



(11)

EP 3 751 128 A1

(12)

## EUROPEAN PATENT APPLICATION

(43) Date of publication:  
16.12.2020 Bulletin 2020/51

(51) Int Cl.:  
**F02M 26/29 (2016.01)**      **F02M 26/32 (2016.01)**  
**F28F 9/00 (2006.01)**      **F28D 21/00 (2006.01)**  
**F28D 7/16 (2006.01)**

(21) Application number: 19179512.9

(22) Date of filing: 11.06.2019

(84) Designated Contracting States:  
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB  
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO  
PL PT RO RS SE SI SK SM TR**  
Designated Extension States:  
**BA ME**  
Designated Validation States:  
**KH MA MD TN**

(71) Applicant: **Valeo Systemes Thermiques-THS**  
78322 Le Mesnil Saint Denis Cedex (FR)

(72) Inventors:  
• **BUGELLI, Rafael**  
13252-904 ITATIBA (BR)

• **BAHOUSS, Mohamed**  
78322 LE MESNIL SAINT DENIS CEDEX (FR)  
• **JOVANINI, Eduardo**  
13252-904 ITATIBA (BR)  
• **BENEVIDES, Rodrigo**  
78320 Le Mesnil Saint Denis Cedex (FR)  
• **LUO, Duanyang**  
78320 Le Mesnil Saint Denis Cedex (FR)

(74) Representative: **Tran, Chi-Hai**  
**Valeo Systèmes Thermiques**  
8, rue Louis Lormand  
CS 80517 La Verrière  
78322 Le Mesnil Saint Denis Cedex (FR)

### (54) EXHAUST GAS RE-CIRCULATION COOLER

(57) An exhaust gas re-circulation (EGR) cooler for a vehicle is provided. The EGR cooler may include a housing and at least one corner bead. The housing having lateral walls and sidewalls connected to the lateral walls to form the housing, in which a first fluid circuit is formed in the housing to receive pulsating pressure of exhaust gas from an engine of a vehicle. The at least one corner bead formed at corners in which the lateral walls are connected with the side walls of the housing to reduce stress acting on the housing.

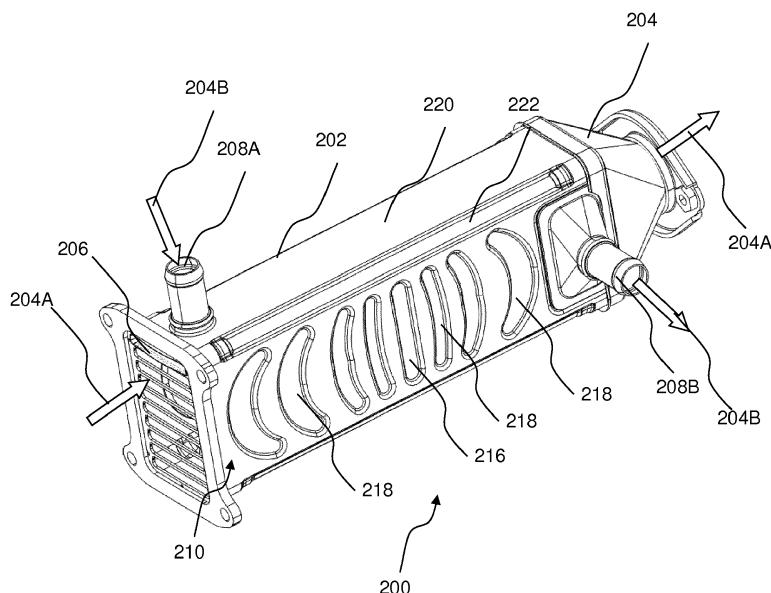
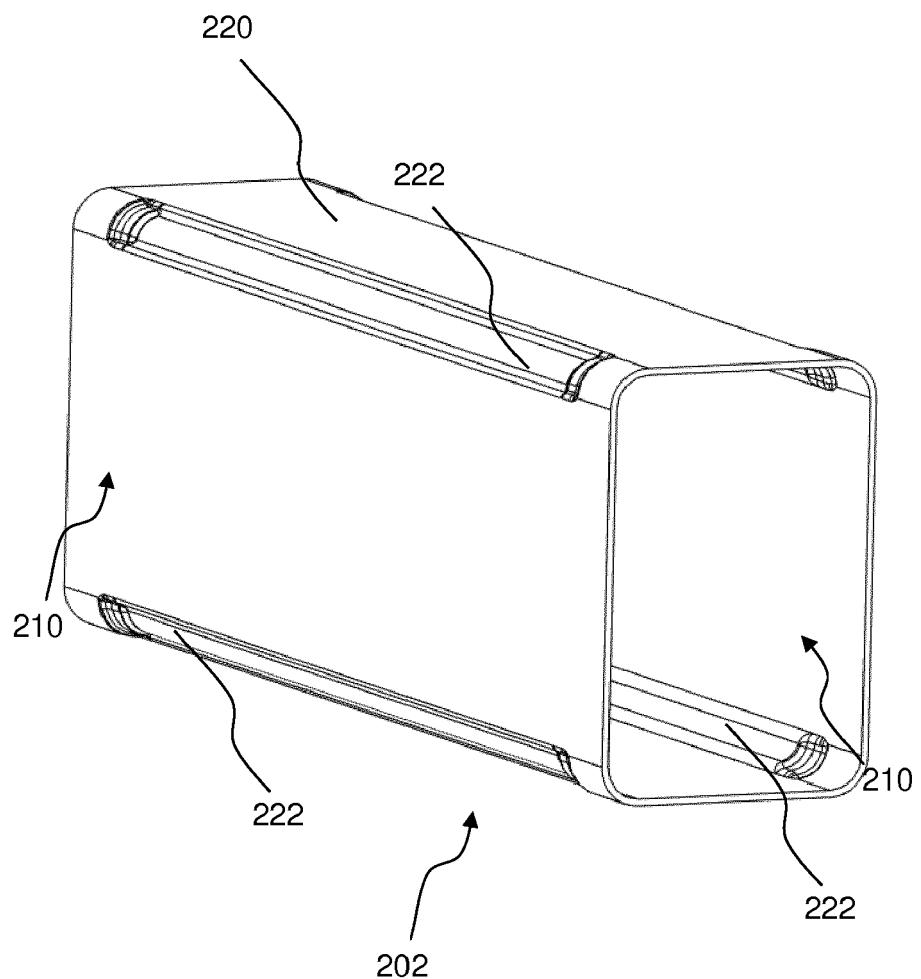




FIG. 2A



**FIG. 5**

## Description

**[0001]** The present invention generally relates to an Exhaust Gas Re-circulation (EGR) cooler, and in more particularly, to an Exhaust Gas Re-circulation cooler having beads to withstand pulsating pressure of exhaust gas from an engine of a vehicle.

