

(11) **EP 3 771 746 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 03.02.2021 Patentblatt 2021/05

(21) Anmeldenummer: 19189845.1

(22) Anmeldetag: 02.08.2019

(51) Int Cl.:

C21D 8/02 (2006.01) C21D 9/46 (2006.01) C22C 38/00 (2006.01) C22C 38/02 (2006.01) C22C 38/04 (2006.01) C22C 38/06 (2006.01) C22C 38/10 (2006.01) C22C 38/12 (2006.01) C22C 38/14 (2006.01) C22C 38/16 (2006.01) C22C 38/42 (2006.01) C22C 38/44 (2006.01) C22C 38/48 (2006.01) C22C 38/50 (2006.01) C22C 38/52 (2006.01) C22C 38/54 (2006.01) C22C 38/58 (2006.01) C22C 38/60 (2006.01) C21D 6/00 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(71) Anmelder: ThyssenKrupp Steel Europe AG 47166 Duisburg (DE)

(72) Erfinder:

- MARTINS GUERRA FILHO, Jorge Luiz 47057 Duisburg (DE)
- SCHWABE, Jonas 47249 Duisburg (DE)
- HOFMANN, Harald 44357 Dortmund (DE)
- SCHIRMER, Matthias 40227 Düsseldorf (DE)
- (74) Vertreter: Zenz Patentanwälte Partnerschaft mbB Rüttenscheider Straße 2 45128 Essen (DE)

(54) STAHL, STAHLFLACHPRODUKT, VERFAHREN ZUR HERSTELLUNG EINES STAHLFLACHPRODUKTS UND VERWENDUNG

(57) Die Erfindung betrifft einen Stahl, der insbesondere aufweist, in Gewichts-Prozent, kurz: Gew.-%: C: 0,30 bis 0,65, bevorzugt 0,35 bis 0,60, besonders bevorzugt 0,40 bis 0,55;

Mn: 7,5 bis 14, bevorzugt 8,5 bis 12, besonders bevorzugt 9 bis 11;

Al: 3 bis 7, bevorzugt 4 bis 6, besonders bevorzugt 4,5 bis 5,5;

Rest Fe und unvermeidbare Verunreinigungen.

Die Erfindung betrifft außerdem ein Stahlflachprodukt und ein Verfahren zur Herstellung eines Stahlflachprodukts.

Beschreibung

5

10

15

20

30

50

[0001] Die Erfindung betrifft einen Stahl, der in seinen Eigenschaften eine vergleichsweise geringe Dichte mit einer vergleichsweise hohen Festigkeit, insbesondere hoher oberer Streckgrenze beziehungsweise 0,2%-Dehngrenze, kombiniert.

[0002] Die Erfindung betrifft außerdem ein Stahlflachprodukt, ein Verfahren zur Herstellung eines Stahlflachprodukts sowie Verwendungen.

[0003] Stähle und Stahlflachprodukte mit hohen Festigkeiten und geringen Dichten haben eine hohe und weiter zunehmende Bedeutung in vielen Gebieten der Technik. Beispielsweise sind im Bereich des Personen- und Nutzfahrzeugbaus derartige Stahlflachprodukte von hoher Bedeutung, um eine Reduzierung des Eigengewichts und eine Steigerung der Nutzlast von Personen- und Nutzfahrzeugen zu ermöglichen.

[0004] In dem Fall, in dem in dieser Schrift Angaben zu Gefügen eines Stahls, Stahlflachprodukts oder eines aus diesen hergestellten Bauteils gemacht sind, sind Austenit-Anteile mittels XRD-Messverfahren ermittelt, die in folgender Quelle beschrieben sind: DIN EN 13925-Röntgendiffraktometrie von polykristallinen und amorphen Materialien Teil 1 und 2 aus 2003_7, Teil 3 aus 2005. Die Werkstoffkennwerte Zugfestigkeit Rm, Dehngrenze Rp0,2, Bruchdehnung sowie obere ReH und untere Streckgrenzen ReL sind gemäß DIN EN ISO 6892-1:2017-02 bestimmt.

[0005] Als Stähle mit vergleichsweise geringer Dichte bei gleichzeitig hoher Festigkeit sind mit Mn und/oder Al legierte Stähle bekannt, beispielsweise aus der US 2014/0205488 A1. In der US 2014/0205488 A1 sind Stähle beschrieben mit, neben anderen Legierungsbestandteilen, Kohlenstoffgehalten bis zu 0,3 Gew.-% und zwischen 4 und 10 Gew.-% Mn.

[0006] Gegenüber bekannten Stählen und Stahlflachprodukten liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine verbesserte Eigenschaftskombination, insbesondere hinsichtlich Dichte, Streckgrenze, Zugfestigkeit und Legierungskosten, bereitzustellen.

[0007] Die Aufgabe wird gelöst mit einem Stahl mit den Merkmalen des Anspruchs 1, mit einem Stahlflachprodukt mit den Merkmalen des Anspruchs 7 und mit einem Verfahren mit den Merkmalen des Anspruchs 8.

[0008] Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

[0009] Die Erfindung sieht Stähle vor, welche der nachfolgenden Legierungsvorschrift genügen. Ein erfindungsgemäßer Stahl weist Elemente im Rahmen der nachfolgend genannten Spannen auf:

```
C: 0,30 bis 0,65;
Mn: 7,5 bis 14;
Al: 3 bis 7;
```

mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:

```
35
           Ti: 0 bis 0.5:
           Nb: 0 bis 0,5;
           B: 0 bis 0,1;
           Cr: 0 bis 2;
           Si: 0 bis 0.4:
40
           Ta+W: 0 bis 0,5;
           V: 0 bis 0,5;
           Mo: 0 bis 1;
           Ni: 0 bis 2;
           Cu: 0 bis 2;
45
           Ca: 0 bis 0,15;
           Ce+La+Y+Zr: 0 bis 0,5;
           Sb: 0 bis 0,002.
```

[0010] Rest Fe und unvermeidbare Verunreinigungen. Alle den Anteil von Elementen im Stahl betreffende Zahlenwerte sind in Gewichts-Prozent, kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich zu insgesamt 100 Gew.-% summieren.

[0011] Die Legierungsbestandteile sind derart ausgewählt, dass bei Befolgung der obigen Legierungsvorschrift eine Eigenschaftskombination erreicht wird, welche unter anderem für die Lösung der eingangs genannten Aufgabenstellung hervorragend geeignet ist.

[0012] C: Der Kohlenstoffgehalt beträgt erfindungsgemäß 0,30-0,65 Gew.-%. Der gewählte Anteil des Kohlenstoffs bestimmt maßgeblich den Anteil des Austenits in dem Stahl sowie die Stabilität der Austenitphase. Ein Kohlenstoffgehalt von 0,30 Gew.-% ist als untere Grenze gewählt, da unterhalb dieser Grenze verstärkt Delta-Ferrit entstehen würde. Die

Auswahl des C-Gehalts ist zudem entscheidend für die Bildung von eutektoiden Gefügebestandteilen, zum Beispiel Perlit, durch welche die Festigkeit, insbesondere Streckgrenze und Dehngrenze, erhöht werden. Die eutektoiden Gefügebestandteile wurden ab einem bevorzugten unteren Kohlenstoffgehalt von 0,35 Gew.-% beobachtet. Geringe Kohlenstoffgehalte führen dazu, dass höhere Gehalte von Ersatzelementen beigefügt werden müssten, die in vielen Fällen teurer zu beschaffen wären als C. Höhere C-Gehalte erlauben zudem zunehmend den Einsatz von preiswerteren Mn-Legierungsträgern, wie beispielsweise Ferro-Mn carburee. Daher sind Kohlenstoffgehalte von wenigstens 0,40 Gew.-% oder höher besonders bevorzugt.

[0013] Mit zunehmendem C-Gehalt nimmt jedoch die Schweißeignung des Stahls ab. Die obere Grenze von 0,65 Gew.-% wurde gewählt, da oberhalb dieser Grenze die Schweißeignung des Stahls für die Praxistauglichkeit zu stark verringert würde.

