[0001] Die Erfindung betrifft einen Stahl, der in seinen Eigenschaften eine vergleichsweise
geringe Dichte mit einer vergleichsweise hohen Festigkeit, insbesondere hoher oberer
Streckgrenze beziehungsweise 0,2%-Dehngrenze, kombiniert.
[0002] Die Erfindung betrifft außerdem ein Stahlflachprodukt, ein Verfahren zur Herstellung
eines Stahlflachprodukts sowie Verwendungen.
[0003] Stähle und Stahlflachprodukte mit hohen Festigkeiten und geringen Dichten haben eine
hohe und weiter zunehmende Bedeutung in vielen Gebieten der Technik. Beispielsweise
sind im Bereich des Personen- und Nutzfahrzeugbaus derartige Stahlflachprodukte von
hoher Bedeutung, um eine Reduzierung des Eigengewichts und eine Steigerung der Nutzlast
von Personen- und Nutzfahrzeugen zu ermöglichen.
[0004] In dem Fall, in dem in dieser Schrift Angaben zu Gefügen eines Stahls, Stahlflachprodukts
oder eines aus diesen hergestellten Bauteils gemacht sind, sind Austenit-Anteile mittels
XRD-Messverfahren ermittelt, die in folgender Quelle beschrieben sind: DIN EN 13925-Röntgendiffraktometrie
von polykristallinen und amorphen Materialien Teil 1 und 2 aus 2003_7, Teil 3 aus
2005. Die Werkstoffkennwerte Zugfestigkeit Rm, Dehngrenze Rp0,2, Bruchdehnung sowie
obere ReH und untere Streckgrenzen ReL sind gemäß DIN EN ISO 6892-1:2017-02 bestimmt.
[0005] Als Stähle mit vergleichsweise geringer Dichte bei gleichzeitig hoher Festigkeit
sind mit Mn und/oder Al legierte Stähle bekannt, beispielsweise aus der
US 2014/0205488 A1. In der
US 2014/0205488 A1 sind Stähle beschrieben mit, neben anderen Legierungsbestandteilen, Kohlenstoffgehalten
bis zu 0,3 Gew.-% und zwischen 4 und 10 Gew.-% Mn.
[0006] Gegenüber bekannten Stählen und Stahlflachprodukten liegt der vorliegenden Erfindung
die Aufgabe zu Grunde, eine verbesserte Eigenschaftskombination, insbesondere hinsichtlich
Dichte, Streckgrenze, Zugfestigkeit und Legierungskosten, bereitzustellen.
[0007] Die Aufgabe wird gelöst mit einem Stahl mit den Merkmalen des Anspruchs 1, mit einem
Stahlflachprodukt mit den Merkmalen des Anspruchs 7 und mit einem Verfahren mit den
Merkmalen des Anspruchs 8.
[0008] Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
[0009] Die Erfindung sieht Stähle vor, welche der nachfolgenden Legierungsvorschrift genügen.
Ein erfindungsgemäßer Stahl weist Elemente im Rahmen der nachfolgend genannten Spannen
auf:
C: 0,30 bis 0,65;
Mn: 7,5 bis 14;
Al: 3 bis 7;
mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:
Ti: 0 bis 0,5;
Nb: 0 bis 0,5;
B: 0 bis 0,1;
Cr: 0 bis 2;
Si: 0 bis 0,4;
Ta+W: 0 bis 0,5;
V: 0 bis 0,5;
Mo: 0 bis 1;
Ni: 0 bis 2;
Cu: 0 bis 2;
Ca: 0 bis 0,15;
Ce+La+Y+Zr: 0 bis 0,5;
Sb: 0 bis 0,002.
[0010] Rest Fe und unvermeidbare Verunreinigungen. Alle den Anteil von Elementen im Stahl
betreffende Zahlenwerte sind in Gewichts-Prozent, kurz Gew.-%, angegeben und verstehen
sich derart, dass alle Legierungsbestandteile eines erfindungsgemäßen Stahls inklusive
Fe und unvermeidbarer Verunreinigungen sich zu insgesamt 100 Gew.-% summieren.
[0011] Die Legierungsbestandteile sind derart ausgewählt, dass bei Befolgung der obigen
Legierungsvorschrift eine
Eigenschaftskombination erreicht wird, welche unter anderem für die Lösung der eingangs
genannten Aufgabenstellung hervorragend geeignet ist.
[0012] C: Der Kohlenstoffgehalt beträgt erfindungsgemäß 0,30-0,65 Gew.-%. Der gewählte Anteil
des Kohlenstoffs bestimmt maßgeblich den Anteil des Austenits in dem Stahl sowie die
Stabilität der Austenitphase. Ein Kohlenstoffgehalt von 0,30 Gew.-% ist als untere
Grenze gewählt, da unterhalb dieser Grenze verstärkt Delta-Ferrit entstehen würde.
Die Auswahl des C-Gehalts ist zudem entscheidend für die Bildung von eutektoiden Gefügebestandteilen,
zum Beispiel Perlit, durch welche die Festigkeit, insbesondere Streckgrenze und Dehngrenze,
erhöht werden. Die eutektoiden Gefügebestandteile wurden ab einem bevorzugten unteren
Kohlenstoffgehalt von 0,35 Gew.-% beobachtet. Geringe Kohlenstoffgehalte führen dazu,
dass höhere Gehalte von Ersatzelementen beigefügt werden müssten, die in vielen Fällen
teurer zu beschaffen wären als C. Höhere C-Gehalte erlauben zudem zunehmend den Einsatz
von preiswerteren Mn-Legierungsträgern, wie beispielsweise Ferro-Mn carburee. Daher
sind Kohlenstoffgehalte von wenigstens 0,40 Gew.-% oder höher besonders bevorzugt.
[0013] Mit zunehmendem C-Gehalt nimmt jedoch die Schweißeignung des Stahls ab. Die obere
Grenze von 0,65 Gew.-% wurde gewählt, da oberhalb dieser Grenze die Schweißeignung
des Stahls für die Praxistauglichkeit zu stark verringert würde.
[0014] Mn: Der Mangangehalt beträgt erfindungsgemäß zwischen 7,5 und 14 Gew.-%. Ein vergleichsweise
hoher Mn-Gehalt ist Voraussetzung für die wunschgemäße Beschaffenheit der erfindungsgemäßen
Stähle, da er den Anteil von Austenitphase im Stahl und deren Stabilität entscheidend
beeinflusst. Mn verbessert die Warmumformbarkeit, erhöht die Festigkeit und desoxidiert
den Stahl. Erst bei zu hohen Mn-Gehalten ist die Verringerung der Korrosionsbeständigkeit
durch Mn ein Nachteil. Eine untere Grenze des Mn-Gehalts wurde mit 7,5 Gew.-% festgelegt,
da unterhalb dieser Grenze die unerwünschte Bildung von Delta-Ferrit gefördert wird
und die gewünschte Stabilisierung der Austenitphase nicht in ausreichendem Maß erreicht
wird. Die Obergrenze wurde mit Hinblick auf ökonomische Aspekte gewählt, da oberhalb
von 14 Gew.-% Mn keine signifikante Eigenschaftsverbesserung mehr beobachtet wurde,
die eine kostenintensive weitere Erhöhung des Mn-Gehalts rechtfertigt.