**[0002]** Generally, an Exhaust Gas Re-circulation cooler, hereinafter referred to as EGR cooler, is provided in a vehicle to cool exhaust gas before being re-circulated to an engine of the vehicle. The EGR cooler receives a part of exhaust gas from the engine of the vehicle and the exhaust gas rejects heat to the coolant flowing in the EGR cooler. After rejecting heat, the exhaust gas can be reused in the vehicle. The exhaust gas received from the engine may be subjected to different pressure levels or pulsating pressure over a time-period based on the speed of the engine. In one example, pressure of the exhaust gas may be "P1" at time "T1", and "P2" at time "T2". As the pressure of the exhaust gas entering the EGR cooler is differential or pulsating nature, a housing of the EGR cooler may experience some stress, which leads to damages of the housing. Further, the higher stress acting on the housing may cause swelling of the housing, which may crack the housing of the EGR cooler.

**[0003]** To mitigate such problems, beads 104 are provided in housing 102 of a conventional EGR cooler 100 as shown in Fig. 1. The beads 104 are formed in lateral walls of the housing 102, with an aim of enabling the housing 102 to withstand the pulsating pressure of exhaust gas. Although the beads 104 provided in the housing 102 withstand the pulsating pressure of exhaust gas to some extent, corners and the lateral walls of the housing 102 still experience some stress. Therefore, the stress acting on the housing 102 of the EGR cooler 100 needs to be eliminated to improve service life of the EGR cooler 100 and to avoid cracking of the housing 102 of the EGR cooler 100.

**[0004]** Accordingly, there is a need for an EGR cooler that withstands the exhaust gas received from an engine of a vehicle and having differential pressure over the time. Further, there is a need for a housing of an EGR cooler that avoids cracking even when the housing is subjected to the exhaust gas having pulsating pressure over the time.

**[0005]** In the present description, some elements or parameters may be indexed, such as a first element and a second element. In this case, unless stated otherwise, this indexation is only meant to differentiate and name elements which are similar but not identical. No idea of priority should be inferred from such indexation, as these terms may be switched without betraying the invention. Additionally, this indexation does not imply any order in mounting or use of the elements of the invention.

**[0006]** In view of the foregoing, an embodiment of the invention herein provides an exhaust gas re-circulation (EGR) cooler for a vehicle. The EGR cooler may include a housing and at least one corner bead. The housing

having lateral walls and sidewalls connected to the lateral walls to form the housing. Further, a first fluid circuit is formed in the housing to receive pulsating pressure of exhaust gas from an engine of a vehicle. The at least one corner bead formed at corners in which the lateral walls are connected with the side walls of the housing to reduce stress acting on the housing.

**[0007]** In one embodiment, the first fluid circuit is formed by a plurality of heat exchange elements to receive pulsating pressure of exhaust gas from the engine of the vehicle.

**[0008]** In another embodiment, the housing comprises a second fluid circuit formed around the plurality of heat exchange elements to enable heat exchange between the pulsating pressure of exhaust gas and a coolant flowing in the second fluid circuit.

**[0009]** In yet another embodiment, the housing further includes a first inlet and a first outlet to ingress and egress the pulsating pressure of exhaust gas to the housing.

**[0010]** Further, the at least one corner bead provided in the housing is adapted to reduce stress acting on the housing, due to the pulsating pressure of exhaust gas, by 4%. The at least one corner bead is engraved in the housing.

**[0011]** In one embodiment, the housing further includes a second inlet and a second outlet to ingress and egress the coolant to the housing.

**[0012]** Other characteristics, details and advantages of the invention can be inferred from the description of the invention hereunder. A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying figures, wherein:

Fig. 1 illustrates a schematic representation of a conventional EGR cooler, in accordance with an embodiment of prior art;

Figs. 2A and 2B illustrate perspective views of the EGR cooler, in accordance with an embodiment of the present invention;

Fig. 2C illustrates a front view of a housing of the EGR cooler of the Fig. 2A;

Fig. 3A illustrates a perspective view of the housing of Fig. 2A having first beads, second beads and corner beads;

Fig. 3B illustrates a perspective view of a heat exchange element provided in the housing of the EGR cooler of Fig. 2A;

Fig. 4 illustrates another perspective view of the housing having the first and second beads, in accordance with another embodiment of the invention;

and

Fig. 5 illustrates another perspective view of the housing having the corner beads, in accordance with another embodiment of the invention.

**[0013]** It must be noted that the figures disclose the invention in a detailed enough way to be implemented, the figures helping to better define the invention if needs be. The invention should however not be limited to the embodiment disclosed in the description.

**[0014]** The present invention relates to an Exhaust Gas Re-circulation cooler, hereinafter referred to as EGR cooler, for a vehicle. Generally, the EGR cooler is provided at exhaust channel of an engine. The EGR cooler cools down exhaust gas before being re-circulated into the engine in-order to reduce emission of pollutant from the vehicle. The EGR cooler may receive exhaust gas from the engine with differential or pulsating pressure based on the speed of the engine. To withstand the differential pressure of exhaust gas, one or more curved beads are provided in a housing the EGR cooler. The one or more curved beads are progressively continuous curved beads to eliminate the stress acting on lateral walls of the housing. Further, corner beads are provided in the corners of the housing to eliminate stress acting on the housing due to the differential pressure of exhaust gas. As the one or more curved beads and the corner beads withstand the differential pressure of exhaust gas entering the housing and reduce stress acting on the housing, damages and cracking of the housing are mitigated which enhances service life of the EGR cooler.

