(11) EP 3 757 124 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

30.12.2020 Bulletin 2020/53

(51) Int Cl.:

C07K 16/06 (2006.01)

C07K 1/22 (2006.01)

(21) Application number: 20185646.5

(22) Date of filing: 16.11.2015

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: **17.11.2014 SE 1451376**

12.06.2015 GB 201510261 12.06.2015 GB 201510263

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

15797940.2 / 3 221 347

(71) Applicant: Cytiva BioProcess R&D AB 751 84 Uppsala (SE)

(72) Inventors:

 RODRIGO, Gustav 751 84 Uppsala (SE)

- ANDER, Mats
 751 84 Uppsala (SE)
 BJORKMAN, Tomas
 751 84 Uppsala (SE)
- (74) Representative: Larsson, Jan Anders
 Cytiva Sweden AB
 Intellectual Property
 Cytiva
 Björkgatan 30
 751 84 Uppsala (SE)

Remarks:

This application was filed on 14-07-2020 as a divisional application to the application mentioned under INID code 62.

(54) MUTATED IMMUNOGLOBULIN-BINDING POLYPEPTIDES

(57) An Fc-binding polypeptide of improved alkali stability, comprising a mutant of an Fc-binding domain of Staphylococcus Protein A (SpA), as defined by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:22, SEQ ID NO 51 or SEQ ID NO 52 wherein at least the asparagine or serine residue at the position corresponding to position 11 in SEQ ID NO:4-7 has been mutated to an amino acid selected from the group consisting of glutamic acid, lysine, tyrosine, threonine, phenylalanine, leucine, isoleucine, tryptophan, methionine, valine, alanine, histidine and arginine.

--A00 NAFYGVIAMP NIANDQRNGF IGSIKUDD9Q SANVIGEBAQK INDSQARK 31 (SBQ ID NO: 2) NKRQQ NAFYELIJAMP NIANDGRNGF IGSIKUDD9Q SANVIGEBAQK INDSQARK INSQARK INS

Fig. 1

Alignment of Fc-binding domains

Description

10

30

35

40

45

50

55

Technical field of the invention

[0001] The present invention relates to the field of affinity chromatography, and more specifically to mutated immunoglobulin-binding domains of Protein A, which are useful in affinity chromatography of immunoglobulins. The invention also relates to multimers of the mutated domains and to separation matrices containing the mutated domains or multimers.

Background of the invention

[0002] Immunoglobulins represent the most prevalent biopharmaceutical products in either manufacture or development worldwide. The high commercial demand for and hence value of this particular therapeutic market has led to the emphasis being placed on pharmaceutical companies to maximize the productivity of their respective mAb manufacturing processes whilst controlling the associated costs.

[0003] Affinity chromatography is used in most cases, as one of the key steps in the purification of these immunoglobulin molecules, such as monoclonal or polyclonal antibodies. A particularly interesting class of affinity reagents is proteins capable of specific binding to invariable parts of an immunoglobulin molecule, such interaction being independent on the antigen-binding specificity of the antibody. Such reagents can be widely used for affinity chromatography recovery of immunoglobulins from different samples such as but not limited to serum or plasma preparations or cell culture derived feed stocks. An example of such a protein is staphylococcal protein A, containing domains capable of binding to the Fc and Fab portions of IgG immunoglobulins from different species. These domains are commonly denoted as the E-, D-, A-, B- and C-domains.

[0004] Staphylococcal protein A (SpA) based reagents have due to their high affinity and selectivity found a widespread use in the field of biotechnology, e.g. in affinity chromatography for capture and purification of antibodies as well as for detection or quantification. At present, SpA-based affinity medium probably is the most widely used affinity medium for isolation of monoclonal antibodies and their fragments from different samples including industrial cell culture supernatants. Accordingly, various matrices comprising protein A-ligands are commercially available, for example, in the form of native protein A (e.g. Protein A SEPHAROSE™, GE Healthcare, Uppsala, Sweden) and also comprised of recombinant protein A (e.g. rProtein A-SEPHAROSE™, GE Healthcare). More specifically, the genetic manipulation performed in the commercial recombinant protein A product is aimed at facilitating the attachment thereof to a support and at increasing the productivity of the ligand.

[0005] These applications, like other affinity chromatography applications, require comprehensive attention to definite removal of contaminants. Such contaminants can for example be non-eluted molecules adsorbed to the stationary phase or matrix in a chromatographic procedure, such as non-desired biomolecules or microorganisms, including for example proteins, carbohydrates, lipids, bacteria and viruses. The removal of such contaminants from the matrix is usually performed after a first elution of the desired product in order to regenerate the matrix before subsequent use. Such removal usually involves a procedure known as cleaning-in-place (CIP), wherein agents capable of eluting contaminants from the stationary phase are used. One such class of agents often used is alkaline solutions that are passed over said stationary phase. At present the most extensively used cleaning and sanitizing agent is NaOH, and the concentration thereof can range from 0.1 up to e.g. 1 M, depending on the degree and nature of contamination. This strategy is associated with exposing the matrix to solutions with pH-values above 13. For many affinity chromatography matrices containing proteinaceous affinity ligands such alkaline environment is a very harsh condition and consequently results in decreased capacities owing to instability of the ligand to the high pH involved.

[0006] An extensive research has therefore been focused on the development of engineered protein ligands that exhibit an improved capacity to withstand alkaline pH-values. For example, Gülich et al. (Susanne Gülich, Martin Linhult, Per-Ake Nygren, Mathias Uhlén, Sophia Hober, Journal of Biotechnology 80 (2000), 169-178) suggested protein engineering to improve the stability properties of a Streptococcal albumin-binding domain (ABD) in alkaline environments. Gülich et al. created a mutant of ABD, wherein all the four asparagine residues have been replaced by leucine (one residue), aspartate (two residues) and lysine (one residue). Further, Gülich et al. report that their mutant exhibits a target protein binding behavior similar to that of the native protein, and that affinity columns containing the engineered ligand show higher binding capacities after repeated exposure to alkaline conditions than columns prepared using the parental non-engineered ligand. Thus, it is concluded therein that all four asparagine residues can be replaced without any significant effect on structure and function.

[0007] Recent work shows that changes can also be made to protein A (SpA) to effect similar properties. US patent application publication US 2005/0143566, which is hereby incorporated by reference in its entirety, discloses that when at least one asparagine residue is mutated to an amino acid other than glutamine or aspartic acid, the mutation confers an increased chemical stability at pH-values of up to about 13-14 compared to the parental SpA, such as the B-domain of SpA, or Protein Z, a synthetic construct derived from the B-domain of SpA (US 5,143,844, incorporated by reference

in its entirety). The authors show that when these mutated proteins are used as affinity ligands, the separation media as expected can better withstand cleaning procedures using alkaline agents. Further mutations of protein A domains with the purpose of increasing the alkali stability have also been published in WO 2008/039141, JP 2006304633A, EP 1992692A1, EP 2202310A2, WO 2010/110288, WO 2012/086660, WO 2012/083425, WO 2012/087230 and WO 2014/146350, all of which are hereby incorporated by reference in their entireties. However, the currently available mutants are still sensitive to alkaline pH and the NaOH concentration during cleaning is usually limited to 0.1 M, which means that complete cleaning is difficult to achieve. Higher NaOH concentrations, which would improve the cleaning, lead to unacceptable capacity losses.

[0008] There is thus still a need in this field to obtain a separation matrix containing protein ligands having a further improved stability towards alkaline cleaning procedures.

Summary of the invention

10

15

30

35

40

50

[0009] One aspect of the invention is to provide a polypeptide with improved alkaline stability. This is achieved with a polypeptide as defined in claim 1.

[0010] One advantage is that the alkaline stability is improved over the parental polypeptides, with a maintained highly selective binding towards immunoglobulins and other Fc-containing proteins.

[0011] A second aspect of the invention is to provide a multimer with improved alkaline stability, comprising a plurality of polypeptides. This is achieved with a multimer as defined in the claims.

[0012] A third aspect of the invention is to provide a nucleic acid or a vector encoding a polypeptide or multimer with improved alkaline stability. This is achieved with a nucleic acid or vector as defined in the claims.

[0013] A fourth aspect of the invention is to provide an expression system capable of expressing a polypeptide or multimer with improved alkaline stability. This is achieved with an expression system as defined in the claims.

[0014] A fifth aspect of the invention is to provide a separation matrix capable of selectively binding immunoglobulins and other Fc-containing proteins and exhibiting an improved alkaline stability. This is achieved with a separation matrix as defined in the claims.

[0015] A sixth aspect of the invention is to provide an efficient and economical method of isolating an immunoglobulin or other Fc-containing protein. This is achieved with a method as defined in the claims.

[0016] Further suitable embodiments of the invention are described in the dependent claims.

Definitions

[0017] The terms "antibody" and "immunoglobulin" are used interchangeably herein, and are understood to include also fragments of antibodies, fusion proteins comprising antibodies or antibody fragments and conjugates comprising antibodies or antibody fragments.

[0018] The terms an "Fc-binding polypeptide" and "Fc-binding protein" mean a polypeptide or protein respectively, capable of binding to the crystallisable part (Fc) of an antibody and includes e.g. Protein A and Protein G, or any fragment or fusion protein thereof that has maintained said binding property.

[0019] The term "linker" herein means an element linking two polypeptide units, monomers or domains to each other in a multimer.

[0020] The term "spacer" herein means an element connecting a polypeptide or a polypeptide multimer to a support.

Brief description of figures

⁴⁵ [0021]

Fig. 1 shows an alignment of the Fc-binding domains as defined by SEQ ID NO:1-7 and 51-52.

Fig. 2 shows results from Example 2 for the alkali stability of parental and mutated tetrameric Zvar (SEQ ID NO 7) polypeptide variants coupled to an SPR biosensor chip.

Fig. 3 shows results from Example 4 for the alkali stability (0.5 M NaOH) of parental and mutated tetrameric Zvar (SEQ ID NO 7) polypeptide variants coupled to agarose beads.

Fig. 4 shows results from Example 4 for the alkali stability (1.0 M NaOH) of parental and mutated tetrameric Zvar (SEQ ID NO 7) polypeptide variants coupled to agarose beads.

Detailed description of embodiments

[0022] In one aspect the present invention discloses an Fc-binding polypeptide, which comprises, or consists essentially of, a mutant of an Fc-binding domain of Staphylococcus Protein A (SpA), as defined by, or having at least 90%, at least 95% or at least 98% identity to, SEQ ID NO: 1 (E-domain), SEQ ID NO: 2 (D-domain), SEQ ID NO:3 (A-domain), SEQ ID NO:6 (Protein Z), SEQ ID NO:7 (Zvariant A-domain), SEQ ID NO:4 (B-domain), SEQ ID NO:5 (C-domain), SEQ ID NO:6 (Protein Z), SEQ ID NO:7 (Zvar), SEQ ID NO:5 (Zvar without the linker region amino acids 1-6) or SEQ ID NO:5 (C-domain without the linker region amino acids 1-6) as illustrated in Fig. 1, wherein at least the asparagine (or serine, in the case of SEQ ID NO:4) residue at the position* corresponding to position 11 in SEQ ID NO:4-7 has been mutated to an amino acid selected from the group consisting of glutamic acid, lysine, tyrosine, threonine, phenylalanine, leucine, isoleucine, tryptophan, methionine, valine, alanine, histidine and arginine. Protein Z (SEQ ID NO:6) is a mutated B-domain as disclosed in US5143844, while SEQ ID NO 7 denotes a further mutated variant of Protein Z, here called Zvar, with the mutations N3A,N6D,N23T. SEQ ID NO:22 is a natural variant of the A-domain in Protein A from Staphylococcus aureus strain N315, having an A46S mutation, using the position terminology of Fig. 1. The mutation of N11 in these domains confers an improved alkali stability in comparison with the parental domain/polypeptide, without impairing the immunoglobulin-binding properties. Hence, the polypeptide can also be described as an Fc- or immunoglobulin-binding polypeptide, or alternatively as an Fc- or immunoglobulin-binding polypeptide unit.

[0023] *Throughout this description, the amino acid residue position numbering convention of Fig 1 is used, and the position numbers are designated as corresponding to those in SEQ ID NO 4-7.

[0024] In alternative language, the invention discloses an Fc-binding polypeptide which comprises a sequence as defined by, or having at least 90%, at least 95% or at least 98% identity to SEQ ID NO 53.

SEQ ID NO 53

 $KEX_1Q \ X_2AFYEILX_3LP \ NLTEEQRX_4X_5F \ IX_6X_7LKDX_8PSX_9 \ SX_{10}X_{11}X_{12}LAEAKX_{13} \\ X_{14}NDAQAPK$

where individually of each other:

```
X_1=A or Q
             X_2=E,K,Y,T,F,L,W,I,M,V,A,H or R
             X_3=H or K
             X<sub>4</sub>=A or N
35
             X<sub>5</sub>=A or G
             X_6 = Q or E
             X_7=S or K
             X<sub>8</sub>=E or D
             X_0=Q or V
40
             X_{10}=K,R or A
             X_{11}=A,E or N
             X<sub>12</sub>=I or L
             X_{13}=K or R
             X<sub>14</sub>=L or Y
```

[0025] The N11 (X_2) mutation (e.g. a N11E or N11K mutation) may be the only mutation or the polypeptide may also comprise further mutations, such as substitutions in at least one of the positions corresponding to positions 3, 6, 9, 10, 15, 18, 23, 28, 29, 32, 33, 36, 37, 40, 42, 43, 44, 47, 50, 51, 55 and 57 in SEQ ID NO:4-7. In one or more of these positions, the original amino acid residue may e.g. be substituted with an amino acid which is not asparagine, proline or cysteine. The original amino acid residue may e.g. be substituted with an alanine, a valine, a threonine, a serine, a lysine, a glutamic acid or an aspartic acid. Further, one or more amino acid residues may be deleted, e.g. from positions 1-6 and/or from positions 56-58.

[0026] In some embodiments, the amino acid residue at the position corresponding to position 9 in SEQ ID NO:4-7 (X_1) is an amino acid other than glutamine, asparagine, proline or cysteine, such as an alanine. The combination of the mutations at positions 9 and 11 provides particularly good alkali stability, as shown by the examples. In specific embodiments, in SEQ ID NO: 7 the amino acid residue at position 9 is an alanine and the amino acid residue at position 11 is a lysine or glutamic acid, such as a lysine. Mutations at position 9 are also discussed in copending application PCT/SE2014/050872, which is hereby incorporated by reference in its entirety.

4

45

50

10

15

20

25

[0027] In some embodiments, the amino acid residue at the position corresponding to position 50 in SEQ ID NO:4-7 (X_{13}) is an arginine or a glutamic acid.

[0028] In certain embodiments, the amino acid residue at the position corresponding to position 3 in SEQ ID NO:4-7 is an alanine and/or the amino acid residue at the position corresponding to position 6 in SEQ ID NO:4-7 is an aspartic acid. One of the amino acid residues at positions 3 and 6 may be an asparagine and in an alternative embodiment both amino acid residues at positions 3 and 6 may be asparagines.

