Background of the Invention
[0001] This invention concerns screening of objects from a water flow using a drum screen,
and more particularly is concerned with an efficient flow pattern and arrangement
of components in a drum screen system. The invention applies to wastewater treatment
plants and other situations as well.
[0002] There are a number of situations in which a flow of water, especially water containing
impurities, must be screened to remove relatively large particles or items prior to
further steps. For example, in a wastewater treatment plant the first process applied
to incoming wastewater typically involves screening. Refractory items, including plastics,
and paper and other materials larger than the screen opening size are separated out
since these materials typically cannot be digested. A typical range of screen size
for wastewater plants is 0.5 mm to 10 mm. Screen types have included belt screens,
spiral screens and drum screens, all of which include some means for removing the
screened out items.
[0003] Drum screens in such applications are typically large, with diameters of 15 feet
or 18 feet or even larger, such as 36 feet or greater. Large wastewater treatment
plants, e.g. handling 150 million gallons per day, have employed drum screens of 36
feet diameter or greater. Many smaller have screened using drum screens in the range
of about 14 feet to 26 feet diameter.
[0004] These typical drum screen systems the drums, which receive water from the side, have
been positioned with the rotation axis parallel to the direction of flow in the channel.
Thus, water enters the drum on a direct path axially into the drum, typically flowing
into the lower half of the drum, flows through the screen and then continues in the
same flow direction. Debris is trapped on the screen and removed out one side of the
drum.
[0005] Such drum screen systems require special water flow channels, wide enough to contain
the diameter of the drum. In many cases of existing plants that might advantageously
be retrofitted with drum screens to replace another type of screen, the channels simply
are not wide enough to accept drums of a large enough size to handle the flow. Even
in a newly constructed plant or screening subsystem, considerable space is required
for drum screens of adequate size, with the typical axial inflow pattern conventionally
used. A more efficient drum screen system is needed.
[0006] Patent No.
5,407,563 describes screening panel constructions for use in band screens and drum screens.
Figure 3 of that patent shows a schematic indication of a double-entry drum screen,
the drum being of T-frame construction. The subject matter of the patent is the particular
screen panel construction, and little description is given for Figure 3, but the drawing
has some relevance to the present invention.
Summary of the Invention
[0007] The invention is a new and more efficient flow arrangement that allows a drum screen
to be more easily retrofitted into existing channels and requires less space in new
construction. The invention places a reduced width drum screen in an orientation such
that the shaft of the drum is perpendicular to the flow of the water. The drum diameter
is approximately twice the depth of the channel with the drum shaft attached at deck
level. The width of the drum may be approximately half the width of the channel in
which the drum is placed (or about 45% to 55% of the channel width). The water flow
will travel down the channel toward the drum where a diverter plate or "S" plate will
direct water around and into the drum from the side. The plate, or a channel barrier
connected to the plate, may also have a simple automatic bypass gate or bypass weir
to let excess flow bypass the screen in case of screen blinding. This will keep the
channel from overflowing.
[0008] In smaller drum screens it is difficult to completely remove the screening from the
screening panels because of the short time the panels are in the spray wash system.
To overcome this, the invention employs a high pressure, multi-nozzle water spray
system to remove the drum screenings into the removal trough.
[0009] Drum screens of the invention are preferably less than ten feet in diameter, and
may be five feet, six feet, eight feet, etc. Such a drum screen is applicable particularly
to wastewater plants of smaller capacity, e.g. under 10 million gallons per day (mgd),
more preferably about 4 to 6 mgd. However, the efficient arrangement of the drum screen
in the channel can also apply to larger plants with larger-diameter drum screens.
[0010] The invention enables a drum screen to be installed efficiently in a channel for
new construction, and also for retrofitting an existing channel in the plant, where
a screen is to be replaced. The installation requires no complex concrete geometry.
The preferred small size of the drum screens allows them to be fully fabricated before
shipping, rather than requiring assembly and welding in the field, which is typical
of normal, much larger drum screens.
