(11) EP 3 756 734 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

30.12.2020 Bulletin 2020/53

(51) Int Cl.:

A63B 21/00 (2006.01)

A63B 21/22 (2006.01)

(21) Application number: 20000221.0

(22) Date of filing: 22.06.2020

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 25.06.2019 IT 201900010029

(71) Applicant: Lite Sport Srls 47826 Verucchio (RN) (IT)

(72) Inventor: **Dolci**, **Filippo** 47826 Verucchio RN (IT)

(74) Representative: Montebelli, Marco

Brema SRL

Piazza Enriquez, 22/c 47891 Dogana (SM)

(54) ISOINERTIAL TRAINING APPARATUS

(57) An isoinertial training apparatus comprising a flywheel (20) provided with a shaft (22), a flexible traction member (2) connected to and windable on the same shaft

(22), and a device (10) that enables the variance of the effective diameter of the shaft (22).

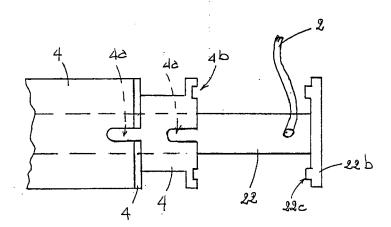


FIG. 2

EP 3 756 734 A1

Description

[0001] The present invention refers to an apparatus for "isoinertial training", also defined as "flywheel training". This training method is widely established and spread in the area of physical exercise and has shown itself to be useful in training for various sporting disciplines, as well as in physical rehabilitation and injury preventions, thanks to its capacity of inducing physiological and neuromuscular adaptations which are beneficial for increasing muscle strength and hypertrophy. The growing interest in physical activity and training, also at the amateur level, has accelerated research and development in the field, thus contributing to developing new working methods, new machinery and equipment, as well as the development of dedicated software for the performance of exercises that are more specific and innovative than traditional ones.

[0002] The technology of the isoinertial machines introduced above essentially relates to a system whereby the inertial mass of a flywheel produces resistance during both the concentric and eccentric phases of the exercise of the operator. This clearly distinguishes it from other ergometric devices (such as exercise bikes and rowing machines), in which the flywheel only exerts resistance during the concentric phase. Specifically, an isoinertial machine is commonly provided with a flywheel and a flexible traction member, generally a belt or a rope, which is unwound and rewound over the shaft of the flywheel itself in alternate directions. At the beginning of exercise, the traction member is wound partially or fully around this shaft. During the concentric phase of the exercise, the operator pulls the traction member, which begins to unwind from the shaft, causing the shaft itself and the connected flywheel to rotate. At the end of the concentric motion and once the flexible traction member has completely unwound, the flywheel mass continues to rotate in the same direction, due to its inertia, rewinding the flexible traction member around the same shaft, albeit in the opposite direction. During this (eccentric) phase, the operator performs exercises by trying to slow down or halt the rewinding of the traction member in order to interrupt the exercise or start a new concentric phase whereby the traction member begins to unwind from the shaft once more.

[0003] Apparatuses for isoinertial training of this type are described in the following prior documents: US 1,783,376, US 3,841,627, WO 90/10475 and US 6,283,899.

[0004] The drawbacks of this equipment type essentially derive from the fact that the resistance to the muscular effort exerted by the operator, both in the concentric and in the eccentric phase, depends on the flywheel's inertia, which is determined by the mass, the diameter and the distribution of the mass along the diameter of the flywheel itself. Therefore, to vary the resistance, it is commonly necessary to change different flywheels or the mass distributed on them. The limited practicality in var-

ying the resistance of these machines makes it particularly cumbersome when an operator must perform different exercises using the same machine which require different resistances, or when the same machine is alternately used by persons with different strength levels, which can occur in gyms or sports teams. Indeed, this method for varying resistance is time-consuming as it requires the user to waste time for removing and fixing different flywheels (or masses) on the rotation shaft.

[0005] Another variable that affects the resistance of an exercise is the size of the shaft around which the traction member is wound. The smaller the shaft's diameter, the greater the resistance. To exploit this variable for changing the resistance, isoinertial systems have been developed with conical shafts.