[0015] Al: Ein signifikanter Al-Gehalt wenigstens mit der Untergrenze von 3 Gew.-% dient
der Reduktion der Dichte des Stahls. Die Obergrenze des Al-Gehalts von 7 Gew.-% wurde
gewählt, um negative Einflüsse des Al auf Herstellbarkeit und Weiterverarbeitbarkeit
des Stahls, insbesondere infolge der Bildung von versprödenden Vorordnungs- oder Ordnungszuständen,
beispielsweise den sogenannten B2, D0
3 oder Kappa-Phase, und von unerwünschtem Delta-Ferrit, zu begrenzen. Eine bevorzugte
Obergrenze von 6 Gew.-% ist begründet in der oberhalb dieser Grenze zu beobachtenden
erschwerten Kaltverformbarkeit.
[0016] Die optionale Zulegierung von Ti führt, insbesondere bei gleichzeitiger Zulegierung
von Nb, zu einer verbesserten Kantenstabilität, das heißt: Beständigkeit der Bandkanten
gegen Kantenrisse, beim Warmwalzen. Ein weiterer Vorteil, der durch Zulegieren von
Ti erreicht wird, sind eine erhöhte Tieftemperaturzähigkeit und eine verbesserte Warmfestigkeit.
Nachteilige Effekte zeigen sich insbesondere oberhalb eines Ti-Gehalts von 0,5 Gew.-%,
nämlich in einer Verschlechterung von Kaltformbarkeit und Schweißeignung.
[0017] Die optionale Zulegierung von Nb führt, insbesondere bei gleichzeitiger Zulegierung
von Ti, zu einer verbesserten Kantenstabilität beim Warmwalzen. Ein weiterer Vorteil,
der durch Zulegieren von Nb erreicht wird, ist eine erhöhte Tieftemperaturzähigkeit
und eine verbesserte Warmfestigkeit. Nachteilige Effekte zeigen sich insbesondere
oberhalb eines Nb-Gehalts von 0,5 Gew.-%, nämlich in einer Verschlechterung von Kaltformbarkeit
und Schweißeignung.
[0018] Die optionale Zulegierung von Bor, kurz: B, führt zu einem feinen Gefüge. Eine Obergrenze
wurde zu 0,1 Gew.-% gewählt, da höhere B-Gehalte zu einer Verschlechterung der Kaltumformbarkeit
führen.
[0019] Cr kann optional bis zu 2 Gew-% Gewichtsanteil zulegiert werden, um die Korrosions-
und Oxidationsbeständigkeit des Stahls zu verbessern. Oberhalb der genannten Grenze
besteht die Gefahr unerwünschter Karbidbildung, weswegen sie nicht überschritten werden
soll.
[0020] Si kann zulegiert werden, um die Festigkeit des Stahls zu erhöhen und eine weitere
Dichtereduktion herbeizuführen. Der Si-Anteil soll 0,4 Gew.-% nicht überschreiten,
da Si in Zusammenwirkung mit Al eine unerwünscht hohe Abnahme der Duktilität des Stahls
herbeiführt.
[0021] Tantal, Wolfram und Vanadium können zur Förderung der Bildung festigkeitssteigender
Karbide beigefügt werden, wobei der V-Gehalt und die Summe des Ta-Gehalts und des
W-Gehalts zur Vermeidung unverhältnismäßig hoher Kosten jeweils auf 0,5 Gew.-% begrenzt
werden, es gilt also: V < 0,5 Gew.-% und Ta + W < 0,5 Gew.-%.
[0022] Eine Beigabe von Mo kann zur Erhöhung der Zugfestigkeit und zur Bildung eines feineren
Gefüges des Stahls vorgenommen werden. Um eine nicht tolerierbare Verschlechterung
der Warm- und Kaltumformbarkeit zu vermeiden, wird die obere Grenze des Mo-Gehalts
zu 1 Gew.-% festgelegt.
[0023] Eine Ni-Beigabe und/oder eine Cu-Beigabe kann zur Verbesserung der Korrosionsbeständigkeit
optional erfolgen, wird aber aufgrund hoher Kosten von Ni und Cu auf jeweils < 2 Gew.-%
begrenzt.
[0024] Eine Ca-Beigabe bis zu 0,15 Gew.-% kann zum Zwecke der Bindung von S optional erfolgen,
wird aufgrund begrenzter Löslichkeit des Ca in Fe und C jedoch mit der angegebenen
Grenze begrenzt.
[0025] Ce, La, Y und Zr können optional zur Entschwefelung und Desoxidierung sowie zur Kornfeinung
beigegeben werden, wobei die Summe der Gehalte dieser vier Elemente aufgrund hoher
Kosten auf 0,5 Gew.-% begrenzt ist.
[0026] Eine optionale Beigabe von Co kann erfolgen, um die Austenitphase im Stahl zu stabilisieren.
Aufgrund hoher Kosten von ausreichend reinem elementarem Co wird der Co-Anteil aber
auf 2 Gew.-% begrenzt.
[0027] Antimon, kurz: Sb, kann als optionale Beigabe zur Verzögerung der Rissbildung im
Stahl zulegiert werden, wobei der Gewichtsanteil 0,002 Gew.-% aufgrund der gesundheitsgefährdenden
Eigenschaften von Sb als obere Grenze gewählt wurde.
[0028] Si, P, S, Cu, N, Sb, Sn, Cd, As, Mg und Te sind einige der Elemente, die stets als
unvermeidbare Begleitelemente des Herstellungsprozesses in den erfindungsgemäßen Stahl
gelangen. Die nicht als optionale Elemente ohnehin vorgesehenen Elemente sind auf
Mengen beschränkt, die den Stahl in Bezug auf seine angestrebten Eigenschaften nicht
beeinträchtigen. Die oberen Grenzen sind 0,1 Gew.-% für P, 0,3 Gew.-% für S, und 0,05
und bevorzugt 0,03 Gew.-% für Sn. Die obere Grenze für Sn soll nicht überschritten
werden, da ansonsten eine nachteilige Verzögerung von Rekristallisationsvorgängen
herbeigeführt werden.
[0029] Besonders gute Eigenschaften des erfindungsgemäßen Stahls werden erreicht, wenn ein
oder mehrere der vorhandenen Elemente innerhalb einer der nachfolgend genannten engeren
Bereiche ausgewählt werden.