[0011] The drum screens of the invention are simple, with only two moving parts, bearings
and pinion gear. A drum installation of the invention can be placed in a pumped flow
system as well as other gravity flow channels. No submerged maintenance is required.
The drum screen can produce a capture ratio of over 90%. The installation may include
an automatic bypass or overflow gate.
[0012] The drum screen system of the invention is economical, simple in construction with
few moving parts, adaptable to almost any existing channel, and can be an ideal screening
solution for many applications requiring screening.
[0013] These and other objects, advantages and features of the invention will be apparent
from the following description of a preferred embodiment, considered along with the
accompanying drawings.
Description of the Drawings
[0014]
Figure 1 is a perspective view showing one example of installation of a single entry
drum screen system in accordance with the invention.
Figure 1A is a perspective view showing another example of the single entry drum screen
arrangement of the invention.
Figure 2 is another perspective view, showing the Figure 1A installation at its outlet
end.
Figure 3 is a plan view of the same installation.
Figure 4 is a sectional view as seen along the line 4-4 in Figure 3.
Figure 5 is a detail view in section, with an enlargement of the region identified
as 5 in Figure 4.
Description of Preferred Embodiments
[0015] In Figure 1 a drum screen installation of the invention is shown at 10. In this example
the system is shown mounted on and elevated above a concrete floor 12, for connection
to a flow of water, e.g. wastewater input to a treatment plant, from what would be
the left end of the drawing in Figure 1.
[0016] The drum screen is shown at 14, being a relatively small drum screen no greater than
about ten feet in diameter. The diameter may be about six feet. Panels of the drum
screen are shown at 16, and these can have opening size in the range of about 0.5
mm to 10 mm, with 0.5 mm to about 2 mm typically used in polishing steps. The drum
is supported on a rotational shaft 18, which is supported on bearings 20, one at each
side. The direction of revolution of the drum in this particular installation is in
the clockwise direction as viewed in this drawing, i.e. as shown by the directional
arrow 22. The bottom of the drum screen thus moves against the direction of general
flow through the installation. In this pumped-inflow system (as opposed to a concrete
channel), an outflow fitting downstream of the drum screen is shown at 24, for connection
to a pipe, and with an inlet fitting at the inlet end, not seen in Figure 1.
[0017] This is a single entry drum screen, the drum being open at the side opposite the
gearing shown at 25 on the near side of the drawing. Influent flow is indicated at
26, into a channel 28 that feeds the water into the far side of the drum screen 14.
Typically water level entering the drum screen is just below the rotation shaft 18.
The outlet 24 could be at a different position, such as in line with the drum screen,
if desired. Also the inlet flow then could be in line with the drum screen but diverted
left just upstream of the drum to facilitate drum entry.
[0018] The single-entry drum screen, as is typical, has all structural drum support at the
near side as viewed in Figure 1, without spokes or other radial obstructions at the
opposite side. This allows intrusion of a debris catcher or discharge hopper from
the far side into the drum interior, not seen in Figure 1. The hopper feeds the debris
to a wash water trough 34 which carries the debris away. Spray equipment 40 drives
debris off the drum and into the hopper.
[0019] The drum 14 is a cup drum, with a series of lifting elevators (not shown in Figure
1) on the inner side of the screen to help move debris up toward the discharge hopper.
The water and debris enter pushing generally in the direction of flow. Much of the
debris is caught near the bottom, and the debris rotates in the clockwise direction
as seen in Figure 1, up to a position near the top where it is sprayed from outside
the screen with pressurized wash water at 40, preferably with high-velocity nozzles,
to release it into the debris hopper.
[0020] The arrangement according to the invention shown in Figures 1 through 5 provides
a compact assembly especially since the drum screen 14 is essentially parallel to
the water or wastewater flow, rotatable on an axis that is perpendicular to that flow.