[0029] In some embodiments the amino acid residue at the position corresponding to position 43 in SEQ ID NO:4-7 (X₁₁) is an alanine or a glutamic acid, such as an alanine. In specific embodiments, the amino acid residues at positions 9 and 11 in SEQ ID NO: 7 are alanine and lysine/glutamic acid respectively, while the amino acid residue at position 43 is alanine or glutamic acid.

10

30

35

50

55

[0030] In certain embodiments the amino acid residue residue at the position corresponding to position 28 in SEQ ID NO:4-7 (X_5) is an alanine or an asparagine, such as an alanine.

[0031] In some embodiments the amino acid residue at the position corresponding to position 40 in SEQ ID NO:4-7 (X_9) is selected from the group consisting of asparagine, alanine, glutamic acid and valine, or from the group consisting of glutamic acid and valine. In specific embodiments, the amino acid residues at positions 9 and 11 in SEQ ID NO: 7 are alanine and glutamic acid respectively, while the amino acid residue at position 40 is valine. Optionally, the amino acid residue at position 43 may then be alanine or glutamic acid.

[0032] In certain embodiments, the amino acid residue at the position corresponding to position 42 in SEQ ID NO:4-7 (X_{10}) is an alanine, lysine or arginine.

[0033] In some embodiments the amino acid residue at the position corresponding to position 18 in SEQ ID NO:4-7 (X_3) is a lysine or a histidine, such as a lysine.

[0034] In certain embodiments the amino acid residue at the position corresponding to position 33 in SEQ ID NO:4-7 (X_7) is a lysine or a serine, such as a lysine.

[0035] In some embodiments the amino acid residue at the position corresponding to position 37 in SEQ ID NO:4-7 (X_8) is a glutamic acid or an aspartic acid, such as a glutamic acid.

[0036] In certain embodiments the amino acid residue at the position corresponding to position 51 in SEQ ID NO:4-7 (X_{14}) is a tyrosine or a leucine, such as a tyrosine.

[0037] In some embodiments, the amino acid residue at the position corresponding to position 44 in SEQ ID NO:4-7 (X_{12}) is a leucine or an isoleucine. In specific embodiments, the amino acid residues at positions 9 and 11 in SEQ ID NO: 7 are alanine and lysine/glutamic acid respectively, while the amino acid residue at position 44 is isoleucine. Optionally, the amino acid residue at position 43 may then be alanine or glutamic acid.

[0038] In some embodiments, the amino acid residues at the positions corresponding to positions 1, 2, 3 and 4 or to positions 3, 4, 5 and 6 in SEQ ID NO: 4-7 have been deleted. In specific variants of these embodiments, the parental polypeptide is the C domain of Protein A (SEQ ID NO: 5). The effects of these deletions on the native C domain are described in US9018305 and US8329860, which are hereby incorporated by reference in their entireties.

[0039] In certain embodiments, the mutation in SEQ ID NO 4-7, such as in SEQ ID NO 7, is selected from the group consisting of:N1 1K; N11E; N11Y; N11T; N11F; N11L; N11W; N11I; N11M; N11V; N11A; N11H; N11R; N11E,Q32A; N11E,Q32E,Q40E; N11E,Q32E,K50R; Q9A,N11E,N43A; Q9A,N11E,N28A,N43A; Q9A,N11E,Q40V,A42K,N43E,L44I; Q9A,N11E,Q40V,A42K,N43A,L44I; N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y;

Q9A,N11E,N28A,Q40V,A42K,N43A,L44I; Q9A,N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y; N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R, N43A, L44I, K50R; Q9A,N11K,H18K,D37E,A42R; Q9A,N11E,D37E,Q40V,A42K,N43A,L44I and

Q9A,N11E,D37E,Q40V,A42R,N43A,L44I. These mutations provide particularly high alkaline stabilities. The mutation in SEQ ID NO 4-7, such as in SEQ ID NO 7, can also be selected from the group consisting of N11K; N11Y; N11F; N11L;

N11W; N11I; N11M; N11V; N11A; N11H; N11R; Q9A,N11E,N43A; Q9A,N11E,N28A,N43A; Q9A,N11E,Q40V,A42K,N43E,L44I; Q9A,N11E,Q40V,A42K,N43A,L44I; Q9A,N11E,N28A,Q40V,A42K,N43A,L44I; N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y; Q9A,N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y; N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R, N43A, L44I and Q9A, N11K, H18K, D37E, A42R, N43A, L44I, K50R.

[0040] In some embodiments, the polypeptide comprises or consists essentially of a sequence selected from the group consisting of: SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 12, SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 29, SEQ ID NO 36, SEQ ID NO 37, SEQ ID NO 38, SEQ ID NO 39, SEQ ID NO 40, SEQ ID NO 41, SEQ ID NO 42, SEQ ID NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47, SEQ ID NO 48, SEQ ID NO 49 and SEQ ID NO 50. It may e.g. comprise or consist essentially of a sequence selected from the group consisting of: SEQ ID NO 25, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28 and SEQ ID NO 29. It can also comprise or consist essentially of a sequence selected from the group consisting of: SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, S

NO 11, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 38, SEQ ID NO 40; SEQ ID NO 41; SEQ ID NO 42; SEQ NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47 and SEQ ID NO 48. The polypeptide may e.g. be defined by a sequence selected from the groups above or from subsets of these groups, but it may also comprise additional amino acid residues at the N- and/or C-terminal end, e.g. a leader sequence at the N-terminal end and/or a tail sequence at the C-terminal end.

SEQ ID NO 8 Zvar(Q9A,N11E,N43A)

- VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SAALLAEAKK LNDAQAPK
- SEQ ID NO 9 Zvar(Q9A,N11E,N28A,N43A)
 VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSQ SAALLAEAKK
 LNDAQAPK
- SEQ ID NO 10 Zvar(Q9A,N11E,Q40V,A42K,N43E,L44I)
 VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKEILAEAKK
 LNDAQAPK
- SEQ ID NO 11 Zvar(Q9A,N11E,Q40V,A42K,N43A,L44I)
 VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKAILAEAKK
 LNDAQAPK
- SEQ ID NO 12 Zvar(N11E,Q32A)

35

40

45

50

- VDAKFDKEQQ EAFYEILHLP NLTEEQRNAF IASLKDDPSQ SANLLAEAKK LNDAQAPK
- SEQ ID NO 13 Zvar(N11E) VDAKFDKEQQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
 - SEQ ID NO 14 Zvar(N11E,Q32E,Q40E) VDAKFDKEQQ EAFYEILHLP NLTEEQRNAF IESLKDDPSE SANLLAEAKK LNDAQAPK
 - SEQ ID NO 15 Zvar(N11E,Q32E,K50R) VDAKFDKEQQ EAFYEILHLP NLTEEQRNAF IESLKDDPSQ SANLLAEAKR LNDAQAPK
 - SEQ ID NO 16 Zvar(N11K) VDAKFDKEQQ **K**AFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK

	SEQ ID NO 23 Zvar(N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y) VDAKFDKEQQ KAFYEILKLP NLTEEQRNAF IQKLKDEPSQ SRAILAEAKR YNDAQAPK
5	SEQ ID NO 24 Zvar(Q9A,N11E,N28A,Q40V,A42K,N43A,L44I) VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSV SKAILAEAKK
10	LNDAQAPK
15	SEQ ID NO 25 Zvar(Q9A,N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y) VDAKFDKEAQ KAFYEILKLP NLTEEQRAAF IQKLKDEPSQ SRAILAEAKR YNDAQAPK
20	SEQ ID NO 26 Zvar(N11K, H18K, D37E, A42R, N43A, L44I) VDAKFDKEQQ K AFYEIL K LP NLTEEQRNAF IQSLKD E PSQ S RAI LAEAKK LNDAQAPK
	SEQ ID NO 27 Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I) VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF IQSLKDEPSQ SRAILAEAKK LNDAQAPK
25	SEQ ID NO 28 Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I, K50R) VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF IQSLKDEPSQ SRAILAEAKR LNDAQAPK
3 <i>0</i> 35	SEQ ID NO 29 Zvar(Q9A,N11K,H18K,D37E,A42R) VDAKFDKE A Q K AFYEIL K LP NLTEEQRNAF IQSLKD E PSQ S R NLLAEAKK LNDAQAPK
40	SEQ ID NO 36 B(Q9A,N11E,Q40V,A42K,N43A,L44I) ADNKFNKEAQ EAFYEILHLP NLNEEQRNGF IQSLKDDPSV SKAILAEAKK LNDAQAPK
. o 45	SEQ ID NO 37 C(Q9A,N11E,E43A) ADNKFNKEAQ EAFYEILHLP NLTEEQRNGF IQSLKDDPSV SKAILAEAKK LNDAQAPK
50	SEQ ID NO 38 Zvar(N11Y) VDAKFDKEQQ YAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
55	SEQ ID NO 39 Zvar(N11T) VDAKFDKEQQ TAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
-	

	SEQ ID NO 40 Zvar(N11F) VDAKFDKEQQ FAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
5	LNDAQAIK
	SEQ ID NO 41 Zvar(N11L) VDAKFDKEQQ LAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
10	
	SEQ ID NO 42 Zvar(N11W) VDAKFDKEQQ WAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
15	
	SEQ ID NO 43 Zvar(N11I) VDAKFDKEQQ IAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
20	LI DIQILI
	SEQ ID NO 44 Zvar(N11M) VDAKFDKEQQ MAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK
	LNDAQAPK
25	
	SEQ ID NO 45 Zvar(N11V) VDAKFDKEQQ VAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK
30	LNDAQAPK
,	SEQ ID NO 46 Zvar(N11A)
	VDAKFDKEQQ AAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK
	LNDAQAPK
35	2. 2. 14. 2. 1
	SEQ ID NO 47 Zvar(N11H)
	VDAKFDKEQQ HAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK
	LNDAQAPK
10	
	SEQ ID NO 48 Zvar(N11R)
	VDAKFDKEQQ R AFYEILHLP NLTEEQRNAF IQSLKDDPSQ SANLLAEAKK LNDAQAPK
1 5	LNDAQAFK
	SEQ ID NO 49 Zvar(Q9A,N11E,D37E,Q40V,A42K,N43A,L44I)
	VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SKAILAEAKK
	LNDAQAPK
50	
	SEQ ID NO 50 Zvar(Q9A,N11E,D37E,Q40V,A42R,N43A,L44I)
	VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SRAILAEAKK LNDAQAPK

[0041] In a second aspect the present invention discloses a multimer comprising, or consisting essentially of, a plurality of polypeptide units as defined by any embodiment disclosed above. The multimer can e.g. be a dimer, a tetramer, a pentamer, a hexamer, a heptamer, an octamer or a nonamer. It can be a homomultimer, where all the units

in the multimer are identical or it can be a heteromultimer, where at least one unit differs from the others. Advantageously, all the units in the multimer are alkali stable, such as by comprising the mutations disclosed above. The polypeptides can be linked to each other directly by peptide bonds between the C-terminal and N-terminal ends of the polypeptides. Alternatively, two or more units in the multimer can be linked by linkers comprising oligomeric or polymeric species, such as elements comprising up to 15 or 30 amino acids, such as 1-5, 1-10 or 5-10 amino acids. This is the case in particular for mutations of SEQ ID NO 51 and 52 and for the SEQ ID NO 53 polypeptide, where specific examples of linkers can e.g. be VDAKFD or ADNKFN, such as VDAKFD. The nature of such a linker should preferably not destabilize the spatial conformation of the protein units. This can e.g. be achieved by avoiding the presence of proline in the linkers. Furthermore, said linker should preferably also be sufficiently stable in alkaline environments not to impair the properties of the mutated protein units. For this purpose, it is advantageous if the linkers do not contain asparagine. It can additionally be advantageous if the linkers do not contain glutamine. The multimer may further at the N-terminal end comprise a plurality of amino acid residues e.g. originating from the cloning process or constituting a residue from a cleaved off signaling sequence. The number of additional amino acid residues may e.g. be 15 or less, such as 10 or less or 5 or less. As a specific example, the multimer may comprise an AQ sequence at the N-terminal end.

[0042] In certain embodiments, the multimer may comprise, or consist essentially, of a sequence selected from the group consisting of: SEQ ID NO 17, SEQ ID NO 18, SEQ ID NO 19, SEQ ID NO 20, SEQ ID NO 30, SEQ ID NO 31, SEQ ID NO 32, SEQ ID NO 33, SEQ ID NO 34 and SEQ ID NO 35. These sequences are listed below and named as Parent(Mutations)n, where n is the number of monomer units in a multimer.

SEQ ID NO 17 Zvar(Q9A,N11E,N43A)4
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSQ SAALLAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSQ
SAALLAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF
IQSLKDDPSQ SAALLAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRNAF IQSLKDDPSQ SAALLAEAKK LNDAQAPKC

SEQ ID NO 18 Zvar(Q9A,N11E,N28A,N43A)4
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSQ SAALLAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSQ
SAALLAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF
IQSLKDDPSQ SAALLAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRAAF IQSLKDDPSQ SAALLAEAKK LNDAQAPKC

SEQ ID NO 19 Zvar(Q9A,N11E,Q40V,A42K,N43E,L44I)4

AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKEILAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV
SKEILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF
IQSLKDDPSV SKEILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRNAF IQSLKDDPSV SKEILAEAKK LNDAQAPKC

SEQ ID NO 20 Zvar(Q9A,N11E,Q40V,A42K,N43A,L44I)4
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKAILAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV
SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF
IQSLKDDPSV SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRNAF IQSLKDDPSV SKAILAEAKK LNDAQAPKC

55

50

SEQ ID NO 30 Zvar(N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y)4
AQGT VDAKFDKEQQ KAFYEILKLP NLTEEQRNAF IQKLKDEPSQ SRAILAEAKR
YNDAQAPK VDAKFDKEQQ KAFYEILKLP NLTEEQRNAF IQKLKDEPSQ
SRAILAEAKR YNDAQAPK VDAKFDKEQQ KAFYEILKLP NLTEEQRNAF
IQKLKDEPSQ SRAILAEAKR YNDAQAPK VDAKFDKEQQ KAFYEILKLP
NLTEEQRNAF IQKLKDEPSQ SRAILAEAKR YNDAQAPKC

10

15

5

SEQ ID NO 31 Zvar(Q9A,N11K,H18K,D37E,A42R)4 AQGT VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF IQSLKDEPSQ SRNLLAEAKK LNDAQAPK VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF IQSLKDEPSQ SRNLLAEAKK LNDAQAPK VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF

IQSLKDEPSQ SRNLLAEAKK LNDAQAPK VDAKFDKEAQ KAFYEILKLP NLTEEQRNAF IQSLKDEPSQ SRNLLAEAKK LNDAQAPKC

20

SEQ ID NO 32 Zvar(Q9A,N11E,N28A,Q40V,A42K,N43A,L44I)4
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSV SKAILAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF IQSLKDDPSV
SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRAAF
IQSLKDDPSV SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRAAF IQSLKDDPSV SKAILAEAKK LNDAQAPKC

