TECHNICAL FIELD
[0001] The present invention is related to a light bulb apparatus, and is more particularly
related to a light bulb apparatus with a flexible filament.
BACKGROUND
[0002] Light emitting diode (LED) light bulbs have advantages over traditional lighting
solutions such as incandescent and fluorescent lighting because they are more durable,
use less energy, operate longer, and may be controlled to deliver light of various
colors. Therefore LED light bulbs with flexible filaments are becoming more popular
as replacements for older lighting systems.
[0003] A traditional way to produce the light bulb with a flexible filament is to provide
a few fixation rings on a central support of the light bulb, manually bend the flexible
filament to pass through each of the fixation rings, and then fix the flexible filament.
Such design requires a lot of manual work, so the production efficiency is low and
the workmanship quality cannot be assured.
SUMMARY
[0004] One objective of the invention is to provide a light bulb apparatus with a flexible
filament; the new design proposed by the present disclosure includes a novel expanding
structure to help improve the production efficiency and quality, and also reduce the
manufacturing cost of the light bulb apparatus.
[0005] To achieve such objective, according to some embodiments of the present disclosure,
the light bulb apparatus includes a light bulb shell, a bulb head, and a heat sink
cup. The heat sink cup has a first end and a second end. The first end of the heat
sink cup is connected to the light bulb shell, and the second end of the heat sink
cup is connected to the bulb head. The light bulb apparatus includes a flexible filament
for emitting light, and a central support. The flexible filament has a first terminal
and a second terminal. The central support provides a first electrode electrically
connected to the first terminal of the flexible filament, and provides a second electrode
electrically connected to the second terminal of the flexible filament. The light
bulb apparatus further includes an expanding structure and a driver module. The expanding
structure is mechanically coupled to the central support, and includes a plurality
of holding portions for holding the flexible filament. The driver module is electrically
connected to the bulb head and the central support for providing electrical power
to the first electrode and the second electrode of the central support.
[0006] In some embodiments, the expanding structure includes two bending strips symmetrically
or asymmetrically arranged with respect to a central axis of the central support.
And each of the bending strips has a plurality of concave portions as the holding
portions to hold the flexible filament. The concave portions may be substantially
U-shaped, C-shaped, or G-shaped.
[0007] In another embodiment, the expanding structure includes a plurality of support rods
arranged along a central axis of the central support. Each of the support rods has
a first end mechanically coupled to the central support, and has a second end extending
outward from the central support to hold the flexible filament. The second ends of
the support rods may be substantially U-shaped, C-shaped, or G-shaped.
[0008] In another embodiment, the expanding structure includes a block-shaped pillar having
a concave slot. The concave slot is spiral on the surface of the block-shaped pillar
for holding the flexible filament. The expanding structure may be made of metal, ceramic,
glass, or plastic material. The block-shaped pillar may be hollow or solid inside.
[0009] In another embodiment, the expanding structure includes a plurality of support boards.
Each of the support boards has a plurality of concave portions as the holding portions
to hold the flexible filament. The concave portions may be substantially U-shaped,
C-shaped, or G-shaped.
[0010] In some embodiments, the central support and the expanding structure may be made
of a same material and may be integrally formed.
[0011] In some embodiments, the light bulb apparatus includes at least two flexible filaments
connected in series or in parallel. The two flexible filaments may emit light of different
colors or different color temperatures.
[0012] In some embodiments, the holding portions include a blocking structure for preventing
the flexible filament from falling out of the holding portions. For example, the holding
portions may be G-shaped for preventing the flexible filament from falling out of
the holding portions.
BRIEF DESCRIPTION OF DRAWINGS
[0013] For a better understanding of the present disclosure, its operating advantages and
the specific objects attained by its uses, reference should be made to the accompanying
drawings listed below. It is noted that these drawings are for illustration of preferred
embodiments only and should not be regarded as limiting.
FIG. 1 is a perspective view of a light bulb apparatus according to a first embodiment
of the present disclosure.
FIG. 2 illustrates the exploded view of the light bulb apparatus according to the
first embodiment.
FIG. 3 illustrates the exploded view of the expanding structure and some components
of the first embodiment.
FIG. 4 illustrates an assembly view of the expanding structure and the components
in FIG. 3 in the first embodiment.
FIG. 5 illustrates an assembly view of the expanding structure and some components
according to a second embodiment of the present disclosure.
FIG. 6 illustrates an assembly view of the expanding structure and some components
according to a third embodiment of the present disclosure.
FIG. 7 illustrates an assembly view of the expanding structure and some components
according to a fourth embodiment of the present disclosure.
FIG. 8 illustrates an assembly view of the expanding structure and some components
according to a fifth embodiment of the present disclosure.
FIG. 9 illustrates an assembly view of the expanding structure and some components
according to a sixth embodiment of the present disclosure.