Prior drum screen installations have usually had the rotational axis parallel to flow,
so that influent liquid travels axially into one side of the drum in a single-entry
system. Typically these drums are very large, thus requiring a custom-built system
of liquid channels that will accommodate that large diameter. In a system of the invention
the drum screen preferably is ten feet or less in diameter, with a maximum width to
diameter ratio usually about 5:8, more typically about 1:2. As seen in these drawings,
the total channel width can be quite narrow, requiring a parallel flow offset to the
side of the drum screen's width, with flow then directed into an open side of the
single-entry drum.
[0021] Figures 1A through 5 show a single entry drum screen installation 42, with a drum
screen 44 positioned in a channel 46, typically a concrete channel. This can be a
retrofit in a channel which had been equipped with a different type of screening.
The channel 46 is defined by concrete walls 48 and floor 50.
[0022] In this case the direction of rotation of the drum screen 44 is different from that
of Figure 1, with the drum screen's bottom moving in the general direction of water
flow through the channel. This is preferable in a straight channel the debris being
carried toward the outlet of the flow. The drum screen is positioned at one side of
the channel, supported on a shaft 18 via bearings 20 as described above. The remaining
channel width receives the full water flow.
[0023] In Figure 1A a debris hopper can be partially seen at 52, at or near the highest
point of drum travel, and spray equipment is shown at 40, outside the drum and positioned
to dislodge debris down into the hopper. A wash water trough is shown at 34, as above.
[0024] Water flowing into the inlet end of the installation, indicated by the arrow 54,
is diverted to the right side of the channel by a diverter plate 56 (which can be
referred to as an "S" plate due to its shape). Preferably this angled plate is connected
to or integral with a seal plate 58 that seals against the side of the drum screen
44 as it rotates. The plate will also guide heavy debris into the drum from the channel
floor.
[0025] A large essentially semi-circular or open U-shaped opening 60 is defined by the seal
plate 58 so that the water is diverted into the open side of the drum screen. A barrier
is provided at 62, connected to or sealed against the seal plate 58 at right angles,
to prevent water from bypassing the drum screen. Figures 2 to 5 show these features
from different view points. The barrier 62 can act as a safety overflow weir.
[0026] A drum drive gear is shown at 64. A motor and gearing in driving engagement with
the drum gear 64 are shown at 66 in Figure 2. Support structure is shown at 68 in
Figures 1A, 2 and 3, to support the debris trough 52, spray equipment 40, wash water
trough 34 and water deflecting side plates 70 which can be on the concrete walls 48.
The side plates 70, which can be hanging sheets of Neoprene, deflect and contain water
from the spray nozzles.
[0027] In the plan view of Figure 3, the flow of water through the installation is clearly
depicted. The water enter alignment with the channel, as shown at the arrow 54, and
is shifted to the right side of the channel 46 by the flow diverter plate 56. The
water enters the side of the drum screen 44, thus being shifted back to the left side
of the channel 46. The barrier 62 closes the right side of the channel at or near
the downstream end of the drum screen as shown, being connected to the drum seal plate
58. At the outlet end of the installation, the flow exiting the drum screen again
fills the width of the channel 46 as indicated.
[0028] Figures 4 and 5 show further details of the invention. The sectional view of Figure
4 is taken through the rotation shaft 18, looking toward the inlet end of the system.
The debris hopper 52 is visible in Figure 4, extending into the interior of the cup
drum screen 44. The water deflecting side plates 70 are provided on each side, with
the side plate on the left in Figure 4 open for movement of collected debris exiting
from the hopper 52. Lift plates or elevators 72 are indicated on the interior of the
drum screen, secured at spaced positions along the screen for moving debris up the
drum to be collected in the hopper. Shown at the top of the drum screen in the position
of Figure 4 is a flexible, preferably Neoprene wiper 73 that engages the hopper 52
once per revolution. The wiper 73 contacts the top edge of the hopper, deflects and
wipes debris such as fabric items off the hopper lip.