C: 0,30 bis 0,65, bevorzugt 0,35 bis 0,60, besonders bevorzugt 0,40 bis 0,55;
Mn:7,5 bis 14, bevorzugt 8,5 bis 12, besonders bevorzugt 9 bis 11;
Al:3 bis 7, bevorzugt 4 bis 6, besonders bevorzugt 4,5 bis 5,5;
mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:
Ti: 0 bis 0,5, bevorzugt 0 bis 0,05;
Nb: 0 bis 0,5, bevorzugt 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 2, bevorzugt 0 bis 0,5;
Si: 0 bis 0,4, bevorzugt 0,01 bis 0,3;
Ta+W: 0 bis 0,5, bevorzugt 0 bis 0,05;
V: 0 bis 0,5, bevorzugt 0 bis 0,05;
Mo:0 bis 1, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
Ni:0 bis 2, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,15, bevorzugt 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,5, bevorzugt 0 bis 0,1;
Co: 0 bis 2, bevorzugt 0 bis 1;
Sb: 0 bis 0,002;
Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent,
kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile
eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich
zu insgesamt 100 Gew.-% summieren.
[0030] Besonders bevorzugt sind Stähle, bei denen die nachfolgend genannte Vorschrift befolgt
wird:
C: 0,40 bis 0,55;
Mn: 9 bis 11;
Al: 4,5 bis 5,5;
mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:
Ti: 0 bis 0,05;
Nb: 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 0,5;
Si: 0,01 bis 0,3;
Ta+W: 0 bis 0,05;
V: 0 bis 0,05;
Mo: 0 bis 0,01;
Ni: 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,1;
Co: 0 bis 1;
Sb: 0 bis 0,002;
Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent,
kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile
eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich
zu insgesamt 100 Gew.-% summieren.
[0031] Im Rahmen dieser Vorschrift haben insbesondere Stähle sehr gute Ergebnisse gezeigt,
welche der nachfolgenden Vorschrift genügen:
C: 0,40 bis 0,55;
Mn: 9 bis 11;
Al: 4,5 bis 5,5;
Si: 0,01 bis 0,3;
P < 0,1;
S < 0,3;
N < 0,008;
mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:
Ti: 0 bis 0,05;
Nb: 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 0,5;
Ta+W: 0 bis 0,05;
V: 0 bis 0,05;
Mo: 0 bis 0,01;
Ni: 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,1;
Co: 0 bis 1;
Sb: 0 bis 0,002;
Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent,
kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile
eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich
zu insgesamt 100 Gew.-% summieren. Ein entsprechend dieser Vorschrift zusammengesetzter
Stahl ist eine besonders bevorzugte Ausführung eines erfindungsgemäßen Stahls.
[0032] Um den Anteil von Delta-Ferrit innerhalb des Stahls unterhalb eines bei bevorzugter
Maßgabe unerwünschten Maßes zu halten, ist bevorzugt vorgesehen, dass das Mn/Al-Verhältnis
eingestellt wird zu Mn/Al > 1,2. Mn/Al bezeichnet den Quotienten aus dem Mn-Gehalt
und dem Al-Gehalt, jeweils in Gewichts-Prozent.
[0033] Um die Eigenschaften des Stahls weiter zu verbessern, ist in einer Weiterbildung
vorgesehen, dass das Al-Äquivalent zwischen 3 bis 8, bevorzugt zwischen 3 bis 7, besonders
bevorzugt zwischen 3 bis 6,5 liegt. Es stellte sich nämlich heraus, dass bei einem
Al-Äquivalent > 6,5 vereinzelt versprödende Vorordnungs- oder Ordnungszustände entstehen,
die oberhalb von einem Al-Äquivalent von 7 zu intermetallischen Phasen, beispielsweise
B2 oder D0
3, und oberhalb von 8 zu massiven Versprödungserscheinungen im Stahl führen. Der Begriff
des Al-Äquivalents bezeichnet die Summe aus
Al+0,4∗Si∗Si∗Si-3∗Si∗Si+8,3∗Si mit
Al: Gewichtsanteil Al in Gew.-%,
Si: Gewichtsanteil Si in Gew.-%.
[0034] Eine besondere Ausführung des erfindungsgemäßen Stahls weist einen eutektoiden Gefügeanteil,
in Volumen-Prozent, kurz: Vol-%, von 1 bis 40, bevorzugt 2 bis 30, besonders bevorzugt
5 bis 20, auf. Grund dafür ist die Beobachtung, dass ein Anteil an eutektoider Phase
mit einer wünschenswerten Steigerung der Festigkeit des Stahls einhergeht. Die untere
Grenze von 1 Vol.-% wurde gewählt, da unterhalb dieser Grenze die erwünschte Festigkeitssteigerung
nicht mehr im Rahmen des gewünschten Maßes liegt. Oberhalb von 40 Vol-% wird ein nachteiliger
Einfluss auf die Duktilität und damit die Verformbarkeit beobachtet. Soweit der eutektoide
Gefügeanteil festgelegt ist, ist dieser bestimmt per Grauwert-Bildanalyse, die lichtoptisch
an einem Nital-geätzten Längsschliff in 1/3-Lage bestimmt wird. Die Grauwert-Bildanalyse
ist eine Bildanalyse-Methode, die mit der Software "ImageAccess Version 11 Enterprise"
(Release 12.1 build 196) der Firma "Imagic" durchgeführt wurde. Die mit der Grauwert-Bildanalyse
mit der genannten Software erhaltenen Flächen-% werden als repräsentativ für die Vol.-%
angesehen. Bei Betrachtung des Nital-geätzten Längsschliffs im Rasterelektronenmikroskop
kann der eutektoide Gefügebestandteil als lamellare Struktur identifiziert werden.
[0035] Die "obere Streckgrenze ReH" ist in einer Ausführung größer als 550 MPa, bevorzugt
größer als 650 MPa beziehungsweise, wenn der Stahl keine obere Streckgrenze aufweist,
ist alternativ die "0,2%-Dehngrenze Rp0,2" größer als 550 MPa, bevorzugt größer als
650 MPa. Mit anderen Worten: In einer Ausführung weist der Stahl weder eine Streckgrenze
von unterhalb 550 MPa, bevorzugt 650 MPa, noch eine 0,2%-Dehngrenze von unterhalb
550 MPa, bevorzugt 650 MPa, auf, sodass einer der beiden Werte existiert und wenigstens
die angegebene untere Grenze aufweist. Wenn einer der Werte unterhalb von 550 MPa
liegt, ist der Stahl nicht zur Herstellung von Bauteilen im Leichtbau geeignet, unter
anderem aufgrund eines zu geringen Widerstands gegen plastische Verformung.
[0036] Bevorzugt nimmt das Produkt aus Zugfestigkeit Rm und Bruchdehnung A einen Wert zwischen
8000 MPa*% und 28000 MPa*% ein, besonders bevorzugt einen Wert zwischen 10000 MPa*%
und 25000 MPa*%.