30

25

SEQ ID NO 33 Zvar(Q9A,N11E,Q40V,A42K,N43A,L44I)6
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKAILAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV
SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF

IQSLKDDPSV SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRNAF IQSLKDDPSV SKAILAEAKK LNDAQAPK VDAKFDKEAQ
EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKAILAEAKK LNDAQAPK
VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDDPSV SKAILAEAKK

40 LNDAQAPKC

50

45

SEQ ID NO 34 Zvar(Q9A,N11E,D37E,Q40V,A42K,N43A,L44I)4
AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SKAILAEAKK
LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV
SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF
IQSLKDEPSV SKAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP
NLTEEQRNAF IQSLKDEPSV SKAILAEAKK LNDAQAPKC

SEQ ID NO 35 Zvar(Q9A,N11E,D37E,Q40V,A42R,N43A,L44I)4

AQGT VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SRAILAEAKK

LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV

SRAIL AFAKK LNDAQAPK VDAKEDKEAQ EAFYEILHLP NLTEEQRNAF

SRAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SRAILAEAKK LNDAQAPK VDAKFDKEAQ EAFYEILHLP NLTEEQRNAF IQSLKDEPSV SRAILAEAKK LNDAQAPKC

[0043] In some embodiments, the polypeptide and/or multimer, as disclosed above, further comprises at the C-terminal or N-terminal end one or more coupling elements, selected from the group consisting of one or more cysteine residues, a plurality of lysine residues and a plurality of histidine residues. The coupling element(s) may also be located within 1-5 amino acid residues, such as within 1-3 or 1-2 amino acid residues from the C-terminal or N-terminal end. The coupling element may e.g. be a single cysteine at the C-terminal end. The coupling element(s) may be directly linked to the C- or N-terminal end, or it/they may be linked via a stretch comprising up to 15 amino acids, such as 1-5, 1-10 or 5-10 amino acids. This stretch should preferably also be sufficiently stable in alkaline environments not to impair the properties of the mutated protein. For this purpose, it is advantageous if the stretch does not contain asparagine. It can additionally be advantageous if the stretch does not contain glutamine. An advantage of having a C-terminal cysteine is that endpoint coupling of the protein can be achieved through reaction of the cysteine thiol with an electrophilic group on a support. This provides excellent mobility of the coupled protein which is important for the binding capacity.

10

15

30

35

45

50

[0044] The alkali stability of the polypeptide or multimer can be assessed by coupling it to an SPR chip, e.g. to Biacore CM5 sensor chips as described in the examples, using e.g. NHS- or maleimide coupling chemistries, and measuring the immunoglobulin-binding capacity of the chip, typically using polyclonal human IgG, before and after incubation in alkaline solutions at a specified temperature, e.g. 22 +/- 2 °C. The incubation can e.g. be performed in 0.5 M NaOH for a number of 10 min cycles, such as 100, 200 or 300 cycles. The IgG capacity of the matrix after 100 10 min incubation cycles in 0.5 M NaOH at 22 +/- 2 °C can be at least 55, such as at least 60, at least 80 or at least 90% of the IgG capacity before the incubation. Alternatively, the remaining IgG capacity after 100 cycles for a particular mutant measured as above can be compared with the remaining IgG capacity for the parental polypeptide/multimer. In this case, the remaining IgG capacity for the mutant may be at least 105%, such as at least 110%, at least 125%, at least 150% or at least 200% of the parental polypeptide/multimer.

[0045] In a third aspect the present invention discloses a nucleic acid encoding a polypeptide or multimer according to any embodiment disclosed above. Thus, the invention encompasses all forms of the present nucleic acid sequence such as the RNA and the DNA encoding the polypeptide or multimer. The invention embraces a vector, such as a plasmid, which in addition to the coding sequence comprises the required signal sequences for expression of the polypeptide or multimer according the invention. In one embodiment, the vector comprises nucleic acid encoding a multimer according to the invention, wherein the separate nucleic acids encoding each unit may have homologous or heterologous DNA sequences.

[0046] In a fourth aspect the present invention discloses an expression system, which comprises, a nucleic acid or a vector as disclosed above. The expression system may e.g. be a gram-positive or gram-negative prokaryotic host cell system, e.g. *E.coli* or *Bacillus sp.* which has been modified to express the present polypeptide or multimer. In an alternative embodiment, the expression system is a eukaryotic host cell system, such as a yeast, e.g. *Pichia pastoris* or *Saccharomyces cerevisiae*, or mammalian cells, e.g. CHO cells.

[0047] In a fifth aspect, the present invention discloses a separation matrix, wherein a plurality of polypeptides or multimers according to any embodiment disclosed above have been coupled to a solid support. Such a matrix is useful for separation of immunoglobulins or other Fc-containing proteins and, due to the improved alkali stability of the polypeptides/multimers, the matrix will withstand highly alkaline conditions during cleaning, which is essential for long-term repeated use in a bioprocess separation setting. The alkali stability of the matrix can be assessed by measuring the immunoglobulin-binding capacity, typically using polyclonal human IgG, before and after incubation in alkaline solutions at a specified temperature, e.g. 22 +/- 2 °C. The incubation can e.g. be performed in 0.5 M or 1.0 M NaOH for a number of 15 min cycles, such as 100, 200 or 300 cycles, corresponding to a total incubation time of 25, 50 or 75 h. The IgG capacity of the matrix after 96-100 15 min incubation cycles or a total incubation time of 24 or 25 h in 0.5 M NaOH at 22 +/- 2 °C can be at least 80, such as at least 85, at least 90 or at least 95% of the IgG capacity before the incubation. The capacity of the matrix after a total incubation time of 24 h in 1.0 M NaOH at 22 +/- 2 °C can be at least 70, such as at least 80 or at least 90% of the IgG capacity before the incubation.

[0048] As the skilled person will understand, the expressed polypeptide or multimer should be purified to an appropriate extent before being immobilized to a support. Such purification methods are well known in the field, and the immobilization of protein-based ligands to supports is easily carried out using standard methods. Suitable methods and supports will be discussed below in more detail.

[0049] The solid support of the matrix according to the invention can be of any suitable well-known kind. A conventional affinity separation matrix is often of organic nature and based on polymers that expose a hydrophilic surface to the aqueous media used, i.e. expose hydroxy (-OH), carboxy (-COOH), carboxamido (-CONH₂, possibly in N- substituted forms), amino (-NH₂, possibly in substituted form), oligo- or polyethylenoxy groups on their external and, if present, also on internal surfaces. The solid support can suitably be porous. The porosity can be expressed as a Kav or Kd value (the fraction of the pore volume available to a probe molecule of a particular size) measured by inverse size exclusion chromatography, e.g. according to the methods described in Gel Filtration Principles and Methods, Pharmacia LKB Biotechnology 1991, pp 6-13. By definition, both Kd and Kav values always lie within the range 0 - 1. The Kav value can advantageously be 0.6 - 0.95, e.g. 0.7 - 0.90 or 0.6 - 0.8, as measured with dextran of Mw 110 kDa as a probe molecule.

An advantage of this is that the support has a large fraction of pores able to accommodate both the polypeptides/multimers of the invention and immunoglobulins binding to the polypeptides/multimers and to provide mass transport of the immunoglobulins to and from the binding sites.

[0050] The polypeptides or multimers may be attached to the support via conventional coupling techniques utilising e.g. thiol, amino and/or carboxy groups present in the ligand. Bisepoxides, epichlorohydrin, CNBr, N-hydroxysuccinimide (NHS) etc are well-known coupling reagents. Between the support and the polypeptide/multimer, a molecule known as a spacer can be introduced, which improves the availability of the polypeptide/multimer and facilitates the chemical coupling of the polypeptide/multimer to the support. Depending on the nature of the polypeptide/multimer and the coupling conditions, the coupling may be a multipoint coupling (e.g. via a plurality of lysines) or a single point coupling (e.g. via a single cysteine). Alternatively, the polypeptide/multimer may be attached to the support by non-covalent bonding, such as physical adsorption or biospecific adsorption.

10

20

30

35

40

50

55

[0051] In some embodiments the matrix comprises 5 - 25, such as 5-20 mg/ml, 5 - 15 mg/ml, 5 - 11 mg/ml or 6 - 11 mg/ml of the polypeptide or multimer coupled to the support. The amount of coupled polypeptide/multimer can be controlled by the concentration of polypeptide/multimer used in the coupling process, by the activation and coupling conditions used and/or by the pore structure of the support used. As a general rule the absolute binding capacity of the matrix increases with the amount of coupled polypeptide/multimer, at least up to a point where the pores become significantly constricted by the coupled polypeptide/multimer. The relative binding capacity per mg coupled polypeptide/multimer will decrease at high coupling levels, resulting in a cost-benefit optimum within the ranges specified above. [0052] In certain embodiments the polypeptides or multimers are coupled to the support via thioether bonds. Methods for performing such coupling are well-known in this field and easily performed by the skilled person in this field using standard techniques and equipment. Thioether bonds are flexible and stable and generally suited for use in affinity chromatography. In particular when the thioether bond is via a terminal or near-terminal cysteine residue on the polypeptide or multimer, the mobility of the coupled polypeptide/multimer is enhanced which provides improved binding capacity and binding kinetics. In some embodiments the polypeptide/multimer is coupled via a C-terminal cysteine provided on the protein as described above. This allows for efficient coupling of the cysteine thiol to electrophilic groups, e.g. epoxide groups, halohydrin groups etc. on a support, resulting in a thioether bridge coupling.

[0053] In certain embodiments the support comprises a polyhydroxy polymer, such as a polysaccharide. Examples of polysaccharides include e.g. dextran, starch, cellulose, pullulan, agar, agarose etc. Polysaccharides are inherently hydrophilic with low degrees of nonspecific interactions, they provide a high content of reactive (activatable) hydroxyl groups and they are generally stable towards alkaline cleaning solutions used in bioprocessing.

[0054] In some embodiments the support comprises agar or agarose. The supports used in the present invention can easily be prepared according to standard methods, such as inverse suspension gelation (S Hjertén: Biochim Biophys Acta 79(2), 393-398 (1964). Alternatively, the base matrices are commercially available products, such as crosslinked agarose beads sold under the name of SEPHAROSE™ FF (GE Healthcare). In an embodiment, which is especially advantageous for large-scale separations, the support has been adapted to increase its rigidity using the methods described in US6602990 or US7396467, which are hereby incorporated by reference in their entirety, and hence renders the matrix more suitable for high flow rates.

[0055] In certain embodiments the support, such as a polysaccharide or agarose support, is crosslinked, such as with hydroxyalkyl ether crosslinks. Crosslinker reagents producing such crosslinks can be e.g. epihalohydrins like epichlorohydrin, diepoxides like butanediol diglycidyl ether, allylating reagents like allyl halides or allyl glycidyl ether. Crosslinking is beneficial for the rigidity of the support and improves the chemical stability. Hydroxyalkyl ether crosslinks are alkali stable and do not cause significant nonspecific adsorption.

[0056] Alternatively, the solid support is based on synthetic polymers, such as polyvinyl alcohol, polyhydroxyalkyl acrylates, polyhydroxyalkyl methacrylates, polyacrylamides, polymethacrylamides etc. In case of hydrophobic polymers, such as matrices based on divinyl and monovinyl-substituted benzenes, the surface of the matrix is often hydrophilised to expose hydrophilic groups as defined above to a surrounding aqueous liquid. Such polymers are easily produced according to standard methods, see e.g. "Styrene based polymer supports developed by suspension polymerization" (R Arshady: Chimica e L'Industria 70(9), 70-75 (1988)). Alternatively, a commercially available product, such as SOURCE™ (GE Healthcare) is used. In another alternative, the solid support according to the invention comprises a support of inorganic nature, e.g. silica, zirconium oxide etc.

[0057] In yet another embodiment, the solid support is in another form such as a surface, a chip, capillaries, or a filter (e.g. a membrane or a depth filter matrix).

[0058] As regards the shape of the matrix according to the invention, in one embodiment the matrix is in the form of a porous monolith. In an alternative embodiment, the matrix is in beaded or particle form that can be porous or non-porous. Matrices in beaded or particle form can be used as a packed bed or in a suspended form. Suspended forms include those known as expanded beds and pure suspensions, in which the particles or beads are free to move. In case of monoliths, packed bed and expanded beds, the separation procedure commonly follows conventional chromatography with a concentration gradient. In case of pure suspension, batchwise mode will be used.

[0059] In a sixth aspect, the present invention discloses a method of isolating an immunoglobulin, wherein a separation matrix as disclosed above is used.

[0060] In certain embodiments, the method comprises the steps of:

- a) contacting a liquid sample comprising an immunoglobulin with a separation matrix as disclosed above,
- b) washing said separation matrix with a washing liquid,
- c) eluting the immunoglobulin from the separation matrix with an elution liquid, and
- d) cleaning the separation matrix with a cleaning liquid, which can alternatively be called a cleaning-in-place (CIP) liquid, e.g. with a contact (incubation) time of at least 10 min.

The method may also comprise steps of, before step a), providing an affinity separation matrix according to any of the embodiments described above and providing a solution comprising an immunoglobulin and at least one other substance as a liquid sample and of, after step c), recovering the eluate and optionally subjecting the eluate to further separation steps, e.g. by anion or cation exchange chromatography, multimodal chromatography and/or hydrophobic interaction chromatography. Suitable compositions of the liquid sample, the washing liquid and the elution liquid, as well as the general conditions for performing the separation are well known in the art of affinity chromatography and in particular in the art of Protein A chromatography. The liquid sample comprising an Fc-containing protein and at least one other substance may comprise host cell proteins (HCP), such as CHO cell, E Coli or yeast proteins. Contents of CHO cell and E Coli proteins can conveniently be determined by immunoassays directed towards these proteins, e.g. the CHO HCP or E Coli HCP ELISA kits from Cygnus Technologies. The host cell proteins or CHO cell/E Coli proteins may be desorbed during step b).

[0061] The elution may be performed by using any suitable solution used for elution from Protein A media. This can e.g. be a solution or buffer with pH 5 or lower, such as pH 2.5 - 5 or 3 - 5. It can also in some cases be a solution or buffer with pH 11 or higher, such as pH 11 - 14 or pH 11 - 13. In some embodiments the elution buffer or the elution buffer gradient comprises at least one mono- di- or trifunctional carboxylic acid or salt of such a carboxylic acid. In certain embodiments the elution buffer or the elution buffer gradient comprises at least one anion species selected from the group consisting of acetate, citrate, glycine, succinate, phosphate, and formiate.

[0062] In some embodiments, the cleaning liquid is alkaline, such as with a pH of 13 - 14. Such solutions provide efficient cleaning of the matrix, in particular at the upper end of the interval

[0063] In certain embodiments, the cleaning liquid comprises 0.1 - 2.0 M NaOH or KOH, such as 0.5 - 2.0 or 0.5 - 1.0 M NaOH or KOH. These are efficient cleaning solutions, and in particular so when the NaOH or KOH concentration is above 0.1 M or at least 0.5 M. The high stability of the polypeptides of the invention enables the use of such strongly alkaline solutions.

