CROSS-REFERENCE TO RELATED APPLICATIONS
TECHNICAL FIELD
[0002] The present disclosure relates to the technical field of electronic components, and
in particular relates to a nitrogen-containing compound, an organic electroluminescent
device using the nitrogen-containing compound, and a photoelectric conversion device
using the nitrogen-containing compound.
BACKGROUND
[0003] With the development of electronic technology and the progress of material science,
the application range of electronic components for realizing electroluminescence or
photoelectric conversion becomes more and more extensive. Such electronic components
generally include a cathode and an anode disposed opposite to each other, and a functional
layer disposed between the cathode and the anode. The functional layer is composed
of multiple organic or inorganic film layers and generally includes an energy conversion
layer, a hole transport layer between the energy conversion layer and the anode, and
an electron transport layer between the energy conversion layer and the cathode.
[0004] Taking an organic electroluminescent device as an example, the organic electroluminescent
device generally includes an anode, a hole transport layer, an electroluminescent
layer as an energy conversion layer, an electron transport layer and a cathode, which
are sequentially stacked. When voltage is applied to the anode and the cathode, an
electric field is generated between the two electrodes, electrons on the cathode side
move to the electroluminescent layer and holes on the anode side also move to the
luminescent layer under the action of the electric field, the electrons and the holes
are combined in the electroluminescent layer to form excitons, and the excitons are
in an excited state and release energy outwards, so that the electroluminescent layer
emits light outwards.
[0005] In the prior art,
KR1020190035567A,
CN107459466A,
CN106008424A,
CN104583176A,
CN103108859A and the like disclose materials that can be used to prepare hole transport layers
in organic electroluminescent devices. However, there is still a need to develop new
materials to further improve the performance of electronic components.
SUMMARY
[0006] The purpose of the present disclosure is to provide a nitrogen-containing compound,
an organic electroluminescent device using the nitrogen-containing compound, and a
photoelectric conversion device using the nitrogen-containing compound, the nitrogen-containing
compound is used to improve the performance of the organic electroluminescent device
and the photoelectric conversion device.
[0007] In order to achieve the purpose, the technical solutions adopted by the present disclosure
are as follows:
[0008] According to a first aspect of the present disclosure, there is provided a nitrogen-containing
compound having a structure represented by Chemical Formula 1:
wherein L is selected from a single bond, a substituted or unsubstituted C6 to C30
arylene group, and a substituted or unsubstituted C1 to C30 heteroarylene group;
Ar1 and Ar2 are each independently selected from a substituted or unsubstituted C1 to C35 alkyl
group, a substituted or unsubstituted C2 to C35 alkenyl group, a substituted or unsubstituted
C2 to C35 alkynyl group, a substituted or unsubstituted C3 to C35 cycloalkyl group,
a substituted or unsubstituted C2 to C35 heterocycloalkyl group, a substituted or
unsubstituted C7 to C30 aralkyl group, a substituted or unsubstituted C2 to C30 heteroaralkyl
group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted
C1 to C30 heteroaryl group;
the substituents of Ar1, Ar2 and L are each independently selected from deuterium, a cyano group, a nitro group,
a halogen, a hydroxyl group, a substituted or unsubstituted C1 to C40 alkyl group,
a substituted or unsubstituted C3 to C40 cycloalkyl group, a substituted or unsubstituted
C2 to C40 alkenyl group, a substituted or unsubstituted C2 to C40 alkynyl group, a
substituted or unsubstituted C2 to C40 heterocycloalkyl group, a substituted or unsubstituted
C7 to C40 aralkyl group, a substituted or unsubstituted C2 to C40 heteroaralkyl group,
a substituted or unsubstituted C6 to C40 aryl group, a substituted or unsubstituted
C1 to C40 heteroaryl group, a substituted or unsubstituted C1 to C40 alkoxy group,
a substituted or unsubstituted C1 to C40 alkylamino group, a substituted or unsubstituted
C6 to C40 arylamino group, a substituted or unsubstituted C1 to C40 alkylthio group,
a substituted or unsubstituted C7 to C40 aralkylamino group, a substituted or unsubstituted
C1 to C24 heteroarylamino group, a substituted or unsubstituted C1 to C45 alkylsilyl
group, a substituted or unsubstituted C6 to C50 arylsilyl group, a substituted or
unsubstituted C6 to C30 aryloxy group, and a substituted or unsubstituted C6 to C30
arylthio group.
[0009] In the present disclosure, Ar
1 is not 9,9-diphenylfluorene, and Ar
2 is not 9,9-diphenylfluorene.
[0010] According to a second aspect of the present disclosure, there is provided an organic
electroluminescent device including an anode and a cathode disposed opposite to each
other, and a functional layer disposed between the anode and the cathode, and the
functional layer includes the above nitrogen-containing compound.
[0011] According to a third aspect of the present disclosure, there is provided a photoelectric
conversion device including an anode and a cathode disposed opposite to each other,
and a functional layer disposed between the anode and the cathode, and the functional
layer includes the above nitrogen-containing compound.
[0012] In the nitrogen-containing compound, the organic electroluminescent device using
the nitrogen-containing compound and the photoelectric conversion device using the
nitrogen-containing compound, the nitrogen-containing compound has good hole transport
characteristics, and can be applied between the anode and the energy conversion layer
of the organic electroluminescent device and the photoelectric conversion device to
improve the hole transport efficiency between the anode and the energy conversion
layer, so as to improve the luminous efficiency of the organic electroluminescent
device and the power generation efficiency of the photoelectric conversion device.
Because the nitrogen-containing compound also has higher electron tolerance and film-forming
property, it can improve the efficiency and the service life of an organic electroluminescent
device and a photoelectric conversion device. Moreover, the nitrogen-containing compound
has better thermal stability, can keep stable structure at high temperature for a
long time, not only ensures the uniform and stable performance of an organic electroluminescent
device and a photoelectric conversion device prepared at different stages, but also
ensures that the performance of an organic electroluminescent device and a photoelectric
conversion device prepared at the later stage of mass production is not reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The above and other features and advantages of the present disclosure will become
more apparent from the detailed description of the exemplary embodiments with reference
to the following figures.
Fig. 1 is a schematic structural view of an organic electroluminescent device according
to an embodiment of the present disclosure.
Fig. 2 is a schematic structural view of a photoelectric conversion device according
to an embodiment of the present disclosure.
[0014] Reference numerals are illustrated as follows:
100, Anode;
200, Cathode;
300, Functional layer;
310, Hole injection layer;
320, Hole transport layer;
321, First hole transport layer;
322, Second hole transport layer;
330, Organic electroluminescent layer;
340, Hole blocking layer;
350, Electron transport layer;
360, Electron injection layer;
370, Photoelectric conversion layer.
DETAILED DESCRIPTION
[0015] Exemplary embodiments will now be described more fully with reference to the figures.
Examplary embodiments may, however, be embodied in many different forms and should
not be construed as limited to the examples set forth herein; rather, these embodiments
are provided so that this disclosure will be full and complete, and will fully convey
the concept of examplary embodiments to those skilled in the art. The described features,
structures, or characteristics may be combined in any suitable manner in one or more
embodiments. In the following description, numerous specific details are provided
to give a full understanding of embodiments of the present disclosure.
[0016] In the figures, the thickness of regions and layers may be exaggerated for clarity.
The same reference numerals denote the same or similar structures in the figures,
and thus detailed descriptions thereof will be omitted.
[0017] The described features, structures, or characteristics may be combined in any suitable
manner in one or more embodiments. In the following description, numerous specific
details are provided to give a full understanding of embodiments of the present disclosure.
Those skilled in the art will recognize, however, that the embodiments of the present
disclosure can be practiced without one or more of the specific details, or with other
methods, components, materials, and so forth. In other instances, well-known structures,
materials, or operations are not shown or described in detail to avoid obscuring the
primary technical ideas of the present disclosure.
[0018] The present disclosure provides a nitrogen-containing compound having a structure
represented by Chemical Formula 1:
wherein L is selected from a single bond, a substituted or unsubstituted C6 to C30
arylene group, and a substituted or unsubstituted C1 to C30 heteroarylene group;
Ar1 and Ar2 are each independently selected from a substituted or unsubstituted C1 to C35 alkyl
group, a substituted or unsubstituted C2 to C35 alkenyl group, a substituted or unsubstituted
C2 to C35 alkynyl group, a substituted or unsubstituted C3 to C35 cycloalkyl group,
a substituted or unsubstituted C2 to C35 heterocycloalkyl group, a substituted or
unsubstituted C7 to C30 aralkyl group, a substituted or unsubstituted C2 to C30 heteroaralkyl
group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted
C1 to C30 heteroaryl group;
the substituents of Ar1, Ar2 and L are each independently selected from deuterium, a cyano group, a nitro group,
a halogen, a hydroxyl group, a substituted or unsubstituted C1 to C40 alkyl group,
a substituted or unsubstituted C3 to C40 cycloalkyl group, a substituted or unsubstituted
C2 to C40 alkenyl group, a substituted or unsubstituted C2 to C40 alkynyl group, a
substituted or unsubstituted C2 to C40 heterocycloalkyl group, a substituted or unsubstituted
C7 to C40 aralkyl group, a substituted or unsubstituted C2 to C40 heteroaralkyl group,
a substituted or unsubstituted C6 to C40 aryl group, a substituted or unsubstituted
C1 to C40 heteroaryl group, a substituted or unsubstituted C1 to C40 alkoxy group,
a substituted or unsubstituted C1 to C40 alkylamino group, a substituted or unsubstituted
C6 to C40 arylamino group, a substituted or unsubstituted C1 to C40 alkylthio group,
a substituted or unsubstituted C7 to C40 aralkylamino group, a substituted or unsubstituted
C1 to C24 heteroarylamino group, a substituted or unsubstituted C1 to C45 alkylsilyl
group, a substituted or unsubstituted C6 to C50 arylsilyl group, a substituted or
unsubstituted C6 to C30 aryloxy group, and a substituted or unsubstituted C6 to C30
arylthio group.
[0019] In the present disclosure, Ar
1 is not 9,9-diphenylfluorene, and Ar
2 is not 9,9-diphenylfluorene.
[0020] In the present disclosure, the number of carbon atoms of L, Ar
1 and Ar
2 means all the number of carbon atoms thereon. For Example, if L is a substituted
arylene group of 12 carbon atoms, all of the carbon atoms of the arylene group and
the substituents thereon are 12.
[0021] Alternatively, the unsubstituted C1 to C35 alkyl means a straight chain alkyl having
1 to 35 carbon atoms or a branched alkyl having 1 to 13 carbon atoms, such as methyl,
ethyl, propyl, isobutyl, sec-butyl, pentyl, isopentyl, hexyl, tert-butyl and the like.
The substituted C1 to C35 alkyl group means that at least one hydrogen atom is substituted
with deuterium atom, F, Cl, I, CN, a hydroxyl group, a nitro group, an amino group,
etc. In some embodiments, the alkyl is a C1 to C4 alkyl, such as methyl, ethyl, propyl,
isobutyl, or tert-butyl.
[0022] Alternatively, the unsubstituted C2 to C35 alkenyl means an alkenyl having 2 to 35
carbon atoms, including a C2 to C35 straight-chain alkenyl having a carbon-carbon
double bond, or a C1 to C13 branched-chain alkenyl, such as vinyl, propenyl, allyl,
isopropenyl, 2-butenyl, etc. The substituted C2 to C35 alkenyl group means that at
least one hydrogen atom is substituted with deuterium atom, F, Cl, I, CN, a hydroxyl
group, a nitro group, an amino group, etc.
[0023] Alternatively, the unsubstituted C2 to C35 alkynyl means an alkynyl having 2 to 35
carbon atoms, including a C2 to C35 straight chain alkynyl having a triple carbon-carbon
bond, or a C1 to C10 branched alkynyl having a triple carbon-carbon bond, such as
ethynyl, 2-propynyl, etc. The substituted C2 to C35 alkynyl group means that at least
one hydrogen atom is substituted with deuterium atom, F, Cl, I, CN, a hydroxyl group,
a nitro group, an amino group, etc.
[0024] The nitrogen-containing compound disclosed by the present disclosure has good hole
transport efficiency, and therefore can be applied as a hole transport material in
organic electroluminescent devices and photoelectric conversion devices. For example,
the nitrogen-containing compound of the present disclosure may be applied between
an anode and an organic electroluminescent layer of an organic electroluminescent
device so as to transport holes on the anode to the organic electroluminescent layer.
Alternatively, the nitrogen-containing compound of the present disclosure may be applied
to any one or more layers of a hole injection layer, a hole transport layer, and an
electron blocking layer of an organic electroluminescent device. For another example,
the nitrogen-containing compounds of the present disclosure may be applied between
an anode and a photoelectric conversion layer of a photoelectric conversion device
in order to transport holes on the photoelectric conversion layer to the anode.
[0025] In one embodiment of the present disclosure, the substituents of Ar
1, Ar
2, and L are each independently selected from deuterium, a cyano group, a nitro group,
a halogen, a hydroxyl group, a substituted or unsubstituted C1 to C33 alkyl group,
a substituted or unsubstituted C3 to C33 cycloalkyl group, a substituted or unsubstituted
C2 to C33 alkenyl group, a substituted or unsubstituted C2 to C33 alkynyl group, a
substituted or unsubstituted C2 to C33 heterocycloalkyl group, a substituted or unsubstituted
C7 to C33 aralkyl group, a substituted or unsubstituted C2 to C33 heteroaralkyl group,
a substituted or unsubstituted C6 to C33 aryl group, a substituted or unsubstituted
C1 to C33 heteroaryl group, a substituted or unsubstituted C1 to C33 alkoxy group,
a substituted or unsubstituted C1 to C33 alkylamino group, a substituted or unsubstituted
C6 to C33 arylamino group, a substituted or unsubstituted C1 to C33 alkylthio group,
a substituted or unsubstituted C7 to C33 aralkylamino group, a substituted or unsubstituted
C1 to C33 heteroarylamino group, a substituted or unsubstituted C1 to C33 alkylsilyl
group, a substituted or unsubstituted C6 to C33 arylsilyl group, a substituted or
unsubstituted C6 to C33 aryloxy group, and a substituted or unsubstituted C6 to C33
arylthio group.
[0026] In one embodiment of the present disclosure, L is selected from a single bond, a
substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene
group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted
terphenylene group, and a substituted or unsubstituted fluorenylene group.
[0027] In one embodiment of the present disclosure, the nitrogen-containing compound has
a relative molecular mass of not greater than 750, so as to ensure that the nitrogen-containing
compound of the present disclosure has good thermal stability and to ensure that the
nitrogen-containing compound of the present disclosure maintains stable structure
during long-term evaporation.
[0028] In one embodiment of the present disclosure, L is selected from a single bond, a
substituted or unsubstituted C6 to C12 arylene group. Alternatively, L is selected
from a single bond or an unsubstituted C6 to C12 arylene group, so that the preparation
difficulty and the preparation cost of the nitrogen-containing compound disclosed
herein can be reduced, the cost performance of the nitrogen-containing compound disclosed
herein when applied to electronic components on a large scale is improved, the cost
of the electronic components is further reduced, and particularly, the cost of organic
electroluminescent devices and photoelectric conversion devices is reduced.
[0029] In one embodiment of the present disclosure, L is selected from a single bond or
the following substituents:
wherein,