[0037] Der Stahl nimmt in einer vorteilhaften Weiterbildung eine Dichte von höchstens 7,6
g/cm
3 ein, bevorzugt höchstens 7,5 g/cm
3, besonders bevorzugt höchstens 7,4 g/cm
3, wobei oberhalb von einem angestrebten Wert von 7,6 g/cm
3 die erforderlichen Gewichtsanteile von Al und/oder Si zu groß werden mit den eingangs
genannten Nachteilen.
[0038] Besonders bevorzugt sind die Eigenschaften von bevorzugten Weiterbildungen der Stähle,
bei denen der Austenitgehalt im geglühten Kaltbandgefüge, gemessen am Längsschliff
per XRD wie eingangs referenziert, zwischen 5 und 94 Vol-%, bevorzugt zwischen 10
und 80 Vol.-%, besonders bevorzugt zwischen 15 und 75 Vol.-%, beträgt, wobei die Untergrenze
gewählt ist, um in ausreichendem Maße auftretende TRIP- und/oder TWIP-Effekte zu gewährleisten.
Der Ferritgehalt im geglühten Kaltbandgefüge, gemessen am Längsschliff per XRD, beträgt
in einer vorteilhaften Weiterbildung zwischen 5 und 94 Vol-%, bevorzugt zwischen 10
und 90 Vol.-%, besonders bevorzugt zwischen 10 und 60 Vol.-%. Ein Ferritgehalt von
5 Vol.-% soll nicht unterschritten werden, um eine ausreichende Magnetisierbarkeit
sicherzustellen, während eine Obergrenze von 94 Vol.-% gewählt ist, um die gewünschte
untere Grenze für den Austenitanteil zu ermöglichen.
[0039] Die Erfindung erstreckt sich auf Stahlflachprodukte, die aus einem erfindungsgemäßen
Stahl oder einer seiner Weiterbildungen hergestellt sind. Derartige Stahlflachprodukte
lösen die der Erfindung zu Grunde liegenden Aufgaben.
[0040] Der Begriff des Stahlflachprodukts bezeichnet im Rahmen der beschriebenen Entwicklungen
insbesondere Walzprodukte, wie beispielsweise Stahlbänder, Bleche oder aus diesen
hergestellten Zuschnitte oder Platinen.
[0041] Ein Stahlflachprodukt der erfindungsgemäßen Art weist die Vorteile auf, die sich
aus der Stahlzusammensetzung und gegebenenfalls der Herstellungsweise des Stahlflachprodukts
ergeben, und ermöglicht die flexible konstruktive Nutzung in vielen Anwendungsbereichen.
[0042] Die Erfindung erstreckt sich des Weiteren auf ein Verfahren zur Herstellung eines
Stahlflachprodukts.
[0043] Das Verfahren wird bevorzugt zur Herstellung eines Stahls gemäß der eingangs genannten
Art oder einer seiner Weiterbildungen eingesetzt.
[0044] Erfindungsgemäß werden die nachfolgenden Herstellungsschritte durchgeführt:
- A) Erschmelzen einer Stahlschmelze, enthaltend eine Elementzusammensetzung gemäß einer
der eingangs genannten Vorschriften;
- B) Vergießen der Stahlschmelze zu einem walzbaren Vorprodukt, insbesondere einem Vorband,
einer Bramme oder einer Dünnbramme;
- C) Warmwalzen des Vorprodukts mit einer Walzendtemperatur > 700 °C;
- D) optional Warmbandglühung;
- E) Kaltwalzen des Warmbands;
- F) optionales Schlussglühen des in Schritt E) erhaltenen Bands.
[0045] Das Erschmelzen der Stahlschmelze und das Vergießen der Stahlschmelze zu dem Vorprodukt
unterliegt keinen Einschränkungen im Rahmen der Erfindung, sondern kann gemäß dem
Fachmann bekannter Vorgehensweise entsprechend dem Ermessen des Fachmanns durchgeführt
werden. Für das Erschmelzen des Schritts A) kann beispielsweise ein Elektrostahlwerk
oder ein Oxygenstahlwerk mit Sekundärmetallurgie genutzt werden. Das Vergießen des
Schritts B) kann beispielsweise als Blockguss-, als Strangguss- oder als endabmessungsnahes
Gießverfahren ausgebildet sein. Für ein endabmessungsnahes Gießverfahren kann insbesondere
eine Gießwalzanlage, eine 2-Rollen Bandgießanlage oder eine Belt-Casting-Technologie
ausgewählt werden.
[0046] Für das Warmwalzen des Schritts C) wird bevorzugt eine Vorwärmtemperatur eingestellt,
die zwischen 1100 °C und 1350 °C liegt, bevorzugt zwischen 1150 °C und 1250 °C. Die
Untergrenze ist zu 1100 °C festgelegt, um eine homogene Durchwärmung des Materials
zu gewährleisten und das Risiko von Rissbildung aufgrund inhomogener Durchwärmung
zu vermeiden. Diese Untergrenze ist unter anderem deswegen vergleichsweise hoch gewählt,
da die erfindungsgemäß auszuwählenden Elementzusammensetzungen einen Werkstoff mit
vergleichsweise geringer thermischer Leitfähigkeit ergeben. Ein weiterer Vorteil der
vergleichsweise hohen Untergrenze ist, dass die Umformbarkeit des vorgewärmten Vorprodukts
ausreichend hoch ist, um eine zu hohe mechanische Belastung der Walzen zu vermeiden.
Die Obergrenze von 1350 °C ist festgelegt, um bei höheren Temperaturen auftretende
nachteilige Effekte auf die Festigkeit des Vorprodukts und damit einhergehende unerwünschte
Verformungen des Vorprodukts während des Walzens zu dem Stahlflachprodukt, beispielsweise
durch den Zunderwäscher, und die erhöhte Neigung zur Anhaftung an den Walzen zu vermeiden.
Die bevorzugte Temperaturspanne stellt einen optimierten Kompromiss zwischen gewünschten
Verfahrenseigenschaften und ökonomischer Herstellung dar.
[0047] Die Walzendtemperatur des in Schritt C) durchgeführten Warmwalzens wird in einer
besonders vorteilhaften Ausführung derart eingestellt, dass sie zwischen 700 °C und
1050 °C, bevorzugt zwischen 850 °C und 1000 °C, besonders bevorzugt zwischen 920 °C
und 980 °C, beträgt. Die Untergrenze von 700 °C ist festgelegt, um bis zum Ende des
Warmwalzprozesses eine ausreichend hohe Umformbarkeit beim Walzen zu erreichen und
- damit einhergehend - die mechanischen Krafteinwirkungen auf die Walzen in ihrem
Ausmaß zu begrenzen. Die Obergrenze von 1050 °C ist festgelegt, um die Herstellung
auch von Stahlbändern mit geringer Dicke zu erlauben. Die bevorzugte Temperaturspanne
und die besonders bevorzugte Temperaturspanne stellen einen Kompromiss zwischen gewünschten
Verfahrenseigenschaften und ökonomischer Herstellung dar.