10

30

35

40

45

50

[0014] Mn: Der Mangangehalt beträgt erfindungsgemäß zwischen 7,5 und 14 Gew.-%. Ein vergleichsweise hoher Mn-Gehalt ist Voraussetzung für die wunschgemäße Beschaffenheit der erfindungsgemäßen Stähle, da er den Anteil von Austenitphase im Stahl und deren Stabilität entscheidend beeinflusst. Mn verbessert die Warmumformbarkeit, erhöht die Festigkeit und desoxidiert den Stahl. Erst bei zu hohen Mn-Gehalten ist die Verringerung der Korrosionsbeständigkeit durch Mn ein Nachteil. Eine untere Grenze des Mn-Gehalts wurde mit 7,5 Gew.-% festgelegt, da unterhalb dieser Grenze die unerwünschte Bildung von Delta-Ferrit gefördert wird und die gewünschte Stabilisierung der Austenitphase nicht in ausreichendem Maß erreicht wird. Die Obergrenze wurde mit Hinblick auf ökonomische Aspekte gewählt, da oberhalb von 14 Gew.-% Mn keine signifikante Eigenschaftsverbesserung mehr beobachtet wurde, die eine kostenintensive weitere Erhöhung des Mn-Gehalts rechtfertigt.

[0015] Al: Ein signifikanter Al-Gehalt wenigstens mit der Untergrenze von 3 Gew.-% dient der Reduktion der Dichte des Stahls. Die Obergrenze des Al-Gehalts von 7 Gew.-% wurde gewählt, um negative Einflüsse des Al auf Herstellbarkeit und Weiterverarbeitbarkeit des Stahls, insbesondere infolge der Bildung von versprödenden Vorordnungs- oder Ordnungszuständen, beispielsweise den sogenannten B2, D0₃ oder Kappa-Phase, und von unerwünschtem Delta-Ferrit, zu begrenzen. Eine bevorzugte Obergrenze von 6 Gew.-% ist begründet in der oberhalb dieser Grenze zu beobachtenden erschwerten Kaltverformbarkeit.

[0016] Die optionale Zulegierung von Ti führt, insbesondere bei gleichzeitiger Zulegierung von Nb, zu einer verbesserten Kantenstabilität, das heißt: Beständigkeit der Bandkanten gegen Kantenrisse, beim Warmwalzen. Ein weiterer Vorteil, der durch Zulegieren von Ti erreicht wird, sind eine erhöhte Tieftemperaturzähigkeit und eine verbesserte Warmfestigkeit. Nachteilige Effekte zeigen sich insbesondere oberhalb eines Ti-Gehalts von 0,5 Gew.-%, nämlich in einer Verschlechterung von Kaltformbarkeit und Schweißeignung.

[0017] Die optionale Zulegierung von Nb führt, insbesondere bei gleichzeitiger Zulegierung von Ti, zu einer verbesserten Kantenstabilität beim Warmwalzen. Ein weiterer Vorteil, der durch Zulegieren von Nb erreicht wird, ist eine erhöhte Tieftemperaturzähigkeit und eine verbesserte Warmfestigkeit. Nachteilige Effekte zeigen sich insbesondere oberhalb eines Nb-Gehalts von 0,5 Gew.-%, nämlich in einer Verschlechterung von Kaltformbarkeit und Schweißeignung.

[0018] Die optionale Zulegierung von Bor, kurz: B, führt zu einem feinen Gefüge. Eine Obergrenze wurde zu 0,1 Gew.- % gewählt, da höhere B-Gehalte zu einer Verschlechterung der Kaltumformbarkeit führen.

[0019] Cr kann optional bis zu 2 Gew-% Gewichtsanteil zulegiert werden, um die Korrosions- und Oxidationsbeständigkeit des Stahls zu verbessern. Oberhalb der genannten Grenze besteht die Gefahr unerwünschter Karbidbildung, weswegen sie nicht überschritten werden soll.

[0020] Si kann zulegiert werden, um die Festigkeit des Stahls zu erhöhen und eine weitere Dichtereduktion herbeizuführen. Der Si-Anteil soll 0,4 Gew.-% nicht überschreiten, da Si in Zusammenwirkung mit Al eine unerwünscht hohe Abnahme der Duktilität des Stahls herbeiführt.

[0021] Tantal, Wolfram und Vanadium können zur Förderung der Bildung festigkeitssteigender Karbide beigefügt werden, wobei der V-Gehalt und die Summe des Ta-Gehalts und des W-Gehalts zur Vermeidung unverhältnismäßig hoher Kosten jeweils auf 0,5 Gew.-% begrenzt werden, es gilt also: V < 0,5 Gew.-% und Ta + W < 0,5 Gew.-%.

[0022] Eine Beigabe von Mo kann zur Erhöhung der Zugfestigkeit und zur Bildung eines feineren Gefüges des Stahls vorgenommen werden. Um eine nicht tolerierbare Verschlechterung der Warm- und Kaltumformbarkeit zu vermeiden, wird die obere Grenze des Mo-Gehalts zu 1 Gew.-% festgelegt.

[0023] Eine Ni-Beigabe und/oder eine Cu-Beigabe kann zur Verbesserung der Korrosionsbeständigkeit optional erfolgen, wird aber aufgrund hoher Kosten von Ni und Cu auf jeweils < 2 Gew.-% begrenzt.

[0024] Eine Ca-Beigabe bis zu 0,15 Gew.-% kann zum Zwecke der Bindung von S optional erfolgen, wird aufgrund begrenzter Löslichkeit des Ca in Fe und C jedoch mit der angegebenen Grenze begrenzt.

[0025] Ce, La, Y und Zr können optional zur Entschwefelung und Desoxidierung sowie zur Kornfeinung beigegeben werden, wobei die Summe der Gehalte dieser vier Elemente aufgrund hoher Kosten auf 0,5 Gew.-% begrenzt ist.

[0026] Eine optionale Beigabe von Co kann erfolgen, um die Austenitphase im Stahl zu stabilisieren. Aufgrund hoher Kosten von ausreichend reinem elementarem Co wird der Co-Anteil aber auf 2 Gew.-% begrenzt.

[0027] Antimon, kurz: Sb, kann als optionale Beigabe zur Verzögerung der Rissbildung im Stahl zulegiert werden, wobei der Gewichtsanteil 0,002 Gew.-% aufgrund der gesundheitsgefährdenden Eigenschaften von Sb als obere Grenze

gewählt wurde.

10

40

45

50

55

[0028] Si, P, S, Cu, N, Sb, Sn, Cd, As, Mg und Te sind einige der Elemente, die stets als unvermeidbare Begleitelemente des Herstellungsprozesses in den erfindungsgemäßen Stahl gelangen. Die nicht als optionale Elemente ohnehin vorgesehenen Elemente sind auf Mengen beschränkt, die den Stahl in Bezug auf seine angestrebten Eigenschaften nicht beeinträchtigen. Die oberen Grenzen sind 0,1 Gew.-% für P, 0,3 Gew.-% für S, und 0,05 und bevorzugt 0,03 Gew.-% für Sn. Die obere Grenze für Sn soll nicht überschritten werden, da ansonsten eine nachteilige Verzögerung von Rekristallisationsvorgängen herbeigeführt werden.

[0029] Besonders gute Eigenschaften des erfindungsgemäßen Stahls werden erreicht, wenn ein oder mehrere der vorhandenen Elemente innerhalb einer der nachfolgend genannten engeren Bereiche ausgewählt werden.

```
C: 0,30 bis 0,65, bevorzugt 0,35 bis 0,60, besonders bevorzugt 0,40 bis 0,55; Mn:7,5 bis 14, bevorzugt 8,5 bis 12, besonders bevorzugt 9 bis 11; Al:3 bis 7, bevorzugt 4 bis 6, besonders bevorzugt 4,5 bis 5,5;
```

mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:

```
Ti: 0 bis 0,5, bevorzugt 0 bis 0,05;
          Nb: 0 bis 0,5, bevorzugt 0 bis 0,05;
          B: 0 bis 0,1;
20
          Cr: 0 bis 2, bevorzugt 0 bis 0,5;
          Si: 0 bis 0,4, bevorzugt 0,01 bis 0,3;
          Ta+W: 0 bis 0,5, bevorzugt 0 bis 0,05;
          V: 0 bis 0,5, bevorzugt 0 bis 0,05;
          Mo:0 bis 1, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
25
          Ni:0 bis 2, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;
          Cu: 0 bis 2;
          Ca: 0 bis 0,15, bevorzugt 0 bis 0,05;
          Ce+La+Y+Zr: 0 bis 0,5, bevorzugt 0 bis 0,1;
          Co: 0 bis 2, bevorzugt 0 bis 1;
30
          Sb: 0 bis 0.002:
```

Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent, kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich zu insgesamt 100 Gew.-% summieren.