represents a chemical bond;
* represents a binding site where the above substituent is connected to

** represents a binding site where the above substituent is connected to

[0030] For Example, in the compound

L is

[0031] In one embodiment of the present disclosure, Ar
1 and Ar
2 are each independently selected from a substituted or unsubstituted C6 to C20 aryl
group and a substituted or unsubstituted C12 to C20 heteroaryl group.
[0032] In one embodiment of the present disclosure, Ar
1 and Ar
2 are each independently selected from a substituted or unsubstituted C6 to C25 aryl
group, and Ar
1 is not 9,9-diphenylfluorene and Ar
2 is not 9,9-diphenylfluorene.
[0033] In one embodiment of the present disclosure, at least one of Ar
1 and Ar
2 is selected from a substituted aryl group having 6 to 12 ring-forming carbon atoms,
and the substituent on the substituted aryl group having 6 to 12 ring-forming carbon
atoms is selected from an C6 to C14 aryl group and a C6 to C12 heteroaryl group. For
Example, Ar
1 is

then Ar
1 is a substituted aryl group having 6 ring-forming carbon atoms, and the substituent
of the substituted aryl group having 6 ring-forming carbon atoms is a C12 heteroaryl
group.
[0035] In one embodiment of the present disclosure, Ar
1 and Ar
2 are each independently selected from the following substituent:

[0036] In one embodiment of the present disclosure, Ar
1 and Ar
2 are each independently selected from the following substituents:

[0038] The nitrogen-containing compound of the present disclosure introduces an adamantane-2-yl
structure at the 9-position of fluorene, the adamantyl can improve the electron density
of a conjugated system of a fluorene ring and the whole nitrogen-containing compound
through a hyperconjugation effect, so that the hole conduction efficiency of the nitrogen-containing
compound is improved, and further the carrier conduction efficiency and the service
life of an organic electroluminescent device and a photoelectric conversion device
are improved. The adamantane-2-yl group is introduced at the 9-position of fluorene
rather than at the end, and into the side chains of the amines of the nitrogen-containing
compounds of the present disclosure rather than at the end. Due to the large steric
hindrance effect of the adamantane-2-yl, the angle and the conjugation degree between
each branched chain of amine can be adjusted, and further the HOMO value of the nitrogen-containing
compound can be adjusted, so that the HOMO value of the nitrogen-containing compound
can be more matched with an adjacent film layer, the driving voltage of an organic
electroluminescent device can be further reduced, or the open-circuit voltage of a
photoelectric conversion device can be improved.
[0039] Moreover, in the nitrogen-containing compound of the present disclosure, compared
with the modification of the fluorene group with an aryl group, the modification of
the fluorene group with an alkyl structure having a large volume can avoid the excessive
π-π stacking effect, and can reduces the symmetry of the nitrogen-containing compounds
of the present disclosure, which in turn can improve the film-forming properties of
the nitrogen-containing compounds. Moreover, the adamantane-2-yl group can ensure
that the nitrogen-containing compound of the present disclosure has an appropriate
molecular weight, further ensure that the nitrogen-containing compound of the present
disclosure has an appropriate glass transition temperature, and improve the physical
and thermal stability during the preparation of an organic electroluminescent device
and a photoelectric conversion device.
[0040] The present disclosure also provides an organic electroluminescent device. As shown
in fig. 1, the organic electroluminescent device includes an anode 100 and a cathode
200 disposed opposite to each other, and a functional layer 300 disposed between the
anode 100 and the cathode 200. The functional layer 300 includes the nitrogen-containing
compound provided by the present disclosure.
[0041] In one embodiment of the present disclosure, the nitrogen-containing compound provided
by the present disclosure may be used to form at least one organic film layer in the
functional layer 300, so as to improve the performance of the organic electroluminescent
device, in particular, to improve the service life of the organic electroluminescent
device, to improve the luminous efficiency of the organic electroluminescent device,
to reduce the driving voltage of the organic electroluminescent device, or to improve
the uniformity and stability of the organic electroluminescent device in mass production.
[0042] In one embodiment of the present disclosure, the functional layer 300 includes a
hole transport layer 320, and the hole transport layer 320 includes the nitrogen-containing
compound provided by the present disclosure. The hole transport layer 320 may be composed
of the nitrogen-containing compound provided by the present disclosure, and also may
be composed of the nitrogen-containing compound provided by the present disclosure
and other materials.
[0043] Alternatively, the hole transport layer 320 includes a first hole transport layer
321 and a second hole transport layer 322, and the first hole transport layer 321
is disposed on the surface of the second hole transport layer 322 close to the anode
100. The first hole transport layer 321 or the second hole transport layer 322 includes
the nitrogen-containing compound provided by the present disclosure. That is, one
of the first hole transporting layer 321 and the second hole transporting layer 322
may contain the nitrogen-containing compound provided by the present disclosure, or
both the first hole transporting layer 321 and the second hole transporting layer
322 may contain the nitrogen-containing compound provided by the present disclosure.
It is to be understood that the first hole transport layer 321 or the second hole
transport layer 322 may or may not contain other materials.
[0044] Further alternatively, the first hole transport layer 321 or the second hole transport
layer 322 is composed of the nitrogen-containing compound provided by the present
disclosure.
[0045] In one embodiment of the present disclosure, the functional layer 300 includes a
hole injection layer 310, and the hole injection layer 310 may include the nitrogen-containing
compound provided by the present disclosure. The hole injection layer 310 may be composed
of the nitrogen-containing compound provided by the present disclosure, or may be
composed of the nitrogen-containing compound provided by the present disclosure and
other materials.
[0046] Alternatively, the hole injection layer 310 is composed of the nitrogen-containing
compound provided by the present disclosure.
[0047] In one embodiment of the present disclosure, the anode 100 includes an anode material,
which is preferably a material having a large work function that facilitates hole
injection into the functional layer. Specific Examples of the anode material include:
metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys
thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide(ITO), and
indium zinc oxide(IZO); combinations of metals and oxides, such as ZnO:Al or SnO
2:Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDT),
polypyrrole, and polyaniline, but not limited thereto. Preferably, a transparent electrode
including indium tin oxide(ITO) is included as an anode.
[0048] In one embodiment of the present disclosure, the cathode 200 includes a cathode material
that is a material having a small work function that facilitates electron injection
into the functional layer. Specific Examples of the cathode material include: metals
such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium,
gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multilayer materials
such as LiF/Al, Liq/Al, LiO
2/Al, LiF/Ca, LiF/Al and BaF
2/Ca, but not limited thereto. Preferably, a metal electrode including aluminum is
included as a cathode.
[0049] In one embodiment of the present disclosure, as shown in fig. 1, the organic electroluminescent
device may include an anode 100, a hole injection layer 310, a hole transport layer
320, an organic electroluminescent layer 330, a hole blocking layer 340, an electron
transport layer 350, an electron injection layer 360, and a cathode 200, which are
sequentially stacked. Wherein at least one of the hole injection layer 310 and the
hole transport layer 320 includes the nitrogen-containing compound of the present
disclosure.
[0050] The present disclosure also provides a photoelectric conversion device, which may
include an anode 100 and a cathode 200 disposed opposite to each other, and a functional
layer 300 disposed between the anode 100 and the cathode 200, as shown in fig. 2.
The functional layer 300 includes the nitrogen-containing compound provided by the
present disclosure.
[0051] In one embodiment of the present disclosure, the nitrogen-containing compound provided
by the present disclosure may be used to form at least one organic thin layer in the
functional layer 300 to improve the performance of the photoelectric conversion device,
in particular, to improve the service life of the photoelectric conversion device,
to improve the open circuit voltage of the photoelectric conversion device, or to
improve the uniformity and stability of the photoelectric conversion device in mass
production.
[0052] In one embodiment of the present disclosure, the functional layer 300 includes a
hole transport layer 320, and the hole transport layer 320 includes the nitrogen-containing
compound of the present disclosure. The hole transport layer 320 may be composed of
the nitrogen-containing compound provided by the present disclosure, or may be composed
of the nitrogen-containing compound provided by the present disclosure and other materials.
[0053] Alternatively, the hole transport layer 320 may further include an inorganic doping
material to improve the hole transport property of the hole transport layer 320.
[0054] In one embodiment of the present disclosure, as shown in fig. 2, the photoelectric
conversion device may include an anode 100, a hole transport layer 320, a photoelectric
conversion layer 370, an electron transport layer 350, and a cathode 200, which are
sequentially stacked.
[0055] Alternatively, the photoelectric conversion device may be a solar cell, and particularly
may be an organic thin film solar cell.
Synthesis of Compounds
Synthesis of Compounds 1 to 23 by the Following Synthetic Route
[0056]

Synthesis of Compound 1
[0057]

[0058] Magnesium strips (13.54 g, 564 mmol) and diethyl ether (100 mL) were placed in a
dry round bottom flask under the protection of nitrogen, and iodine (100 mg) was added.
Then, the solution of 2'-bromo-4-chlorobiphenyl (50.00 g,187.0 mmol) dissolved in
diethyl ether (200 mL) was slowly dripped into the flask, the temperature was raised
to 35 °C after dropping, and the stirring was carried out for 3 hours. The reaction
solution was cooled to 0 °C, the solution of adamantanone (22.45 g, 149 mmol) dissolved
in diethyl ether (200 mL) was slowly dropped, the temperature was raised to 35 °C
after dropping, and stirring was carried out for 6 hours. The reaction solution was
cooled to room temperature, 5% hydrochloric acid was added into the reaction solution
until the pH value was less than 7, and the stirring was carried out for 1 hour. Diethyl
ether (200 mL) was added into the reaction solution for extraction, the combined organic
phases were dried by using anhydrous magnesium sulfate, the mixture was filtered,
and the solvent was removed under reduced pressure. The crude product was purified
by silica column chromatography using ethyl acetate/n-heptane (1:2) as mobile phase
to obtain Intermediate I-A-1(43 g, 68% yield) as a white solid.

[0059] Intermediate I-A-1(43 g, 126.9 mmol), trifluoroacetic acid (36.93 g, 380.6 mmol)
and dichloromethane (300 mL) were added into a round-bottom flask, and the stirring
was carried out under the protection of nitrogen for 2 hours. Then, an aqueous solution
of sodium hydroxide was added into the reaction solution until the pH value to 8,
followed by liquid separation, the organic phase was dried with anhydrous magnesium
sulfate, the mixture was filtered, and the solvent was removed under reduced pressure.
The crude product was purified by silica column chromatography using dichloromethane/n-heptane
(1:2) to obtain Intermediate I-A (39.2 g, 96.3% yield) as a white solid.

[0060] 4-bromobiphenyl (5.0 g, 21.0 mmol), 4-aminobiphenyl (3.63 g, 21.45 mmol), tris (dibenzylideneacetone)
dipalladium (0.20 g, 0.21 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl
(0.20 g, 0.42 mmol) and sodium tert-butoxide (3.09 g, 32.18 mmol) were added into
toluene (80 mL), the reaction solution was heated to 108 °C under the protection of
nitrogen and stirred for 2 h. Then, the reaction solution was cooled to room temperature,
the reaction solution was washed with water, magnesium sulfate was addd for drying,
the mixture was filtered, and the solvent was removed under reduced pressure. The
crude product was purified by recrystallization using a dichloromethane/ethyl acetate
system to obtain Intermediate II-A (5.61 g, 81.5% yield) as a pale-yellow solid.

[0061] Intermediate I-A (5.6 g, 17.46 mmol), Intermediate II-A (5.61 g, 17.46 mmol), tris(dibenzylideneacetone)dipalladium
(0.16 g, 0.17 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.14 g, 0.35
mmol) and sodium tert-butoxide (2.52 g, 26.18 mmol) were added into toluene (40 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen, and stirred
for 3 h. Then, the reaction solution was cooled to room temperature, the reaction
solution was washed with water, magnesium sulfate was added for drying, the mixture
was filtered, and the solvent was removed from the filtrate under reduced pressure.
The crude product was purified by recrystallization using a toluene system to obtain
Compound 1 (4.35g, 41% yield) as a white solid. Mass spectrum: m/z=606.3(M+H)
+.
1H NMR (400MHz, CD
2Cl
2): 8.09 (d, 1H), 7.91 (s,1H), 7.74-7.71 (m, 2H),7.61 (d, 4H), 7.55 (d, 4H), 7.43 (t,
4H), 7.37-7.30 (m, 3H), 7.25-7.24 (m, 5H), 7.18 (dd, 1H), 2.91 (d, 2H), 2.61 (d, 2H),
2.16 (s, 1H), 1.90 (s, 3H), 1.77 (d, 2H), 1.69 (d, 2H), 1.60 (s, 2H) ppm.
[0062] Referring to the Synthesis of Compound 1, Compounds 2 to 23 were prepared with Raw
Material 2 instead of 4-bromobiphenyl and Raw Material 1 instead of 4-aminobiphenyl.
Wherein, the Compound Number, Compound Structures, Raw Materials, Synthesis Yields,
and Characterization Data of Compounds 2 to 23 are shown in Table 1.
[0063] Compound 3 was identified by
1H-NMR.
1H-NMR(400MHz, CD
2Cl
2):8.09 (d, 1H), 7.94 (s,1H), 7.90 (d, 1H), 7.84 (d, 1H), 7.73 (t, 2H), 7.61 (d, 2H),
7.56 (d, 2H), 7.51 (d, 1H), 7.45-7.31 (m, 7H), 7.27-7.24 (m, 3H), 7.20 (dd, 2H), 2.91
(d, 2H), 2.60 (d, 2H), 2.15 (s, 1H), 1.88 (s, 3H), 1.76 (d, 2H), 1.67 (d, 2H), 1.60
(s, 2H) ppm.
[0064] Compound 7 was identified by
1H-NMR.
1H-NMR(400MHz, CD
2Cl
2): 8.03 (d, 2H), 7.64 (d, 1H), 7.58-7.57 (m, 2H), 7.51 (d, 1H), 7.47 (d, 1H), 7.42-7.39
(m, 2H), 7.36 (t, 2H), 7.33-7.26 (m, 3H), 7.22-7.18 (m, 4H), 7.06 (t, 2H), 7.01-6.99
(m, 2H), 6.89 (dd, 2H), 2.86 (d, 2H), 2.43 (d, 2H), 2.11 (s, 1H), 1.84 (s, 2H), 1.78
(s, 1H), 1.71 (d, 2H), 1.58 (d, 2H), 1.47 (s, 2H), 1.30 (s, 6H) ppm.
Synthesis of Compounds 24 to 30 by the Following Synthetic Route
[0065]