[0048] Gemäß einer vorteilhaften Weiterbildung wird das Warmband in Anschluss an Schritt
C) aufgehaspelt mit einer Haspeltemperatur unter 900 °C, bevorzugt zwischen 400 °C
und 900 °C, besonders bevorzugt zwischen 600 °C und 850 °C. Die bevorzugte untere
Grenze von 400 °C wurde gewählt, um zu hohe Temperaturgradienten und mit diesen einhergehende
thermische Spannungen im Band und eine schlechte Planlage des Bands zu vermeiden.
Eine Haspeltemperatur von 900 °C soll nicht überschritten werden, um das Risiko von
Korngrenzenoxidation und eine Zunderbildung auf ein ausreichend geringes Maß zu begrenzen.
[0049] In einer vorteilhaften Variante des Haspelns erfolgt das Haspeln mit einer Abkühlrate
zwischen 0,01 und 10 K/min, bevorzugt zwischen 0,1 und 2 K/min, besonders bevorzugt
zwischen 0,3 und 0,7 K/min. Die untere Grenze von 0,01 K/min ist als vorteilhaft gefunden
worden, um da ein Heizen des Coils vermieden oder zumindest begrenzt werden kann.
Die obere Grenze 10 K/min wurde gewählt, da bis zu dieser hin eine homogene Abkühlung
des Bands entlang seiner Bandlänge noch gewährleistet ist.
[0050] Bevorzugt wird ein Beizen des in Schritt C) erhaltenen Warmbands durchgeführt. Dieses
wird dadurch entzundert. Beispielsweise kann das Band durch einen Zunderbrecher geleitet
werden, um den auf ihm haftenden Zunder aufzubrechen, und indem es, gegebenenfalls
nach dem optionalen Zunderbrechen, ein Beizmedium durchläuft, das an der Oberfläche
des Warmbands vorhandenen Zunder chemisch entfernt. Als Beizmedium kommt beispielsweise
HCl oder H
2SO
4 in Frage. Die Beizdauer, über die das Warmband dem typischerweise auf eine Temperatur
von 60 bis 100 °C erwärmten Beizmedium ausgesetzt wird, beträgt dabei 50 bis 500 s,
um eine möglichst vollständige Entfernung des Zunders zu gewährleisten.
[0051] Bevorzugt wird das Warmband einem Warmbandglühen unterzogen. Für den Fall, dass das
Warmband gehaspelt wird, erfolgt das Warmbandglühen bevorzugt nach dem Haspeln. Für
den Fall, dass das Warmband gebeizt wird, erfolgt das Beizen bevorzugt vor dem Schritt
D) und nach dem Haspeln.
[0052] Das Warmbandglühen erfolgt bevorzugt mit einer Glühtemperatur zwischen 450 °C und
1000 °C, bevorzugt zwischen 600 °C und 950 °C, besonders bevorzugt zwischen 700 °C
und 900 °C. Die Glühbauer beträgt bevorzugt zwischen 1 und 72 Stunden. Die untere
Grenze der Glühtemperatur von 450 °C gewährleistet ein noch ausreichendes Maß an Rekristallisation
und eine ausreichend gute Kaltwalzbarkeit. Die Obergrenze von 1000 °C wurde gewählt,
da bis zu dieser Grenze hin ein Duktilitätsverlust aufgrund von Kornvergröberung in
ausreichendem Maß vermieden wird.
[0053] Um eine gute Kombination von Wirtschaftlichkeit in Hinblick auf den Durchsatz und
von Wirtschaftlichkeit in Hinblick auf erforderlichen Energieumsatz zu gewährleisten,
wird für die Warmbandglühung bevorzugt eine durchschnittliche Aufheizrate zwischen
0,06 und 30 K/min, bevorzugt zwischen 0,12 K/min und 30 K/min, besonders bevorzugt
zwischen 0,48 K/min und 30 K/min gewählt. Die Abkühlrate nach der Warmbandglühung
wird bevorzugt zwischen 0,06 und 10 K/min, besonders bevorzugt zwischen 0,1 und 5
K/min, noch bevorzugter zwischen 0,1 und 1 K/min eingestellt.
[0054] Gemäß einer vorteilhaften Weiterbildung wird das Kaltwalzen des Warmbands bei einer
Temperatur unterhalb von 200 °C durchgeführt mit einem Kaltwalzgrad zwischen 25 %
und 95 %, bevorzugt zwischen 40 % und 90 %, besonders bevorzugt zwischen 50 % und
80 %. Die unteren und oberen Grenzen für den Kaltwalzgrad sind gewählt, um einerseits
den notwendigen Umformgrad zu erreichen, der für eine optionale nachfolgende Schlussglühung
erforderlich ist und andererseits eine zu hohe Kaltverfestigung und durch diese bedingten
Bandabriss zu vermeiden. Es versteht sich von selbst, dass das Kaltwalzen nach den
Schritten C) und gegebenenfalls D) durchgeführt wird.
[0055] Besonders bevorzugt erfolgt das Schlussglühen in Schritt F).
[0056] Besonders bevorzugt ist eine Weiterbildung des Verfahrens, in welcher das Schlussglühen
des Schritts F) in Inertgasatmosphäre durchgeführt wird, wobei das Inertgas für die
Vermeidung von Oberflächenbelegungen eingesetzt wird.
[0057] Die Schlussglühung ist entweder eine Rekristallisationsglühung ohne anschließendes
Anlassen oder eine Rekristallisationsglühung mit nachfolgend durchgeführter Anlassglühung.
[0058] Die Durchführung der Rekristallisationsglühung erfolgt entweder als Kontiglühung
mit einer Glühtemperatur zwischen 600 °C und 1000 °C, bevorzugt zwischen 650 °C und
950 °C, besonders bevorzugt zwischen 700 °C und 850 °C; oder als Haubenglühung mit
einer Glühtemperatur zwischen 450 °C und 950 °C, bevorzugt zwischen 550 °C und 900
°C, besonders bevorzugt zwischen 650 °C und 750 °C. Die jeweiligen Obergrenzen wurden
zur Vermeidung eines zu hohen Energieeinsatzes gewählt und die Untergrenzen wurden
zur Sicherstellung einer ausreichenden Rekristallisation einerseits und einer ausreichenden
Reduzierung des Delta-Ferrits andererseits gewählt.
[0059] Haltezeiten bei der Rekristallisationsglühung sind beispielsweise 0,5 min bis 15
min, bevorzugt bis 10 min, besonders bevorzugt bis 5 min für das Kontiglühen beziehungsweise
0,5 h bis 72 h, bevorzugt 2h bis 48 h, besonders bevorzugt 4 h bis 24 h für die Haubenglühung.