³⁵ **[0030]** Besonders bevorzugt sind Stähle, bei denen die nachfolgend genannte Vorschrift befolgt wird:

```
C: 0,40 bis 0,55;
Mn: 9 bis 11;
Al: 4,5 bis 5,5;
```

mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:

```
Ti: 0 bis 0,05;
Nb: 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 0,5;
Si: 0,01 bis 0,3;
Ta+W: 0 bis 0,05;
V: 0 bis 0,05;
Mo: 0 bis 0,01;
Ni: 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,1;
Co: 0 bis 1;
Sb: 0 bis 0,002;
```

Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent, kurz Gew.-%, angegeben

und verstehen sich derart, dass alle Legierungsbestandteile eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich zu insgesamt 100 Gew.-% summieren.

[0031] Im Rahmen dieser Vorschrift haben insbesondere Stähle sehr gute Ergebnisse gezeigt, welche der nachfolgenden Vorschrift genügen:

```
C: 0,40 bis 0,55;
Mn: 9 bis 11;
Al: 4,5 bis 5,5;
Si: 0,01 bis 0,3;
P < 0,1;
S < 0,3;
N < 0,008;
```

5

15

35

40

45

50

mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:

Ti: 0 bis 0,05;
Nb: 0 bis 0,05;
B: 0 bis 0,1;
Cr: 0 bis 0,5;

20 Ta+W: 0 bis 0,05;
V: 0 bis 0,05;
Mo: 0 bis 0,01;
Ni: 0 bis 0,01;
Cu: 0 bis 2;
Ca: 0 bis 0,05;
Ce+La+Y+Zr: 0 bis 0,1;
Co: 0 bis 1;
Sb: 0 bis 0,002;

Rest Fe und unvermeidbare Verunreinigungen. Alle Zahlenwerte sind in Gewichts-Prozent, kurz Gew.-%, angegeben und verstehen sich derart, dass alle Legierungsbestandteile eines erfindungsgemäßen Stahls inklusive Fe und unvermeidbarer Verunreinigungen sich zu insgesamt 100 Gew.-% summieren. Ein entsprechend dieser Vorschrift zusammengesetzter Stahl ist eine besonders bevorzugte Ausführung eines erfindungsgemäßen Stahls.

[0032] Um den Anteil von Delta-Ferrit innerhalb des Stahls unterhalb eines bei bevorzugter Maßgabe unerwünschten Maßes zu halten, ist bevorzugt vorgesehen, dass das Mn/Al-Verhältnis eingestellt wird zu Mn/Al > 1,2. Mn/Al bezeichnet den Quotienten aus dem Mn-Gehalt und dem Al-Gehalt, jeweils in Gewichts-Prozent.

[0033] Um die Eigenschaften des Stahls weiter zu verbessern, ist in einer Weiterbildung vorgesehen, dass das Al-Äquivalent zwischen 3 bis 8, bevorzugt zwischen 3 bis 7, besonders bevorzugt zwischen 3 bis 6,5 liegt. Es stellte sich nämlich heraus, dass bei einem Al-Äquivalent > 6,5 vereinzelt versprödende Vorordnungs- oder Ordnungszustände entstehen, die oberhalb von einem Al-Äquivalent von 7 zu intermetallischen Phasen, beispielsweise B2 oder D0₃, und oberhalb von 8 zu massiven Versprödungserscheinungen im Stahl führen. Der Begriff des Al-Äquivalents bezeichnet die Summe aus

```
Al+0,4*Si*Si*Si-3*Si*Si+8,3*Si mit
Al: Gewichtsanteil Al in Gew.-%,
Si: Gewichtsanteil Si in Gew.-%.
```

[0034] Eine besondere Ausführung des erfindungsgemäßen Stahls weist einen eutektoiden Gefügeanteil, in Volumen-Prozent, kurz: Vol-%, von 1 bis 40, bevorzugt 2 bis 30, besonders bevorzugt 5 bis 20, auf. Grund dafür ist die Beobachtung, dass ein Anteil an eutektoider Phase mit einer wünschenswerten Steigerung der Festigkeit des Stahls einhergeht. Die untere Grenze von 1 Vol.-% wurde gewählt, da unterhalb dieser Grenze die erwünschte Festigkeitssteigerung nicht mehr im Rahmen des gewünschten Maßes liegt. Oberhalb von 40 Vol-% wird ein nachteiliger Einfluss auf die Duktilität und damit die Verformbarkeit beobachtet. Soweit der eutektoide Gefügeanteil festgelegt ist, ist dieser bestimmt per Grauwert-Bildanalyse, die lichtoptisch an einem Nital-geätzten Längsschliff in 1/3-Lage bestimmt wird. Die Grauwert-Bildanalyse ist eine Bildanalyse-Methode, die mit der Software "ImageAccess Version 11 Enterprise" (Release 12.1 build 196) der Firma "Imagic" durchgeführt wurde. Die mit der Grauwert-Bildanalyse mit der genannten Software erhaltenen Flächen-% werden als repräsentativ für die Vol.-% angesehen. Bei Betrachtung des Nital-geätzten Längsschliffs im Rasterelektronenmikroskop kann der eutektoide Gefügebestandteil als lamellare Struktur identifiziert werden.

[0035] Die "obere Streckgrenze ReH" ist in einer Ausführung größer als 550 MPa, bevorzugt größer als 650 MPa beziehungsweise, wenn der Stahl keine obere Streckgrenze aufweist, ist alternativ die "0,2%-Dehngrenze Rp0,2" größer als 550 MPa, bevorzugt größer als 650 MPa. Mit anderen Worten: In einer Ausführung weist der Stahl weder eine Streckgrenze von unterhalb 550 MPa, bevorzugt 650 MPa, noch eine 0,2%-Dehngrenze von unterhalb 550 MPa, bevorzugt 650 MPa, auf, sodass einer der beiden Werte existiert und wenigstens die angegebene untere Grenze aufweist. Wenn einer der Werte unterhalb von 550 MPa liegt, ist der Stahl nicht zur Herstellung von Bauteilen im Leichtbau geeignet, unter anderem aufgrund eines zu geringen Widerstands gegen plastische Verformung.

[0036] Bevorzugt nimmt das Produkt aus Zugfestigkeit Rm und Bruchdehnung A einen Wert zwischen 8000 MPa*% und 28000 MPa*% ein, besonders bevorzugt einen Wert zwischen 10000 MPa*% und 25000 MPa*%.

[0037] Der Stahl nimmt in einer vorteilhaften Weiterbildung eine Dichte von höchstens 7,6 g/cm³ ein, bevorzugt höchstens 7,5 g/cm³, besonders bevorzugt höchstens 7,4 g/cm³, wobei oberhalb von einem angestrebten Wert von 7,6 g/cm³ die erforderlichen Gewichtsanteile von Al und/oder Si zu groß werden mit den eingangs genannten Nachteilen.

[0038] Besonders bevorzugt sind die Eigenschaften von bevorzugten Weiterbildungen der Stähle, bei denen der Austenitgehalt im geglühten Kaltbandgefüge, gemessen am Längsschliff per XRD wie eingangs referenziert, zwischen 5 und 94 Vol-%, bevorzugt zwischen 10 und 80 Vol.-%, besonders bevorzugt zwischen 15 und 75 Vol.-%, beträgt, wobei die Untergrenze gewählt ist, um in ausreichendem Maße auftretende TRIP- und/oder TWIP-Effekte zu gewährleisten. Der Ferritgehalt im geglühten Kaltbandgefüge, gemessen am Längsschliff per XRD, beträgt in einer vorteilhaften Weiterbildung zwischen 5 und 94 Vol-%, bevorzugt zwischen 10 und 90 Vol.-%, besonders bevorzugt zwischen 10 und 60 Vol.-%. Ein Ferritgehalt von 5 Vol.-% soll nicht unterschritten werden, um eine ausreichende Magnetisierbarkeit sicherzustellen, während eine Obergrenze von 94 Vol.-% gewählt ist, um die gewünschte untere Grenze für den Austenitanteil zu ermöglichen.