Synthesis of Compound 24
[0066]

[0067] Intermediate I-A (20 g, 62.34 mmol), p-chlorobenzoic acid (9.75 g, 62.34 mmol), tetrakis(triphenylphosphine)palladium
(0.72 g, 0.62 mmol), potassium carbonate (17.2 g, 124.6 mmol), tetrabutylammonium
chloride (0.34 g, 1.25 mmol), toluene (160 mL), ethanol (40 mL) and deionized water
(40 mL) were added into a round bottom flask, the reaction solution was heated to
78 °C under the protection of nitrogen, and stirred for 8 hours. The reaction solution
was cooled to room temperature, toluene (100 mL) was added for extraction, the combined
organic phases were dried by using anhydrous magnesium sulfate, the mixture was filtered,
and the solvent was removed under reduced pressure. The crude product was purified
by silica column chromatography using n-heptane as mobile phase, followed by recrystallization
using a dichloromethane/ethyl acetate system to obtain Intermediate I-A-2 (18.6 g,
75%) as a white solid.

[0068] Bromobenzene (10.0 g, 38.0 mmol), 4-aminobiphenyl (7.07 g, 41.8 mmol), tris(dibenzylideneacetone)dipalladium
(0.35 g, 0.38 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (0.36 g,
0.76 mmol) and sodium tert-butoxide (5.48 g, 57.0 mmol) were added into toluene (80
mL), the reaction solution heated to 108 °C under the protection of nitrogen and stirred
for 2 h. Then, the reaction solution was cooled to room temperature, magnesium sulfate
was added for drying after washing with water, the mixture was filtered, and the solvent
was removed from the filtrate under reduced pressure. The crude product was purified
by recrystallization using a dichloromethane/ethyl acetate system to obtain Intermediate
II-B (11.5 g, 86%) as a pale-yellow solid.

[0069] Intermediate I-A-2 (3.50 g, 10.9 mmol), Intermediate II-B (3.51 g, 10.9 mmol), tris(dibenzylideneacetone)dipalladium
(0.20 g, 0.22 mmol), 2-dicyclohexyl phosphorus-2',6'-dimethoxy biphenyl (0.18 g, 0.44
mmol) and sodium tert-butoxide (1.58 g, 16.4 mmol) were added into toluene (30 mL),
the reaction solution was heated to 110 °C under the protection of nitrogen, and stirred
for 8 h. Then, the reaction solution was cooled to room temperature, magnesium sulfate
was added for drying after washing with water, the mixture was filtered, and the solvent
was removed from the filtrate under reduced pressure. The crude product was purified
by recrystallization using a toluene system to obtain Compound 24 (4.35 g, 65.81%)
as a white solid. Mass spectrum: m/z=606.3(M+H)
+.
[0070] Referring to the synthesis of Compound 24, Compounds 25 to 30 were prepared with
Raw Material 3 instead of 4-aminobiphenyl and Raw Material 4 instead of bromobenzene.
Wherein, the Compound Number, Compound Structures, Raw Materials, Synthesis Yields,
and Characterization Data of of Compounds 25 to 30 are shown in Table 2.
Synthesis of Compound 31
[0071]

[0072] 2-bromo-N-phenylcarbazole (10.0 g, 31.0 mmol), 2-aminobiphenyl (5.78 g, 34.1 mmol),
tris(dibenzylideneacetone)dipalladium (0.28 g, 0.31 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl
(0.30 g, 0.62 mmol) and sodium tert-butoxide (4.47 g, 46.6 mmol) were added into toluene
(80 mL), the reaction solution was heated to 108 °C under the protection of nitrogen,
and stirred for 4 h. Then, the reaction solution was cooled to room temperature, magnesium
sulfate was added for drying after washing with water, the mixture was filtered, and
the solvent was removed from the filtrate under reduced pressure. The crude product
was purified by recrystallization using a dichloromethane/n-heptane system to obtain
Intermediate II-C (8.65 g, 67.81% yield) as an orange solid.

[0073] Intermediate I-A (3.5 g, 10.9 mmol), Intermediate II-C (4.48 g, 10.9 mmol), tris(dibenzylideneacetone)dipalladium
(0.20 g, 0.22 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxy biphenyl (0.18 g, 0.44
mmol) and the sodium tert-butoxide (1.57 g, 16.3 mmol) were added into toluene (30
mL), the reaction solution was heated to 108 °C under the protection of nitrogen,
and stirred for 10 h. The reaction solution was cooled to room temperature, magnesium
sulfate was added for drying after washing with water, the mixture was filtered, the
filtrate was purified with silica column chromatography using dichloromethane/n-heptane
(1/5) as mobile phase, and the solvent was removed from the column solution under
reduced pressure. The crude product was purified by recrystallization using a dichloroethane
system to obtain Compound 31 (5.42g, 71.5% yield) as a white solid. Mass spectrum:
m/z=695.3(M+H)+.
Synthesis of Compound 32
[0074]

[0075] Intermediate I-A (3.5 g, 10.9 mmol), diphenylamine (1.85 g, 10.9 mmol), tris(dibenzylideneacetone)dipalladium
(0.20 g, 0.22 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.18 g, 0.44
mmol) and sodium tert-butoxide (1.57 g, 16.4 mmol) were added into toluene (30 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen, and stirred
for 2 h. Then, the reaction solution was cooled to room temperature, magnesium sulfate
was added for drying after washing with water, the mixture was filtered, the filtrate
was passed through a short silica column, and the solvent was removed under reduced
pressure. The crude product was purified by recrystallization using a dichloromethane/ethyl
acetate system to obtain Compound 32 (3.06g, 61.94% yield) as a white solid. Mass
spectrum: m/z =454.2(M+H)
+.
Synthesis of Compound 33
[0076]

[0077] 3-bromodibenzothiophene (10.0 g, 38.0 mmol), 4-aminobiphenyl (7.07 g, 41.8 mmol),
tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl
(0.36 g, 0.76 mmol), and sodium tert-butoxide (5.48 g, 57.0 mmol) were added into
toluene (80 mL), the reaction solution was heated to 108 °C under the protection of
nitrogen, and stirred for 5 h. Then, the reaction solution was cooled to room temperature,
magnesium sulfate was added for drying after washing with water, the mixture was filtered,
and the solvent was removed under reduced pressure. The crude product was purified
by recrystallization using a dichloromethane/ethyl acetate system system to obtain
Intermediate II-D (11.5 g, 86% yield) as a pale-yellow solid.

[0078] Intermediate I-A (3.5 g, 10.9 mmol), Intermediate II-D (3.83 g, 10.9 mmol), the tris(dibenzylideneacetone)dipalladium
(0.20 g, 0.22 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxy biphenyl (0.18 g, 0.44
mmol) and sodium tert-butoxide (1.58 g, 16.4 mmol) were added into toluene (30 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen, and stirred
for 6 h. The reaction solution was cooled to room temperature, magnesium sulfate was
added for drying after washing with water, the mixture was filtered, the filtrate
was purified with silica column chromatography using dichloromethane/n-heptane (1/3)
as mobile phase, and the solvent was removed from the column solution under reduced
pressure. The crude product was purified by recrystallization using toluene to obtain
Compound 33(3.35 g, 47.5% yield) as a white solid. Mass spectrum: m/z=636.3(M+H)
+.
Synthesis of Compound 34
[0079]

[0080] Intermediate I-A-2 (3 g, 7.6 mmol), bis-(4-biphenylyl)amine (2.43 g, 7.6 mmol), tris(dibenzylideneacetone)dipalladium
(0.14 g, 0.15 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.12 g, 0.30
mmol) and sodium tert-butoxide (1.09 g, 11.33 mmol) were added into toluene (25 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen and stirred
for 2 h. The reaction solution cooled to room temperature, magnesium sulfate was added
for drying after washing with water, the mixture was filtered, the filtrate was passed
through a short silica column, and the solvent was removed under reduced pressure.
The crude product was purified by recrystallization using a toluene system to obtain
Compound 34 (2.68 g, 52% yield) as a white solid. Mass spectrum: m/z =682.3(M+H)
+.
Synthesis of Compound 35
[0081]

[0082] 3-bromodibenzothiophene (10.0 g, 38.0 mmol), 2-aminobiphenyl (7.07 g, 41.8 mmol),
tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl
(0.36 g, 0.76 mmol), and sodium tert-butoxide (5.48 g, 57.0 mmol) were added into
toluene (80 mL), the reaction solution heated to 108 °C under the protection of nitrogen,
and stirred for 1.5 h. The reaction solution was cooled to room temperature, magnesium
sulfate was added for drying after washing with water, the mixture was filtered, the
filtrate was passed through a short silica column, and the solvent was removed under
reduced pressure. The crude product was purified by recrystallization using a dichloromethane/ethyl
acetate system to obtain Intermediate II-F (11.5 g, 86% yield) as a white solid.