[0060] Im Anschluss an die Rekristallisationsglühung kann direkt (ohne zwischenzeitliches
Abkühlen auf Raumtemperatur) oder indirekt (mit zwischenzeitlichem Abkühlen auf Raumtemperatur)
eine Anlassglühung durchgeführt werden. Die Durchführung der Anlassglühung erfolgt
entweder als Kontiglühung mit einer Glühtemperatur zwischen 200 °C und 700 °C, bevorzugt
zwischen 250 °C und 650 °C, besonders bevorzugt zwischen 300 °C und 600 °C; oder als
Haubenglühung mit einer Glühtemperatur zwischen 400 °C und 650 °C, bevorzugt zwischen
450°C und 600°C, besonders bevorzugt zwischen 470 °C und 570 °C. Die jeweiligen Obergrenzen
wurden zur Sicherstellung einer ausreichenden thermodynamischen Triebkraft für die
Bildung einer größeren Menge von verstärkendem eutektoiden Gefügebestandteil gewählt
und die Untergrenzen wurden zur Sicherstellung einer ausreichenden Diffusionsgeschwindigkeit
für die Bildung einer größeren Menge von verstärkendem eutektoiden Gefügebestandteil
gewählt.
[0061] Haltezeiten bei der Anlassglühung sind beispielsweise 1 min bis 20 min, bevorzugt
2 bis 15 min, besonders bevorzugt 3 min bis 12 min für das Kontiglühen beziehungsweise
0,5 h bis 72 h, bevorzugt 2 h bis 48 h, besonders bevorzugt 4 h bis 24 h für das Haubenglühen.
Die jeweiligen Obergrenzen wurden zur Sicherstellung einer ausreichend feinen Ausprägung
des verstärkenden eutektoiden Gefügebestandteils gewählt und die Untergrenzen wurden
zur Sicherstellung der Bildung einer größeren Menge von verstärkendem eutektoiden
Gefügebestandteil gewählt.
[0062] In Weiterbildung des erfindungsgemäßen Verfahrens kann vorgesehen sein, dass das
Stahlflachprodukt nach dem Schlussglühen dressiert und/oder beschichtet wird, wobei
Dressieren und Beschichten in beliebiger Reihenfolge durchgeführt werden können.
[0063] Ein Stahlflachprodukt nach der eingangsgenannten Art eignet sich für eine Vielzahl
von Zwecken. Insbesondere kann vorgesehen sein, ein Stahlflachprodukt umzuformen zur
Verwendung
- in der Karosserie von Fahrzeugen,
- als Fahrgestellbauteile
- als Beschuss-/Explosionsschutz
- als Druckwalzbauteil,
- als Rohre
- in der Kabine von Aufzügen,
- als Dämpfungselement,
- als Verschleißschutzkomponente oder
- im Kopf von Golfschlägern..
[0064] Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
[0065] Es wurden vier den Maßgaben der Erfindung entsprechende Schmelzen B, C, D und E sowie
eine Vergleichsschmelze A erschmolzen. Die Zusammensetzungen der erzeugten Schmelzen
sowie der Vergleichsschmelze sind in Tab. 1 angegeben. Die Vergleichsschmelze A weist
gegenüber den erfindungsgemäßen Schmelzen insbesondere den Unterschied auf, dass der
Kohlenstoffgehalt mit 0,145 Gew.-% signifikant geringer ist.
[0066] Die Proben aus den Schmelzen A bis E wurden zu Kaltband prozessiert. Die hierzu verwendeten
Prozessparameter sind in Tab. 2 wiedergegeben. Die zugehörigen Ergebnisse sind in
Tab. 3 wiedergegeben.
[0067] Aus jeder der Schmelzen A bis E wurden Proben hergestellt und mit den folgenden Bedingungen
warmgewalzt entsprechend der Verfahrensführung des Verfahrensschritts C):
Vorwärmtemperatur 1200 °C, Vorwärmen für 1,5 Stunden;
Walzendtemperatur 950 °C.
[0068] Das warmgewalzte Band wurde in allen Versuchen mit einer Haspeltemperatur von 800
°C prozessiert. Es erfolgten darüber hinaus verschiedene Varianten der Verfahrensführung:
Warmbandglühen: teilweise ohne, teilweise für eine bestimmte Zeit bei einer bestimmten
Temperatur, was in der Tab. 2 unter der Nomenklatur
Glühdauer@Glühtemperatur wiedergegeben ist. Analog wurde die Rekristallisationsglühung, in manchen Fällen
mit anschließendem Anlassen, als Schlussglühen des Schritts F) durchgeführt und in
der Nomenklatur
Haltezeit@Glühtemperatur angegeben. Weiterhin sind die Werkstoffkennwerte ReH, ReL, Rp0,2, Rm, Ag, A50, HV5,
die Dichte, Austenitanteil und Anteil eutektoider Phase angegeben, wobei zu 100 Vol.-%
fehlende Anteile Ferritphase sowie gegebenenfalls Ausscheidungen sind.
[0069] Den Tab. 2 und 3 ist zu entnehmen, dass Proben existieren, die einen nachweisbaren
Volumenanteil an eutektoider Phase aufweisen. Diese Proben sind dieselben, wobei entweder
ReH oder Rp0,2 wenigstens 550 MPa beträgt. Bei diesen Proben ist auch die Zugfestigkeit
Rm größer als bei den Proben mit keinem nachweisbaren Volumenanteil eutektoider Phase
und beträgt immer wenigstens 788 MPa. Diese drei Bedingungen korrelieren, sodass das
Erfüllen von einer dieser Bedingungen ausreicht, um eine Probe als erfindungsgemäße
Probe zu qualifizieren.