[0064] The method may also include a step of sanitizing the matrix with a sanitization liquid, which may e.g. comprise a peroxide, such as hydrogen peroxide and/or a peracid, such as peracetic acid or performic acid.

[0065] In some embodiments, steps a) - d) are repeated at least 10 times, such as at least 50 times, 50 - 200, 50-300 or 50-500 times. This is important for the process economy in that the matrix can be re-used many times.

[0066] Steps a) - c) can also be repeated at least 10 times, such as at least 50 times, 50 - 200, 50-300 or 50-500 times, with step d) being performed after a plurality of instances of step c), such that step d) is performed at least 10 times, such as at least 50 times. Step d) can e.g. be performed every second to twentieth instance of step c).

Examples

5

10

15

30

35

40

45

50

55

Mutagenesis of protein

[0067] Site-directed mutagenesis was performed by a two-step PCR using oligonucleotides coding for the mutations. As template a plasmid containing a single domain of either Z, B or C was used. The PCR fragments were ligated into an E. coli expression vector. DNA sequencing was used to verify the correct sequence of inserted fragments.

[0068] To form multimers of mutants an Acc I site located in the starting codons (GTA GAC) of the B, C or Z domain was used, corresponding to amino acids VD. The vector for the monomeric domain was digested with Acc I and phosphatase treated. Acc I sticky-ends primers were designed, specific for each variant, and two overlapping PCR products were generated from each template. The PCR products were purified and the concentration was estimated by comparing the PCR products on a 2% agarose gel. Equal amounts of the pair wise PCR products were hybridized (90°C -> 25°C in 45min) in ligation buffer. The resulting product consists approximately to ¼ of fragments likely to be ligated into an Acc I site (correct PCR fragments and/or the digested vector). After ligation and transformation colonies were PCR screened to identify constructs containing the desired mutant. Positive clones were verified by DNA sequencing.

Construct expression and purification

[0069] The constructs were expressed in the bacterial periplasm by fermentation of *E. coli* K12 in standard media. After fermentation the cells were heat-treated to release the periplasm content into the media. The constructs released into the medium were recovered by microfiltration with a membrane having a 0.2 µm pore size.

[0070] Each construct, now in the permeate from the filtration step, was purified by affinity. The permeate was loaded onto a chromatography medium containing immobilized IgG (IgG Sepharose 6FF, GE Healthcare). The loaded product was washed with phosphate buffered saline and eluted by lowering the pH.

The elution pool was adjusted to a neutral pH (pH 8) and reduced by addition of dithiothreitol. The sample was then loaded onto an anion exchanger. After a wash step the construct was eluted in a NaCl gradient to separate it from any contaminants. The elution pool was concentrated by ultrafiltration to 40-50 mg/ml. It should be noted that the successful affinity purification of a construct on an immobilized IgG medium indicates that the construct in question has a high affinity to IgG.

[0071] The purified ligands were analyzed with RPC LC-MS to determine the purity and to ascertain that the molecular weight corresponded to the expected (based on the amino acid sequence).

Example 1

5

10

20

30

35

40

45

50

55

[0072] The purified monomeric ligands listed in Table 1, further comprising an AQGT leader sequence at the N-terminus and a cysteine at the C terminus, were immobilized on Biacore CM5 sensor chips (GE Healthcare, Sweden), using the amine coupling kit of GE Healthcare (for carbodiimide coupling of amines on the carboxymethyl groups on the chip) in an amount sufficient to give a signal strength of about 200-1500 RU in a Biacore surface plasmon resonance (SPR) instrument (GE Healthcare, Sweden) . To follow the IgG binding capacity of the immobilized surface 1mg/ml human polyclonal IgG (Gammanorm) was flowed over the chip and the signal strength (proportional to the amount of binding) was noted. The surface was then cleaned-in-place (CIP), i.e. flushed with 500mM NaOH for 10 minutes at room temperature (22 +/- 2°C). This was repeated for 96-100 cycles and the immobilized ligand alkaline stability was followed as the remaining IgG binding capacity (signal strength) after each cycle. The results are shown in Table 1 and indicate that at least the ligands Zvar(N11K)1, Zvar(N11E)1, Zvar(N11Y)1, Zvar(N11T)1, Zvar(N11F)1, Zvar(N11L)1, Zvar(N11W)1, Zvar(N11M)1, Zvar(N11V)1, Zvar(N11A)1, Zvar(N11H1), Zvar(N11R)1, Zvar(N11E,Q32A)1, Zvar(N11E,Q32E,Q40E)1 and Zvar(N11E,Q32E,K50R)1, Zvar(Q9A,N1 1E,N43A)1, Zvar(Q9A,N11E,N28A,N43A)1, 1E,Q40V,A42K,N43E,L44I)1, Zvar(Q9A,N1 Zvar(Q9A,N11E,Q40V,A42K,N43A,L44I)1, Zvar(N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y)1, Zvar(Q9A,N11E,N28A,Q40V,A42K,N43A,L44I)1, Zvar(Q9A,N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y)1, Zvar(N11K, H18K, D37E, A42R, N43A, L44I)1, Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I)1 and Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I, K50R)1 have an improved alkali stability compared to the parental structure Zvar1, used as the reference. Further, the ligands B(Q9A,N11E,Q40V,A42K,N43A,L44I)1 and C(Q9A,N11E,E43A)1 have an improved stability compared to the parental B and C domains, used as references.

Table 1. Monomeric ligands, evaluated by Biacore (0.5 M NaOH).

Ligand	Sequence	Capacity after 96-100 cycles	Reference capacity after 96-100 cycles	Capacity relative to reference
Zvar(N11E,Q32A)1	SEQ ID NO 12	57%	55%	1.036
Zvar(N11E)1	SEQIDNO 13	59%	55%	1.073
Zvar(N1 1E,Q32E,Q40E)1	SEQ ID NO 14	52%	51%	1.020
Zvar(N1 1E,Q32E,K50R)1	SEQ ID NO 15	53%	51%	1.039
Zvar(N11K) 1	SEQIDNO 16	62%	49%	1.270
Zvar(N11Y)1	SEQIDNO 38	55%	46%	1.20

(continued)

	Ligand	Sequence	Capacity after 96-100 cycles	Reference capacity after 96-100 cycles	Capacity relative to reference
5	Zvar(N11T)1	SEQIDNO 39	50%	46%	1.09
	Zvar(N11F)1	SEQIDNO 40	55%	46%	1.20
10	Zvar(N11L)1	SEQ ID NO 41	57%	47%	1.21
	Zvar(N11W)1	SEQIDNO 42	57%	47%	1.21
15	Zvar(N11I)1	SEQIDNO 43	57%	47%	1.21
	Zvar(N11M)1	SEQ ID NO 44	58%	46%	1.26
20	Zvar(N11V)1	SEQ ID NO 45	56%	46%	1.22
	Zvar(N11A) 1	SEQIDNO 46	58%	46%	1.26
25	Zvar(N11H) 1	SEQ ID NO 47	57%	46%	1.24
	Zvar(N11R)1	SEQIDNO 48	59%	46%	1.28
30	Zvar(Q9A,N11E,N43A)1	SEQIDNO 8	70%	47%	1.49
	Zvar(Q9A,N1 1E,N28A,N43A) 1	SEQIDNO 9	68%	47%	1.45
35	Zvar(Q9A,N11E,Q40V,A42K, N43E,L44I)1	SEQIDNO 10	67%	47%	1.43
	Zvar(Q9A,N11E,Q40V,A42K, N43A,L44I) 1	SEQ ID NO 11	66%	47%	1.40
40	Zvar(Q9A,N11E,N28A,Q40V, A42K,N43A,L44I)1	SEQ ID NO 24	65%	48%	1.35
	Zvar(N11K,H18K,S33K,D37E, A42R,N43A,L44I,K50R,L51Y) 1	SEQ ID NO 23	67%	46%	1.46
45	Zvar(Q9A,N 1 1K,H18K,S33K, D37E,A42R,N43A,L44I,K50R, L5 1Y)1	SEQ ID NO 25	59%	46%	1.28
50	Zvar(N11K, H18K, D37E, A42R, N43A, L44I)1	SEQIDNO 26	59%	45%	1.31
	Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I)1	SEQIDNO 27	63%	45%	1.40
55	Zvar(Q9A, N11K, H18K, D37E, A42R, N43A, L44I, K50R)1	SEQIDNO 28	67%	45%	1.49
	B(Q9A,N11E,Q40V,A42K, N43A,L44I)1	SEQ ID NO 36	39%	35%	1.11

(continued)

Ligand	Sequence	Capacity after 96-100 cycles	Reference capacity after 96-100 cycles	Capacity relative to reference
C(Q9A,N11E,E43A)1	SEQIDNO 37	60%	49%	1.22

Example 2

[0073] The purified tetrameric and hexameric ligands listed in Table 2 were immobilized on Biacore CM5 sensor chips (GE Healthcare, Sweden), using the amine coupling kit of GE Healthcare (for carbodiimide coupling of amines on the carboxymethyl groups on the chip) in an amount sufficient to give a signal strength of about 200-1500 RU in a Biacore instrument (GE Healthcare, Sweden). To follow the IgG binding capacity of the immobilized surface 1mg/ml human polyclonal IgG (Gammanorm) was flowed over the chip and the signal strength (proportional to the amount of binding) was noted. The surface was then cleaned-in-place (CIP), i.e. flushed with 500mM NaOH for 10 minutes at room temperature (22 +/- 2°C). This was repeated for 300 cycles and the immobilized ligand alkaline stability was followed as the remaining IgG binding capacity (signal strength) after each cycle. The results are shown in Table 2 and in Fig. 2 and indicate that at least the ligands Zvar(Q9A,N1 1E,N43A)4, Zvar(Q9A,N11E,N28A,N43A)4, Zvar(Q9A,N11E,Q40V,A42K,N43A,L44I)4 and Zvar(Q9A,N11E,D37E,Q40V,A42K,N43A,L44I)4 and Zvar(Q9A,N11E,D37E,Q40V,A42K,N43A,L44I)4 have an improved alkali stability compared to the parental structure Zvar4, which was used as a reference. The hexameric ligand Zvar(Q9A,N1 1E,Q40V,A42K,N43A,L44I)6 also has improved alkali stability compared to the parental structure Zvar6, used as a reference.

Table 2. Tetrameric and hexameric ligands, evaluated by Biacore (0.5M NaOH).

Ligand	SEQ ID NO:	Remaining capacity 100 cycles (%)	Capacity relative to ref. 100 cycles	Remaining capacity 200 cycles (%)	Capacity relative to ref. 200 cycles	Remaining capacity 300 cycles (%)	Capacity relative to ref. 300 cycles
Zvar4	21	67	1	36	1	16	1
Zvar(Q9A, N11E,N43A)4	17	81	1.21	62	1.72	41	2.56
Zvar(Q9A, N11E,N28A,N 43A)4	18	80	1.19	62	1.72	42	2.62
Zvar(Q9A, N11E,Q40V,A 42K,N43E, L44I)4	19	84	1.25	65	1.81	48	3.00
Zvar(Q9A, N11E,Q40V,A 42K,N43A, L44I)4	20	90	1.34	74	2.06	57	3.56
Zvar(Q9A,N1 1E,N28A,Q 40V,A42K, N43A,L44I)4	32	84	1.24	Not tested	Not tested	Not tested	Not tested
Zvar(Q9A, N11E,Q40V,A 42K,N43A, L44I)6	33	87	1.30	Not tested	Not tested	Not tested	Not tested

(continued)

Ligand	SEQ ID NO:	Remaining capacity 100 cycles (%)	Capacity relative to ref. 100 cycles	Remaining capacity 200 cycles (%)	Capacity relative to ref. 200 cycles	Remaining capacity 300 cycles (%)	Capacity relative to ref. 300 cycles
Zvar(Q9A, N11E,D37E,Q 40V,A42K, N43A,L44I)4	34	81	1.13	Not tested	Not tested	Not tested	Not tested
Zvar(Q9A, N11E,D37E,Q 40V,A42R, N43A,L44I)4	35	84	1.17	Not tested	Not tested	Not tested	Not tested

Example 3

5

10

15

25

30

35

45

50

55

[0074] Example 2 was repeated with 100 CIP cycles of three ligands using 1 M NaOH instead of 500 mM as in Example
 20 2. The results are shown in Table 3 and show that all three ligands have an improved alkali stability also in 1M NaOH, compared to the parental structure Zvar4 which was used as a reference.

Table 3. Tetrameric ligands, evaluated by Biacore (1M NaOH).

Ligand	Sequence	Remaining capacity 100 cycles (%)	Capacity relative to ref. 100 cycles
Zvar4	SEQ ID NO 21	27	1
Zvar(Q9A,N11E,N28A,N43A)4	SEQ ID NO 18	55	2.04
Zvar(Q9A,N11E,Q40V,A42K, N43E,L44I)4	SEQ ID NO 19	54	2.00
Zvar(Q9A,N11E,Q40V,A42K, N43A,L44I)4	SEQ ID NO 20	56	2.07

Example 4

[0075] The purified tetrameric ligands of Table 2 (all with an additional N-terminal cysteine) were immobilized on agarose beads using the methods described below and assessed for capacity and stability. The results are shown in Table 4 and Fig. 3.

Table 4. Matrices with tetrametric ligands, evaluated in columns (0.5 M NaOH).

Ligand	SEQ ID NO.	Ligand content (mg/ml)	Initial IgG capacity Qb10 (mg/ml)	Remaining IgG capacity Qb10 after six 4 h cycles (mg/ml)	Remaining IgG capacity after six 4 h cycles (%)	Capacity retention relative to ref. after six 4 h cycles
Zvar4	21	7	52.5	36.5	60	1
Zvar4	21	12	61.1	43.4	71	1
Zvar(Q9A, N11E,N28A, N43A)4	18	7.0	49.1	44.1	90	1.50
Zvar(Q9A, N11E,N28A, N43A)4	18	12.1	50.0	46.2	93	1.31

(continued)

5	Ligand	SEQ ID NO.	Ligand content (mg/ml)	Initial IgG capacity Qb10 (mg/ml)	Remaining IgG capacity Qb10 after six 4 h cycles (mg/ml)	Remaining IgG capacity after six 4 h cycles (%)	Capacity retention relative to ref. after six 4 h cycles
10	Zvar(Q9A, N11E,Q40V, A42K,N43A, L44I)4	20	7.2	49.0	44.2	90	1.50
15	Zvar(Q9A, N11E,Q40V, A42K,N43A, L44I)4	20	12.8	56.3	53.6	95	1.34
20	Zvar(N11K, H18K,S33K, D37E,A42R, N43A ,L44I, K50R,L51Y)4	30	9.7	56.3	52.0	92	1.53
25	Zvar(Q9A, N11K,H18K, D37E,A42R)4	31	10.8	56.9	52.5	92	1.30

Activation

30

35

40

50

[0076] The base matrix used was rigid cross-linked agarose beads of 85 micrometers (volume-weighted, d50V) median diameter, prepared according to the methods of US6602990 and with a pore size corresponding to an inverse gel filtration chromatography Kav value of 0.70 for dextran of Mw 110 kDa, according to the methods described in Gel Filtration Principles and Methods, Pharmacia LKB Biotechnology 1991, pp 6-13.