[0039] Die Erfindung erstreckt sich auf Stahlflachprodukte, die aus einem erfindungsgemäßen Stahl oder einer seiner Weiterbildungen hergestellt sind. Derartige Stahlflachprodukte lösen die der Erfindung zu Grunde liegenden Aufgaben.

[0040] Der Begriff des Stahlflachprodukts bezeichnet im Rahmen der beschriebenen Entwicklungen insbesondere Walzprodukte, wie beispielsweise Stahlbänder, Bleche oder aus diesen hergestellten Zuschnitte oder Platinen.

[0041] Ein Stahlflachprodukt der erfindungsgemäßen Art weist die Vorteile auf, die sich aus der Stahlzusammensetzung und gegebenenfalls der Herstellungsweise des Stahlflachprodukts ergeben, und ermöglicht die flexible konstruktive Nutzung in vielen Anwendungsbereichen.

[0042] Die Erfindung erstreckt sich des Weiteren auf ein Verfahren zur Herstellung eines Stahlflachprodukts.

[0043] Das Verfahren wird bevorzugt zur Herstellung eines Stahls gemäß der eingangs genannten Art oder einer seiner Weiterbildungen eingesetzt.

[0044] Erfindungsgemäß werden die nachfolgenden Herstellungsschritte durchgeführt:

- A) Erschmelzen einer Stahlschmelze, enthaltend eine Elementzusammensetzung gemäß einer der eingangs genannten Vorschriften;
- B) Vergießen der Stahlschmelze zu einem walzbaren Vorprodukt, insbesondere einem Vorband, einer Bramme oder einer Dünnbramme;
- C) Warmwalzen des Vorprodukts mit einer Walzendtemperatur > 700 °C;
- D) optional Warmbandglühung;

30

35

40

45

50

- E) Kaltwalzen des Warmbands;
- F) optionales Schlussglühen des in Schritt E) erhaltenen Bands.

[0045] Das Erschmelzen der Stahlschmelze und das Vergießen der Stahlschmelze zu dem Vorprodukt unterliegt keinen Einschränkungen im Rahmen der Erfindung, sondern kann gemäß dem Fachmann bekannter Vorgehensweise entsprechend dem Ermessen des Fachmanns durchgeführt werden. Für das Erschmelzen des Schritts A) kann beispielsweise ein Elektrostahlwerk oder ein Oxygenstahlwerk mit Sekundärmetallurgie genutzt werden. Das Vergießen des Schritts B) kann beispielsweise als Blockguss-, als Strangguss- oder als endabmessungsnahes Gießverfahren ausgebildet sein. Für ein endabmessungsnahes Gießverfahren kann insbesondere eine Gießwalzanlage, eine 2-Rollen Bandgießanlage oder eine Belt-Casting-Technologie ausgewählt werden.

[0046] Für das Warmwalzen des Schritts C) wird bevorzugt eine Vorwärmtemperatur eingestellt, die zwischen 1100 °C und 1350 °C liegt, bevorzugt zwischen 1150 °C und 1250 °C. Die Untergrenze ist zu 1100 °C festgelegt, um eine homogene Durchwärmung des Materials zu gewährleisten und das Risiko von Rissbildung aufgrund inhomogener Durchwärmung zu vermeiden. Diese Untergrenze ist unter anderem deswegen vergleichsweise hoch gewählt, da die erfindungsgemäß auszuwählenden Elementzusammensetzungen einen Werkstoff mit vergleichsweise geringer thermischer Leitfähigkeit ergeben. Ein weiterer Vorteil der vergleichsweise hohen Untergrenze ist, dass die Umformbarkeit des vorgewärmten Vorprodukts ausreichend hoch ist, um eine zu hohe mechanische Belastung der Walzen zu vermeiden. Die Obergrenze von 1350 °C ist festgelegt, um bei höheren Temperaturen auftretende nachteilige Effekte auf die Festigkeit des Vorprodukts und damit einhergehende unerwünschte Verformungen des Vorprodukts während des Walzens

zu dem Stahlflachprodukt, beispielsweise durch den Zunderwäscher, und die erhöhte Neigung zur Anhaftung an den Walzen zu vermeiden. Die bevorzugte Temperaturspanne stellt einen optimierten Kompromiss zwischen gewünschten Verfahrenseigenschaften und ökonomischer Herstellung dar.

[0047] Die Walzendtemperatur des in Schritt C) durchgeführten Warmwalzens wird in einer besonders vorteilhaften Ausführung derart eingestellt, dass sie zwischen 700 °C und 1050 °C, bevorzugt zwischen 850 °C und 1000 °C, besonders bevorzugt zwischen 920 °C und 980 °C, beträgt. Die Untergrenze von 700 °C ist festgelegt, um bis zum Ende des Warmwalzprozesses eine ausreichend hohe Umformbarkeit beim Walzen zu erreichen und - damit einhergehend - die mechanischen Krafteinwirkungen auf die Walzen in ihrem Ausmaß zu begrenzen. Die Obergrenze von 1050 °C ist festgelegt, um die Herstellung auch von Stahlbändern mit geringer Dicke zu erlauben. Die bevorzugte Temperaturspanne und die besonders bevorzugte Temperaturspanne stellen einen Kompromiss zwischen gewünschten Verfahrenseigenschaften und ökonomischer Herstellung dar.

[0048] Gemäß einer vorteilhaften Weiterbildung wird das Warmband in Anschluss an Schritt C) aufgehaspelt mit einer Haspeltemperatur unter 900 °C, bevorzugt zwischen 400 °C und 900 °C, besonders bevorzugt zwischen 600 °C und 850 °C. Die bevorzugte untere Grenze von 400 °C wurde gewählt, um zu hohe Temperaturgradienten und mit diesen einhergehende thermische Spannungen im Band und eine schlechte Planlage des Bands zu vermeiden. Eine Haspeltemperatur von 900 °C soll nicht überschritten werden, um das Risiko von Korngrenzenoxidation und eine Zunderbildung auf ein ausreichend geringes Maß zu begrenzen.

[0049] In einer vorteilhaften Variante des Haspelns erfolgt das Haspeln mit einer Abkühlrate zwischen 0,01 und 10 K/min, bevorzugt zwischen 0,1 und 2 K/min, besonders bevorzugt zwischen 0,3 und 0,7 K/min. Die untere Grenze von 0,01 K/min ist als vorteilhaft gefunden worden, um da ein Heizen des Coils vermieden oder zumindest begrenzt werden kann. Die obere Grenze 10 K/min wurde gewählt, da bis zu dieser hin eine homogene Abkühlung des Bands entlang seiner Bandlänge noch gewährleistet ist.

[0050] Bevorzugt wird ein Beizen des in Schritt C) erhaltenen Warmbands durchgeführt. Dieses wird dadurch entzundert. Beispielsweise kann das Band durch einen Zunderbrecher geleitet werden, um den auf ihm haftenden Zunder aufzubrechen, und indem es, gegebenenfalls nach dem optionalen Zunderbrechen, ein Beizmedium durchläuft, das an der Oberfläche des Warmbands vorhandenen Zunder chemisch entfernt. Als Beizmedium kommt beispielsweise HCl oder H_2SO_4 in Frage. Die Beizdauer, über die das Warmband dem typischerweise auf eine Temperatur von 60 bis 100 °C erwärmten Beizmedium ausgesetzt wird, beträgt dabei 50 bis 500 s, um eine möglichst vollständige Entfernung des Zunders zu gewährleisten.

[0051] Bevorzugt wird das Warmband einem Warmbandglühen unterzogen. Für den Fall, dass das Warmband gehaspelt wird, erfolgt das Warmbandglühen bevorzugt nach dem Haspeln. Für den Fall, dass das Warmband gebeizt wird, erfolgt das Beizen bevorzugt vor dem Schritt D) und nach dem Haspeln.