[0029] The spray equipment is shown at 40, above the hopper 52, with high pressure, high
velocity nozzles to reliably dislodge debris off the screen and into the hopper. The
high velocity, multi-nozzle spray can compensate for the relatively small diameter
of the drum, which would otherwise make debris removal difficult. In a preferred embodiment
the nozzle pressure is about 45 to 90 psi, more preferably about 60 psi.
[0030] The sealing around the drum screen inlet opening 60 (see Figure 1A), via the seal
plate 58, is an important feature of the invention. Figure 4 shows a contact seal
74 secured to the rotating drum screen around a full circumference, deflected essentially
90° via pressure against the seal plate, to maintain a water seal. This is better
seen in the enlarged detail of Figure 5. The full-circumference seal 74, which can
be of an elastomeric material such as Neoprene, is retained to the drum screen by
fasteners such as bolts 76 passing through a plate 78 that extends around the circumference
of the drum. The seal 74, which may be planar in its undeflected state, has a deflected
arm 80 that bears against and slides along the seal plate 58 as shown. Since the seal
74 is allowed to partially return toward the undeflected state as it moves above the
seal plate 58, the seal plate can have, as seen in Figure 1A, an angled guide 82 fixed
to the seal plate to transition the seal back into its deflected position as it descends
to again engage in a deflected configuration the seal plate. Note that in Figure 5
the sectioned portion of the seal plate 58 is at the bottom center of the drum, whereas
above that sectioned region is the opening for flow into the drum. And thus, the edge
of the seal plate 58 defining the opening is seen above the sectioned region.
[0031] The above described preferred embodiments are intended to illustrate the principles
of the invention, but not to limit its scope. Other embodiments and variations to
these preferred embodiments will be apparent to those skilled in the art and may be
made without departing from the scope of the invention as defined in the following
claims.
1. A rotating drum screen channel installation (42), comprising:
a channel in which water flows,
a drum (14) for screening out debris from the flow of water in the channel, said drum
rotating on a horizontal axis (18), with a shaft supporting the drum for rotation,
the shaft being supported on fixed structure of the channel, and a screen extending
around the drum's circumference, forming the drum screen (44),
the axis of the drum screen being arranged perpendicular to the channel flow direction
characterized in that
the drum (14) has a width that occupies part of a width of the channel (46), leaving
a remaining width of the channel (46) for water flow the drum screen (14) having a
diameter not greater than about 3 m (10 feet), and being a single entry drum screen,
with an open side (60) facing said remaining width of the channel (46) and positioned
to receive a flow of water from said remaining width of the channel,
the channel (46) having a flow direction from upstream to downstream, and said remaining
width of the channel being blocked by a barrier (62) adjacent to a downstream end
of the drum screen, said barrier (62) being adapted to close the channel (46) between
a drum seal plate (58) of the drum screen (44) and a wall of the channel,
wherein the drum seal plate (58) is positioned in the channel (46) alongside the open
side of the drum screen, with a flexible contact seal (74) between the seal plate
and a circular side edge of the rotatable drum screen,
the seal plate (58) having a water admitting opening to permit said flow of water
into the drum screen (14) from the open side,
a diverter plate (56) in the channel, with a downstream end of the diverter plate
(56) connected to an upstream end of the seal plate (58), the diverter plate (56)
having an upstream end fixed to a wall of the channel (46) and engaged against a floor
of the channel, a main portion of the diverter plate (56) being angled so as to form
a parallel flow offset to direct all water and debris flowing in the channel into
said remaining width channel prior to entering the drum screen through said water
admitting opening, and
the drum screen installation including a debris hopper (52) within the drum, fixed
in position near a highest point of the drum, for catching debris from the screen
as the drum screen rotates, and with a series of high-pressure water nozzles (40)
above the drum aimed at the hopper, to dislodge the debris from the screen into the
hopper, and further including an exit trough (34) positioned to carry away the debris
and water from the hopper.