[0083] Intermediate I-A-2 (3.0 g, 7.6 mmol), Intermediate II-F (2.63 g, 7.6 mmol), tris(dibenzylideneacetone)dipalladium
(0.14 g, 0.15 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.12 g, 0.30
mmol) and sodium tert-butoxide (1.09 g, 11.33 mmol) were added into toluene (25 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen and stirred
for 3 h. The reaction solution was cooled to room temperature, magnesium sulfate was
added for drying after washing with water, the mixture was filtered, the filtrate
was passed through a short silica column, and the solvent was removed under reduced
pressure. The crude product was purified by recrystallization using a toluene system
to obtain Compound 35 (2.17 g, 42% yield) as a white solid. Mass spectrum: m/z=712.3(M+H)
+.
Synthesis of Compound 36
[0084]

[0085] Intermediate I-A (3.0 g, 9.45 mmol), 4-chloro-1-naphthalene boronic acid (1.3 g,
6.30 mmol), tetrakis(triphenylphosphine)palladium (0.15 g, 0.13 mmol), potassium carbonate
(1.74 g, 12.6 mmol), tetrabutylammonium chloride (0.09 g, 0.31 mmol), toluene (25
mL), ethanol (6mL) and deionized water (6 mL) were added into a round bottom flask,
the reaction solution was heated to 78 °C under the protection of nitrogen, and stirred
for 16 hours. The reaction solution was cooled to room temperature, toluene (30 mL)
was added for extraction, the combined organic phases were dried by using anhydrous
magnesium sulfate, the mixture was filtered, and the solvent was removed under reduced
pressure. The crude product was purified by silica column chromatography using n-heptane
as mobile phase, followed by recrystallization using a dichloromethane/ethyl acetate
system to obtain Intermediate I-A-3 (1.89g, yield 67%) as a white solid.

[0086] Intermediate I-A-3 (1.89 g, 2.91 mmol), Intermediate II-G (1.05 g, 2.91 mmol), tris(dibenzylideneacetone)dipalladium
(0.05 g, 0.06 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxy biphenyl (0.05 g, 0.12
mmol) and sodium tert-butoxide (0.42 g, 4.36 mmol) were add into toluene (20 mL),
the reaction solution was heated to 108 °C under the protection of nitrogen and stirred
for 2 h. The reaction solution was cooled to room temperature, magnesium sulfate was
added for drying after washing with water, the mixture was filtered, the filtrate
was passed through a short silica column, and the solvent was removed under reduced
pressure. The crude product was purified by recrystallization using a dichloromethane/ethyl
acetate system to obtain Compound 36 (2.05 g, 91%) as a white solid. Mass spectrum:
m/z=772.4(M+H)
+.
Thermal stability of the Compounds
[0087] When the compound is used for mass production of devices, it needs to be heated for
a long time under the evaporation condition. If the compound has a poor thermal stability
of a molecular structure under a heated condition, the purity of the compound will
discrease under the heated condition for a long time, resulting in large differences
in the performance of the devices prepared in the early, middle and late stage of
mass production.
[0088] The stability of the molecular structure of the nitrogen-containing compounds of
the present disclosure under the heated condition for a long time during the mass
production evaporation is evaluated by the following method:
[0089] Under a high vacuum environment (<10
-6 Pa), and the heat resistance test (heat treatment) was performed for 200 hours for
each of Compounds 1 to 30 at a temperature corresponding to the deposition rate of
5 Å per second. The stability of the nitrogen-containing compounds of the present
disclosure under mass production condition was evaluated by the decreased value in
purity before and after the heat resistance test, and the following two relative compounds
were used as controls:

[0090] The temperature in the heat resistance test and decreased values in purity of the
nitrogen-containing compound are shown in Table 3:
Table 3 Temperature in the Test and Decreased Values in Purity of Nitrogen-containing
Compounds
Compound |
Molecular Weight |
Evaporation Temperature corresponding to 5 Å/s |
Decreased Values in Purity (HPLC, %) |
Compound 1 |
605.8 |
264 |
0.05 |
Compound 2 |
645.9 |
277 |
0.02 |
Compound 3 |
619.8 |
278 |
0.08 |
Compound 4 |
619.8 |
274 |
0.01 |
Compound 5 |
694.9 |
305 |
0.48 |
Compound 6 |
695.9 |
307 |
0.51 |
Compound 7 |
645.9 |
266 |
0.14 |
Compound 8 |
694.9 |
288 |
0.25 |
Compound 9 |
686.0 |
292 |
0.24 |
Compound 10 |
675.9 |
301 |
0.30 |
Compound 11 |
645.9 |
275 |
0.10 |
Compound 12 |
669.9 |
289 |
0.09 |
Compound 13 |
503.7 |
221 |
0.00 |
Compound 14 |
618.8 |
268 |
0.01 |
Compound 15 |
605.8 |
263 |
0.02 |
Compound 16 |
629.8 |
269 |
0.02 |
Compound 17 |
553.7 |
248 |
0.12 |
Compound 18 |
629.8 |
276 |
0.17 |
Compound 19 |
629.8 |
265 |
0.15 |
Compound 20 |
668.9 |
273 |
0.01 |
Compound 21 |
669.9 |
291 |
0.17 |
Compound 22 |
659.9 |
291 |
0.16 |
Compound 23 |
745.0 |
319 |
0.65 |
Compound 24 |
605.8 |
263 |
0.03 |
Compound 25 |
681.9 |
282 |
0.23 |
Compound 26 |
736.0 |
318 |
0.68 |
Compound 27 |
681.9 |
284 |
0.22 |
Compound 28 |
655.9 |
285 |
0.21 |
Compound 29 |
679.9 |
286 |
0.20 |
Compound 30 |
745.0 |
316 |
0.59 |
Relative Compound 1 |
770.0 |
331 |
1.24 |
Relative Compound 2 |
846.1 |
352 |
3.63 |
[0091] As can be seen from Table 3, the nitrogen-containing compounds of the present disclosure
all had a decreased value in purity of less than 0.7%, most of which were less than
0.3%. The relative compouds containing diphenylfluorene substituents had decreased
values in purity exceeding 1%. Therefore, the thermal stability of the nitrogen-containing
compounds of the present disclosure is far superior to that of Comparative Compouds
1 and 2.
[0092] It may be due to the fact that the decomposition rate of the fluorene-triarylamine-containing
structure is greatly accelerated at temperatures above 320°C. According to the data
in Table 3, it can be deduced that the evaporation temperature of the nitrogen-containing
compound is in positive correlation with the molecular weight, and the molecular weight
corresponding to the evaporation temperature of 320°C is about 750. Therefore, when
the nitrogen-containing compound is introduced with a diphenylfluorene substituent
with large molecular weight, the nitrogen-containing compound is easy to have a molecular
weight of more than 750, so that the purity of the compound decreases more at the
same evaporation speed.
[0093] When the decreased value in purity of the compound exceeds 1%, the efficiency and
the service life of a device are obviously reduced. Therefore, such thermolabile compounds
can cause large differences in the performance of devices prepared in the early, middle
and late stage of the actual mass production. In the present disclosure, the molecular
weights of Compounds 1 to 30 are all small, so that the evaporation temperatures are
relatively low, and the heat resistance tests prove that the decreased values in purity
are all less than 0.7%, so that the nitrogen-containing compounds of the present disclosure
have excellent mass production thermal stability.
Preparation and Evaluation of Organic Electroluminescent Devices
Example 1
[0094] A blue organic electroluminescent device was prepared by the following method:
An ITO substrate (manufactured by Corning) with a thickness of 1500 Å was cut into
a size of 40 mm (length) × 40 mm (width) × 0.7 mm (thickness), and prepared into an
experimental substrate having a cathode, an anode and an insulating layer pattern
using a photolithography process. The surface was treated with ultraviolet ozone and
O
2:N
2 plasma to increase the work function of the anode (experimental substrate) and to
remove scum.
[0095] m-MTDATA was vacuum-evaporated on the experimental substrate (anode) to form a hole
injection layer (HIL) with a thickness of 100 Å, and Compound 1 was vacuum-evaporated
on the hole injection layer to form a first hole transport layer with a thickness
of 1000 Å.
[0096] TCTA was vacuum-evaporated on the first hole transport layer to form a second hole
transport layer with a thickness of 100 Å.
[0097] A light emitting layer (EML) with a thickness of 200 Å was formed by using α,β-ADN
as a host material and BD-1 as a dopant in a film thickness ratio of 100:3.
[0098] DBimiBphen and LiQ were mixed in a weight ratio of 1:1 and evaporated to form an
electron transport layer (ETL) with a thickness of 300 Å, and LiQ was evaporated on
the electron transport layer to form an electron injection layer (EIL) with a thickness
of 10 Å. Then magnesium (Mg) and silver (Ag) were mixed at an evaporation rate of
1:9, and vacuum-evaporated on the electron injection layer to form a cathode with
a thickness of 120 Å.
[0099] CP-1 with a thickness of 650 Å was evaporated on the cathode to fabricate an organic
light emitting device.
Examples 2 to 7
[0101] Corresponding blue organic electroluminescent devices were fabricated in the same
manner as in Example 1, using the first hole transport layer materials listed in Table
4 instead of Compound 1 in Example 1.
[0102] That is, in Example 2, a blue organic electroluminescent device was fabricated using
Compound 2 instead of Compound 1.
[0103] In Example 3, a blue organic electroluminescent device was fabricated using Compound
4 instead of Compound 1.
[0104] In Example 4, a blue organic electroluminescent device was fabricated using Compound
6 instead of Compound 1.
[0105] In Example 5, a blue organic electroluminescent device was fabricated using Compound
7 instead of Compound 1.
[0106] In Example 6, a blue organic electroluminescent device was fabricated using Compound
9 instead of Compound 1.
[0107] In Example 7, a blue organic electroluminescent device was fabricated using Compound
10 instead of Compound 1.
Examples 8 to 13
[0108] Corresponding blue organic electroluminescent devices were fabricated in the same
manner as in Example 1, using the first hole transport layer materials listed in Table
4 instead of Compound 1 in Example 1 and the second hole transport layer materials
listed in Table 2 instead of TCTA in Example 1.
[0109] That is, in Example 8, a blue organic electroluminescent device was fabricated using
NPB instead of Compound 1 and Compound 8 instead of TCTA.
[0110] In Example 9, a blue organic electroluminescent device was fabricated using NPB instead
of Compound 1 and Compound 24 instead of TCTA.
[0111] In Example 10, a blue organic electroluminescent device was fabricated using NPB
instead of Compound 1 and Compound 25 instead of TCTA.
[0112] In Example 11, a blue organic electroluminescent device was fabricated using NPB
instead of Compound 1 and Compound 27 instead of TCTA.
[0113] In Example 12, a blue organic electroluminescent device was fabricated using NPB
instead of Compound 1 and Compound 28 instead of TCTA.
[0114] In Example 13, a blue organic electroluminescent device was fabricated using NPB
instead of Compound 1 and Compound 29 instead of TCTA.
[0115] Wherein, the structure of NPB was as follows:

Comparative Example 1
[0116] A blue organic electroluminescent device was fabricated in the same manner as in
Example 1, using NPB instead of Compound 1 in Example 1.
Comparative Example 2
[0117] A blue organic electroluminescent device was fabricated in the same manner as in
Example 1, using Compound C instead of Compound 1 in Example 1.
[0118] Wherein, the structure of Compound C was as follows:

Comparative Example 3
[0119] A blue organic electroluminescent device was fabricated in the same manner as in
Example 1, using NPB instead of Compound 1 in Example 1 and Compound D instead of
TCTA in Example 1.
[0120] Wherein, the structure of the Compound D was as follows:

[0121] The blue organic electroluminescent devices fabricated in Examples 1 to 13 and Comparative
Examples 1 to 3 were measured. The IVL performances of the devices were measured at
10 mA/cm
2, and the T95 life was measured at a constant current density of 20 mA/cm
2. The measured results were shown in Table 4.
Table 4 Performance Measured Results of Blue Organic Electroluminescent Device
|
First Hole Transport Layer Material |
Second Hole Transport Layer Material |
Driving Voltage (V) |
Current Efficiency (Cd/A) |
Color Coordinate CIEy |
External Quantum Efficiency EQE(%) |
T95 Lift at 20 mA/cm2 (h) |
Example 1 |
Compound 1 |
TCTA |
4.17 |
6.1 |
0.047 |
12.6 |
195 |
Example 2 |
Compound 2 |
TCTA |
4.18 |
6.2 |
0.048 |
12.8 |
197 |
Example 3 |
Compound 4 |
TCTA |
4.21 |
6.1 |
0.048 |
12.6 |
218 |
Example 4 |
Compound 6 |
TCTA |
4.18 |
6.3 |
0.046 |
12.9 |
215 |
Example 5 |
Compound 7 |
TCTA |
4.23 |
6.3 |
0.047 |
12.9 |
220 |
Example 6 |
Compound 9 |
TCTA |
4.21 |
6.2 |
0.046 |
12.8 |
205 |
Example 7 |
Compound 10 |
TCTA |
4.17 |
6.1 |
0.048 |
12.5 |
200 |
Example 8 |
NPB |
Compound 8 |
4.32 |
6.4 |
0.047 |
13.2 |
207 |
Example 9 |
NPB |
Compound |
4.29 |
6.5 |
0.047 |
13.5 |
198 |
Example 10 |
NPB |
Compound |
4.32 |
6.4 |
0.047 |
13.3 |
196 |
Example 11 |
NPB |
Compound |
4.29 |
6.3 |
0.048 |
13.0 |
191 |
Example 12 |
NPB |
Compound 28 |
4.26 |
6.4 |
0.047 |
13.2 |
200 |
Example 13 |
NPB |
Compound 29 |
4.24 |
6.5 |
0.046 |
13.3 |
203 |
Comparative Example 1 |
NPB |
TCTA |
4.43 |
4.9 |
0.047 |
9.8 |
102 |
Comparative Example 2 |
Compound C |
TCTA |
4.61 |
5.3 |
0.047 |
10.7 |
115 |
Comparative Example 3 |
NPB |
Compound D |
4.53 |
5.2 |
0.047 |
10.4 |
113 |
[0122] As can be seen from Table 4, in the case of little differences in color coordinates
CIEy, the blue organic electroluminescent devices fabricated in Examples 1 to 7 have
lower driving voltage, higher external quantum efficiency and longer service life
compared with Comparative Examples 1 and 2. Compared with Comparative Examples 1 and
2, the driving voltage of the blue organic electroluminescent devices fabricated in
Examples 1 to 7 is reduced by a maximum of 9.5%, the external quantum efficiency is
improved by at least 16.8%, and the T95 life is prolonged by at least 69.5%. This
is a very significant improvement, particularly for blue devices.
[0123] As can be seen from Table 4, in the case of little differences in color coordinates
CIEy, the blue organic electroluminescent devices fabricated in Examples 8 to 13 have
lower driving voltage, higher current efficiency and external quantum efficiency,
and longer service life compared with Comparative Examples 1 and 3. Compared with
Comparative Examples 1 and 3, the driving voltage of the blue organic electroluminescent
devices fabricated in Examples 8 to 13 is reduced by a maximum of 6.4%, the current
efficiency is improved by at least 21.1%, the external quantum efficiency is improved
by at least 25%, and the T95 life is prolonged by at least 69%. This is a very significant
improvement for blue devices.
[0124] Wherein, the external quantum efficiency (EQE%) can be calculated according to the
following formula: EQE% = umber of Photons Emitted out of Organic Electroluminescent
Device/Number of Injected Electrons. Of course, the calculation can also be performed
as follows: EQE% = Light Extraction Rate* Internal Quantum Efficiency (light extraction
rate less than 1). For the blue organic electroluminescent device, the organic light
emitting layer uses a fluorescent material, the fluorescent material can only emit
light by using singlet excitons, and the limit value of the internal quantum efficiency
is 25%. When the blue organic electroluminescent device emits light externally, light
loss is caused by coupling in the organic electroluminescent device, and theerfore
the limit value of the external quantum efficiency of the blue organic electroluminescent
device is 25%. On the premise that the theoretical limit value is 25%, compared with
Comparative Examples 1 and 2, the external quantum efficiency of the blue organic
electroluminescent devices fabricated in Examples 1 to 7 is at least improved to 12.9%
from 10.7%, and the lifting amplitude of the blue organic electroluminescent devices
is up to 17.6% relative to the theoretical limit value, so that the lifting is very
remarkable. On the premise that the theoretical limit value is 25%, compared with
Comparative Examples 1 and 3, the external quantum efficiency of the blue organic
electroluminescent devices fabricated in Examples 8 to 13 is at least improved to
13.5% from 10.4%, and the lifting amplitude is up to 15.9% relative to the theoretical
limit value, so that the lifting is very remarkable.
[0125] Therefore, when the nitrogen-containing compound of the present disclosure is used
for fabricating an organic electroluminescent device, the driving voltage of the electroluminescent
device can be effectively reduced, the external quantum efficiency can be improved,
and the service life of the organic electroluminescent device can be prolonged.
Example 14
[0126] A red organic electroluminescent device was fabricated by the following method:
An ITO substrate (manufactured by Corning) with a thickness of 1500 Å was cut into
a size of 40mm (length) × 40mm (width) × 0.7mm (thickness), and prepared into an experimental
substrate having a cathode, an anode and an insulating layer pattern using a photolithography
process. The surface was treated with ultraviolet ozone and O
2:N
2 plasma to increase the work function of the anode (experimental substrate) and to
remove scum.
[0127] m-MTDATA was vacuum-evaporated on the experimental substrate (anode) to form a hole
injection layer (HIL) with a thickness of 100 Å, and Compound 11 was vacuum-evaporated
on the hole injection layer to form a first hole transport layer with a thickness
of 1000 Å.
[0128] TPD was vacuum-evaporated on the first hole transport layer to form a second hole
transport layer with a thickness of 850 Å.
[0129] A light emitting layer (EML) with a thickness of 350 Å was formed by using CBP as
a host material and Ir(piq)
2(acac) as a dipant material in a film thickness ratio of 100:3.
[0130] DBimiBphen and LiQ were mixed in a weight ratio of 1:1 and evaporated to form an
electron transport layer (ETL) with a thickness of 300 Å, and LiQ was evaporated on
the electron transport layer to form an electron injection layer (EIL) with a thickness
of 10 Å. Then magnesium (Mg) and silver (Ag) were mixed at an evaporation rate of
1:9, and vacuum-evaporated on the electron injection layer to form a cathode with
a thickness of 105 Å.
[0131] CP-1 was evaporated on the cathode to form an organic capping layer (CPL) with a
thickness of 650 Å.
[0132] Wherein, the structures of TPD, CBP, Ir(piq)
2(acac) were as follows:

Examples 15 to 20
[0133] Corresponding red organic electroluminescent devices were fabricated in the same
manner as in Example 14, using the first hole transport layer materials listed in
Table 5 instead of Compound 11 in Example 14.
[0134] That is, in Example 15, a red organic electroluminescent device was fabricated using
Compound 12 instead of Compound 11.
[0135] In Example 16, a red organic electroluminescent device was fabricated using Compound
13 instead of Compound 11.
[0136] In Example 17, a red organic electroluminescent device was fabricated using Compound
14 instead of Compound 11.
[0137] In Example 18, a red organic electroluminescent device was fabricated using Compound
18 instead of Compound 11.
[0138] In Example 19, a red organic electroluminescent device was fabricated using Compound
19 instead of Compound 11.
[0139] In Example 20, a red organic electroluminescent device was fabricated using Compound
20 instead of Compound 11.
Examples 21 to 30
[0140] Corresponding red organic electroluminescent devices were fabricated in the same
manner as in Example 14, using the first hole transport layer material listed in Table
5 instead of Compound 11 in Example 14, and using the second hole transport layer
material listed in Table 5 instead of TPD in Example 14.
[0141] That is, in Example 21, a red organic electroluminescent device was fabricated using
NPB instead of Compound 11 and Compound 3 instead of TPD.
[0142] In Example 22, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 5 instead of TPD.
[0143] In Example 23, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 15 instead of TPD.
[0144] In Example 24, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 16 instead of TPD.
[0145] In Example 25, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 17 instead of TPD.
[0146] In Example 26, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 21 instead of TPD.
[0147] In Example 27, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 22 instead of TPD.
[0148] In Example 28, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and Compound 23 instead of TPD.
[0149] In Example 29, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and using Compound 26 instead of TPD.
[0150] In Example 30, a red organic electroluminescent device was fabricated using NPB instead
of Compound 11 and using Compound 30 instead of TPD.
Comparative Example 4
[0151] A red organic electroluminescent device was fabricated in the same manner as in Example
14, using NPB instead of Compound 11 in Example 14.
Comparative Example 5
[0152] A red organic electroluminescent device was fabricated in the same manner as in Example
14, using NPB instead of Compound 11 in Example 14 and using Compound E instead of
TPD in Example 14.
[0153] Wherein, the structural formula of Compound E was as follows:

Comparative Example 6
[0154] A red organic electroluminescent device was fabricated in the same manner as in Example
14, using NPB instead of compound 11 in Example 14 and using compound F instead of
TPD in Example 14.
[0155] Wherein, the structural formula of the compound F was as follows:

[0156] The red organic electroluminescent devices fabricated as above were measured. The
IVL performances of the devices were measured at 10mA/cm
2, and the T95 life was measured at a constant current density of 20mA/cm
2. The measured results were shown in Table 5.
Table 5 Performance Measured Results of Red Organic Electroluminescent Device
|
First Hole Transport Layer Material |
Second Hole Transport Layer Material |
Driving Voltage (V) |
Current Efficiency (Cd/A) |
Color Coord inate CIEy |
External Quantum Efficiency EQE(%) |
T95Servi ce life at 20 mA/cm2( h) |
Example14 |
Compound 11 |
TPD |
3.91 |
34.7 |
0.674 |
24.6 |
494 |
Example15 |
Compound 12 |
TPD |
3.92 |
34.4 |
0.672 |
24.4 |
482 |
Example16 |
Compound 13 |
TPD |
3.94 |
34.2 |
0.673 |
24.1 |
475 |
Example17 |
Compound 14 |
TPD |
3.90 |
34.8 |
0.675 |
24.8 |
483 |
Example18 |
Compound 18 |
TPD |
3.91 |
34.6 |
0.674 |
24.6 |
476 |
Example19 |
Compound 19 |
TPD |
3.93 |
34.4 |
0.672 |
24.3 |
475 |
Example20 |
Compound 20 |
TPD |
3.92 |
34.6 |
0.673 |
24.3 |
473 |
Example21 |
NPB |
Compound 3 |
3.88 |
33.6 |
0.674 |
23.5 |
455 |
Example22 |
NPB |
Compound 5 |
3.89 |
33.9 |
0.675 |
23.7 |
456 |
Example23 |
NPB |
Compound 15 |
3.87 |
33.8 |
0.677 |
23.6 |
466 |
Example24 |
NPB |
Compound 16 |
3.88 |
33.5 |
0.678 |
23.6 |
460 |
Example25 |
NPB |
Compound 17 |
3.89 |
33.7 |
0.676 |
23.8 |
455 |
Example26 |
NPB |
Compound 21 |
3.87 |
33.6 |
0.674 |
23.8 |
469 |
Example27 |
NPB |
Compound 22 |
3.86 |
33.7 |
0.678 |
23.9 |
468 |
Example28 |
NPB |
Compound 23 |
3.89 |
33.8 |
0.677 |
23.7 |
465 |
Example29 |
NPB |
Compound 26 |
3.89 |
33.5 |
0.675 |
23.5 |
455 |
Example30 |
NPB |
Compound 30 |
3.87 |
33.6 |
0.673 |
23.5 |
459 |
Comparative Example 4 |
NPB |
TPD |
4.20 |
27.0 |
0.674 |
19.1 |
260 |
Comparative Example 5 |
NPB |
Compound E |
4.12 |
28.3 |
0.677 |
20.0 |
290 |
Comparative Example 6 |
NPB |
Compound F |
4.08 |
28.8 |
0.676 |
20.3 |
295 |
[0157] As can be seen from Table 5, in the case of little differences in color coordinates
CIEy, the red organic electroluminescent devices fabricated in Examples 14 to 20 have
lower driving voltage, higher external quantum efficiency and longer service life
compared with Comparative Example 4. Compared with Comparative Example 4, the driving
voltage of the red organic electroluminescent device fabricated in Examples 14 to
20 is reduced by at least 4.4%, the current efficiency is improved by at least 20.8%,
the external quantum efficiency is improved by at least 20.5%, and the T95 life is
prolonged by at least 163%.
[0158] As can be seen from Table 5, in the case of little differences in color coordinates
CIEy, the red organic electroluminescent devices fabricated in Examples 21 to 30 have
lower driving voltage, higher current efficiency and external quantum efficiency,
and longer service life than those of Comparative Examples 5 and 6. Compared with
Comparative Examples 5 and 6, the driving voltage of the red organic electroluminescent
devices fabricated in Examples 21 to 30 is reduced by at least 4.6%, the current efficiency
is improved by at least 16.3%, the external quantum efficiency is improved by at least
15.7%, and the T95 life is prolonged by at least 154%.
[0159] Therefore, when the nitrogen-containing compound of the present disclosure is used
for fabricating an organic electroluminescent device, the driving voltage of the electroluminescent
device can be effectively reduced, the external quantum efficiency can be improved,
and the service life of the organic electroluminescent device can be prolonged.
[0160] As can be seen from Tables 4 and 5, when the compound of the present disclosure is
used as a hole transport layer material, the voltage of the organic electroluminescent
device can be reduced, and the efficiency and service life of the organic electroluminescent
device can be improved.
Example 31
[0161] Blue organic electroluminescent device fabricated by the following method
[0162] An ITO substrate (manufactured by Corning) with a thickness of 1500 Å was cut into
a size of 40mm (length) × 40mm (width) × 0.7mm (thickness), and prepared into an experimental
substrate having a cathode, an anode and an insulating layer pattern using a photolithography
process. The surface was treated with ultraviolet ozone and O
2:N
2 plasma to increase the work function of the anode (experimental substrate) and to
remove scum.
[0163] m-MTDATA was vacuum-evaporated on the experimental substrate (anode) to form a hole
injection layer (HIL) with a thickness of 100 Å, and Compound 2 was vacuum-evaporated
on the hole injection layer to form a first hole transport layer with a thickness
of 800 Å.
[0164] TCTA was vacuum-evaporated on the first hole transport layer to form a second hole
transport layer with a thickness of 300 Å.
[0165] A light emitting layer (EML) with a thickness of 220 Å was formed by using α,β-ADN
as a host material and 4,4'-(3,8-diphenylpyrene-1,6-diylbis(N,N-diphenylaniline))
as a dopant material in a film thickness ratio of 100:3 to form.
[0166] DBimiBphen and LiQ were mixed in a weight ratio of 1:1 and evaporated to form an
electron transport layer (ETL) with a thickness of 300 Å, and LiQ was evaporated on
the electron transport layer to form an electron injection layer (EIL) with a thickness
of 10 Å. Then magnesium (Mg) and silver (Ag) were mixed at an evaporation rate of
1:9, and vacuum-evaporated on the electron injection layer to form a cathode with
a thickness of 120 Å.
[0167] N-(4-(9H-carbazol-9-yl)phenyl)-4'-(9H-carbazol-9-yl)-N-phenyl-[1,1'-biphenyl]-4-amine
with a thickness of 650 Å was evaporated on the cathode.
Examples 32 to 37
[0168] Corresponding blue organic electroluminescent devices were fabricated in the same
manner as in Example 31, using the compounds listed in Table 6 instead of Compound
2 in Example 31.
[0169] That is, in Example 32, a blue organic electroluminescent device was fabricated using
Compound 31 instead of Compound 2. In Example 33, a blue organic electroluminescent
device was fabricated using Compound 3 instead of Compound 2. In Example 34, a blue
organic electroluminescent device was fabricated using Compound 32 instead of Compound
2. In Example 35, a blue organic electroluminescent device was fabricated using Compound
33 instead of Compound 2.
Comparative Examples 7 to 9
[0170] Blue organic electroluminescent devices were fabricated in the same manner as in
Example 31, using NPB, NPD and TPD, respectively, instead of Compound 2 in Example
31.
[0171] Wherein, the structures of NPD and TPD were as follows:

[0172] The blue organic electroluminescent devices fabricated in Examples 31 to 35 and Comparative
Examples 7 to 9 were measured. The IVL performances of the devices were measured at
10mA/cm
2, and the T95 life was measured at a constant current density of 20mA/cm
2. The measured results were shown in Table 6.
Table 6 Performance Measured Results of Blue Organic Electroluminescent Device
Example |
Compound |
Driving Vogtive (V) |
Luminous Efficacy (Cd/A) |
External Quantum Efficiency EQE(%) |
T95 life at 20 mA/cm2(h) |
Color Coordinate CIEy |
Example31 |
Compound 2 |
4.13 |
6.3 |
13.2 |
195 |
0.047 |
Example32 |
Compound 31 |
4.19 |
6.2 |
12.9 |
189 |
0.046 |
Example33 |
Compound 3 |
4.12 |
6.2 |
13.0 |
200 |
0.047 |
Example34 |
Compound 32 |
4.10 |
6.4 |
13.4 |
196 |
0.048 |
Example35 |
Compound 1 |
4.20 |
6.3 |
13.2 |
205 |
0.045 |
Comparative Example 7 |
NPB |
4.430 |
4.9 |
9.8 |
102 |
0.047 |
Comparative Example 8 |
NPD |
4.520 |
5.2 |
10.3 |
110 |
0.048 |
Comparative Example 9 |
TPD |
4.42 |
5.3 |
9.5 |
113 |
0.046 |
[0173] As can be seen from Table 6, in the case of little differences in color coordinates
CIEy, the blue organic electroluminescent devices fabricated in Examples 31 to 35
have lower driving voltage, higher luminous efficiency, higher external quantum efficiency,
and longer service life than those of Comparative Examples 7 to 9. Compared with Comparative
Examples 7 to 9, the driving voltage of the blue organic electroluminescent devices
fabricated in Examples 31 to 35 is reduced by at least 5%, the luminous efficiency
is improved by at least 17%, the external quantum efficiency is improved by at least
25.2%, and the T95 life is prolonged by at least 67%.
[0174] Therefore, when the nitrogen-containing compound of the present disclosure is used
for fabricating an organic electroluminescent device, the driving voltage of the electroluminescent
device can be effectively reduced, the luminous efficiency can be improved, the external
quantum efficiency can be improved, and the service life of the organic electroluminescent
device can be prolonged.
Example 36
[0175] Red organic electroluminescent device fabricated by the following method
[0176] An ITO substrate (manufactured by Corning) with a thickness of 1500 Å was cut into
a size of 40mm (length) × 40mm (width) × 0.7mm (thickness), and prepared into an experimental
substrate having a cathode, an anode and an insulating layer pattern using a photolithography
process. The surface was treated with ultraviolet ozone and O
2:N
2 plasma to increase the work function of the anode (experimental substrate) and to
remove scum.
[0177] m-MTDATA was vacuum-evaporated on the experimental substrate (anode) to form a hole
injection layer (HIL) with a thickness of 100 Å, and NPB was evaporated on the hole
injection layer to form a first hole transport layer with a thickness of 800 Å.
[0178] Compound 33 was vacuum-evaporated on the first hole transport layer to form a second
hole transport layer with a thickness of 850 Å.
[0179] A light emitting layer (EML) with a thickness of 350 Å was formed by using CBP as
a host material and Ir(piq)
2(acac) as a dopant material in a film thickness ratio of 35:5 to form.
[0180] DBimiBphen and LiQ were mixed in a weight ratio of 1:1 and evaporated to form an
electron transport layer (ETL) with a thickness of 300 Å, and LiQ was evaporated on
the electron transport layer to form an electron injection layer (EIL) with a thickness
of 10 Å. Then magnesium (Mg) and silver (Ag) were mixed at an evaporation rate of
1:9, and vacuum-evaporated on the electron injection layer to form a cathode with
a thickness of 105 Å.
[0181] N-(4-(9H-carbazol-9-yl)phenyl)-4'-(9H-carbazol-9-yl)-N-phenyl-[1,1'-biphenyl]-4-amine
was evaporated on the cathode to formed an organic capping layer (CPL) with a thickness
of 650 Å.
Examples 37 to 39
[0182] Corresponding red organic electroluminescent devices were fabricated in the same
manner as in Example 36, using the compounds listed in Table 7 instead of Compound
33 in Example 36.
[0183] That is, in Example 37, a red organic electroluminescent device was fabricated using
Compound 34 instead of Compound 33.
[0184] In Example 38, a red organic electroluminescent device was fabricated using Compound
35 instead of Compound 33.
[0185] In Example 39, a red organic electroluminescent device was fabricated using Compound
36 instead of Compound 33.
Comparative Example 10
[0186] A red organic electroluminescent device was fabricated in the same manner as in Example
36, using NPB instead of Compound 33 in Example 36.
Comparative Example 11
[0187] A red organic electroluminescent device was fabricated in the same manner as in Example
36, using TPD instead of Compound 33 in Example 36.
Comparative Example 12
[0188] A red organic electroluminescent device was fabricated in the same manner as in Example
36, except that the second hole transport layer was not formed.
[0189] The red organic electroluminescent devices fabricated as above were measured. The
IVL performances of the devices were measured at 10mA/cm2, and the T95 life was measured
at a constant current density of 20mA/cm2. The measured results were shown in Table
7.
Table 7 Performance Measured Results of Red Organic Electroluminescent Device
Example |
Compound |
Driving Voltage (V) |
Luminous Efficacy (Cd/A) |
External Quantum Efficiency EQE(%) |
T95 life at 20 mA/cm2(h) |
CIEx |
Example36 |
Compound 33 |
3.89 |
34.32 |
23.64 |
472 |
0.677 |
Example37 |
Compound 34 |
3.95 |
34.34 |
23.52 |
462 |
0.676 |
Example38 |
Compound 35 |
3.98 |
34.15 |
23.69 |
486 |
0.675 |
Comparative Example 10 |
NPD |
4.02 |
27.15 |
20.30 |
290 |
0.676 |
Comparative Example 11 |
TPD |
4.13 |
27.22 |
19.40 |
285 |
0.677 |
Comparative Example 12 |
- |
4.03 |
28.30 |
19.57 |
245 |
0.678 |
[0190] As can be seen from Table 7, in the case of little differences in color coordinates
CIEy, the red organic electroluminescent devices fabricated in Examples 36 to 39 have
lower driving voltage, higher luminous efficiency, higher external quantum efficiency,
and longer service life than those of Comparative Examples 10 to 12. Compared with
Comparative Examples 10 to 12, the luminous efficiency of the red organic electroluminescent
devices fabricated in Examples 36 to 39 is improved by at least 20.7%, the external
quantum efficiency is improved by at least 15.9%, and the T95 life is prolonged by
at least 59%. Therefore, when the nitrogen-containing compound of the present disclosure
is used for fabricating an organic electroluminescent device, the driving voltage
of the electroluminescent device can be effectively reduced, the luminous efficiency
can be improved, the external quantum efficiency can be improved, and the service
life of the organic electroluminescent device can be prolonged.
[0191] The nitrogen-containing compound of the present disclosure introduces an adamantane-2-yl
structure at the 9-position of fluorene, the adamantyl can improve the electron density
of a fluorene ring and a conjugated system of the whole nitrogen-containing compound
through a hyperconjugation effect, so that the hole conduction efficiency of the nitrogen-containing
compound is improved, and further the carrier conduction efficiency and the service
life of an organic electroluminescent device and a photoelectric conversion device
are improved. The adamantan-2-yl group is introduced at the 9-position of fluorene
rather than at the end, and into the side chains of the amines of the nitrogen-containing
compounds of the present disclosure rather than at the end. Due to the large steric
hindrance effect of the adamantane-2-yl, the angle and the conjugation degree between
each branched chain of amine can be adjusted, and further the HOMO value of the nitrogen-containing
compound can be adjusted, so that the HOMO value of the nitrogen-containing compound
can be more matched with an adjacent film layer, the driving voltage of an organic
electroluminescent device can be further reduced, or the open-circuit voltage of a
photoelectric conversion device can be improved.
[0192] Moreover, the nitrogen-containing compound of the present disclosure is a modification
of the fluorenyl with the bulky alkyl structure, so that compared with a modification
with aryl, an excessively strong π-π stacking effect can be avoided, the symmetry
of the nitrogen-containing compound of the present disclosure can be reduced, and
the film-forming property of the nitrogen-containing compound can be further improved.
Moreover, the adamantane-2-yl group can ensure that the nitrogen-containing compound
of the present disclosure has an appropriate molecular weight, further ensure that
the nitrogen-containing compound of the present disclosure has an appropriate glass
transition temperature, and improve the physical and thermal stability during the
preparation of an organic electroluminescent device and a photoelectric conversion
device.