[0052] Das Warmbandglühen erfolgt bevorzugt mit einer Glühtemperatur zwischen 450 °C und 1000 °C, bevorzugt zwischen 600 °C und 950 °C, besonders bevorzugt zwischen 700 °C und 900 °C. Die Glühbauer beträgt bevorzugt zwischen 1 und 72 Stunden. Die untere Grenze der Glühtemperatur von 450 °C gewährleistet ein noch ausreichendes Maß an Rekristallisation und eine ausreichend gute Kaltwalzbarkeit. Die Obergrenze von 1000 °C wurde gewählt, da bis zu dieser Grenze hin ein Duktilitätsverlust aufgrund von Kornvergröberung in ausreichendem Maß vermieden wird. [0053] Um eine gute Kombination von Wirtschaftlichkeit in Hinblick auf den Durchsatz und von Wirtschaftlichkeit in Hinblick auf erforderlichen Energieumsatz zu gewährleisten, wird für die Warmbandglühung bevorzugt eine durchschnittliche Aufheizrate zwischen 0,06 und 30 K/min, bevorzugt zwischen 0,12 K/min und 30 K/min, besonders bevorzugt zwischen 0,48 K/min und 30 K/min gewählt. Die Abkühlrate nach der Warmbandglühung wird bevorzugt zwischen 0,06 und 10 K/min, besonders bevorzugt zwischen 0,1 und 5 K/min, noch bevorzugter zwischen 0,1 und 1 K/min eingestellt. [0054] Gemäß einer vorteilhaften Weiterbildung wird das Kaltwalzen des Warmbands bei einer Temperatur unterhalb von 200 °C durchgeführt mit einem Kaltwalzgrad zwischen 25 % und 95 %, bevorzugt zwischen 40 % und 90 %, besonders bevorzugt zwischen 50 % und 80 %. Die unteren und oberen Grenzen für den Kaltwalzgrad sind gewählt, um einerseits den notwendigen Umformgrad zu erreichen, der für eine optionale nachfolgende Schlussglühung erforderlich ist und andererseits eine zu hohe Kaltverfestigung und durch diese bedingten Bandabriss zu vermeiden. Es versteht sich von selbst, dass das Kaltwalzen nach den Schritten C) und gegebenenfalls D) durchgeführt wird.

[0055] Besonders bevorzugt erfolgt das Schlussglühen in Schritt F).

30

35

50

[0056] Besonders bevorzugt ist eine Weiterbildung des Verfahrens, in welcher das Schlussglühen des Schritts F) in Inertgasatmosphäre durchgeführt wird, wobei das Inertgas für die Vermeidung von Oberflächenbelegungen eingesetzt wird.

[0057] Die Schlussglühung ist entweder eine Rekristallisationsglühung ohne anschließendes Anlassen oder eine Rekristallisationsglühung mit nachfolgend durchgeführter Anlassglühung.

[0058] Die Durchführung der Rekristallisationsglühung erfolgt entweder als Kontiglühung mit einer Glühtemperatur zwischen 600 °C und 1000 °C, bevorzugt zwischen 650 °C und 950 °C, besonders bevorzugt zwischen 700 °C und 850 °C; oder als Haubenglühung mit einer Glühtemperatur zwischen 450 °C und 950 °C, bevorzugt zwischen 550 °C und 900 °C, besonders bevorzugt zwischen 650 °C und 750 °C. Die jeweiligen Obergrenzen wurden zur Vermeidung eines

zu hohen Energieeinsatzes gewählt und die Untergrenzen wurden zur Sicherstellung einer ausreichenden Rekristallisation einerseits und einer ausreichenden Reduzierung des Delta-Ferrits andererseits gewählt.

[0059] Haltezeiten bei der Rekristallisationsglühung sind beispielsweise 0,5 min bis 15 min, bevorzugt bis 10 min, besonders bevorzugt bis 5 min für das Kontiglühen beziehungsweise 0,5 h bis 72 h, bevorzugt 2h bis 48 h, besonders bevorzugt 4 h bis 24 h für die Haubenglühung.

[0060] Im Anschluss an die Rekristallisationsglühung kann direkt (ohne zwischenzeitliches Abkühlen auf Raumtemperatur) oder indirekt (mit zwischenzeitlichem Abkühlen auf Raumtemperatur) eine Anlassglühung durchgeführt werden. Die Durchführung der Anlassglühung erfolgt entweder als Kontiglühung mit einer Glühtemperatur zwischen 200 °C und 700 °C, bevorzugt zwischen 250 °C und 650 °C, besonders bevorzugt zwischen 300 °C und 600 °C; oder als Haubenglühung mit einer Glühtemperatur zwischen 400 °C und 650 °C, bevorzugt zwischen 450°C und 600°C, besonders bevorzugt zwischen 470 °C und 570 °C. Die jeweiligen Obergrenzen wurden zur Sicherstellung einer ausreichenden thermodynamischen Triebkraft für die Bildung einer größeren Menge von verstärkendem eutektoiden Gefügebestandteil gewählt und die Untergrenzen wurden zur Sicherstellung einer ausreichenden Diffusionsgeschwindigkeit für die Bildung einer größeren Menge von verstärkendem eutektoiden Gefügebestandteil gewählt.

[0061] Haltezeiten bei der Anlassglühung sind beispielsweise 1 min bis 20 min, bevorzugt 2 bis 15 min, besonders bevorzugt 3 min bis 12 min für das Kontiglühen beziehungsweise 0,5 h bis 72 h, bevorzugt 2 h bis 48 h, besonders bevorzugt 4 h bis 24 h für das Haubenglühen. Die jeweiligen Obergrenzen wurden zur Sicherstellung einer ausreichend feinen Ausprägung des verstärkenden eutektoiden Gefügebestandteils gewählt und die Untergrenzen wurden zur Sicherstellung der Bildung einer größeren Menge von verstärkendem eutektoiden Gefügebestandteil gewählt.

[0062] In Weiterbildung des erfindungsgemäßen Verfahrens kann vorgesehen sein, dass das Stahlflachprodukt nach dem Schlussglühen dressiert und/oder beschichtet wird, wobei Dressieren und Beschichten in beliebiger Reihenfolge durchgeführt werden können.

[0063] Ein Stahlflachprodukt nach der eingangsgenannten Art eignet sich für eine Vielzahl von Zwecken. Insbesondere kann vorgesehen sein, ein Stahlflachprodukt umzuformen zur Verwendung

in der Karosserie von Fahrzeugen,

- als Fahrgestellbauteile

- als Beschuss-/Explosionsschutz
- als Druckwalzbauteil,
- 30 als Rohre
 - in der Kabine von Aufzügen,
 - als Dämpfungselement,
 - als Verschleißschutzkomponente oder
 - im Kopf von Golfschlägern..

[0064] Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

[0065] Es wurden vier den Maßgaben der Erfindung entsprechende Schmelzen B, C, D und E sowie eine Vergleichsschmelze A erschmolzen. Die Zusammensetzungen der erzeugten Schmelzen sowie der Vergleichsschmelze sind in Tab. 1 angegeben. Die Vergleichsschmelze A weist gegenüber den erfindungsgemäßen Schmelzen insbesondere den Unterschied auf, dass der Kohlenstoffgehalt mit 0,145 Gew.-% signifikant geringer ist.

[0066] Die Proben aus den Schmelzen A bis E wurden zu Kaltband prozessiert. Die hierzu verwendeten Prozessparameter sind in Tab. 2 wiedergegeben. Die zugehörigen Ergebnisse sind in Tab. 3 wiedergegeben.

[0067] Aus jeder der Schmelzen A bis E wurden Proben hergestellt und mit den folgenden Bedingungen warmgewalzt entsprechend der Verfahrensführung des Verfahrensschritts C):

Vorwärmtemperatur 1200 °C, Vorwärmen für 1,5 Stunden; Walzendtemperatur 950 °C.