2. The rotatable drum screen installation of claim 1, wherein the diverter plate (56)
and the seal plate (58) are formed as a single unit.
3. The rotatable drum screen installation of claim 2, wherein the diverter plate (56)
and seal plate (58) are integrally formed from a single piece.
4. The rotatable drum screen installation of claim 2, wherein the diverter plate (56)
and seal plate (58) are secured together at said upstream end of the seal plate.
5. The rotatable drum screen installation of claim 1, wherein the water admitting opening
has a shape generally following the shape of a lower half of the drum screen (44),
approximately an open half-circle.
6. The rotatable drum screen installation of claim 1, wherein the high-pressure nozzles
spray water at a minimum pressure of 3,1 bar (45 psi).
7. The rotatable drum screen installation of claim 1, wherein the drum screen (44) has
a width approximately half the width of the channel (46).
8. The rotatable drum screen installation of claim 7, wherein the drum screen (44) has
a width of 45% to 55% the width of the channel (46).
9. The rotatable drum screen installation of claim 1, wherein the contact seal (74) is
secured to said circular side edge of the drum screen.
10. The rotatable drum screen installation of claim 9, wherein the contact seal (74) is
of elastomeric material and is deflected to a bending configuration by engagement
against the seal plate, to exert a sealing force against the seal plate.
1. Eine rotierende Trommelsieb-Kanalanlage (42), umfassend:
einen Kanal, in dem Wasser fließt,
eine Trommel (14) zum Aussieben von Abfall aus dem Wasserstrom im Kanal, wobei sich
die Trommel um eine horizontale Achse (18) dreht, mit einer Welle, die die Trommel
zur Drehung trägt, wobei die Welle auf einer festen Struktur des Kanals gelagert ist,
und einem Sieb, das sich um den Umfang der Trommel erstreckt und das Trommelsieb (44)
bildet,
wobei die Achse des Trommelsiebs rechtwinklig zur Strömungsrichtung des Kanals angeordnet
ist,
dadurch gekennzeichnet, dass
die Trommel (14) eine Breite aufweist, die einen Teil einer Breite des Kanals (46)
einnimmt, wobei eine verbleibende Breite des Kanals (46) für die Wasserströmung verbleibt,
wobei das Trommelsieb (14) einen Durchmesser von nicht mehr als etwa 3 m (10 Fuß)
aufweist und als Trommelsieb mit einem einzigen Einlass ausgebildet ist, wobei eine
offene Seite (60) der verbleibenden Breite des Kanals (46) zugewandt ist und so angeordnet
ist, dass sie eine Wasserströmung von der verbleibenden Breite des Kanals aufnimmt,
wobei der Kanal (46) eine Strömungsrichtung von stromaufwärts nach stromabwärts aufweist
und die verbleibende Breite des Kanals durch eine Barriere (62) nahe eines stromabwärts
gelegenen Endes des Trommelsiebs blockiert ist, wobei die Barriere (62) so ausgebildet
ist, dass sie den Kanal (46) zwischen einer Trommeldichtungsplatte (58) des Trommelsiebs
(44) und einer Wand des Kanals schließt,
wobei die Trommeldichtungsplatte (58) in dem Kanal (46) entlang der offenen Seite
des Trommelsiebs angeordnet ist, mit einer flexiblen Kontaktdichtung (74) zwischen
der Dichtungsplatte und einer kreisförmigen Seitenkante des drehbaren Trommelsiebs,
wobei die Dichtungsplatte (58) eine Wassereinlassöffnung aufweist, um das Einströmen
von Wasser in das Trommelsieb (14) von der offenen Seite her zu ermöglichen,
eine Umlenkplatte (56) in dem Kanal vorgesehen ist, wobei ein stromabwärts gelegenes
Ende der Umlenkplatte (56) mit einem stromaufwärts gelegenen Ende der Dichtungsplatte
(58) verbunden ist, wobei die Umlenkplatte (56) ein stromaufwärts gelegenes Ende aufweist,
das an einer Wand des Kanals (46) befestigt ist und an einem Boden des Kanals anliegt,
wobei ein Hauptabschnitt der Umlenkplatte (56) so abgewinkelt ist, dass er einen parallelen
Strömungsversatz bildet, um das durch den Kanal fließende Wasser und den Abfall in
den Kanal mit der verbleibenden Breite zu leiten, bevor sie durch die Wassereinlassöffnung
in das Trommelsieb eintreten, und
die Trommelsiebanlage einen Abfall-Sammelbehälter (52) innerhalb der Trommel aufweist,
der in der Nähe eines höchsten Punktes der Trommel befestigt ist, um Abfall vom Sieb
aufzufangen, während sich das Trommelsieb dreht, und mit einer Reihe von Hochdruckwasserdüsen
(40) oberhalb der Trommel, die auf den Trichter gerichtet sind, um den Abfall vom
Sieb in den Sammelbehälter zu verdrängen, und ferner einen Austrittstrog (34) aufweist,
der so angeordnet ist, dass er den Abfall und das Wasser aus dem Sammelbehälter abführt.