[0006] In this latter system (isoinertial devices with conical shafts), the user can change, by using an additional pulley, the diameter where the rope unrolls at the start of the exercise, hence partly changing the resistance of the exercise.

[0007] However, when the traction member rolls and unrolls around a conical shaft, the resistance is not constant but can become lower only at the start of the concentric phase and at the end of the eccentric phase. This makes isoinertial systems with conical shafts less effective during strength exercises, where it is important to maintain a constant resistance throughout the exercise.

[0008] The aim of the present invention is therefore to eliminate the aforementioned drawbacks, in particular to eliminate the need to vary the resistance by directly intervening on the flywheel or using a conical shaft to vary the resistance of the exercise.

[0009] The invention, as characterised in the claims, achieves this aim by using a device that allows the variance of the dimensions of the flywheel shaft while maintaining a cylindrical shape.

[0010] The advantage obtained from the present invention is essentially that it allows the resistance of the exercise to be changed without intervening on the flywheel in any way and by keeping the shaft cylindrical and not conical; therefore, the needs of different users can be met with a single flywheel, for instance for athletes who need to perform high-resistance exercises and for patients in the rehabilitation phase who can only withstand a lower resistance. Additionally, changing resistance becomes faster and helps the user to save time during training.

[0011] Further advantages and features of the invention will become more apparent from the detailed description below with reference to the accompanying drawings, which show a non-limiting embodiment, in which:

- Figure 1 is a schematic side view of the invention;
- Figure 2 is a plan view of a detail of the invention.

[0012] As shown in the figures, the present invention concerns an isoinertial training apparatus, comprising a flywheel (20) provided with a shaft (22), a flexible traction

55

40

15

member (2) connected to the same shaft (22), on which it can be wound and unwound, and a supporting structure (1), which is fitted with a hole (3b) through which the traction member (2) and a user-supporting platform (3a) can pass, and a device (10) to vary the effective diameter of the shaft (22), comprising at least one sleeve (4) slidable along the shaft (22) of the traction member (2) and of the flywheel (20).

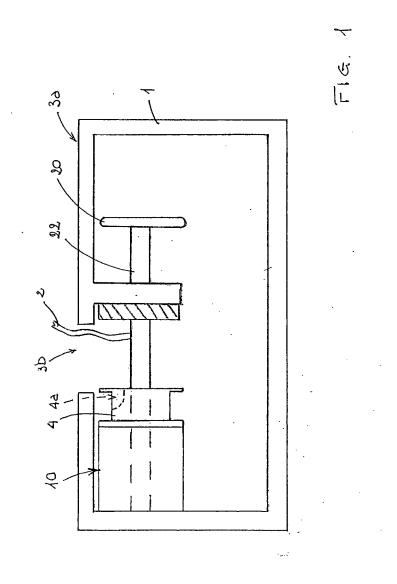
[0013] The unwinding of the traction member (2) sets the flywheel (20) in motion, imparting on it a velocity (and, therefore, a resistance) that depends not only on the dimensions and mass of the flywheel itself, but also on the dimensions of the shaft (22); indeed, the greater the radius of the shaft (22), the lower the resistance offered by the flywheel (20).

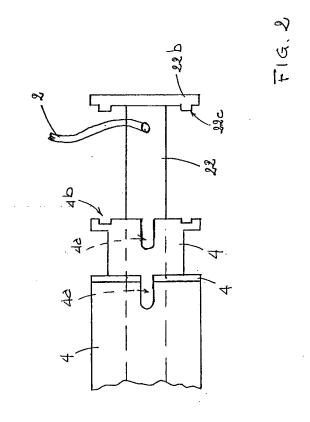
[0014] Employing one or more sleeves (4) of differing radii and slidable along the shaft (22) of the traction member (2) and of the flywheel (20) enables the variance of the effective diameter of the shaft (22) itself and, therefore, the length of the circumference along which the traction member (2) ravels and unravels: in this way, exercises can be performed with varying levels of resistance without intervening on the flywheel (20) in any way.

