sélectivement fondues, où
M est au moins 1, et
(7) déplacer ladite machine de revêtement de poudre (18) à la chambre de débordement
(16), et opérer le générateur de vibrations (38), après la fusion sélective de N couches,
N est au moins deux.
9. Système d'impression en 3D (2) selon la revendication 8, dans lequel M est égal à
deux, et/ou dans lequel N est au moins 10.
10. Système d'impression en 3D (2) selon la revendication 8 ou 9, dans lequel ladite machine
de revêtement de poudre (18) est configurée pour balayer le long d'un axe de balayage,
et présente un axe majeur le long d'un axe transversal qui est perpendiculaire à l'axe
de balayage, ledit générateur de vibrations (38) est positionné à une extrémité de
ladite machine de revêtement de poudre (18) par rapport à l'axe transversal.
11. Système d'impression en 3D (2) selon l'une ou plusieurs des revendications 8 à 10,
dans lequel ledit générateur de vibrations (38) est un moteur (46) couplé à un poids
excentrique (48), l'axe de moteur est aligné avec l'axe de balayage.
12. Procédé pour fabriquer un article tridimensionnel (4), comprenant les étapes consistant
à :
accumuler une couche de poudre sélectivement fondue sur une surface supérieure, ladite
surface supérieure étant soit une surface supérieure d'une plaque de construction
soit une surface supérieure d'une couche de poudre, selon les étapes consistant à
:
positionner la surface supérieure proximale à un plan de construction,
faire balayer une machine de revêtement de poudre (18) au-dessus de la surface supérieure
le long d'un axe de balayage,
et au même temps que le balayage, fournir une couche de poudre non fondue sur la surface
supérieure, et
opérer un système d'irradiation (30) pour sélectivement fondre la couche de poudre
fournie,
répéter l'accumulation de couches de poudre au-dessus de la plaque de construction,
et
après l'accumulation de N couches, où N est au moins 1, enlever les résidus de la
poudre accumulée de surfaces de la machine de revêtement de poudre (18) selon les
étapes consistant à :
positionner ladite machine de revêtement de poudre (18) au-dessus d'un endroit qui
est latéralement à l'extérieur du plan de construction, et
opérer un générateur de vibrations pour secouer la poudre accumulée sur l'endroit
à l'extérieur du plan de construction.
13. Procédé selon la revendication 12, dans lequel N est au moins 2, de préférence N est
au moins 10.
14. Procédé selon la revendication 12 ou 13, dans lequel ledit générateur de vibrations
(38) est un moteur couplé à un poids excentrique, l'étape consistant à opérer ledit
générateur de vibrations (38) comprend la rotation du poids excentrique le long d'un
axe qui est parallèle à l'axe de balayage.
15. Procédé selon l'une ou plusieurs des revendications 12 à 14, dans lequel ledit endroit
à l'extérieur du plan de construction comprend une chambre de débordement (16).