**[0015]** While aspects relating to one or more curved and corner beads provided the EGR cooler as described above and henceforth can be implemented in symmetrical and non-symmetrical shapes on the lateral walls of the EGR cooler, the embodiments are described in the context of the following system(s).

**[0016]** Figs. 2A, 2B and 2C illustrate different views of an EGR cooler 200, according to an embodiment of the present invention. In one example, Figs. 2A and 2B are perspective views of the EGR cooler 200, and Fig. 2C is a front view of a housing 202 of the EGR cooler 200. The EGR cooler 200 is provided at an exhaust channel of a vehicle to receive a part of the exhaust gas from an engine of the vehicle. The EGR cooler 200 may reduce the temperature of the exhaust gas received from the engine and recirculate back to the engine. The EGR cooler 200 may include the housing 202 connected with respective tanks 204 to facilitate distribution of the exhaust gas to the housing 202 of the EGR cooler 200. For sake of brevity and clarity, single heat exchange element 206 is shown in the figure and is explained in the forthcoming sections. The housing 202 further may include a first fluid circuit 204A and a second fluid circuit 204B formed in such a way to enable heat exchange between exhaust gas flowing through the first fluid circuit 204A and coolant flowing through the second fluid circuit 204B. The first fluid circuit

204A is formed by the heat exchange element 206 to receive the exhaust gas from the engine. In one embodiment, the exhaust gas may flow through the heat exchange element 206 in the first fluid circuit 204A. The respective tanks 204 may include a first inlet and a first outlet to facilitate ingress and egress the exhaust gas to/from the tanks 204. The second fluid circuit 204B may be formed around the heat exchange element 206 and adapted to receive a coolant to enable heat exchange between the exhaust gas flowing through the heat exchanger element 206 and the coolant flowing around the heat exchanger element 206. The housing may further include a second inlet 208A and a second outlet 208B to provide the coolant and to receive the coolant from the housing 202 respectively. The EGR cooler 200 may include other elements which are necessary to function and known to the person skilled in the art.

**[0017]** The housing 202 further includes lateral walls 210 provided with a middle portion 212, a first side portion 214A, and a second side portion 214B. The middle portion 212 may be defined in center of the lateral walls 210 of the housing 202. The first side portion 214A and the second side portion 214B are formed on adjacent side of the middle portion 212 defined on the housing 202. In one example, the first side portion 214A is defined at right side with respect to the middle portion 212 and the second side portion 214B is defined at left side with respect to the middle portion 212. The housing may include one or more first beads 216 and one or more second beads 218. In one embodiment, the one or more first beads 216 are straight beads, and the one or more second beads are curved beads. In one aspect, the one or more first beads 216 are formed at the middle portion 212 of the housing 202. For the sake of brevity and clarity, the invention is explained with single first bead formed in the middle portion 212, however, it does not limit to define any number of first beads in the middle portion 212. The one or more second beads 218 are formed on the first side portion 214A and the second side portion 214B of the lateral walls 210 of the housing 202. The one or more second beads 218 are formed along a longitudinal axis on the lateral walls 210 of the housing 202 and each of the beads extend along at least a portion of the width of the housing 202. In one embodiment, the first bead 216 and the one or more second beads 218 may be in form of grooves or protruded outwards. As the exhaust gas entering into the first fluid circuit 204A is pulsating in nature, stress is formed in the housing 202. As the first bead 216 and the one or more second beads 218 are formed in the housing 202, the stress acting on the housing 202 is reduced, which mitigate cracking in the housing 202 and enhance the fatigue life span of the EGR cooler 200.

**[0018]** The housing 202 is formed by connecting the lateral walls 210 with sidewalls 220, thereby forming corners in the housing 202. In other words, corners of the housing 202 are formed by connecting the lateral walls 210 with the sidewall 220. In one embodiment, the lateral walls 210 are perpendicular to the sidewalls 220, so that

the corners are formed in the housing 202. The housing 202 further includes one or more corner beads 222, hereinafter referred to as corner bead, formed in the corner of the housing 202 to reduce stress acting at the corners of the housing 202, due to the pulsating pressure of exhaust gas entering into the housing 202. In one embodiment, the first bead 216, the second beads 218 and the corner bead 222 are engraved in the housing 202. However, present invention is not limited to any particular method of configuring the beads on the housing.

**[0019]** Fig. 3A illustrates a perspective view of the housing 202 of the EGR cooler 200. The one or more second beads 218, hereinafter referred to as second beads, being curved in such a way that the second beads 218 are progressively curved. In other words, the second beads 218 are curved in such a way that a second bead at a distal end with respect to the middle portion 212 is more curved as compared to the second bead at a proximal end with respect to the middle portion 212 of the housing 202. In one embodiment, the second beads 218 formed in the first side portion 214A and the second side portion 214B are concaved with respect to the first bead 216 provided in the middle portion 212 of the housing 202. In another embodiment, the second beads 218 formed in the first side portion 214A and the second side portion 214B may be convex with respect to the first bead 216 provided in the middle portion 212 of the housing 202. In yet another embodiment, the second beads 218 formed in the first side portion 214A of the housing 202 is convex with respect to the first bead 214 provided in the housing 202, and the second beads 218 formed in the second side portion 214B of the housing 202 is concave with respect to the first bead 214 provided in the housing 202.