2. Rotierende Trommelsiebanlage nach Anspruch 1, wobei die Umlenkplatte (56) und die
Dichtungsplatte (58) als eine Einzeleinheit ausgebildet sind.
3. Rotierende Trommelsiebanlage nach Anspruch 2, bei der die Umlenkplatte (56) und die
Dichtungsplatte (58) integral aus einem einzigen Stück geformt sind.
4. Rotierende Trommelsiebanlage nach Anspruch 2, bei der die Umlenkplatte (56) und die
Dichtungsplatte (58) am stromaufwärtigen Ende der Dichtungsplatte miteinander verbunden
sind.
5. Rotierende Trommelsiebanlage nach Anspruch 1, wobei die Wassereinlassöffnung eine
Form hat, die allgemein der Form einer unteren Hälfte des Trommelsiebs (44) folgt,
etwa als offener Halbkreis.
6. Rotierende Trommelsiebanlage nach Anspruch 1, wobei die Hochdruckdüsen Wasser mit
einem Mindestdruck von 3,1 bar (45 psi) versprühen.
7. Rotierende Trommelsiebanlage nach Anspruch 1, bei der das Trommelsieb (44) etwa halb
so breit ist wie der Kanal (46).
8. Rotierende Trommelsiebanlage nach Anspruch 7, bei der das Trommelsieb (44) eine Breite
von 45 % bis 55 % der Breite des Kanals (46) aufweist.
9. Rotierende Trommelsiebanlage nach Anspruch 1, wobei die Kontaktdichtung (74) an der
kreisförmigen Seitenkante des Trommelsiebs befestigt ist.
10. Rotierende Trommelsiebanlage nach Anspruch 9, wobei die Kontaktdichtung (74) aus elastomerem
Material besteht und durch Eingriff gegen die Dichtungsplatte in eine gebogene Ausgestaltung
abgelenkt ist, um eine Dichtungskraft gegen die Dichtungsplatte auszuüben.