[0015] Each sleeve (4) has a slot (4a) into which the traction member (2) is made to travel and, preferably, although not indispensably, means for fastening (4b) to an end-stop plate (22b) built into the shaft (22) of the traction member (2) to ensure that the sleeve (4) rotates integrally with this shaft (22).

[0016] In the example shown, the fastening means (4b) comprise shaped grooves complementing radial rods (22c) fastened to the end-stop plate (22b).

Claims 35


- 1. Isoinertial training apparatus, comprising a flywheel (20) provided with a shaft (22), a flexible traction member (2) connected to and windable to the same shaft (22) and a supporting structure (1), fitted with an outlet hole (3b) for the traction member (2), characterised in that it comprises at least one sleeve (4) slidable along the shaft (22) of the traction member (2) and of the flywheel (20) so as to vary the effective diameter of the shaft (22).
- 2. Apparatus according to Claim 1, characterised in that it comprises a plurality of sleeves (4) of various radii so as to vary the exercise resistance.
- 3. Apparatus according to Claim 1 or 2, **characterised** in **that** the sleeve (4) is fitted with a slot (4a) into which the traction member (2) is made to travel.
- 4. Apparatus according to Claim 1 or 2, **characterised** in that the sleeve (4) comprises means of fastening (4b) onto the shaft (22) of the traction member (2).


- 5. Apparatus according to Claim 4, characterised in that the fastening means (4b) comprise shaped grooves complementing to radial rods (22c) fastened to an end-stop plate (22b) built into the shaft (22) of the traction member (2).
- **6.** Apparatus according to claim 1, **characterized in that** the support structure (1) comprises a user-supporting platform (3a).

40

45

50

Category

A,D

Α

X,P

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate,

WO 2012/156516 A2 (LOACH ANDREW [GB]) 22 November 2012 (2012-11-22)

US 6 283 899 B1 (CHARNITSKI RICHARD D

[US]) 4 September 2001 (2001-09-04)

IT TO20 100 009 A1 (DAMETTO STEFANO)

L [ES]) 22 March 2019 (2019-03-22)

WO 2020/026279 A1 (DOLCI FILIPPO [IT];

The present search report has been drawn up for all claims

ES 2 705 359 A1 (IONCLINICS AND DEIONIC S

of relevant passages

* page 7, lines 26-31; figurés *

* the whole document *

* the whole document *

DOLCI VIRGINIA [IT])

6 February 2020 (2020-02-06) * the whole document *

13 July 2011 (2011-07-13) * the whole document *

Application Number

EP 20 00 0221

CLASSIFICATION OF THE APPLICATION (IPC)

TECHNICAL FIELDS SEARCHED (IPC)

A63B

Examiner

INV. A63B21/00

A63B21/22

Relevant

1

1

1-6

10	
15	
20	
25	
30	
35	
40	
45	

Place of search	l
Munich	
CATEGORY OF CITED DOCUMENTS	
X : particularly relevant if taken alone Y : particularly relevant if combined with anot document of the same category A : technological background O : non-written disclosure P : intermediate document	her

9 November 2020	Squeri, Michele			
T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date				

D : document cited in the application L : document cited for other reasons

1

50

55

Date of completion of the search

[&]amp; : member of the same patent family, corresponding document

EP 3 756 734 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 00 0221

5

55

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-11-2020

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	WO 2012156516 A2	22-11-2012	GB 2509396 A US 2014113779 A1 WO 2012156516 A2	02-07-2014 24-04-2014 22-11-2012
	US 6283899 B1	04-09-2001	US 6283899 B1 US 2002086777 A1 US 2005037902 A1 WO 9904864 A1	04-09-2001 04-07-2002 17-02-2005 04-02-1999
20	IT T020100009 A1 ES 2705359 A1	13-07-2011 22-03-2019	NONE	
	WO 2020026279 A1	06-02-2020	NONE	
25				
30				
35				
40				
45				
50				
M P0459				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 756 734 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 1783376 A [0003]
- US 3841627 A [0003]

- WO 9010475 A **[0003]**
- US 6283899 B **[0003]**