**[0020]** In one aspect of the invention, a height of the first bead 216 and the second beads 218 is 53.8mm. In one embodiment, a distance between adjacent second beads 218 are in ascending with respect to the first bead 216. In other words, a distance between adjacent second beads 218 that are formed proximal with respect to the first bead 216 is less as compared to a distance between adjacent second beads 218 formed distal with respect to the first bead 216. In another aspect of the invention, the second beads 218 may include eight curved beads equally distributed in the first side portion 214A and the second side portion 214B of the lateral walls 210 of the housing 202. Further, a distance between an inner curve 302 and an outer curve 304 of the second beads 218 is 6.5mm, 8.8mm, 12.7mm and 13.5mm respectively from the second bead at the proximal end to the second bead at the distal end. According to this aspect of the invention, an inner radius of the inner curve 302 of the second beads 218 is 96mm, 37mm, 29mm and 24 mm respectively from the second bead at the proximal end to the second bead at the distal end of the housing 202. Further, an outer radius of the outer curve 304 of the second beads 218 is 110mm, 36.5mm, 29mm, and 26.5mm respectively from the second bead at the proximal end to the second

bead at the distal end of the housing 202. In one embodiment, the first bead 216 being a straight bead having a width of 8.6mm. Further, the first bead 216, the second beads 218, and the corner bead 222 provided in the EGR cooler 200 may reduce the stress by 10% as compared to the conventional EGR cooler 100 having only straight beads as shown in Fig. 1A. Further, life of the EGR cooler 200 is increased by 22 times as compared to the conventional EGR cooler 100, due to reduced stress level in the housing 202. In another embodiment, the conventional EGR cooler 100 may experience stress of 139 Mpa when it is connected to the exhaust of the vehicle, whereas the proposed EGR cooler 200 may experience 126 Mpa when it is connected to the exhaust of the vehicle.

**[0021]** Fig. 3B illustrates a perspective view of a heat exchanger element amongst the plurality of heat exchange elements 206 disposed inside the EGR cooler 200 of Fig. 2A. The plurality of heat exchanger elements 206 can be heat exchange tubes or plates stacked together. The first fluid circuit 204A is formed in such a way that the exhaust gas passes through the plurality of heat exchange elements 206 to enable heat exchange between the exhaust gases flowing through the heat exchange elements 206 and coolant flowing around the plurality of heat exchange elements 206.

**[0022]** Fig. 4 illustrates a perspective view of the housing 202 of Fig. 2A, in accordance with another aspect of the invention. In this aspect of the invention, the housing 202 may include the first bead 216 and the second bead 218 provided in the lateral walls 210 of the housing 202. The EGR cooler 200, according to this aspect, having the first bead 216 and the second beads 218 may reduce stress by 6% from the conventional EGR cooler 100 as shown in Fig. 1A. The EGR cooler 200, according to this aspect of the invention, may include the first bead 216 and the second beads 218. In one embodiment, the EGR cooler 200 having the first and second beads 216, 218 may experience stress of 131 MPa when it is connected to the exhaust of the vehicle, which is less than the stress acting on the conventional EGR cooler 100. As the stress experiencing in the EGR cooler 200 is reduced as compared to the conventional EGR cooler 100, cracking in the housing 202 is mitigated and the fatigue life span of the EGR cooler 200 is enhanced.

**[0023]** Fig. 5 illustrates another perspective view of the housing 202 of the EGR cooler 200 of Fig. 2A, in accordance with another aspect of the invention. In this aspect, the housing 202 may include the corner bead 222 alone, provided on the corner of the housing 202. The corner bead 222 is adapted to reduce stress acting on the housing 202 of the EGR cooler 200 by 4% from the conventional EGR cooler 100. In one embodiment, the EGR cooler 200 having the corner beads 222 may experience stress of 135 MPa when it is connected to the exhaust of the vehicle, which is less than of the stress acting on the conventional EGR cooler 100. As the stress experiencing in the EGR cooler 200 is reduced as compared to the conventional EGR cooler 100, cracking in the hous-

ing 202 is mitigated and the fatigue life span of the EGR cooler 200 is enhanced.

**[0024]** Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described herein.

**[0025]** In any case, the invention cannot and should not be limited to the embodiments specifically described in this document, as other embodiments might exist. The invention shall spread to any equivalent means and any technically operating combination of means.

claimed in any of preceding claims, the housing (202) further includes a first inlet and a first outlet to ingress and egress the pulsating pressure of exhaust gas to the housing (202).

5

7. The Exhaust Gas Re-circulation cooler (200) as claimed in any of preceding claims, the housing (202) further includes a second inlet (208A) and a second outlet (208B) to ingress and egress the coolant to the housing (202).

## Claims

15

1. An Exhaust Gas Re-circulation (EGR) cooler (200), comprising:

a housing (202) having lateral walls (210) and sidewalls (220), wherein the lateral walls (210) and the sidewalls (220) connected together to form the housing (202), wherein a first fluid circuit (204A) is formed in the housing (202) to receive pulsating pressure of exhaust gas from an engine of a vehicle; and  
 at least one corner bead (222) formed at corners in which the lateral walls (210) are connected with the sidewalls (220) of the housing (202) to reduce stress acting on the housing, due to pulsating pressure of exhaust gas entering into the housing (202).