[0077] 25 mL (g) of drained base matrix, 10.0 mL distilled water and 2.02 g NaOH (s) was mixed in a 100 mL flask with mechanical stirring for 10 min at 25°C. 4.0 mL of epichlorohydrin was added and the reaction progressed for 2 hours. The activated gel was washed with 10 gel sediment volumes (GV) of water.

Coupling

[0078] To 20 mL of ligand solution (50 mg/mL) in a 50 ml Falcon tube, 169 mg NaHCO $_3$, 21 mg Na $_2$ CO $_3$, 175 mg NaCl and 7 mg EDTA, was added. The Falcon tube was placed on a roller table for 5-10 min, and then 77 mg of DTE was added. Reduction proceeded for >45 min. The ligand solution was then desalted on a PD10 column packed with Sephadex G-25. The ligand content in the desalted solution was determined by measuring the 276 nm UV absorption.

[0079] The activated gel was washed with 3-5 GV {0.1 M phosphate/l mM EDTA pH 8.6} and the ligand was then coupled according to the method described in US6399750. All buffers used in the experiments had been degassed by nitrogen gas for at least 5-10 min. The ligand content of the gels could be controlled by varying the amount and concentration of the ligand solution.

[0080] After immobilization the gels were washed 3xGV with distilled water. The gels + 1 GV {0.1 M phosphate/l mM EDTA/10% thioglycerol pH 8.6} was mixed and the tubes were left in a shaking table at room temperature overnight. The gels were then washed alternately with 3xGV {0.1 M TRIS/0.15 M NaCl pH 8.6} and 0.5 M HAc and then 8-10xGV with distilled water. Gel samples were sent to an external laboratory for amino acid analysis and the ligand content (mg/ml gel) was calculated from the total amino acid content.

Protein

⁵⁵ [0081] Gammanorm 165 mg/ml (Octapharma), diluted to 2mg/ml in Equilibration buffer.

Equilibration buffer

[0082] PBS Phosphate buffer 10 mM + 0.14 M NaCl + 0.0027 M KCl, pH 7,4 (Medicago)

5 Adsorption buffer

[0083] PBS Phosphate buffer 10 mM + 0.14 M NaCl + 0.0027 M KCl, pH 7,4 (Medicago)

Elution buffers

10

30

35

[0084] 100 mM acetate pH 2.9

Dynamic binding capacity

[0085] 2 ml of resin was packed in TRICORN™ 5 100 columns. The breakthrough capacity was determined with an ÄKTAExplorer 10 system at a residence time of 6 minutes (0.33 ml/min flow rate). Equilibration buffer was run through the bypass column until a stable baseline was obtained. This was done prior to auto zeroing. Sample was applied to the column until a 100% UV signal was obtained. Then, equilibration buffer was applied again until a stable baseline was obtained.

[0086] Sample was loaded onto the column until a UV signal of 85% of maximum absorbance was reached. The column was then washed with 5 column volumes (CV) equilibration buffer at flow rate 0.5ml/min. The protein was eluted with 5 CV elution buffer at a flow rate of 0.5 ml/min. Then the column was cleaned with 0.5M NaOH at flow rate 0.2 ml/min and reequilibrated with equilibration buffer.

[0087] For calculation of breakthrough capacity at 10%, the equation below was used. That is the amount of IgG that is loaded onto the column until the concentration of IgG in the column effluent is 10% of the IgG concentration in the feed.

$$q_{10\%} = \frac{C_0}{V_C} \left[V_{app} - V_{sys} - \int_{V_{sys}}^{V_{app}} \frac{A(V) - A_{sub}}{A_{100\%} - A_{sub}} * dV \right]$$

 $A_{100\%} = 100\%$ UV signal;

A_{sub} = absorbance contribution from non-binding IgG subclass;

A(V) = absorbance at a given applied volume;

V_c = column volume;

V_{app} = volume applied until 10% breakthrough;

V_{sys} = system dead volume;

Co = feed concentration.

The dynamic binding capacity (DBC) at 10% breakthrough was calculated. The dynamic binding capacity (DBC) was calculated for 10 and 80% breakthrough.

CIP - 0.5 M NaOH

[0088] The 10% breakthrough DBC (Qb 10) was determined both before and after repeated exposures to alkaline cleaning solutions. Each cycle included a CIP step with 0.5 M NaOH pumped through the column at a rate of 0.5/min for 20 min, after which the column was left standing for 4 h. The exposure took place at room temperature (22 +/- 2°C). After this incubation, the column was washed with equilibration buffer for 20 min at a flow rate of 0.5 ml/min. Table 4 shows the remaining capacity after six 4 h cycles (i.e. 24 h cumulative exposure time to 0.5 M NaOH), both in absolute numbers and relative to the initial capacity.

Example 5

55

[0089] Example 4 was repeated with the tetrameric ligands shown in Table 5, but with 1.0 M NaOH used in the CIP steps instead of 0.5 M. The results are shown in Table 5 and in Fig. 4.

Table 5. Matrices with tetrametric ligands, evaluated in columns - 1.0 M NaOH.

5	Ligand	SEQ ID NO.	Ligand content (mg/ml)	Initial IgG capacity Qb10 (mg/ml)	Remaining IgG capacity Qb10 after six 4 h cycles (mg/ml)	Remaining IgG capacity after six 4 h cycles (%)	Capacity retention relative to ref. after six 4 h cycles
	Zvar4	21	12	60.1	33.5	56	1
10	Zvar(Q9A, N11E,Q40V, A42K,N43A, L44I)4	20	12.8	60.3	56.0	93	1.67
15	Zvar(N11K, H18K,S33K, D37E,A42R, N43A ,L44I, K50R,L51Y)4	30	9.7	62.1	48.1	77	1.44

[0090] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims. All patents and patent applications mentioned in the text are hereby incorporated by reference in their entireties, as if they were individually incorporated.

SEQUENCE LISTING

	<110> GE Healthcare Bio-Sciences AB
5	<120> MUTATED IMMUNOGLOBULIN-BINDING POLYPEPTIDES
	<130> PU1457 2
	<160> 53
10	<170> PatentIn version 3.5
15	<210> 1 <211> 51 <212> PRT <213> Staphylococcus aureus
	<400> 1
20	Ala Gln Gln Asn Ala Phe Tyr Gln Val Leu Asn Met Pro Asn Leu Asn 1 5 10 15
	Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser 20 25 30
25	Gln Ser Ala Asn Val Leu Gly Glu Ala Gln Lys Leu Asn Asp Ser Gln 35 40 45
30	Ala Pro Lys 50
35	<210> 2 <211> 61 <212> PRT <213> Staphylococcus aureus
	<400> 2
40	Ala Asp Ala Gln Gln Asn Lys Phe Asn Lys Asp Gln Gln Ser Ala Phe 1 5 10 15
45	Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly 20 25 30
	Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Thr Asn Val Leu 35 40 45
50	Gly Glu Ala Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys 50 55 60
55	<210> 3 <211> 58 <212> PRT <213> Staphylococcus aureus

	<40)> :	3													
	Ala 1	Asp	Asn	Asn	Phe 5	Asn	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
5																
	Leu	Asn	Met	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
10	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Glu	Ser	Gln 55	Ala	Pro	Lys						
20	<210 <210 <210 <210	1> ! 2> I	4 58 PRT Stapl	nvl o	cocci	1S 21	ıreu:	3								
	<40		4													
25	Ala 1	Asp	Asn	Lys	Phe 5	Asn	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
	Leu	His	Leu	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
30				20					2.7					50		
	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
35	Lys	Lys 50	Leu	Asn	Asp	Ala	Gl n 55	Ala	Pro	Lys						
40	<210 <210 <210	1> !	5 58 PRT													
	<21		Stapl	nylo	coccı	ıs aı	ıreus	5								
	<40)> !	5													
45	Ala 1	Asp	Asn	Lys	Phe 5	Asn	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
50	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Val 40	Ser	Lys	Glu	Ile	Leu 45	Ala	Glu	Ala
55	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						

	<210><211><211><212><213>	6 58 PRT Esche	ericl	nia d	coli										
5	<400>	6													
	Val A	sp Asn	Lys	Phe 5	Asn	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
10															
	Leu H	is Leu	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
15	Ser L	eu Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
20	Lys Ly	ys Leu O	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
25	<210> <211> <212> <213>	58	ericl	nia d	coli										
	<400>	7													
30	Val A	sp Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
	Leu H	is Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
35	Ser L	eu Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
40	Lys Ly	ys Leu O	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
45	<210> <211> <212> <213>	58 PRT	erich	nia d	coli										
	<400>	8													
50	Val A	sp Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
55	Leu H	is Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
	Ser L	eu Lys	Asp	Asp	Pro	Ser	Gln	Ser	Ala	Ala	Leu	Leu	Ala	Glu	Ala

5	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
10	<210> 9 <211> 58 <212> PRT <213> Escherichia coli
	<400> 9
15	Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr Glu Ile 1 5 10 15
	Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Ala Ala Phe Ile Gln 20 25 30
20	Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Ala Leu Leu Ala Glu Ala 35 40 45
25	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
30	<210> 10 <211> 58 <212> PRT <213> Escherichia coli
	<400> 10
35	Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr Glu Ile 1 5 10 15
40	Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Gln 20 25 30
	Ser Leu Lys Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala 35 40 45
45	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
50	<210> 11 <211> 58 <212> PRT <213> Escherichia coli
	<400> 11
55	Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr Glu Ile 1 5 10 15

	Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Gln 20 25 30
5	Ser Leu Lys Asp Asp Pro Ser Val Ser Lys Ala Ile Leu Ala Glu Ala 35 40 45
10	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
15	<210> 12 <211> 58 <212> PRT <213> Escherichia coli
	<400> 12
20	Val Asp Ala Lys Phe Asp Lys Glu Gln Glu Ala Phe Tyr Glu Ile 1 5 10 15
	Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Ala 20 25 30
25	Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala 35 40 45
30	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
35	<210> 13 <211> 58 <212> PRT <213> Escherichia coli <400> 13
40	Val Asp Ala Lys Phe Asp Lys Glu Gln Glu Ala Phe Tyr Glu Ile 1 5 10 15
	Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Gln 20 25 30
45	Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala 35 40 45
50	Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50 55
55	<210> 14 <211> 58 <212> PRT <213> Escherichia coli

	<400)> :	14													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
5	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Glu
10	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Glu 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
20		L> ! 2> I	15 58 PRT Esche	ericl	nia (coli										
	<400		15													
25	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Glu
30	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
35	Lys	Arg 50	Leu	Asn	Asp	Ala	Gl n 55	Ala	Pro	Lys						
40	<210 <211 <212 <213	L> ! 2> I	16 58 PRT Esche	ericl	nia (coli										
	<400)> :	16													
45	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
50	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
55	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						

5	<210 <211 <212 <213	L> 2 2> I	l7 237 PRT Esche	erich	nia d	coli										
3	<400)> 1	L7													
10	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Ala	Gln	Glu 15	Ala
10	Phe	Tyr	Glu	Ile 20	Leu	His	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
15	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Asp	Pro	Ser	Gln	Ser 45	Ala	Ala	Leu
20	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
25	Ala 65	Lys	Phe	Asp	Lys	Glu 70	Ala	Gln	Glu	Ala	Phe 75	Tyr	Glu	Ile	Leu	His 80
	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
30	Lys	Asp	Asp	Pro 100	Ser	Gln	Ser	Ala	Ala 105	Leu	Leu	Ala	Glu	A la 110	Lys	Lys
35	Leu	Asn	Asp 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
40	Ala	Gln 130	Glu	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
40	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Asp	Pro	Ser	Gln 160
45	Ser	Ala	Ala	Leu	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala
50	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Ala	Gln	Glu	Ala 190	Phe	Tyr
	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
55	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Gln	Ser	Ala 220	Ala	Leu	Leu	Ala

Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Cys

	225	230	235
5	<210> 18 <211> 237 <212> PRT <213> Escheric	thia coli	
10	<400> 18		
	Ala Gln Gly Thr	: Val Asp Ala Lys E	Phe Asp Lys Glu Ala Gln Glu Ala
	1	5	10 15
15	Phe Tyr Glu Ile 20		Asn Leu Thr Glu Glu Gln Arg Ala 25 30
20	Ala Phe Ile Glr	Ser Leu Lys Asp A	Asp Pro Ser Gln Ser Ala Ala Leu
	35	40	45
25	Leu Ala Glu Ala	Lys Lys Leu Asn A	Asp Ala Gln Ala Pro Lys Val Asp
	50	55	60
25	Ala Lys Phe Asp	D Lys Glu Ala Gln G	Glu Ala Phe Tyr Glu Ile Leu His
	65	70	75 80
30	Leu Pro Asn Leu	Thr Glu Glu Gln Æ	Arg Ala Ala Phe Ile Gln Ser Leu 90 95
35	Lys Asp Asp Pro		Ala Leu Leu Ala Glu Ala Lys Lys 105 110
40	Leu Asn Asp Ala	Gln Ala Pro Lys V	Val Asp Ala Lys Phe Asp Lys Glu
	115	120	125
40	Ala Gln Glu Ala	Phe Tyr Glu Ile I	Leu His Leu Pro Asn Leu Thr Glu
	130	135	140
45	Glu Gln Arg Ala	Ala Phe Ile Gln S	Ser Leu Lys Asp Asp Pro Ser Gln
	145	150	155 160
50	Ser Ala Ala Leu	ı Leu Ala Glu Ala I 165	Lys Lys Leu Asn Asp Ala Gln Ala 170 175
	Pro Lys Val Asp 180		Lys Glu Ala Gln Glu Ala Phe Tyr 185 190
55	Glu Ile Leu His	Leu Pro Asn Leu 1	Thr Glu Glu Gln Arg Ala Ala Phe
	195	200	205

	Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Ala Leu Leu Ala 210 215 220
5	Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Cys 225 230 235
10	<210> 19 <211> 237 <212> PRT <213> Escherichia coli
	<400> 19
15	Ala Gln Gly Thr Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala 1 5 10 15
20	Phe Tyr Glu Ile Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn 20 25 30
	Ala Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val Ser Lys Glu Ile 35 40 45
25	Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Val Asp 50 55 60
30	Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr Glu Ile Leu His 65 70 75 80
35	Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Gln Ser Leu 85 90 95
	Lys Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys 100 105 110
40	Leu Asn Asp Ala Gln Ala Pro Lys Val Asp Ala Lys Phe Asp Lys Glu 115 120 125
45	Ala Gln Glu Ala Phe Tyr Glu Ile Leu His Leu Pro Asn Leu Thr Glu 130 135 140
50	Glu Gln Arg Asn Ala Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val 145 150 155 160
	Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala 165 170 175
55	Pro Lys Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr 180 185 190