DETAILED DESCRIPTION
[0014] To facilitate a better understanding of the present disclosure, the following examples
of certain embodiments are given. In no way should the following examples be read
to limit or define the scope of the disclosure.
[0015] FIG. 1 to 4 illustrate the first embodiment of the present disclosure. In the first
embodiment, the light bulb apparatus 100 includes a light bulb shell 1, a bulb head
7, and a heat sink cup 6. The heat sink cup 6 has a first end and a second end. As
shown in FIG. 1 and FIG. 2, the first end of the heat sink cup 6 is connected to the
light bulb shell 1, and the second end of the heat sink cup 6 is connected to the
bulb head 7. The bulb head 7 may be a traditional Edison bulb head configured to receive
external power source for the light bulb apparatus 100.
[0016] Refer to FIG. 2. The light bulb apparatus 100 includes a flexible filament 2 and
a central support 4. The flexible filament 2 includes one or more LED chips for emitting
light. The flexible filament 2 has a first terminal and a second terminal, and the
central support 4 provides a first electrode 41 electrically connected to the first
terminal of the flexible filament 2, and provides a second electrode 42 electrically
connected to the second terminal of the flexible filament 2. The first electrode 41
and the second electrode 42 are physically located away from each other.
[0017] The light bulb apparatus 100 further includes an expanding structure 3 and a driver
module 5. The expanding structure 3 is mechanically coupled to the central support
4, and includes a plurality of holding portions for holding the flexible filament
2. The driver module 5 includes a driver circuit board and electrical components arranged
on the driver circuit board. The driver module 5 is electrically connected to the
bulb head 7 and the central support 4, and the driver module 5 is capable of providing
electrical power to the first electrode 41 and the second electrode 42 of the central
support 4. The first electrode 41 and the second electrode 42 may be made of metal
material. The bulb head 7 includes a metal tip 71 located distal to the heat sink
cup 6. The bulb head 7 and the metal tip 71 work together to receive external power
for the light bulb apparatus 100.
[0018] In this embodiment, the central support 4 extends and a part of the central support
4 is located inside the light bulb shell 1, so the flexible filament 2 could be physically
located inside the light bulb shell 1.
[0019] Refer to FIG. 3 and FIG. 4. In this embodiment, the expanding structure 3 includes
two bending strips 31 symmetrically arranged with respect to a central axis 9 of the
central support 4. The two bending strips 31 are mechanically coupled to the central
support 4. Each of the bending strips 31 has a plurality of concave portions 35 as
the holding portions to hold the flexible filament 2. The flexible filament 2 is bent
to spiral along a central axis 9 of the central support 4 and is held and fixed by
the concave portions 35. The concave portions 35 are substantially U-shaped in this
embodiment so as to properly hold and fix the flexible filament 2. Comparing to a
traditional way which includes bending the filament to pass through the fixation rings,
the new way proposed by the present disclosure is more efficient and reliable, and
may reduce the manufacturing cost and improve the production quality.
[0020] In this embodiment of the present disclosure, the central support 4 has a horn-type
bottom. The horn-type bottom is connected to the light bulb shell 1 by high melting-point
soldering, and the flexible filament 2 is sealed inside the light bulb shell 1. There
may be heat dissipation gas filled inside the light bulb shell 1 so as to improve
the heat dissipation of the light bulb apparatus 100. The heat dissipation gas may
be helium, or a combination of helium and oxygen. The central support 4 and the heat
sink cup 6 may be connected to each other by glue, by buckles, or by screw thread.
The heat sink cup 6 may be made of plastic material. The heat sink cup 6 and the light
bulb shell 1 may be connected to each other by glue.
[0021] In this embodiment, the first terminal of the flexible filament 2 is soldered to
the first electrode 41. Then the flexible filament 2 is bent to spiral and to be held
by the concave portions 35 of the expanding structure 3. And then the second terminal
of the flexible filament 2 is soldered to the second electrode 42. In another embodiment,
the flexible filament 2 may be first bent to spiral and to be held by the concave
portions 35 of the expanding structure 3. And then the first terminal and the second
terminal of the flexible filament 2 are soldered to the first electrode 41 and the
second electrode 42 respectively.
[0022] In this embodiment, the bending strips 31 may be made of metal, plastic, or glass
material. If the bending strips 31 are made of metal material, the bending strips
31 may be connected to the central support 4 by plug/socket and soldering. If the
bending strips 31 are made of plastic or glass material, the bending strips 31 may
be connected to the central support 4 by plug/socket and glue. In another embodiment,
there may be more than two bending strips 31, for example, there may be four or six
bending strips 31 used in the light bulb apparatus 100.
[0023] Refer to FIG. 5, which illustrates a second embodiment of the present disclosure.