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

5465

5470

5475

5480

5485

5490

5495

5500

5505

5510

5515

5520

5525

5530

5535

5540

5545

5550

5555

5560

5565

5570

5575

5580

5585

5590

5595

5600

5605

5610

5615

5620

5625

5630

5635

5640

5645

5650

5655

5660

5665

5670

5675

5680

5685

5690

5695

5700

5705

5710

5715

5720

5725

5730

5735

5740

5745

5750

5755

5760

5765

5770

5775

5780

5785

5790

5795

5800

5805

5810

5815

5820

5825

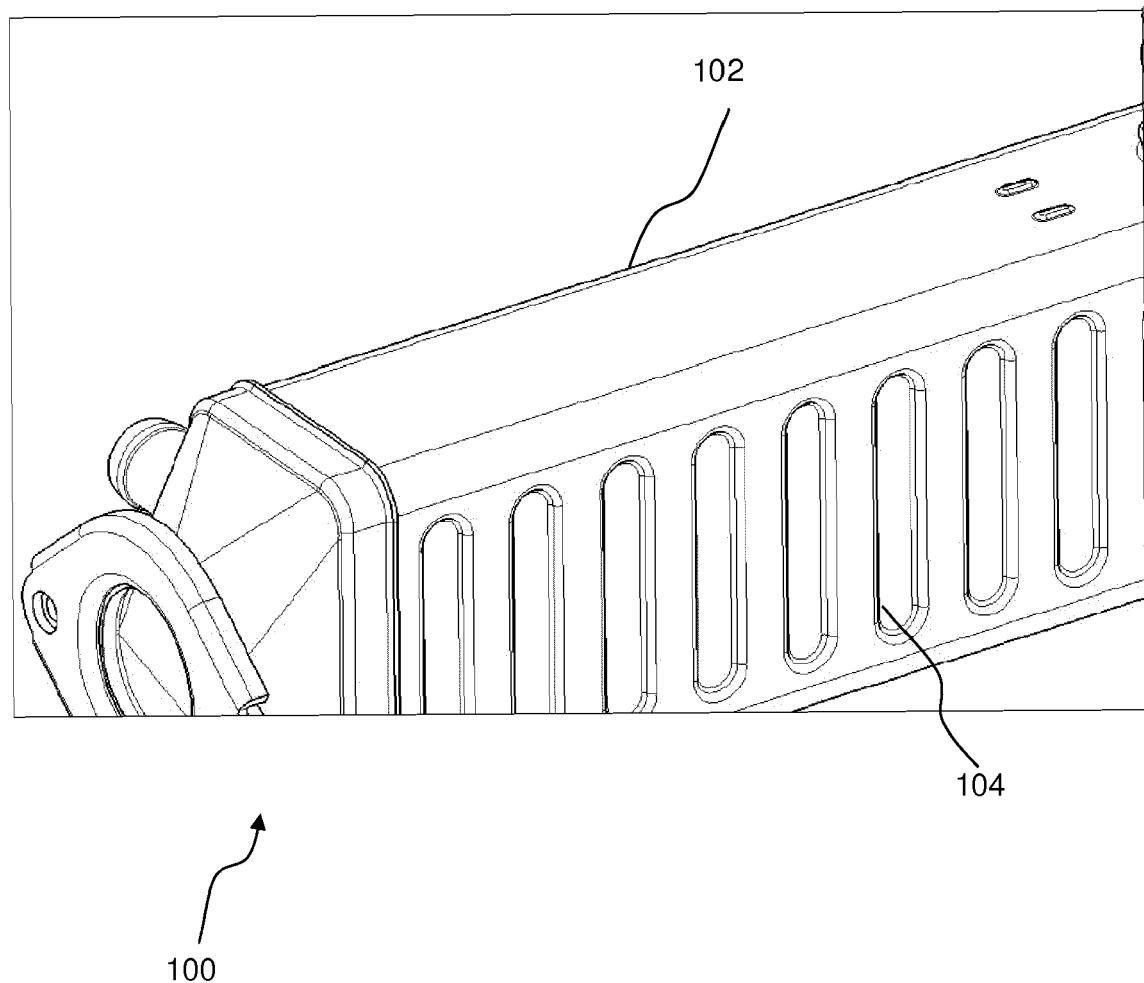
5830

5835

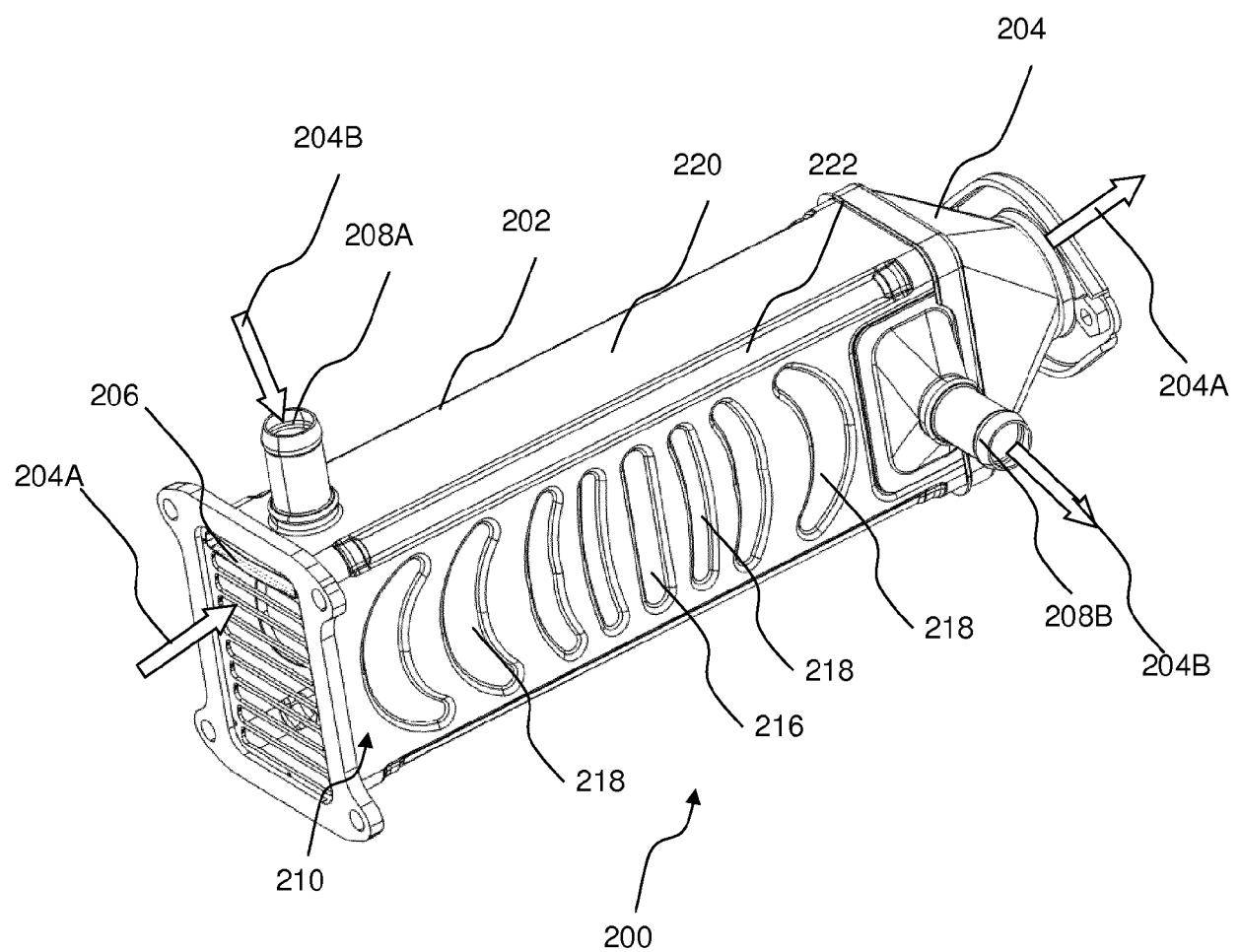
5840

5845

5850


5855

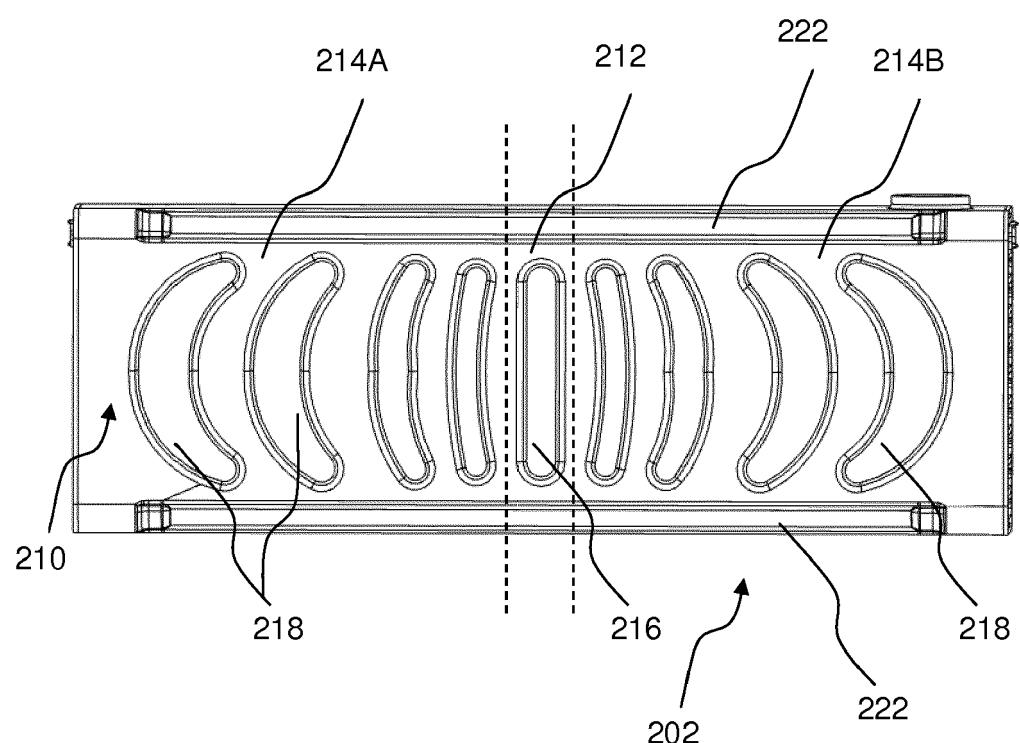
5860


5865

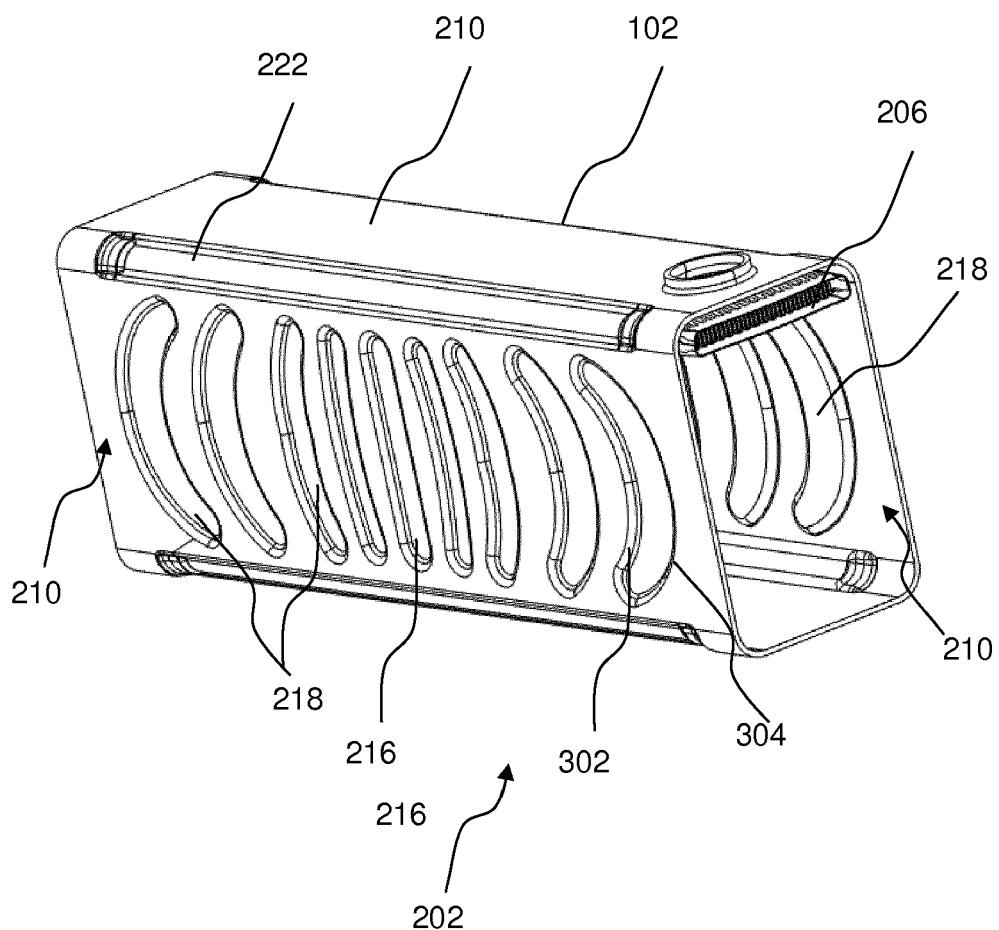
5870


58

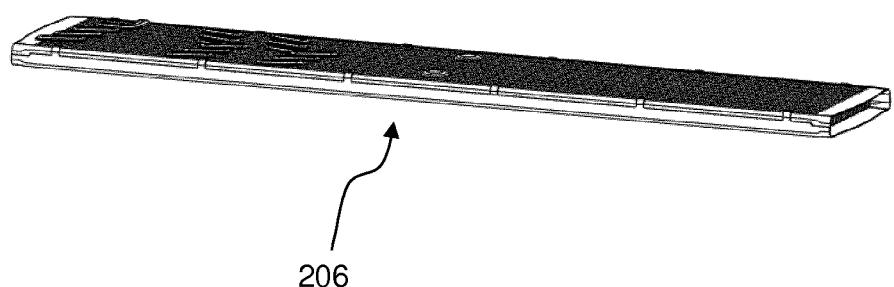



**FIG. 1 (Prior Art)**

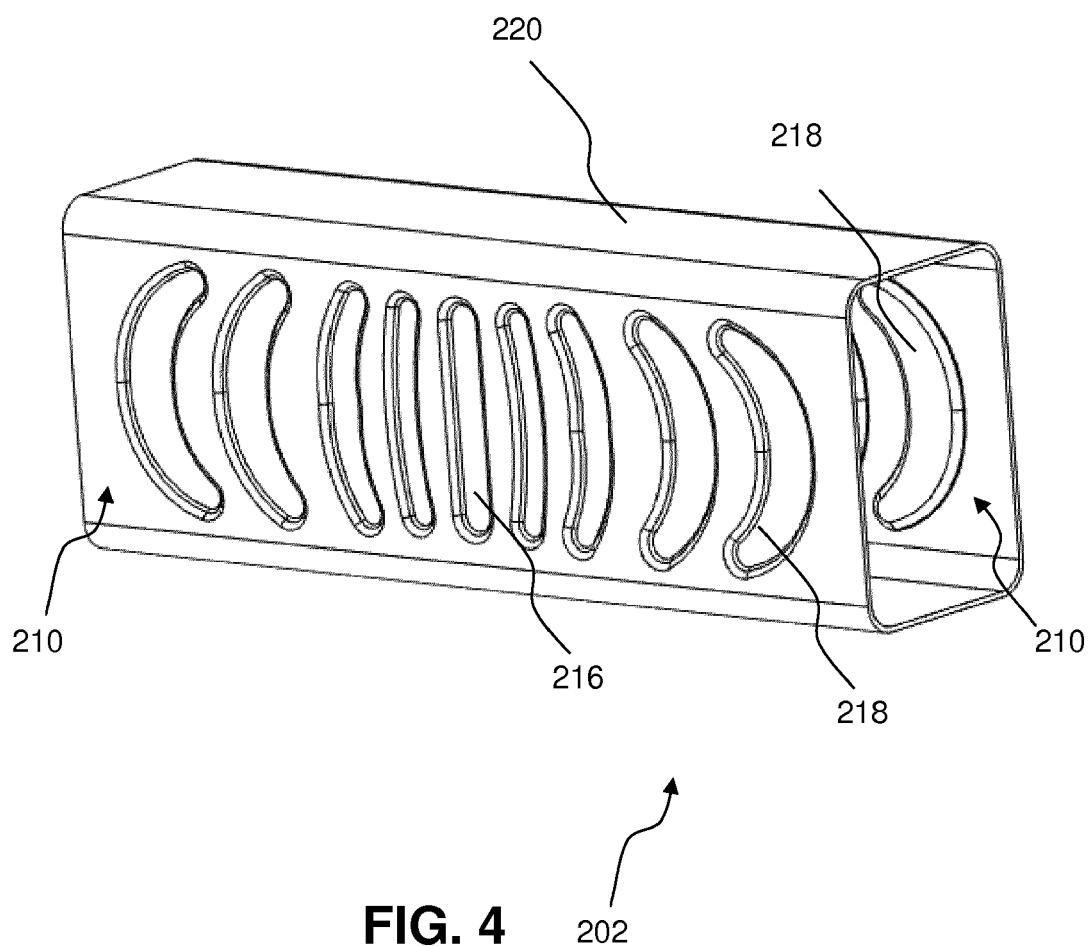


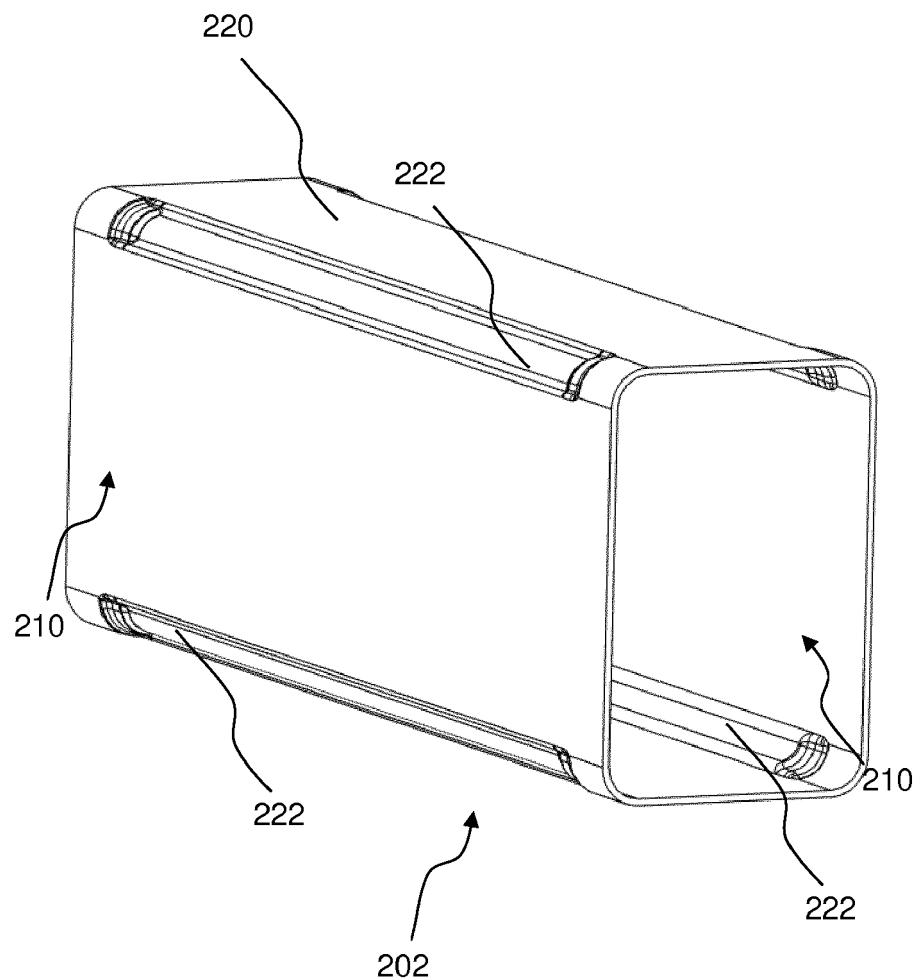

**FIG. 2A**




**FIG. 2B**




**FIG. 2C**




**FIG. 3A**



**FIG. 3B**





**FIG. 5**



## EUROPEAN SEARCH REPORT

Application Number

EP 19 17 9512

5

| DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                      |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Category                                                                                                                                                                                                                                                                              | Citation of document with indication, where appropriate, of relevant passages                                                     | Relevant to claim                                    | CLASSIFICATION OF THE APPLICATION (IPC)                 |
| 10                                                                                                                                                                                                                                                                                    | X US 2017/336147 A1 (DIÉGUEZ FORTES MANUEL JOSÉ [ES] ET AL)<br>23 November 2017 (2017-11-23)<br>* paragraph [0073]; figures 1-3 * | 1-7                                                  | INV.<br>F02M26/29<br>F02M26/32<br>F28F9/00<br>F28D21/00 |