Tab. 3
V |
Mechanische Eigenschaften (KB längs) |
HV5 |
Dichte in g/cm3 |
Austenitanteil in Vol-% |
Anteil eutektoide Phase in Vol-% |
|
E |
ReH |
ReL |
Rp0,2 |
Rm |
Ag |
A50 |
n10-20 |
r10-20 |
|
|
|
|
|
GPa |
MPa |
% |
1 |
- |
537 |
535 |
- |
669 |
18,5 |
24,9 |
0,182 |
0,50 |
218 |
7,32 |
35 |
0 |
2 |
- |
- |
- |
407 |
620 |
23,1 |
31,5 |
0,214 |
0,56 |
199 |
7,32 |
40 |
0 |
3 |
146 |
- |
- |
410 |
722 |
30,0 |
32,2 |
0,351 |
0,57 |
201 |
7,32 |
31 |
0 |
4 |
- |
- |
- |
468 |
640 |
20,6 |
27,3 |
0,196 |
0,55 |
205 |
7,32 |
40 |
0 |
5 |
- |
- |
- |
358 |
607 |
22,3 |
32,7 |
0,214 |
0,57 |
205 |
7,32 |
45 |
0 |
6 |
- |
679 |
653 |
- |
815 |
20,5 |
27,0 |
0,190 |
0,43 |
253 |
7,33 |
55 |
3,0 |
7 |
- |
- |
- |
434 |
723 |
22,9 |
26,8 |
0,257 |
0,47 |
210 |
7,33 |
75 |
0 |
8 |
- |
711 |
679 |
- |
822 |
19,6 |
27,4 |
0,186 |
0,45 |
256 |
7,33 |
41 |
8,5 |
9 |
- |
- |
- |
503 |
743 |
25,2 |
31,2 |
0,242 |
0,46 |
224 |
7,33 |
47 |
0 |
10 |
- |
- |
- |
466 |
852 |
24,3 |
24,0 |
0,471 |
0,65 |
208 |
7,33 |
64 |
0 |
11 |
- |
644 |
626 |
- |
788 |
22,6 |
29,5 |
0,198 |
0,52 |
249 |
7,33 |
42 |
2,0 |
12 |
- |
- |
- |
482 |
726 |
27,1 |
30,5 |
0,242 |
0,56 |
214 |
7,33 |
51 |
0 |
13 |
- |
- |
- |
764 |
890 |
14,1 |
21,8 |
0,135 |
0,54 |
273 |
7,33 |
60 |
5,0 |
14 |
- |
- |
- |
521 |
757 |
32,8 |
36,2 |
0,252 |
0,63 |
219 |
7,33 |
65 |
0 |
15 |
- |
- |
- |
406 |
858 |
28,4 |
31,9 |
0,455 |
0,65 |
201 |
7,33 |
61 |
0 |
16 |
- |
664 |
656 |
- |
835 |
20,3 |
26,1 |
0,187 |
0,48 |
255 |
7,34 |
55 |
5,0 |
17 |
- |
- |
- |
473 |
751 |
27,9 |
34,9 |
0,262 |
0,49 |
210 |
7,34 |
75 |
0 |
18 |
- |
690 |
671 |
- |
831 |
20,0 |
25,4 |
0,191 |
0,53 |
259 |
7,34 |
46 |
8,5 |
19 |
- |
493 |
490 |
- |
746 |
27,8 |
34,4 |
0,260 |
0,58 |
220 |
7,34 |
60 |
0 |
20 |
- |
- |
- |
425 |
572 |
7,3 |
7,3 |
- |
0,73 |
198 |
7,34 |
71 |
0 |
21 |
- |
650 |
639 |
- |
809 |
22,1 |
28,6 |
0,201 |
0,56 |
249 |
7,34 |
45 |
2,5 |
22 |
- |
- |
- |
488 |
739 |
27,4 |
32,8 |
0,256 |
0,60 |
210 |
7,34 |
59 |
0 |
23 |
- |
- |
- |
848 |
966 |
9,6 |
19,5 |
0,080 |
0,51 |
303 |
7,34 |
65 |
6,0 |
24 |
- |
- |
- |
506 |
765 |
32,3 |
39,1 |
0,278 |
0,66 |
218 |
7,34 |
75 |
0 |
25 |
- |
- |
- |
382 |
720 |
11,7 |
12,0 |
0,447 |
0,66 |
195 |
7,34 |
70 |
0 |
26 |
- |
658 |
654 |
- |
855 |
19,1 |
25,8 |
0,183 |
0,51 |
269 |
7,33 |
55 |
6,0 |
27 |
- |
- |
- |
488 |
784 |
27,5 |
35,8 |
0,257 |
0,57 |
226 |
7,33 |
75 |
0 |
28 |
- |
684 |
662 |
- |
845 |
12,3 |
14,3 |
0,165 |
0,54 |
268 |
7,33 |
46 |
12,0 |
29 |
- |
- |
- |
520 |
801 |
25,0 |
29,5 |
0,253 |
0,59 |
226 |
7,33 |
69 |
0 |
30 |
- |
- |
- |
437 |
545 |
4,5 |
4,5 |
- |
0,66 |
212 |
7,33 |
75 |
0 |
31 |
- |
651 |
648 |
- |
846 |
19,5 |
25,7 |
0,187 |
0,64 |
262 |
7,33 |
43 |
5,5 |
32 |
- |
- |
- |
507 |
776 |
27,7 |
33,7 |
0,249 |
0,69 |
222 |
7,33 |
59 |
0 |
33 |
- |
- |
- |
831 |
971 |
12,8 |
20,9 |
0,126 |
0,67 |
321 |
7,33 |
65 |
7,0 |
34 |
- |
- |
- |
525 |
798 |
36,7 |
41,2 |
0,271 |
0,75 |
221 |
7,33 |
80 |
0 |
35 |
- |
- |
- |
427 |
724 |
12,8 |
12,8 |
0,467 |
0,74 |
209 |
7,33 |
83 |
0 |
36 |
- |
- |
- |
648 |
989 |
15,4 |
17,9 |
0,239 |
0,57 |
271 |
7,33 |
35 |
17,5 |
37 |
- |
643 |
639 |
- |
917 |
17,2 |
21,0 |
0,187 |
0,49 |
266 |
7,33 |
30 |
11,0 |
38 |
- |
- |
- |
648 |
874 |
21,7 |
29,7 |
0,186 |
0,59 |
268 |
7,33 |
60 |
8,0 |
39 |
- |
- |
- |
459 |
777 |
31,3 |
39,1 |
0,280 |
0,70 |
213 |
7,33 |
80 |
0 |
40 |
- |
- |
- |
653 |
868 |
19,9 |
27,8 |
0,181 |
0,65 |
270 |
7,33 |
47 |
6,5 |
41 |
- |
- |
- |
483 |
777 |
31,2 |
37,0 |
0,274 |
0,83 |
226 |
7,33 |
62 |
0 |
42 |
- |
- |
- |
811 |
953 |
18,4 |
25,9 |
0,159 |
0,74 |
289 |
7,33 |
75 |
8,0 |
43 |
- |
- |
- |
525 |
798 |
36,7 |
41,2 |
0,271 |
0,75 |
223 |
7,33 |
85 |
0 |
44 |
- |
395 |
389 |
- |
547 |
5,8 |
5,8 |
- |
0,89 |
199 |
7,33 |
88 |
0 |
[0070] In Tabs. 2 und 3 bezeichnet in der Spalte "I": J ein erfindungsgemäßes und N ein
nicht erfindungsgemäßes Beispiel. Austenitanteil und Anteil eutektoider Phase sind
in Vol.-% angegeben. In der Spalte "V" sind die einzelnen hergestellten und ausgewerteten
Proben mit einer laufenden Nummer eines Versuchs versehen. Eine Probe aus einem Versuch
der Tab. 2 weist die experimentell nachgewiesenen Ergebnisse auf, die in Tab. 3 mit
derselben Versuchsnummer versehen sind. Im Übrigen bezeichnen die in den Tabs. 2 und
3 angegebenen Formelzeichen folgende Werkstoffkennwerte beziehungsweise Abkürzungen
folgendes:
VWT: |
Vorwärmtemperatur, |
WET: |
Walzendtemperatur, |
HT: |
Haspeltemperatur, |
in der Spalte Schlussglühen:
H: Haubenglühung,
K: Kontiglühung,
ReH: |
obere Streckgrenze (angegeben in MPa), |
ReL: |
untere Streckgrenze (angegeben in MPa), |
Rp0,2: |
0,2%-Dehngrenze (angegeben in MPa), |
Rm: |
Zugfestigkeit (angegeben in MPa), |
Ag: |
Gleichmaßdehnung, |
A50: |
A50-Dehnung, |
n10-20: |
Verfestigungsexponent, ermittelt zwischen 10 und 20 % plastischer Dehnung, |
r10-20: |
Senkrechte Anisotropie in Längsrichtung bei 20 % plastischer Dehnung, |
HV5: Vickers-Härte HV5 entsprechend DIN EN ISO 6507-{1 bis 4}:2018-07 |
1. Stahl, der gemäß der nachfolgenden Vorschrift zusammengesetzt ist, in Gewichts-Prozent,
kurz: Gew.-%:
C: 0,30 bis 0,65, bevorzugt 0,35 bis 0,60, besonders bevorzugt 0,40 bis 0,55;
Mn: 7,5 bis 14, bevorzugt 8,5 bis 12, besonders bevorzugt 9 bis 11;
Al: 3 bis 7, bevorzugt 4 bis 6, besonders bevorzugt 4,5 bis 5,5;
mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:
Ti: 0 bis 0,5, bevorzugt 0 bis 0,05;
Nb: 0 bis 0,5, bevorzugt 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 2, bevorzugt 0 bis 0,5;
Si: 0 bis 0,4, bevorzugt 0,01 bis 0,3;
Ta+W: 0 bis 0,5, bevorzugt 0 bis 0,05;
V: 0 bis 0,5, bevorzugt 0 bis 0,05;
Mo: 0 bis 1, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
Ni: 0 bis 2, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,15, bevorzugt 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,5, bevorzugt 0 bis 0,1;
Co: 0 bis 2, bevorzugt 0 bis 1;
Sb: 0 bis 0,002
Rest Fe und unvermeidbare Verunreinigungen.