The second embodiment is similar to the first embodiment, but the two bending strips
31 are mechanically coupled to the first electrode 41 and the second electrode 42.
The bending strip 31 may be made of metal, plastic, or glass material. With the arrangement
proposed by the second embodiment, the cost for installing the bending strips 31 may
be reduced, and it may be more convenient for soldering or gluing the bending strips
31 to the first electrode 41 and the second electrode 42.
[0024] FIG. 6 illustrates a third embodiment of the present disclosure. In the third embodiment,
the expanding structure 3 includes a plurality of support rods 32 arranged along the
central axis 9 of the central support 4. The support rods 32 are spaced an equal distance
apart from each other on the surface of the central support 4. Each of the support
rods 32 has a first end mechanically coupled to the central support 4, and has a second
end extending outward from the central support 4 to hold the flexible filament 2.
The second ends of the support rods 32 may be bent into substantial U-shape or C-shape,
with the open ends of the U-shape or the C-shape facing toward the central axis 9
of the central support 4. It is noted that since the open ends of the U-shape or the
C-shape face toward the central axis 9 of the central support 4, the open ends could
not be shown in FIG. 6.
[0025] In the third embodiment, the support rods 32 may be made of metal, plastic, or glass
material. With such arrangement, the material required for composing the expanding
structure 3 may be reduced, and the process for installing the expanding structure
3 may also be simplified. In this embodiment, there are at least two groups of support
rods 32 arranged parallel to each other so as to properly support the flexible filament
2. The support rods 32 may be connected to the central support 4 by soldering, glue,
or screw-thread.
[0026] FIG. 7 illustrates the fourth embodiment of the present disclosure. The fourth embodiment
is similar to the first embodiment shown in FIG. 4, but the bending strips 31 are
asymmetrically arranged with respect to the central axis 9 of the central support
4. The bending strips 31 may be made of metal, plastic, or glass material. In this
embodiment, the bending strips 31 are arranged surrounding the central axis 9 of the
central support 4 as a circle. In this embodiment, there may be an odd number, for
example three or five, of bending strips 31 used in the light bulb apparatus 100.
[0027] FIG. 8 illustrates the fifth embodiment of the present disclosure. In the fifth embodiment,
the expanding structure 3 includes a block-shaped pillar 33 having a concave slot
35. The concave slot 35 is arranged spiral on the surface of the block-shaped pillar
33 for holding the flexible filament 2. The block-shaped pillar 33 may be hollow inside,
so the overall weight of the light bulb apparatus 100 could be reduced. The block-shaped
pillar 33 may also be solid inside. The block-shaped pillar 33 may be made of metal,
ceramic, glass, or plastic material. Preferably, the block-shaped pillar 33 may be
made of transparent glass or plastic material. The block-shaped pillar 33 may be installed
onto the central support 4 by glue.
[0028] Refer to FIG. 9, which shows the sixth embodiment of the present disclosure. In the
sixth embodiment, the expanding structure 3 includes a plurality of support boards
34. Each of the support boards 34 has a plurality of concave portions 35 at its edge
area as the holding portions to hold the flexible filament 2. The concave portions
35 may be substantially U-shaped or C-shaped. In this embodiment, there are four support
boards 34 arranged in the shape of a cross. The support boards 34 may be made of metal,
ceramic, glass, or plastic material. Preferably, the support boards 34 are made of
transparent glass or plastic material. The support boards 34 are connected to the
central support 4 by soldering or glue. In another embodiment, there may be three,
five, or six support boards 34 used in the light bulb apparatus 100.
[0029] In some embodiments, the central support 4 and the expanding structure 3 may be made
of a same material and may be integrally formed. In this way, the manufacturing cost
for the light bulb apparatus 100 may be further reduced.
[0030] In the above embodiments, the holding portions are substantially U-shaped or C-shaped.
The size of the open ends of the U-shapes or the C-shapes should be suitable to properly
hold and fix the filament 2. In some other embodiments, the holding portions may further
include a blocking structure so as to prevent the flexible filament 2 from falling
out of the holding portions. For example, the holding portions may be G-shaped, so
the holding portions would include a blocking structure to properly prevent the flexible
filament 2 from falling out of the holding portions.
[0031] In some embodiments, the light bulb apparatus 100 may include two or more flexible
filaments 2 connected in parallel. Accordingly, there are two or more sets of the
first electrodes 41 and the second electrodes 42, with each set of the first electrode
41 and the second electrode 42 electrically connected to one of the flexible filaments
2. Each of the flexible filaments 2 includes one or more LED chips capable of emitting
light. With such arrangement, if one flexible filament 2 fails, the other ones may
continue to provide lighting.