| 15                                                                                                                                                                                                                                                                                    | X US 2017/009708 A1 (JANKE DAVID [US] ET AL)<br>12 January 2017 (2017-01-12)<br>* figure 2 *                                      | 1-7                                                  | F28D7/16                                                |
| 20                                                                                                                                                                                                                                                                                    | X EP 1 801 407 A1 (T RAD CO LTD [JP])<br>27 June 2007 (2007-06-27)<br>* abstract; figures 3, 4 *                                  | 1-7                                                  |                                                         |
| 25                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                      |                                                         |
| 30                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                      | TECHNICAL FIELDS<br>SEARCHED (IPC)                      |
| 35                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                      | F02M<br>F28F<br>F28D                                    |
| 40                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                      |                                                         |
| 45                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                      |                                                         |
| 50                                                                                                                                                                                                                                                                                    | 1 The present search report has been drawn up for all claims                                                                      |                                                      |                                                         |
| 55                                                                                                                                                                                                                                                                                    | Place of search<br>Munich                                                                                                         | Date of completion of the search<br>12 November 2019 | Examiner<br>Karstens, Thede                             |
| CATEGORY OF CITED DOCUMENTS                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                      |                                                         |
| X : particularly relevant if taken alone<br>Y : particularly relevant if combined with another document of the same category<br>A : technological background<br>O : non-written disclosure<br>P : intermediate document                                                               |                                                                                                                                   |                                                      |                                                         |
| T : theory or principle underlying the invention<br>E : earlier patent document, but published on, or after the filing date<br>D : document cited in the application<br>L : document cited for other reasons<br>.....<br>& : member of the same patent family, corresponding document |                                                                                                                                   |                                                      |                                                         |

**ANNEX TO THE EUROPEAN SEARCH REPORT  
ON EUROPEAN PATENT APPLICATION NO.**

EP 19 17 9512

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-11-2019

| 10 | Patent document cited in search report | Publication date | Patent family member(s) |                 | Publication date |
|----|----------------------------------------|------------------|-------------------------|-----------------|------------------|
| 15 | US 2017336147 A1                       | 23-11-2017       | CN                      | 107401939 A     | 28-11-2017       |