2. Stahl nach Anspruch 1, wobei
das Mn/Al-Verhältnis > 1,2 ist.
3. Stahl nach einem der vorhergehenden Ansprüche, wobei
Al-Äquivalent: 3 bis 8, bevorzugt 3 bis 7, besonders bevorzugt 3 bis 6,5.
4. Stahl nach einem der vorhergehenden Ansprüche,
aufweisend einen eutektoiden Gefügeanteil, in Volumen-Prozent, kurz: Vol-%, von 1
bis 40, bevorzugt 2 bis 30, besonders bevorzugt 5 bis 20.
5. Stahl nach einem der vorhergehenden Ansprüche, wobei, wenn der Stahl eine obere Streckgrenze
aufweist, die obere Streckgrenze ReH größer als 550 MPa ist, bevorzugt größer als
650 MPa, und, wenn der Stahl keine obere Streckgrenze aufweist, die 0,2-%-Dehngrenze
Rp0,2 größer als 550 MPa ist, bevorzugt größer als 650 MPa.
6. Stahl nach einem der vorhergehenden Ansprüche, aufweisend eine Dichte von höchstens
7,6 g/cm3, bevorzugt höchstens 7,5 g/cm3, besonders bevorzugt höchstens 7,4 g/cm3.
7. Stahlflachprodukt, bestehend aus einem Stahl nach einem der vorhergehenden Ansprüche
oder erhalten nach einem Verfahren nach einem der Ansprüche 8 bis 14.
8. Verfahren zur Herstellung eines Stahlflachprodukts, insbesondere aus einem Stahl nach
einem der Ansprüche 1 bis 7, umfassend die folgenden Herstellungsschritte:
A) Erschmelzen einer Stahlschmelze, enthaltend eine Elementzusammensetzung nach einem
der Ansprüche 1 bis 3;
B) Vergießen der Stahlschmelze zu einem walzbaren Vorprodukt, insbesondere einem Vorband,
einer Bramme oder einer Dünnbramme;
C) Warmwalzen des Vorprodukts mit einer Walzendtemperatur > 700 °C;
D) optional Warmbandglühung;
E) Kaltwalzen des Warmbands;
F) optionales Schlussglühen.
9. Verfahren nach Anspruch 8, wobei
- die Vorwärmtemperatur vor dem Warmwalzen in Schritt C) zu 1100 °C bis 1350 °C, bevorzugt
1150 °C bis 1250 °C, eingestellt wird, und/oder
- die Walzendtemperatur in Schritt C) zu zwischen 700 °C und 1050 °C, bevorzugt zwischen
850 °C und 1000 °C, besonders bevorzugt zwischen 920 °C und 980 °C, eingestellt wird.
10. Verfahren nach Anspruch 8 oder nach Anspruch 9, wobei das Warmband in Anschluss an
Schritt C) aufgehaspelt wird mit einer Haspeltemperatur unter 900 °C, bevorzugt zwischen
400 °C und 900 °C, besonders bevorzugt zwischen 600 °C und 850 °C.
11. Verfahren nach einem der Ansprüche 8 bis 10, wobei das Warmbandglühen des Schritts
D) durchgeführt wird
mit einer Glühtemperatur zwischen 450 °C und 1000 °C, bevorzugt zwischen 600 °C und
950 °C, besonders bevorzugt zwischen 700 °C und 900 °C, und
mit einer Glühdauer zwischen 1 und 72 Stunden.
12. Verfahren nach einem der Ansprüche 8 bis 11, wobei das Kaltwalzen bei einer Temperatur
unterhalb von 200 °C durchgeführt wird und einen Kaltwalzgrad zwischen 25 % und 95
%, bevorzugt zwischen 40 % und 90 %, besonders bevorzugt zwischen 50 % und 80 %, aufweist.
13. Verfahren nach einem der Ansprüche 8 bis 12, wobei das Schlussglühen des Schritts
F) in Schutzgasatmosphäre durchgeführt wird
als Kontiglühung mit einer Glühtemperatur zwischen 600 °C und 1000 °C, bevorzugt zwischen
650 °C und 950 °C, besonders bevorzugt zwischen 700 °C und 850 °C; oder
als Haubenglühung mit einer Glühtemperatur zwischen 450 °C und 950 °C, bevorzugt zwischen
550 °C und 900 °C, besonders bevorzugt zwischen 650 °C und 750 °C.
14. Verfahren nach einem der Ansprüche 8 bis 13, wobei nach dem Schlussglühen das Stahlflachprodukt
dressiert wird und/oder
beschichtet wird.
15. Verwendung eines umgeformten Stahlflachprodukts nach Anspruch 7
- als Bestandteil einer Karosserie eines Fahrzeugs,
- als Fahrgestellbauteil
- als Beschuss-/Explosionsschutz,
- als Druckwalzbauteil,
- als Rohr,
- als Bestandteil einer Aufzugkabine,
- als Dämpfungselement oder
- als Bestandteil eines Kopfs eines Golfschlägers.