	GIu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	GLu	GLu	GIn	Arg 205	Asn	Ala	Phe
5	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Val	Ser	Lys 220	Glu	Ile	Leu	Ala
10	Glu 225	Ala	Lys	Lys	Leu	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
15	<210 <211 <211 <211	1> 2 2> E	20 237 PRT Esche	erich	nia d	coli										
	<400	0> 2	20													
20	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Ala	Gln	Glu 15	Ala
	Phe	Tyr	Glu	Ile 20	Leu	His	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
25	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Asp	Pro	Ser	Val	Ser 45	Lys	Ala	Ile
30	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
35	Ala 65	Lys	Phe	Asp	Lys	Glu 70	Ala	Gln	Glu	Ala	Phe 75	Tyr	Glu	Ile	Leu	His 80
	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
40	Lys	Asp	Asp	Pro 100	Ser	Val	Ser	Lys	Ala 105	Ile	Leu	Ala	Glu	A la 110	Lys	Lys
45	Leu	Asn	Asp 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
50	Ala	Gln 130	Glu	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Asp	Pro	Ser	Val 160
55	Ser	Lys	Ala	Ile	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala

	PIO	гуз	Val	180	AIA	цуѕ	rne	ASP	185	GIU	AIA	GIII	GIU	190	rne	TYL
5	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
10	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Val	Ser	Lys 220	Ala	Ile	Leu	Ala
	Glu 225	Ala	Lys	Lys	Leu	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
15	<210 <210 <210 <210	1> 2 2> I	21 237 PRT Esche	erich	nia d	coli										
20	<40	0> 2	21													
	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Gln	Gln	Asn 15	Ala
25	Phe	туг	Glu	Ile 20	Leu	His	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
30	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Asp	Pro	Ser	Gln	Ser 45	Ala	Asn	Leu
35	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
	Ala 65	Lys	Phe	Asp	Lys	Glu 70	Gln	Gln	Asn	Ala	Phe 75	Tyr	Glu	Ile	Leu	His 80
40	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
45	Lys	Asp	Asp	Pro 100	Ser	Gln	Ser	Ala	Asn 105	Leu	Leu	Ala	Glu	Ala 110	Lys	Lys
50	Leu	Asn	As p 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
	Gln	Gln 130	Asn	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
55	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Asp	Pro	Ser	Gln 160

	Ser	Ala	Asn	Leu	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala
5	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Gln	Gln	Asn	Ala 190	Phe	Tyr
10	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
15	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Gln	Ser	A la 220	Asn	Leu	Leu	Ala
15	Glu 225	Ala	Lys	Lys	Leu	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
20	<210 <211 <212 <213	L> 5 2> E	22 58 PRT Stapl	nyloo	cocci	ıs aı	ıreus	5								
25	<400)> 2	22													
	Ala 1	Asp	Asn	Asn	Phe 5	Asn	Lys	Glu	Gln	Gln 10	Asn	Ala	Phe	Tyr	Glu 15	Ile
30	Leu	Asn	Met	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
35	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ser	Glu	Ala
40	Lys	Lys 50	Leu	Asn	Glu	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212	L> 5 2> E	23 58 PRT			1:										
45	<213 <400		iscne 23	erich	ııa (2011										
		Asp		Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
50	Leu	Lys	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
55	Lys	Leu	Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Ala	Ile	Leu 4 5	Ala	Glu	Ala

Lys Arg Tyr Asn Asp Ala Gln Ala Pro Lys 50 55

5	<210> <211> <212> <213>	24 58 PRT	ari cl	nia (roli										
	12132	100			.011										
10	<400>	24													
	Val As _I	Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
15	Leu His	s Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Ala	Ala	Phe 30	Ile	Gln
20	Ser Let	ı Lys 35	Asp	Asp	Pro	Ser	Val 40	Ser	Lys	Ala	Ile	Leu 45	Ala	Glu	Ala
	Lys Lys 50	s Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
25	<210> <211> <212> <213>		ericl	nia d	coli										
30	<400>	25													
	Val Ası 1	Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
35	Leu Lys	s Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Ala	Ala	Phe 30	Ile	Gln
40	Lys Let	1 Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Ala	Ile	Leu 45	Ala	Glu	Ala
45	Lys Arc	J Tyr	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
45	-010	0.6													
	<210> <211> <212> <213>		ericl	nia d	coli										
50	<400>	26													
	7500/	20													
	Val Asp 1	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
55	-			J					10						
-	Leu Lys	s Leu	Pro	Asn	Leu	Thr	Glu	Glu	Gln	Arσ	Asn	Ala	Phe	Ile	Gln
	-2 -		-			_				9			-	_	

5	Ser :	Leu	Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Ala	Ile	Leu 45	Ala	Glu	Ala
	Lys :	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
10	<210: <211: <212: <213:	> 5 > P	?7 88 PRT Ische	erich	nia d	coli										
15	<400	> 2	27													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
20	Leu :	Lys	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
25	Ser :	Leu	Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Ala	Ile	Leu 4 5	Ala	Glu	Ala
30	Lys :	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
35	<210: <211: <212: <213:	> 5 > P > E	8 8 PRT Ische	erich	nia d	coli										
	<400: Val 2		8 Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Lys	Ala	Phe	Tyr	Glu 15	Ile
40	Leu :	Lys	Leu	Pro 20	Asn	Leu	Thr	Glu	G1u 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
45	Ser :	Leu	Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Ala	Ile	Le u 4 5	Ala	Glu	Ala
50	Lys i	Arg 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
55	<210: <211: <212: <213:	> 5 > P	9 8 RT Ische	erich	nia d	coli										
	<400	> 2	9													

	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	GLu	Ala	GIn 10	Lys	Ala	Phe	Tyr	GIu 15	тте
5	Leu	Lys	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
10	Ser	Leu	Lys 35	Asp	Glu	Pro	Ser	Gln 40	Ser	Arg	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	l> 2 2> E	30 237 PRT Esche	erich	nia d	coli										
20	<400	O> 3	30													
	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Gln	Gln	Lys 15	Ala
25	Phe	Tyr	Glu	Ile 20	Leu	Lys	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
30	Ala	Phe	Ile 35	Gln	Lys	Leu	Lys	Asp 40	Glu	Pro	Ser	Gln	Ser 45	Arg	Ala	Ile
35	Leu	Ala 50	Glu	Ala	Lys	Arg	Tyr 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
	Ala 65	Lys	Phe	Asp	Lys	Glu 70	Gln	Gln	Lys	Ala	Phe 75	Tyr	Glu	Ile	Leu	Lys 80
40	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Lys 95	Leu
45	Lys	Asp	Glu	Pro 100	Ser	Gln	Ser	Arg	Ala 105	Ile	Leu	Ala	Glu	Ala 110	Lys	Arg
50	Tyr	Asn	As p 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
	Gln	Gln 130	Lys	Ala	Phe	Tyr	Glu 135	Ile	Leu	Lys	Leu	Pro 140	Asn	Leu	Thr	Glu
55	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Lys	Leu	Lys 155	Asp	Glu	Pro	Ser	Gln 160

	ser	Arg	AIG	TTG	165	AIG	GIU	AIG	гу	170	ıyı	ASII	Asp	AIA	175	AIG
5	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Gln	Gln	Lys	Ala 190	Phe	Tyr
10	Glu	Ile	Leu 195	Lys	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
	Ile	Gln 210	Lys	Leu	Lys	Asp	Glu 215	Pro	Ser	Gln	Ser	A rg 220	Ala	Ile	Leu	Ala
15	Glu 225	Ala	Lys	Arg	Tyr	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
20	<210 <211 <212 <213	l> 2 2> E	31 237 PRT Esche	erich	nia d	coli										
25	<400 Ala 1		Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Ala	Gln	Lys 15	Ala
30	Phe	Tyr	Glu	Ile 20	Leu	Lys	Leu	Pro	A sn 25	Leu	Thr	Glu	Glu	Gl n 30	Arg	Asn
35	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Glu	Pro	Ser	Gln	Ser 45	Arg	Asn	Leu
	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
40	Ala 65	Lys	Phe	Asp	Lys	Gl u 70	Ala	Gln	Lys	Ala	Phe 75	Tyr	Glu	Ile	Leu	Lys 80
45	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
50	Lys	Asp	Glu	Pro 100	Ser	Gln	Ser	Arg	Asn 105	Leu	Leu	Ala	Glu	Ala 110	Lys	Lys
	Leu	Asn	Asp 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
55	Ala	Gln 130	Lys	Ala	Phe	Tyr	Glu 135	Ile	Leu	Lys	Leu	Pro 140	Asn	Leu	Thr	Glu

	Glu Gln Arg Asn Ala	Phe Ile Gln Ser Leu	Lys Asp Glu Pro Ser Gln
	145	150	155 160
5	Ser Arg Asn Leu Leu	Ala Glu Ala Lys Lys	Leu Asn Asp Ala Gln Ala
	165	170	175
10	Pro Lys Val Asp Ala	Lys Phe Asp Lys Glu	Ala Gln Lys Ala Phe Tyr
	180	185	190
-	Glu Ile Leu Lys Leu	Pro Asn Leu Thr Glu	Glu Gln Arg Asn Ala Phe
	195	200	205
15	Ile Gln Ser Leu Lys	Asp Glu Pro Ser Gln	Ser Arg Asn Leu Leu Ala
	210	215	220
20	Glu Ala Lys Lys Leu	Asn Asp Ala Gln Ala	Pro Lys Cys
	225	230	235
25	<210> 32 <211> 237 <212> PRT <213> Escherichia c	coli	
	<400> 32		
30	Ala Gln Gly Thr Val	Asp Ala Lys Phe Asp	Lys Glu Ala Gln Glu Ala
	1 5	10	15
35	Phe Tyr Glu Ile Leu	His Leu Pro Asn Leu	Thr Glu Glu Gln Arg Ala
	20	25	30
	Ala Phe Ile Gln Ser	Leu Lys Asp Asp Pro	Ser Val Ser Lys Ala Ile
	35	40	45
40	Leu Ala Glu Ala Lys	Lys Leu Asn Asp Ala	Gln Ala Pro Lys Val Asp
	50	55	60
45	Ala Lys Phe Asp Lys	Glu Ala Gln Glu Ala	Phe Tyr Glu Ile Leu His
	65	70	75 80
50	Leu Pro Asn Leu Thr	Glu Glu Gln Arg Ala	Ala Phe Ile Gln Ser Leu
	85	90	95
	Lys Asp Asp Pro Ser	Val Ser Lys Ala Ile	Leu Ala Glu Ala Lys Lys
	100	105	110
55	Leu Asn Asp Ala Gln	Ala Pro Lys Val Asp	Ala Lys Phe Asp Lys Glu
	115	120	125

	Ala	Gln 130	Glu	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
5	Glu 145	Gln	Arg	Ala	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Asp	Pro	Ser	Val 160
10	Ser	Lys	Ala	Ile	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala
	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Ala	Gln	Glu	A la 190	Phe	Tyr
15	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Ala	Ala	Phe
20	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Val	Ser	Lys 220	Ala	Ile	Leu	Ala
25	Glu 225	Ala	Lys	Lys	Leu	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
30	<210 <211 <212 <213	l> 3 2> E	33 353 PRT Esche	erich	nia d	coli										
	<400)> 3	33													
35	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Ala	Gln	Glu 15	Ala
	Phe	Tyr	Glu	Ile 20	Leu	His	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
40	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Asp	Pro	Ser	Val	Ser 45	Lys	Ala	Ile
45	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
50	Ala 65	Lys	Phe	Asp	Lys	Gl u 70	Ala	Gln	Glu	Ala	Phe 75	Tyr	Glu	Ile	Leu	His 80
	Leu	Pro	Asn	Leu	Thr 85	Gl u	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
55	Lys	Asp	Asp	Pro 100	Ser	Val	Ser	Lys	Ala 105	Ile	Leu	Ala	Glu	Ala 110	Lys	Lys

	Leu	Asn	Asp 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
5	Ala	Gln 130	Glu	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
10	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Asp	Pro	Ser	Val 160
45	Ser	Lys	Ala	Ile	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala
15	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Ala	Gln	Glu	Ala 190	Phe	Tyr
20	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
25	Ile	Gln 210	Ser	Leu	Lys	Asp	Asp 215	Pro	Ser	Val	Ser	Lys 220	Ala	Ile	Leu	Ala
	Glu 225	Ala	Lys	Lys	Leu	Asn 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Val	Asp	Ala	Lys 240
30	Phe	Asp	Lys	Glu	Ala 245	Gln	Glu	Ala	Phe	Tyr 250	Glu	Ile	Leu	His	Leu 255	Pro
35	Asn	Leu	Thr	Glu 260	Glu	Gln	Arg	Asn	Ala 265	Phe	Ile	Gln	Ser	Leu 270	Lys	Asp
40	Asp	Pro	Ser 275	Val		_	Ala			Ala			Lys 285	_	Leu	Asn
	Asp	Ala 290	Gln	Ala	Pro	Lys	Val 295	Asp	Ala	Lys	Phe	Asp 300	Lys	Glu	Ala	Gln
45	Glu 305	Ala	Phe	Tyr	Glu	Ile 310	Leu	His	Leu	Pro	Asn 315	Leu	Thr	Glu	Glu	Gln 320
50	Arg	Asn	Ala	Phe	Ile 325	Gln	Ser	Leu	Lys	Asp 330	Asp	Pro	Ser	Val	Ser 335	Lys
	Ala	Ile	Leu	Ala 340	Glu	Ala	Lys	Lys	Leu 3 4 5	Asn	Asp	Ala	Gln	Ala 350	Pro	Lys
55	Cys															

	<210 <210 <210 <210	L> : 2> :	34 237 PRT Esche	ericl	nia (coli										
5	<40)> :	34													
	Ala 1	Gln	Gly	Thr	Val 5	Asp	Ala	Lys	Phe	Asp 10	Lys	Glu	Ala	Gln	Glu 15	Ala
10	Phe	Tyr	Glu	Ile 20	Leu	His	Leu	Pro	Asn 25	Leu	Thr	Glu	Glu	Gln 30	Arg	Asn
15	Ala	Phe	Ile 35	Gln	Ser	Leu	Lys	Asp 40	Glu	Pro	Ser	Val	Ser 45	Lys	Ala	Ile
20	Leu	Ala 50	Glu	Ala	Lys	Lys	Leu 55	Asn	Asp	Ala	Gln	Ala 60	Pro	Lys	Val	Asp
25	Ala 65	Lys	Phe	Asp	Lys	Glu 70	Ala	Gln	Glu	Ala	Phe 75	Tyr	Glu	Ile	Leu	His 80
	Leu	Pro	Asn	Leu	Thr 85	Glu	Glu	Gln	Arg	Asn 90	Ala	Phe	Ile	Gln	Ser 95	Leu
30	Lys	Asp	Glu	Pro 100	Ser	Val	Ser	Lys	Ala 105	Ile	Leu	Ala	Glu	Ala 110	Lys	Lys
35	Leu	Asn	Asp 115	Ala	Gln	Ala	Pro	Lys 120	Val	Asp	Ala	Lys	Phe 125	Asp	Lys	Glu
40	Ala	Gln 130	Glu	Ala	Phe	Tyr	Glu 135	Ile	Leu	His	Leu	Pro 140	Asn	Leu	Thr	Glu
40	Glu 145	Gln	Arg	Asn	Ala	Phe 150	Ile	Gln	Ser	Leu	Lys 155	Asp	Glu	Pro	Ser	Val 160
45	Ser	Lys	Ala	Ile	Leu 165	Ala	Glu	Ala	Lys	Lys 170	Leu	Asn	Asp	Ala	Gln 175	Ala
50	Pro	Lys	Val	Asp 180	Ala	Lys	Phe	Asp	Lys 185	Glu	Ala	Gln	Glu	Ala 190	Phe	Tyr
	Glu	Ile	Leu 195	His	Leu	Pro	Asn	Leu 200	Thr	Glu	Glu	Gln	Arg 205	Asn	Ala	Phe
55	Ile	Gln 210	Ser	Leu	Lys	Asp	Glu 215	Pro	Ser	Val	Ser	Lys 220	Ala	Ile	Leu	Ala

Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Cys

	225 230 235	
5	<210> 35 <211> 237 <212> PRT <213> Escherichia coli	
10	<400> 35	
	Ala Gln Gly Thr Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala 1 5 10 15	L
15	Phe Tyr Glu Ile Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn 20 25 30	L
20	Ala Phe Ile Gln Ser Leu Lys Asp Glu Pro Ser Val Ser Arg Ala Ile 35 40 45	:
25	Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Val Asp 50 55 60	•
	Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr Glu Ile Leu His 65 70 75 80	;
30	Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe Ile Gln Ser Leu 85 90 95	l
35	Lys Asp Glu Pro Ser Val Ser Arg Ala Ile Leu Ala Glu Ala Lys Lys 100 105 110	;
40	Leu Asn Asp Ala Gln Ala Pro Lys Val Asp Ala Lys Phe Asp Lys Glu 115 120 125	L
40	Ala Gln Glu Ala Phe Tyr Glu Ile Leu His Leu Pro Asn Leu Thr Glu 130 135 140	L
45	Glu Gln Arg Asn Ala Phe Ile Gln Ser Leu Lys Asp Glu Pro Ser Val 145 150 155 160	
50	Ser Arg Ala Ile Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala 165 170 175	L
	Pro Lys Val Asp Ala Lys Phe Asp Lys Glu Ala Gln Glu Ala Phe Tyr 180 185 190	:
55	Glu Ile Leu His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Ala Phe 195 200 205	•

	iie (210	ser	Leu	гуѕ	Asp	215	PIO	ser	Val	ser	220	Ald	11e	rea	Ala
5	Glu 2 225	Ala	Lys	Lys	Leu	As n 230	Asp	Ala	Gln	Ala	Pro 235	Lys	Cys			
10	<210: <211: <212: <213:	> 5 > E		erich	nia d	coli										
	<400	> 3	36													
15	Ala i	Asp	Asn	Lys	Phe 5	Asn	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
20	Leu 1	His	Leu	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
25	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Val 40	Ser	Lys	Ala	Ile	Leu 45	Ala	Glu	Ala
23	Lys !	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
30	<210: <211: <212: <213:	> 5 > E		erich	nia c	oli										
35	<400	> 3	37													
	Ala i	Asp	Asn	Lys	Phe 5	Asn	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
40	Leu 1	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Gly	Phe 30	Ile	Gln
45	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Val 40	Ser	Lys	Ala	Ile	Leu 45	Ala	Glu	Ala
50	Lys :	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
	<210: <211: <212:	> 5 > E	88 88 PRT			.a.1 :										
55	<213		ische	LICE	та С	:011										
	<400	> 3	88													

	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Tyr	Ala	Phe	Tyr	Glu 15	Ile
5	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	G1u 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
10	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	L> ! !> !	39 58 PRT Esche	erich	nia d	coli										
20	<400)> 3	39													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Thr	Ala	Phe	Tyr	Glu 15	Ile
25	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
30	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 4 5	Ala	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
35	<210 <211 <212 <213	L> ! ?> !	40 58 PRT Esche	erich	nia d	coli										
40	<400)> 4	40													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Phe	Ala	Phe	Tyr	Glu 15	Ile
45	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	G1u 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
50	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
55	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
	<210)> 4	41													

	<211 <212 <213	> I	o8 PRT Esche	erich	nia d	coli										
5	<400	> 4	11													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Leu	Ala	Phe	Tyr	Glu 15	Ile
10	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
15	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ala	Gl n 55	Ala	Pro	Lys						
20	<210 <211 <212 <213	> 5 > E	12 58 PRT Esche	erich	nia d	coli										
25	<400		12													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Trp	Ala	Phe	Tyr	Glu 15	Ile
30	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	G1u 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
35	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
40	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
45	<210 <211 <212 <213	> 5 > E	13 58 PRT Esche	erich	nia d	coli										
45	<400		13													
50	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Ile	Ala	Phe	Tyr	Glu 15	Ile
	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
55	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala

Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 50

5	<2102 <2112 <2122 <2132	> . > 1	44 58 PRT Esche	erich	nia d	coli										
10	<400	> .	44													
70	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Met	Ala	Phe	Tyr	Glu 15	Ile
15	Leu I	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
20	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys l	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
25	<2102 <2112 <2122 <2132	> . > 1		erich	nia d	coli										
30	<400	> .	45													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Val	Ala	Phe	Tyr	Glu 15	Ile
35	Leu I	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
40	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
45	Lys !	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
	<2102 <2112 <2122 <2132	> . >]	46 58 PRT Esche	vri al	.i.	aol i										
50	72132		escile	ELICI	ira (3011										
	<400	>	46													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Ala	Ala	Phe	Tyr	Glu 15	Ile
55	.		T -	D	3	.	m³-	a.	a.	a.	3	3 -		D1-		a.
	Leu I	115	ьeu	Pro	Asn	Leu	Thr	GLU	GLU	GIN	Arg	Asn	Ala	rne	ттé	GIn

5	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys I	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
10	<210; <211; <212; <213;	> 5 > P	17 58 PRT Ische	erich	nia d	coli										
15	<400	> 4	17													
	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	His	Ala	Phe	туг	Glu 15	Ile
20	Leu I	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
25	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 4 5	Ala	Glu	Ala
30	Lys l	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
35	<210; <211; <212; <213;	> 5 > P > E	18 8 PRT Ische	erich	nia d	coli										
	<4002 Val 1		Ala	Lys	Phe 5	Asp	Lys	Glu	Gln	Gln 10	Arg	Ala	Phe	Tyr	Glu 15	Ile
40	Leu I	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
45	Ser 1	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 4 5	Ala	Glu	Ala
50	Lys I	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
55	<2102 <2112 <2122 <2132	> 5 > P	19 88 PRT Ische	rich	nia d	coli										
	<400	> 4	9													

	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
5	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
10	Ser	Leu	Lys 35	Asp	Glu	Pro	Ser	Val 40	Ser	Lys	Ala	Ile	Leu 45	Ala	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 5 > P	60 68 PRT Ische	erich	nia d	coli										
20	<400	> 5	0													
25	Val 1	Asp	Ala	Lys	Phe 5	Asp	Lys	Glu	Ala	Gln 10	Glu	Ala	Phe	Tyr	Glu 15	Ile
	Leu	His	Leu	Pro 20	Asn	Leu	Thr	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
30	Ser	Leu	Lys 35	Asp	Glu	Pro	Ser	Val 40	Ser	Arg	Ala	Ile	Leu 45	Ala	Glu	Ala
35	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
40	<210 <211 <212 <213	> 5 > P	51 52 PRT Sche	erich	nia d	coli										
	<400	> 5	51													
45	Lys 1	Glu	Gln	Gln	Asn 5	Ala	Phe	Tyr	Glu	Ile 10	Leu	His	Leu	Pro	Asn 15	Leu
50	Thr	Glu	Glu	Gln 20	Arg	Asn	Ala	Phe	Ile 25	Gln	Ser	Leu	Lys	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ala	Asn	Leu	Leu	Ala 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ala
55	Gln	Ala 50	Pro	Lys												

```
<210> 52
             <211> 52
             <212> PRT
              <213> Staphylococcus aureus
5
             <400> 52
             Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu Pro Asn Leu
10
             Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro
             Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala
15
                                          40
             Gln Ala Pro Lys
                  50
20
             <210> 53
             <211> 52
             <212> PRT
             <213> Escherichia coli
25
             <220>
             <221> misc_feature
             <222>
                    (3) . . (3)
             <223> Xaa can be any naturally occurring amino acid
30
             <220>
             <221>
                    misc_feature
             <222>
                    (5) . . (5)
             <223> Xaa can be any naturally occurring amino acid
35
             <220>
             <221> misc_feature
             <222>
                    (12) . . (12)
             <223> Xaa can be any naturally occurring amino acid
40
             <220>
             <221> misc_feature
             <222>
                    (22) . . (23)
             <223> Xaa can be any naturally occurring amino acid
             <220>
45
             <221>
                    misc_feature
             <222>
                    (26) . . (27)
             <223> Xaa can be any naturally occurring amino acid
             <220>
50
             <221> misc_feature
             <222>
                    (31) . . (31)
             <223> Xaa can be any naturally occurring amino acid
             <220>
             <221> misc_feature
55
             <222>
                    (34) . . (34)
             <223> Xaa can be any naturally occurring amino acid
```

<220> <221> misc_feature <222> (36)..(38)<223> Xaa can be any naturally occurring amino acid 5 <220> <221> misc_feature <222> (44) . . (45) <223> Xaa can be any naturally occurring amino acid 10 53 <400> Lys Glu Xaa Gln Xaa Ala Phe Tyr Glu Ile Leu Xaa Leu Pro Asn Leu 10 15 Thr Glu Glu Gln Arg Xaa Xaa Phe Ile Xaa Xaa Leu Lys Asp Xaa Pro 20 25 20 Ser Xaa Ser Xaa Xaa Xaa Leu Ala Glu Ala Lys Xaa Xaa Asn Asp Ala 40 35 Gln Ala Pro Lys 25 50

Claims

40

45

50

- 1. An Fc-binding polypeptide comprising a mutant of an Fc-binding domain of Staphylococcus Protein A (SpA), as defined by, or having at least 90% such as at least 95% or 98% identity to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:22, SEQ ID NO 51 or SEQ ID NO 52, wherein at least the asparagine or serine residue at the position corresponding to position 11 in SEQ ID NO:4-7 has been mutated to an amino acid selected from the group consisting of glutamic acid, lysine, tyrosine, threonine, phenylalanine, leucine, isoleucine, tryptophan, methionine, valine, alanine, histidine and arginine.
 - 2. The polypeptide of claim 1, comprising a mutant of a parental Fc-binding domain of Staphylococcus Protein A (SpA), as defined by, or having at least 90% such as at least 95% or 98% identity to, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO:7, SEQ ID NO 51 or SEQ ID NO 52.
 - 3. The polypeptide of claim 1 or 2, wherein:
 - i) the amino acid residue at the position corresponding to position 11 in SEQ ID NO:4-7 is a glutamic acid;
 - ii) the amino acid residue at the position corresponding to position 11 in SEQ ID NO:4-7 is a lysine;
 - iii) the amino acid residue at the position corresponding to position 9 in SEQ ID NO:4-7 is an alanine;
 - iv) the amino acid residue at the position corresponding to position 50 in SEQ ID NO:4-7 is an arginine or a glutamic acid, such as an arginine;
 - v) the amino acid residue at the position corresponding to position 3 in SEQ ID NO:4-7 is an alanine and/or the amino acid residue at the position corresponding to position 6 in SEQ ID NO:4-7 is an aspartic acid;
 - vi) at least one, such as both, of the amino acid residues at the positions corresponding to positions 3 and 6 in SEQ ID NO:4-7 is an asparagine;
 - vii) the amino acid residue at the position corresponding to position 43 in SEQ ID NO:4-7 is an alanine or a glutamic acid, such as an alanine;
 - viii) the amino acid residue at the position corresponding to position 28 in SEQ ID NO:4-7 is an alanine or an asparagine:
 - ix) the amino acid residue at the position corresponding to position 40 in SEQ ID NO:4-7 is selected from the group consisting of asparagine, alanine, glutamic acid and valine;
 - x) the amino acid residue at the position corresponding to position 42 in SEQ ID NO:4-7 is an alanine, lysine

or arginine, such as an arginine;

5

10

20

30

35

45

- xi) the amino acid residue at the position corresponding to position 44 in SEQ ID NO:4-7 is a leucine or an isoleucine, such as an isoleucine:
- xii) the amino acid residue at the position corresponding to position 18 in SEQ ID NO:4-7 is a lysine or a histidine, such as a lysine;
- xiii) the amino acid residue at the position corresponding to position 33 in SEQ ID NO:4-7 is a lysine or a serine, such as a lysine;
- xiv) the amino acid residue at the position corresponding to position 37 in SEQ ID NO:4-7 is a glutamic acid or an aspartic acid, such as a glutamic acid;
- xv) the amino acid residue at the position corresponding to position 51 in SEQ ID NO:4-7 is a tyrosine or a leucine, such as a tyrosine; and/or
 - xvi) the amino acid residues at the positions corresponding to positions 1, 2, 3 and 4 or to positions 3, 4, 5 and 6 in SEQ ID NO: 4-7 have been deleted.
- 4. The polypeptide according to any preceding claim, which is a mutant of Zvar as defined by SEQ ID NO:7, wherein the amino acid residue at position 9 is alanine and the amino acid residue at position 11 is lysine or glutamic acid, such as lysine.
 - 5. The polypeptide according to claim 4, wherein:
 - i) the amino acid residue at position 43 is alanine or glutamic acid;
 - ii) the amino acid residue at position 40 is valine; and/or
 - iii) the amino acid residue at position 44 is isoleucine.
- 25 **6.** The polypeptide according to any preceding claim, wherein the mutation is selected from:
 - i) the group consisting of: N11K; N11E; N11Y; N11T; N11F; N11L; N11W; N11I; N11M; N11N; N11A; N11A; N11H; N11R; N11E,Q32A; N11E,Q32E,Q40E; N11E,Q32E,K50R; Q9A,N11E,N43A; Q9A,N11E,N28A,N43A; Q9A,N11E,Q40V,A42K,N43E,L44I; Q9A,N11E,Q40V,A42K,N43E,L44I; Q9A,N11E,N28A,Q40V,A42K,N43A,L44I; Q9A,N11K,H18K,S33K,D37E,A42R,N43A,L44I,K50R,L51Y; N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R, N43A, L44I; Q9A, N11K, H18K, D37E, A42R; Q9A, N11E, D37E, Q40V, A42K, N43A, L44I and Q9A, N11E, D37E, Q40V, A42R, N43A, L44I; or ii) the group consisting of: N11K; N11Y; N11F; N11L; N11W; N11I; N11M; N11V; N11A; N11H; N11R; Q9A, N11E, N43A; Q9A, N11E, N28A, N43A; Q9A, N11E, Q40V, A42K, N43E, L44I; Q9A, N11E, Q40V, A42K, N43A, L44I; Q9A, N11E, N28A, Q40V, A42K, N43A, L44I; N11K, H18K, S33K, D37E, A42R, N43A, L44I, K50R, L51Y; Q9A,N11K, H18K, S33K, D37E, A42R, N43A, L44I, Q9A, N11K, H18K, D37E, A42R, N43A, L44I, Q9A, N11K, H18K, D37E, A42R, N43A, L44I, R50R, L51Y; N11K, H18K, D37E, A42R, N43A, L44I, K50R.
- 40 **7.** The polypeptide according to any preceding claim, comprising or consisting essentially of a sequence selected from:
 - i) the group consisting of: SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 12, SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 29, SEQ ID NO 36, SEQ ID NO 37, SEQ ID NO 38, SEQ ID NO 39, SEQ ID NO 40, SEQ ID NO 41, SEQ ID NO 42, SEQ ID NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47, SEQ ID NO 48, SEQ ID NO 49 and SEQ ID NO 50; ii) the group consisting of: SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28 and SEQ ID NO 29; and/or iii) the group consisting of: SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 16, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 38, SEQ ID NO 40; SEQ ID NO 41; SEQ ID NO 42; SEQ NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47 and SEQ ID NO 48.
- 8. The polypeptide according to any preceding claim, which polypeptide has an improved alkaline stability compared to a polypeptide or a parental polypeptide as defined by SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6 or SEQ ID NO 7, such as by SEQ ID NO 7, wherein optionally the alkaline stability is improved as measured by the remaining IgG-binding capacity after 24 or 25 h incubation in 0.5 M or 1.0 M aqueous NaOH at 22 +/- 2 °C.