[0068] Das warmgewalzte Band wurde in allen Versuchen mit einer Haspeltemperatur von 800 °C prozessiert. Es erfolgten darüber hinaus verschiedene Varianten der Verfahrensführung:

Warmbandglühen: teilweise ohne, teilweise für eine bestimmte Zeit bei einer bestimmten Temperatur, was in der Tab. 2 unter der Nomenklatur *Glühdauer@Glühtemperatur* wiedergegeben ist. Analog wurde die Rekristallisationsglühung, in manchen Fällen mit anschließendem Anlassen, als Schlussglühen des Schritts F) durchgeführt und in der Nomenklatur *Haltezeit@Glühtemperatur* angegeben. Weiterhin sind die Werkstoffkennwerte ReH, ReL, Rp0,2, Rm, Ag, A50, HV5, die Dichte, Austenitanteil und Anteil eutektoider Phase angegeben, wobei zu 100 Vol.-% fehlende Anteile Ferritphase sowie gegebenenfalls Ausscheidungen sind.

[0069] Den Tab. 2 und 3 ist zu entnehmen, dass Proben existieren, die einen nachweisbaren Volumenanteil an eutektoider Phase aufweisen. Diese Proben sind dieselben, wobei entweder ReH oder Rp0,2 wenigstens 550 MPa

25

20

10

15

45

50

35

	beträgt. Bei diesen Proben ist auch die Zugfestigkeit Rm größer als bei den Proben mit keinem nachweisbaren Volumenanteil eutektoider Phase und beträgt immer wenigstens 788 MPa. Diese drei Bedingungen korrelieren, sodass das Erfüllen von einer dieser Bedingungen ausreicht, um eine Probe als erfindungsgemäße Probe zu qualifizieren.
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

Ca	-	0,	-	-	-
Co	0,0024	0,0025	0,0020	0,0023	1
Sb	0,0002 0,0024	0,02 0,01 0,0003 0,0025 0,0015	ı	0,0002 0,0023	0,0002
La	1	0,01	ı	1	1
Ce	1	0,02	1	1	1
В	ı	ı	ı	ı	0, 0012
Nb	0,100	0,102	ı	960'0	-
Ë	0,017 0,2000 0,100	0,019 0,2100 0,102	ı	0,2000 0,096	ı
ïZ	0,017	0,019	0,01 0,015	ı	0,015
Мо	1	1	0,01	1	ı
>	1	1	1	0,04	-
Ç	0,027	0,030	0,023	1	0,024
Cu	0,023 0,027	1	0,022 0,023	0,022	0,021 0,024
z	0,0020	0,0026	0,0022	0,0025 0,022	0,0038
₹	5,0	4,9	4,9	4,9	4,9
S	900'0	900'0	0,007	0,007 4,9	0,005 4,9
۵	A 0,145 0,059 9,7 0,0064 0,006 5,0	0,396 0,062 9,7 0,0062 0,006 4,9	0,059 9,5 0,0059	D 0,494 0,060 9,2 0,0060	0,487 0,069 9,1 0,0058
Mn	9,7	9,7	9,5	9,2	9,1
Si	0,059	0,062	0,059	090'0	0,069
ပ	0,145	0,396	0,394	0,494	0,487
Ŗ.	Α	В	ပ	۵	Ш
					-

"-" kennzeichnet einen Gehalt mit einem Gewichtsanteil innerhalb der Grenzen, die als Alle Angaben in Gew.-%, Rest zu 100 Gew.-%: Fe und unvermeidbare Bestandteile unvermeidbar anzusehen sind

Tab. 1

5	Anlassglühung	1		ı	ı	1	ı	-	,	ı	ı	ı	ı	ı	
10	Anlas														
15	Rekristallisations- glühung	94@700°C	6h@850°C	55@1000°C	6h@700°C	6h@850°C	2°007@49	949850°C	6h@700°C	6h@850°C	55s@1000°C	6h@700°C	6h@850°C	180s@700°C	180s@850°C
20	Rekrist. glı	949) 9 9 9	@ 5 5) 49) 49) 49) 49) 9 9) 49	@s <u>s</u> s	949	949	180s	180s
25	durch- schnittl. Aufheiz- rate	0,06K/s	0,06K/s	10K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	10K/s	0,06K/s	0,06K/s	10K/s	10K/s
30	Schluss- glüh- en	I	ェ	¥	Н	н	Ŧ	н	ェ	н	¥	ェ	I	¥	¥
	Kalt- walz- grad	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99
35	Warmband- glühung	ohne	ohne	ohne	6h@850°C	6h@850°C	ohne	ohne	6h@650°C	6h@650°C	6h@650°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C
40	НТ		<u> </u>	L D。008	 }						 300°C	L 3			
45	WET		;	0 2 0°C	5						0 -05 6				
40	VWT		J _o C	01200	Duim(06				O ₀ C	@150	nim0	6		
50	Nr.			<							В				
50	Versuch	1	2	ن	4	5	9	7	8	o o	10	11	12	13	14
55	I			Z			ſ	N	ſ	N	Z	ſ	Z	ſ	z

5																	
	'	'	•	'	•	I	1	1	1	1	ı	ı	-	•	1	ı	1
10																	
15	٥٥٥	೦ಂ	೦ಂ	၁ _၀	°C	0°C	೦,	೦,	O ₀ C	0°C	0°C	೦0	೦ಂ	°C	೦,	0°C	್ಯ
20	55s@1000°C	6h@700°C	6h@850°C	9°002@49	6h@850°C	55s@1000°C	6h@700°C	6h@850°C	180s@700°C	180s@850°C	55s@1000°C	2°00/@49	2°058@49	6h@700°C	9°058@49	55s@1000°C	6h@700°C
25	10K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	10K/s	0,06K/s	0,06K/s	10K/s	10K/s	10K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	10K/s	0,06K/s
30	×	エ	I	エ	н	Х	I	I	Х	Х	×	I	I	I	н	×	I
	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%99	%09	%09	%99	%99	%99	%99
35	6h@850°C	ohne	ohne	6h@650°C	6h@650°C	6h@650°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C	ohne	ohne	6h@650°C	6h@650°C	6h@650°C	6h@850°C
40) _o C	008)。C	008		
45						O ₀ C) S 6							O ₀ C)⊆6		
					3	0007	I @niı	უ 06					Э	2000	1 @niı	ມ06	
50						Ĺ	ر							٥			
55	N 15	J 16	N 17	J 18	N 19	N 20	J 21	N 22	_J 23	N 24	N 25	_J 26	27	³ 28	N 29	N 30) 31
				. ,	_	_	. 1			_	_	. ,		. ,	_	_	

5	1	ı	ı	ı	Э₀О 0\$®ЧZI	О•0 SS®ЧZI	ı	ı	ı	ı	1	-	-	
15	6h@850°C	180s@700°C	180s@850°C	55s@1000°C	6h@700°C	6h@700°C	6h@700°C	6h@850°C	6h@700°C	6h@850°C	180s@700°C	180s@850°C	55s@1000°C	
25	0,06K/s	10K/s	10K/s	10K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	0,06K/s	10K/s	10K/s	10K/s	
30	I	×	×	×	エ	エ	I	I	I	I	ㅗ	¥	¥	
	%99	%99	%99	%99	%99	%99	25%	25%	%99	%99	%99	%99	%99	
35	6h@850°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C	ohne	ohne	6h@850°C	6h@850°C	6h@850°C	6h@850°C	6h@850°C	
40										 	<u> </u>			
45									;	0°05	5			
40									O ₀ C	071@) uim0	6		
50		ı	I	I						ш				1
				10				•			0,1	~		
55	N 32) 33	N 8	35	36	37	J 38	N 39	J 40	N 41	J 42	N 43	N 44	Tab. 2
														Ţ