|    |                                        |                  | EP                      | 3246647 A1      | 22-11-2017       |
|    |                                        |                  | US                      | 2017336147 A1   | 23-11-2017       |
| 20 | US 2017009708 A1                       | 12-01-2017       | DE                      | 112014001893 T5 | 07-01-2016       |
|    |                                        |                  | US                      | 2016146162 A1   | 26-05-2016       |
|    |                                        |                  | US                      | 2017009708 A1   | 12-01-2017       |
|    |                                        |                  | WO                      | 2014183001 A2   | 13-11-2014       |
| 25 | EP 1801407 A1                          | 27-06-2007       | EP                      | 1801407 A1      | 27-06-2007       |
|    |                                        |                  | JP                      | 4431579 B2      | 17-03-2010       |
|    |                                        |                  | JP                      | W02006035986 A1 | 15-05-2008       |
|    |                                        |                  | US                      | 2007289581 A1   | 20-12-2007       |
|    |                                        |                  | WO                      | 2006035986 A1   | 06-04-2006       |
| 30 |                                        |                  |                         |                 |                  |
| 35 |                                        |                  |                         |                 |                  |
| 40 |                                        |                  |                         |                 |                  |
| 45 |                                        |                  |                         |                 |                  |
| 50 |                                        |                  |                         |                 |                  |
| 55 |                                        |                  |                         |                 |                  |

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82