9. An Fc-binding polypeptide which comprises a sequence as defined by, or having at least 90% or at least 95% or 98% identity to SEQ ID NO 53.

KEX₁Q X₂AFYEILX₃LP NLTEEQRX₄X₅F IX₆X₇LKDX₈PSX₉ SX₁₀X₁₁X₁₂LAEAKX₁₃ X₁₄NDAQAPK (SEQ ID NO 53)

wherein individually of each other:

5

30

40

45

```
10
                    X₁=A or Q
                    X_2=E,K,Y,T,F,L,W,I,M,V,A,H or R
                    X<sub>3</sub>=H or K
                    X_4 = A \text{ or } N
                    X_5=A or G
                    X_6=Q or E
15
                    X<sub>7</sub>=S or K
                    X_8=E or D
                    X_0=Q or V
                    X<sub>10</sub>=K,R or A
20
                    X_{11}=A,E or N
                    X<sub>12</sub>=I or L
                    X<sub>13</sub>=K or R
                    X<sub>14</sub>=L or Y
```

- **10.** A multimer comprising or consisting essentially of a plurality of polypeptides as defined by any preceding claim, wherein optionally:
 - i) the polypeptides are linked by linkers comprising up to 15 amino acids;
 - ii) the multimer is a dimer, trimer, tetramer, pentamer, hexamer, heptamer, octamer or nonamer; and/or
 - iii) the multimer comprises or consists essentially of a sequence selected from the group of sequences defined by SEQ ID NO 17, SEQ ID NO 18, SEQ ID NO 19, SEQ ID NO 20, SEQ ID NO 30, SEQ ID NO 31, SEQ ID NO 32, SEQ ID NO 33, SEQ ID NO 34 and SEQ ID NO 35.
- 11. The polypeptide or multimer according to any preceding claim, further comprising at, or within 1-5 amino acid residues from, the C-terminal or N-terminal one or more coupling element, selected from the group consisting of one or more cysteine residues, a plurality of lysine residues and a plurality of histidine residues.
 - **12.** A nucleic acid or a vector encoding a polypeptide or multimer according to any preceding claim, or an expression system, which comprises said nucleic acid or vector.
 - **13.** A separation matrix, wherein a plurality of polypeptides or multimers according to any one of claims 1 11 have been coupled to a solid support.
 - 14. The separation matrix according to claim 13, wherein:
 - i) the polypeptides or multimers have been coupled to the solid support via thioether bonds.
 - ii) the solid support is a polysaccharide;
 - iii) the IgG capacity of the matrix after 24 incubation in 0.5 M NaOH at 22 +/- 2 °C is at least 80, such as at least 85, at least 90 or at least 95% of the IgG capacity before the incubation; and/or
 - iv) the IgG capacity of the matrix after 24 incubation in 1.0 M NaOH at 22 +/- 2 °C is at least 70, such as at least 80 or at least 90% of the IgG capacity before the incubation.
 - 15. A method of isolating an immunoglobulin, wherein a separation matrix according to any one of claims 13-14 is used.
- 16. The method of claim 15, comprising the steps of:
 - a) contacting a liquid sample comprising an immunoglobulin with a separation matrix according to any one of claims 13-14,

- b) washing said separation matrix with a washing liquid,
- c) eluting the immunoglobulin from the separation matrix with an elution liquid, and
- d) cleaning the separation matrix with a cleaning liquid.
- 5 **17.** The method of claim 16, wherein:

10

15

20

25

30

35

40

45

50

55

- i) the cleaning liquid is alkaline, such as with a pH of 13 14;
- ii) the cleaning liquid comprises 0.1 1.0 M NaOH or KOH, such as 0.5 1.0 M NaOH or KOH;
- iii) steps a) d) are repeated at least 10 times, such as at least 50 times or 50 200 times; and/or
- iv) steps a) c) are repeated at least 10 times, such as at least 50 times or 50 200 times and wherein step d) is performed after a plurality of instances of step c), such as at least 10 or at least 50 times.

Alignment of	Alignment of Fc-binding domains							
E B B C C C C C A S A C C C C C C C C C C C C	ADA QONKENKDQQ ADA QONKENKDQQA DNN-ENKEQQ ADNKFNKEQQ ADNKFNKEQQ VDNKFNKEQQ	NAFYQVLNMP SAFYEILNMP NAFYEILHLP NAFYEILHLP NAFYEILHLP NAFYEILHLP	NLNADQRNGF NLNEEQRNGF NLNEEQRNGF NLTEEQRNGF NLTEEQRNGF NLNEEQRNAF	IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ IQSLKDDPSQ	SANVLGEAQK STNVLGEAKK SANLLAEAKK SANLLAEAKK SKETLAEAKK SANLLAEAKK	LNDSQAPK LNESQAPK LNDAQAPK LNDAQAPK LNDAQAPK LNDAQAPK	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(SEQ ID NO: 1) (SEQ ID NO: 2) (SEQ ID NO: 3) (SEQ ID NO: 4) (SEQ ID NO: 5) (SEQ ID NO: 6) (SEQ ID NO: 7)
	KEQQ	NAFYEILHLP NAFYEILHLP	NLTEEQRNAF NLTEEQRNGF	IQSLKDDPSQ IQSLKDDPSV	SANLLAEAKK SKEILAEAKK	LNDAQAPK LNDAQAPK	52	(SEQ ID NO: 51) (SEQ ID NO: 52)
Pos	1 10	0 20	30	40	50	25		
	Fig. 1	D: 1						

Remaining capacity after 300 10 min CIP cycles using 0.5 M NaOH

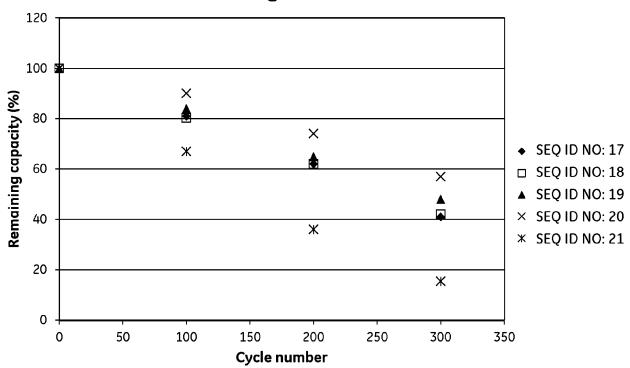


Fig. 2.

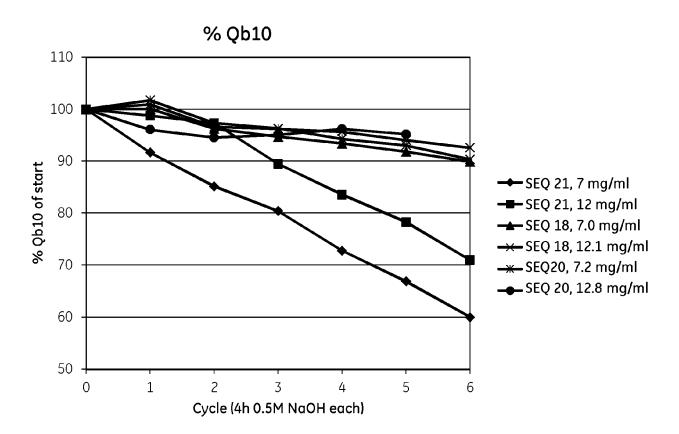


Fig. 3.

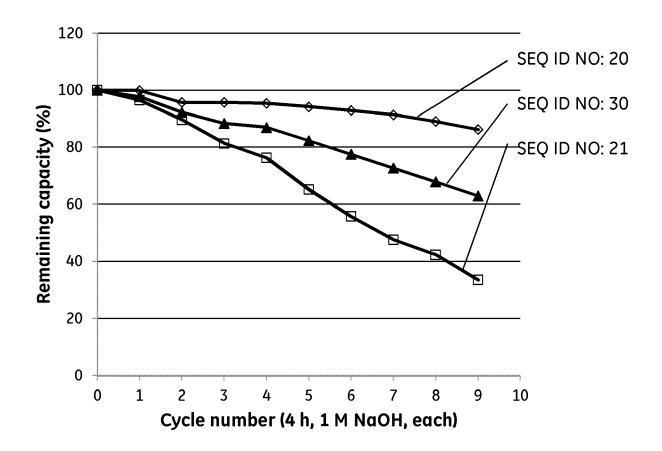


Fig. 4.

EUROPEAN SEARCH REPORT

Application Number EP 20 18 5646

DOCUMENTS CONSIDERED TO BE RELEVANT EPO FORM 1503 03.82 (P04C01)

	DOCUMENTS CONSIDE	RED TO BE RELEVANT		
Category	Citation of document with inc of relevant passag		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Х	EP 2 728 000 A1 (NAT SCIEN [JP]) 7 May 20 * claims 1-27 *	1-17	INV. C07K16/06 C07K1/22	
Х	WO 03/080655 A1 (AME [SE]; HOBER SOPHIA [2 October 2003 (2003 * claims 1-21; table	1-17		
Х	JP 2010 081866 A (NA SCIEN) 15 April 2010 * sequences 16,17 *	1-17		
Х	US 5 011 686 A (PANG ROY H L [US]) 30 April 1991 (1991-04-30) * figure 1A *		1-17	
Х	& DATABASE Geneseq [Online]	1-17	
	8 July 1991 (1991-07 "FB fragment of prot retrieved from EBI a GSP:AAR11821 Database accession r * sequence *	ein A.", ccession no.		TECHNICAL FIELDS SEARCHED (IPC)
Х	HOBER ET AL: "Protein A chromatography for antibody purification", JOURNAL OF CHROMATOGRAPHY B: BIOMEDICAL SCIENCES & APPLICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 848, no. 1, 12 March 2007 (2007-03-12), pages 40-47, XP005922826, ISSN: 1570-0232, DOI: 10.1016/J.JCHROMB.2006.09.030 * page 42 *		1-17	
	The present search report has be	en drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	8 October 2020	Gri	esinger, Irina
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anothe ment of the same category nological background written disclosure mediate document	T : theory or principle E : earlier patent doc after the filing date T D : document cited in L : document cited fo	ument, but publise the application r other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 18 5646

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-10-2020

Patent document cited in search report		Publication date	Patent family Publicati member(s) date	on
EP 2728000	A1	07-05-2014	EP 2728000 A1 07-05- JP 5812303 B2 11-11- JP W02012165544 A1 23-02- US 2014179898 A1 26-06- WO 2012165544 A1 06-12-	201 201 201
WO 03080655	A1	02-10-2003	AT 431360 T 15-05- AU 2003217119 A1 08-10- CA 2479896 A1 02-10- CN 1642976 A 20-07- CN 102516371 A 27-06- CN 102516372 A 27-06- CN 102532284 A 04-07- CN 102558317 A 11-07- CN 102558318 A 11-07- DK 1972689 T3 14-08- DK 3249047 T3 30-03- EP 1485407 A1 15-12- EP 1972689 A2 24-09- EP 3249047 A2 29-11- ES 2325362 T3 02-09- ES 2634145 T3 26-09- ES 2783876 T3 18-09- JP 4391830 B2 24-12- JP 2005538693 A 22-12- KR 20040099368 A 26-11- KR 20110004456 A 13-01- KR 20120125674 A 16-11- KR 20120126129 A 20-11- US 2005143566 A1 30-06- US 2006194950 A1 31-08- US 2010022760 A1 28-01- US 201112276 A1 12-05- US 201238724 A1 20-09- US 2013184438 A1 18-07- US 2016152668 A1 02-06- US 2017080358 A1 23-03- WO 03080655 A1 02-10-	200 200 200 201 201 201 201 201 202 200 200
JP 2010081866	Α	15-04-2010	JP 5229888 B2 03-07- JP 2010081866 A 15-04-	
US 5011686		30-04-1991	NONE	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20050143566 A [0007]
- US 5143844 A [0007] [0022]
- WO 2008039141 A **[0007]**
- JP 2006304633 A **[0007]**
- EP 1992692 A1 [0007]
- EP 2202310 A2 [0007]
- WO 2010110288 A [0007]
- WO 2012086660 A [0007]
- WO 2012083425 A [0007]

- WO 2012087230 A [0007]
- WO 2014146350 A [0007]
- SE 2014050872 W [0026]
- US 9018305 B [0038]
- US 8329860 B [0038]
- US 6602990 B [0054] [0076]
- US 7396467 B [0054]
- US 6399750 B [0079]

Non-patent literature cited in the description

- SUSANNE GÜLICH; MARTIN LINHULT; PER-AKE NYGREN; MATHIAS UHLÉN; SOPHIA HOBER. Journal of Biotechnology, 2000, vol. 80, 169-178 [0006]
- Gel Filtration Principles and Methods. Pharmacia LKB Biotechnology, 1991, 6-13 [0049] [0076]
- S HJERTÉN. Biochim Biophys Acta, 1964, vol. 79
 (2), 393-398 [0054]
- R ARSHADY. Styrene based polymer supports developed by suspension polymerization. *Chimica* e *L'Industria*, 1988, vol. 70 (9), 70-75 [0056]