5		Anteil eutektoide Phase in Vol-%			0	0	0	0	0	3,0	0	8,5	0	0	2,0	0	5,0	0	0	5,0	0	8,5	0	0	2,5	0	6,0
15		Austenitanteil in Vol-%			35	40	31	40	45	55	75	41	47	64	42	51	09	65	61	25	22	46	09	71	45	59	65
20																											
25		Dichte in g/cm ³			7,32	7,32	7,32	7,32	7,32	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,34	7,34	7,34	7,34	7,34	7,34	7,34	7,34
30	Tab. 3	HV5			218	199	201	205	205	253	210	256	224	208	249	214	273	219	201	255	210	259	220	198	249	210	303
				10-20	0,50	95'0	0,57	0,55	0,57	0,43	0,47	0,45	0,46	0,65	0,52	95'0	0,54	0,63	9,0	0,48	0,49	0,53	0,58	0,73	95'0	09'0	0,51
35			2	110-20	0,182	0,214	0,351	0,196	0,214	0,190	0,257	0,186	0,242	0,471	0,198	0,242	0,135	0,252	0,455	0,187	0,262	0,191	0,260	-	0,201	0,256	0,080
40		(B längs)	A ₅₀	%	24,9	31,5	32,2	27,3	32,7	27,0	26,8	27,4	31,2	24,0	29,5	30,5	21,8	36,2	31,9	26,1	34,9	25,4	34,4	7,3	28,6	32,8	19,5
40		Mechanische Eigenschaften (Kl	Ag		18,5	23,1	30,0	20,6	22,3	20,5	22,9	19,6	25,2	24,3	22,6	27,1	14,1	32,8	28,4	20,3	27,9	20,0	27,8	7,3	22,1	27,4	9,6
45		Eigensc	R _m		699	620	722	640	607	815	723	822	743	852	788	726	890	757	828	835	751	831	746	572	809	739	996
		anische	R _{p0,2}	MPa	ı	407	410	468	358	-	434	ı	503	466	ı	482	764	521	406	•	473	ı	ı	425	ı	488	848
50		Mech	R_{eL}	2	535	1	1	1	1	653	1	629	1	1	626	1	1	1	•	929	1	671	490	-	639	1	1
			R _{eH}		537	-	1	-	-	629	1	711	ı	-	644	-	ı	1	-	664	ı	069	493	-	029	1	1
55			В	GPa	1	1	146	1	1	1	1	1	1	1	1	1	1	ı	-	-	1	1	1	1	ı	1	1
		>			~	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

5		Anteil eutektoide Phase in Vol-%			0	0	6,0	0	12,0	0	0	5,5	0	7,0	0	0	17,5	11,0	8,0	0	6,5	0	8,0	0	0
15		Austenitanteil in Vol-%			75	70	55	75	46	69	75	43	59	65	80	83	35	30	09	80	47	62	75	85	88
20		Austenitant			2	7	9	2	7	9	2	7	9	9	8	8	ε	ε	9	8	4	9	2	8	80
25		Dichte in g/cm ³			7,34	7,34	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33	7,33
30	(fortgesetzt)	4/1			218	195	269	226	268	226	212	262	222	321	221	209	271	266	268	213	270	226	289	223	199
	(fo			10-20	99'0	99'0	0,51	25'0	9,54	65'0	99'0	9,0	69'0	29'0	0,75	0,74	25'0	64'0	65'0	02'0	99'0	68'0	9,74	92'0	0,89
35			2	110-20	0,278	0,447	0,183	0,257	0,165	0,253	-	0,187	0,249	0,126	0,271	0,467	0,239	0,187	0,186	0,280	0,181	0,274	0,159	0,271	ı
40		Mechanische Eigenschaften (KB längs)	A ₅₀	%	39,1	12,0	25,8	35,8	14,3	29,5	4,5	25,7	33,7	20,9	41,2	12,8	17,9	21,0	29,7	39,1	27,8	37,0	25,9	41,2	2,8
40		thaften (k	Ag	0`	32,3	11,7	19,1	27,5	12,3	25,0	4,5	19,5	27,7	12,8	36,7	12,8	15,4	17,2	21,7	31,3	19,9	31,2	18,4	36,7	2,8
45		Eigensc	A _m		292	720	855	784	845	801	545	846	9//	971	798	724	686	917	874	777	898	777	953	798	547
		anische	R _{p0,2}	MPa	206	382	ı	488	ı	520	437	ı	202	831	525	427	648	-	648	459	653	483	811	525	ı
50		Mech	R_{eL}	2	1	1	654	1	662	1	1	648	1	1	1	1	1	629	1	1	1	1	1	1	389
			$R_{\rm eH}$		1	1	658	1	684	1	1	651	1	1	1	1	-	643	1	1	1	1	-	-	395
55			Е	GPa	ı	ı	1	1	ı	1	-	-	1	-	ı	1	•	1	1	-	1	1	•	1	ı
		>			24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

[0070] In Tabs. 2 und 3 bezeichnet in der Spalte "I": J ein erfindungsgemäßes und N ein nicht erfindungsgemäßes Beispiel. Austenitanteil und Anteil eutektoider Phase sind in Vol.-% angegeben. In der Spalte "V" sind die einzelnen hergestellten und ausgewerteten Proben mit einer laufenden Nummer eines Versuchs versehen. Eine Probe aus einem Versuch der Tab. 2 weist die experimentell nachgewiesenen Ergebnisse auf, die in Tab. 3 mit derselben Versuchsnummer versehen sind. Im Übrigen bezeichnen die in den Tabs. 2 und 3 angegebenen Formelzeichen folgende Werkstoffkennwerte beziehungsweise Abkürzungen folgendes:

VWT: Vorwärmtemperatur,
WET: Walzendtemperatur,
HT: Haspeltemperatur,

in der Spalte Schlussglühen:

15 H: Haubenglühung,

10

30

35

45

50

55

K: Kontiglühung,

20 ReH: obere Streckgrenze (angegeben in MPa),

ReL: untere Streckgrenze (angegeben in MPa), Rp0,2: 0,2%-Dehngrenze (angegeben in MPa),

Rm: Zugfestigkeit (angegeben in MPa), Ag: Gleichmaßdehnung,

²⁵ A50: A50-Dehnung,

n10-20: Verfestigungsexponent, ermittelt zwischen 10 und 20 % plastischer Dehnung,

r10-20: Senkrechte Anisotropie in Längsrichtung bei 20 % plastischer Dehnung,

HV5: Vickers-Härte HV5 entsprechend DIN EN ISO 6507-{1 bis 4}:2018-07

Patentansprüche

1. Stahl, der gemäß der nachfolgenden Vorschrift zusammengesetzt ist, in Gewichts-Prozent, kurz: Gew.-%:

C: 0,30 bis 0,65, bevorzugt 0,35 bis 0,60, besonders bevorzugt 0,40 bis 0,55;

Mn: 7,5 bis 14, bevorzugt 8,5 bis 12, besonders bevorzugt 9 bis 11;

Al: 3 bis 7, bevorzugt 4 bis 6, besonders bevorzugt 4,5 bis 5,5;

mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente, in Gew.-%:

Ti: 0 bis 0,5, bevorzugt 0 bis 0,05;

Nb: 0 bis 0,5, bevorzugt 0 bis 0,05;

B: 0 bis 0,1;

Cr: 0 bis 2, bevorzugt 0 bis 0,5;

Si: 0 bis 0,4, bevorzugt 0,01 bis 0,3;

Ta+W: 0 bis 0,5, bevorzugt 0 bis 0,05;

V: 0 bis 0,5, bevorzugt 0 bis 0,05;

Mo: 0 bis 1, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;

Ni: 0 bis 2, bevorzugt 0 bis 0,1, besonders bevorzugt 0 bis 0,01;

Cu: 0 bis 2;

Ca: 0 bis 0,15, bevorzugt 0 bis 0,05;

Ce+La+Y+Zr: 0 bis 0,5, bevorzugt 0 bis 0,1;

Co: 0 bis 2, bevorzugt 0 bis 1;

Sb: 0 bis 0,002

Rest Fe und unvermeidbare Verunreinigungen.