[0032] Alternatively, each of the flexible filaments 2 may include one or more LED chips
capable of emitting light of different colors (e.g., red, green, or blue...) or different
color temperatures (e.g., 3000K, 4500K, or 6000K...). With such arrangement, the light
bulb apparatus 100 may emit light of different color or different color temperature
by providing power to one or a combination of the flexible filaments 2.
[0033] In another embodiment, the two or more flexible filaments 2 may be connected in series.
[0034] In the above embodiments, the light bulb apparatus of the present disclosure includes
an expanding structure having holding portions to properly hold the flexible filament.
The expanding structure may be bending strips, support rods, block-shaped pillar,
or support boards ... etc. As illustrated above, the expanding structure according
the present disclosure is easy to implement and install, and may be applied in various
lighting apparatuses. High production quality and manufacturing efficiency of the
light bulb apparatus may be achieved.
[0035] The foregoing description, for purpose of explanation, has been described with reference
to specific embodiments. However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications
and variations are possible in view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the techniques and their
practical applications. Others skilled in the art are thereby enabled to best utilize
the techniques and various embodiments with various modifications as are suited to
the particular use contemplated.
[0036] Although the disclosure and examples have been fully described with reference to
the accompanying drawings, it is to be noted that various changes and modifications
will become apparent to those skilled in the art. Such changes and modifications are
to be understood as being included within the scope of the disclosure and examples
as defined by the claims.
1. A light bulb apparatus (100), comprising:
a light bulb shell (1);
a bulb head (7);
a heat sink cup (6) having a first end and a second end, the first end of the heat
sink cup (6) is connected to the light bulb shell (1), and the second end of the heat
sink cup (6) is connected to the bulb head (7);
a flexible filament (2) for emitting light, the flexible filament (2) has a first
terminal and a second terminal;
a central support (4) for providing a first electrode (41) and a second electrode
(42), the first electrode (41) of the central support (4) is electrically connected
to the first terminal of the flexible filament (2), and the second electrode (42)
is electrically connected to the second terminal of the flexible filament (2);
an expanding structure (3) mechanically coupled to the central support (4), the expanding
structure (3) includes a plurality of holding portions for holding the flexible filament
(2), and
a driver module (5) for electrically connected to the bulb head (7) and the central
support (4) for providing electrical power to the first electrode (41) and the second
electrode (42) of the central support (4).
2. The light bulb apparatus (100) of claim 1, wherein the expanding structure (3) comprises
two bending strips (31) symmetrically arranged with respect to a central axis (9)
of the central support (4), and each of the bending strips (31) has a plurality of
concave portions (35) as the holding portions to hold the flexible filament (2).
3. The light bulb apparatus (100) of claim 2, wherein the concave portions (35) are substantially
U-shaped, C-shaped, or G-shaped.
4. The light bulb apparatus (100) of claim 1, wherein the expanding structure (3) comprises
two bending strips (31) asymmetrically arranged with respect to a central axis (9)
of the central support (4), and each of the bending strips (31) has a plurality of
concave portions (35) as the holding portions to hold the flexible filament (2).
5. The light bulb apparatus (100) of claim 4, wherein the concave portions (35) are substantially
U-shaped, C-shaped, or G-shaped.
6. The light bulb apparatus (100) of claim 1, wherein the expanding structure (3) comprises
a plurality of support rods (32) arranged along a central axis (9) of the central
support (4), each of the support rods (32) has a first end mechanically coupled to
the central support (4) and a second end extending outward from the central support
(4) to hold the flexible filament (2).
7. The light bulb apparatus (100) of claim 6, wherein the second ends of the support
rods (32) are substantially U-shaped, C-shaped, or G-shaped.
8. The light bulb apparatus (100) of claim 1, wherein the expanding structure (3) comprises
a block-shaped pillar (33) having a concave slot, the concave slot is spiral on a
surface of the block-shaped pillar (33) for holding the flexible filament (2).
9. The light bulb apparatus (100) of claim 8, wherein the expanding structure (3) is
made of metal, ceramic, glass, or plastic material.
10. The light bulb apparatus (100) of claim 8, wherein the block-shaped pillar (33) is
hollow inside.
11. The light bulb apparatus (100) of claim 8, wherein the block-shaped pillar (33) is
solid inside.
12. The light bulb apparatus (100) of claim 1, wherein the expanding structure (3) comprises
a plurality of support boards (34), each of the support boards (34) has a plurality
of concave portions (35) as the holding portions to hold the flexible filament (2).
13. The light bulb apparatus (100) of claim 12, wherein the expanding structure (3) is
made of metal, ceramic, glass, or plastic material.
14. The light bulb apparatus (100) of claim 12, wherein the concave portions (35) are
substantially U-shaped, C-shaped, or G-shaped.
15. The light bulb apparatus (100) of claim 1, wherein the central support (4) and the
expanding structure (3) are made of a same material and are integrally formed.