1. Installation de canal à tamis à tambour rotatif (42), comprenant :
un canal dans lequel de l'eau s'écoule,
un tambour (14) pour tamiser des débris de l'écoulement d'eau dans le canal, ledit
tambour tournant sur un axe horizontal (18), avec un arbre supportant le tambour pour
la rotation, l'arbre étant supporté sur une structure fixe du canal, et un tamis s'étendant
autour de la circonférence du tambour, formant le tamis à tambour (44),
l'axe du tamis à tambour étant agencé perpendiculairement à la direction d'écoulement
de canal
caractérisée en ce que
le tambour (14) a une largeur qui occupe une partie d'une largeur du canal (46), laissant
une largeur restante du canal (46) pour l'écoulement d'eau, le tamis à tambour (14)
ayant un diamètre non supérieur à environ 3 m (10 pieds), et étant un tamis à tambour
à entrée unique avec un côté ouvert (60) faisant face à ladite largeur restante du
canal (46) et positionné pour recevoir un écoulement d'eau provenant de ladite largeur
restante du canal,
le canal (46) ayant une direction d'écoulement de l'amont vers l'aval, et ladite largeur
restante du canal étant bloquée par une barrière (62) adjacente à une extrémité aval
du tamis à tambour, ladite barrière (62) étant adaptée pour fermer le canal (46) entre
une plaque d'étanchéité de tambour (58) du tamis à tambour (44) et une paroi du canal,
dans laquelle la plaque d'étanchéité de tambour (58) est positionnée dans le canal
(46) le long du côté ouvert du tamis à tambour, avec un joint de contact flexible
(74) entre la plaque d'étanchéité et un bord latéral circulaire du tamis à tambour
rotatif,
la plaque d'étanchéité (58) ayant une ouverture d'admission d'eau pour permettre ledit
écoulement eau dans le tamis à tambour (14) depuis le côté ouvert,
une plaque de déviation (56) dans le canal, avec une extrémité aval de la plaque de
déviation (56) reliée à une extrémité aval de la plaque d'étanchéité (58), la plaque
de déviation (56) ayant une extrémité amont fixée à une paroi du canal (46) et engagée,
contre un fond du canal, une portion principale de la plaque de déviation (56) étant
coudée de manière à former un déport d'écoulement parallèle pour diriger toute l'eau
et les débris s'écoulant dans le canal dans ladite largeur restante du canal avant
d'entrer dans le tamis à tambour à travers ladite ouverture d'admission d'eau, et
l'installation à tamis à tambour incluant une trémie pour débris (52) à l'intérieur
du tambour, fixée en position près d'un point le plus haut du tambour, pour attraper
les débris du tamis quand le tamis à tambour tourne, et avec une série de buses d'eau
à haute pression (40) au-dessus du tambour, destinées à la trémie, pour déplacer les
débris du tamis dans la trémie, et comprenant en outre une conduite de sortie (34)
positionnée pour emporter les débris et l'eau de la trémie.
2. Installation à tamis à tambour rotatif de la revendication 1, dans laquelle la plaque
de déviation (56) et la plaque d'étanchéité (58) sont formées comme une seule unité.
3. Installation à tamis à tambour rotatif de la revendication 2, dans laquelle la plaque
de déviation (56) et la plaque d'étanchéité (58) sont intégralement formées à partir
d'une seule pièce.
4. Installation à tamis à tambour rotatif de la revendication 2, dans laquelle la plaque
de déviation (56) et la plaque d'étanchéité (58) sont fixées ensemble à ladite extrémité
amont de la plaque d'étanchéité.
5. Installation à tamis à tambour rotatif de la revendication 1, dans laquelle l'ouverture
d'admission d'eau a une forme qui suit sensiblement la forme d'une moitié inférieure
du tamis à tambour (44), approximativement un demi-cercle ouvert.
6. Installation à tamis à tambour rotatif de la revendication 1, dans laquelle les buses
à haute pression pulvérisent de l'eau à une pression minimum de 3,1 bar (45 psi).
7. Installation à tamis à tambour rotatif de la revendication 1, dans laquelle le tamis
à tambour (44) a une largeur approximativement égale à la moitié de la largeur du
canal (46).
8. Installation à tamis à tambour rotatif de la revendication 7, dans laquelle le tamis
à tambour (44) a une largeur de 45 % à 55 % de la largeur du canal (46).
9. Installation à tamis à tambour rotatif de la revendication 1, dans laquelle le joint
de contact (74) est fixé audit bord latéral circulaire du tamis à tambour rotatif.
10. Installation à tamis à tambour rotatif de la revendication 9, dans laquelle le joint
de contact (74) est en matériau élastomère et est dévié en une configuration courbe
par engagement contre la plaque d'étanchéité , pour exercer une force d'étanchéité
contre la plaque d'étanchéité.