2. Stahl nach Anspruch 1, wobei das Mn/Al-Verhältnis > 1,2 ist.

5

10

20

25

30

35

- 3. Stahl nach einem der vorhergehenden Ansprüche, wobei Al-Äquivalent: 3 bis 8, bevorzugt 3 bis 7, besonders bevorzugt 3 bis 6,5.
- **4.** Stahl nach einem der vorhergehenden Ansprüche, aufweisend einen eutektoiden Gefügeanteil, in Volumen-Prozent, kurz: Vol-%, von 1 bis 40, bevorzugt 2 bis 30, besonders bevorzugt 5 bis 20.
- **5.** Stahl nach einem der vorhergehenden Ansprüche, wobei, wenn der Stahl eine obere Streckgrenze aufweist, die obere Streckgrenze ReH größer als 550 MPa ist, bevorzugt größer als 650 MPa, und, wenn der Stahl keine obere Streckgrenze aufweist, die 0,2-%-Dehngrenze Rp0,2 größer als 550 MPa ist, bevorzugt größer als 650 MPa.
- **6.** Stahl nach einem der vorhergehenden Ansprüche, aufweisend eine Dichte von höchstens 7,6 g/cm³, bevorzugt höchstens 7,5 g/cm³, besonders bevorzugt höchstens 7,4 g/cm³.
 - 7. Stahlflachprodukt, bestehend aus einem Stahl nach einem der vorhergehenden Ansprüche oder erhalten nach einem Verfahren nach einem der Ansprüche 8 bis 14.
 - **8.** Verfahren zur Herstellung eines Stahlflachprodukts, insbesondere aus einem Stahl nach einem der Ansprüche 1 bis 7, umfassend die folgenden Herstellungsschritte:
 - A) Erschmelzen einer Stahlschmelze, enthaltend eine Elementzusammensetzung nach einem der Ansprüche 1 bis 3;
 - B) Vergießen der Stahlschmelze zu einem walzbaren Vorprodukt, insbesondere einem Vorband, einer Bramme oder einer Dünnbramme;
 - C) Warmwalzen des Vorprodukts mit einer Walzendtemperatur > 700 °C;
 - D) optional Warmbandglühung;
 - E) Kaltwalzen des Warmbands;
 - F) optionales Schlussglühen.
 - 9. Verfahren nach Anspruch 8, wobei
 - die Vorwärmtemperatur vor dem Warmwalzen in Schritt C) zu 1100 °C bis 1350 °C, bevorzugt 1150 °C bis 1250 °C, eingestellt wird, und/oder
 - die Walzendtemperatur in Schritt C) zu zwischen 700 °C und 1050 °C, bevorzugt zwischen 850 °C und 1000 °C, besonders bevorzugt zwischen 920 °C und 980 °C, eingestellt wird.
- **10.** Verfahren nach Anspruch 8 oder nach Anspruch 9, wobei das Warmband in Anschluss an Schritt C) aufgehaspelt wird mit einer Haspeltemperatur unter 900 °C, bevorzugt zwischen 400 °C und 900 °C, besonders bevorzugt zwischen 600 °C und 850 °C.
- 11. Verfahren nach einem der Ansprüche 8 bis 10, wobei das Warmbandglühen des Schritts D) durchgeführt wird mit einer Glühtemperatur zwischen 450 °C und 1000 °C, bevorzugt zwischen 600 °C und 950 °C, besonders bevorzugt zwischen 700 °C und 900 °C, und mit einer Glühdauer zwischen 1 und 72 Stunden.
- 12. Verfahren nach einem der Ansprüche 8 bis 11, wobei das Kaltwalzen bei einer Temperatur unterhalb von 200 °C durchgeführt wird und einen Kaltwalzgrad zwischen 25 % und 95 %, bevorzugt zwischen 40 % und 90 %, besonders bevorzugt zwischen 50 % und 80 %, aufweist.
 - **13.** Verfahren nach einem der Ansprüche 8 bis 12, wobei das Schlussglühen des Schritts F) in Schutzgasatmosphäre durchgeführt wird
- als Kontiglühung mit einer Glühtemperatur zwischen 600 °C und 1000 °C, bevorzugt zwischen 650 °C und 950 °C, besonders bevorzugt zwischen 700 °C und 850 °C; oder
 - als Haubenglühung mit einer Glühtemperatur zwischen 450 °C und 950 °C, bevorzugt zwischen 550 °C und 900 °C, besonders bevorzugt zwischen 650 °C und 750 °C.

	14.	Verfahren nach einem der Ansprüche 8 bis 13, wobei nach dem Schlussglühen das Stahlflachprodukt dressiert wird und/oder beschichtet wird.
5	15.	Verwendung eines umgeformten Stahlflachprodukts nach Anspruch 7
10		 als Bestandteil einer Karosserie eines Fahrzeugs, als Fahrgestellbauteil als Beschuss-/Explosionsschutz, als Druckwalzbauteil, als Rohr, als Bestandteil einer Aufzugkabine, als Dämpfungselement oder
15		- als Bestandteil eines Kopfs eines Golfschlägers.
20		
0.5		
25		
30		
35		
40		
45		
50		
55		

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 19 18 9845

5

		EINSCHLÄGIGE	DOKUMENTE	<u> </u>	1	
	Kategorie	Kannasialan was daa Dalgum	nents mit Angabe, so		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
10	X A	CN 108 950 392 A (S 7. Dezember 2018 (2 * Absätze [0006],	HOUGANG GROU 2018-12-07) [0007], [00 [0064]; Anspr	48] -	1-4,6-15	INV. C21D8/02 C21D9/46 C22C38/00 C22C38/02
15	X A	KR 2013 0073736 A (3. Juli 2013 (2013- * Absätze [0039] - Ansprüche 1,3; Tabe	[0044], [00	47];	1-4,6-14	C22C38/04 C22C38/06 C22C38/10 C22C38/12 C22C38/14 C22C38/16
20	X A	EP 2 796 585 A1 (P0 29. Oktober 2014 (2 * Absatz [0044]; An	2014-10-29)	Tabelle 4	1-4,6-14 5	
25						C22C38/58
30						SACHGEBIETE (IPC) C21D C22C
35						
40						
45						
1 (F04C03)	Der vo	rliegende Recherchenbericht wu Recherchenort Den Haag	Abschlußda	sprüche erstellt tum der Recherche ovember 2019		Prüfer sch, Elisabeth
95 PO FORM 1503 03.82 (PC	X : von Y : von and A : tech O : nich	ATEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg unologischer Hintergrund tschriftliche Offenbarung schenliteratur	tet ı mit einer	E : älteres Patentdok nach dem Anmeld D : in der Anmeldung L : aus anderen Grün	ument, das jedoc ledatum veröffent angeführtes Dok iden angeführtes	dicht worden ist kument Dokument

55

Seite 1 von 2

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 19 18 9845

Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile KLASSIFIKATION DEF ANMELDUNG (IPC) C22C38/60 C21D6/00 RECHERCHIERTE SACHGEBIETE (IPC)	der maßgeblichen Teile Anspruch C22C38/60 C21D6/00 RECHERCHIERTE		EINSCHLÄGIGE DOKUI			
C22C38/60 C21D6/00	C22C38/60 C21D6/00	Kategorie	Kennzeichnung des Dokuments mit An der maßgeblichen Teile			KLASSIFIKATION DEF ANMELDUNG (IPC)
RECHERCHIERTE SACHGEBIETE (IPC)	RECHERCHIERTE SACHGEBIETE (IPC		der maßgeblichen Teile	A	nspruch	C22C38/60
						RECHERCHIERTE SACHGEBIETE (IPC
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt		F	Recherchenort	Abschlußdatum der Recherche		Prüfer
	Recherchenort Abschlußdatum der Recherche Prüfer	D	en Haag	12. November 2019	Rau	sch, Elisabeth
Recherchenort Abschlußdatum der Recherche Prüfer		X : von be Y : von be anderei A : techno	GORIE DER GENANNTEN DOKUMENTE sonderer Bedeutung allein betrachtet sonderer Bedeutung in Verbindung mit einer n Veröffentlichung derselben Kategorie ogischer Hintergrund hriftliche Offenbarung	E : älteres Patentdokumer nach dem Anmeldedati D : in der Anmeldung ang L : aus anderen Gründen	nt, das jedoo um veröffen eführtes Dol angeführtes	tlicht worden ist kument Dokument

Seite 2 von 2

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 19 18 9845

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-11-2019

	Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	CN 108950392 A	07-12-2018	KEINE	
	KR 20130073736 A	03-07-2013	KEINE	
	EP 2796585 A1	29-10-2014	CN 104011248 A EP 2796585 A1 JP 6002779 B2 JP 2015507090 A US 2015211088 A1 WO 2013095005 A1	27-08-2014 29-10-2014 05-10-2016 05-03-2015 30-07-2015 27-06-2013
EPO FORM P0461				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• US 20140205488 A1 [0005]