[0001] The present invention relates to a door lock. More particularly, the present invention
relates to a door lock that has an anti-theft system. Even more particularly, the
present invention relates to a door lock that has a system to protect it from incidental
vibrations or intentional vibrations with the aim of forcing the door lock.
[0002] Door locks lock or close via their internal components. The most common types are
short levers (or locking lever) and long levers, which maintain their resting position
thanks to the action of their respective lever springs. The long lever receives the
movement of the latch keeper, as its function is to keep the latch keeper locked along
with the short bar. In general, when the short lever is engaged and freed by the springing
of the electric coil, a load or pressure on the latch displaces the long lever, allowing
it to unlock.
[0003] The terms long lever and short lever are usually used in the sector and relate to
their most common size. However, naming them as such in this application does not
necessarily imply any size relation between the same.
[0004] On some occasions, an installation can be vandalised and/or forced using specific,
intrusive methods (e.g. by inserting a hard but flexible piece of laminate through
the slot of the door). The intrusive methods need to be more complex when more protective
methods are present in the lock. In any case, it becomes difficult to force an entry,
requiring some degree of skill on the intruder's part in order to open the lock. However,
it has become known that unwanted methods of opening doors are aided or accelerated
if the door is hit at the same time as it is opened using the intrusive manoeuvre.
[0005] DE202016103567 discloses a door lock including an anti-vibration security or second lock system
according to the precharacterising portion of claim 1. The antivibration system is
located inside the main body of the door lock, attached to the coil body and located
between the coil and the short lever. This has several drawbacks: in the first place,
as a consequence, the short lever needs to have a non-conventional L shape in order
to ensure actuation of the second lock on the short lever. This prevents
DE202016103567 to be applied on existing door locks, and requires redesigning many components of
current door lock designs. Moreover, it requires a further mechanism in order to block
the antivibration system during normal opening, in order to prevent undesired blocking
during normal opening due to a bad positioning of the elements of the antivibration
system, for example, due to natural vibrations during opening or due to a partial
recovery after a prior vibration.
[0006] US2066278A discloses an additional antivibration blocking system which is continuously activated
and is deactivated when the lock is electrically operated.
[0007] The object of the present invention is to disclose methods that provide a solution
to the above-mentioned problem.
[0008] Studies conducted for the present application have shown that hitting a door when
opening the door in an act of vandalism produces vibrations that are transferred to
the lock. These vibrations could affect the lever springs of the long or short levers
or the levers themselves, changing their position and causing the system to unlock
accidentally. Similarly, some methods used to try to force door locks include producing
vibrations with the aim of achieving the previously mentioned situation in which the
lever springs change the position of the levers as a result of the vibration.
[0009] To this effect, the present invention discloses a type of door lock which comprises
a latch and a latch-locking system that comprises, in addition, an anti-vibration
security system which itself comprises a vibration sensing system that engages a second
locking system, so that the second locking system activates its locking action in
the presence of a vibration. More in particular, the present invention discloses a
door lock according to claim 1. Preferred embodiments are the subject of the sub-claims.
[0010] The present invention can be used as an added function in door locks with the aim
of ruling out this possibility of opening via vibration and preventing the accidental
unlocking or opening of the mechanism as a result of movement or vibrations.
[0011] The latch locking from the second locking system can be performed directly on the
latch, or even indirectly. Indirectly, it can be performed by locking any component
of the main locking system or first locking system (e.g. directly locking the short
lever, or the long lever) or even locking the latch of the lock if necessary.
[0012] When the second locking system is activated due to vibrations, it prevents the lock
from being forced by hitting it.
[0013] The second locking system according to the present invention can be configured to
activate in the presence of any kind of vibration, or even in the presence of a specific
kind of vibration, e.g. vibration or oscillation in a specific direction.
[0014] The vibration can be detected via a sensor, or even via mechanical systems, e.g.
systems in which a component has some freedom to move.
[0015] The activation of the second locking system as a result of a vibration sensor can
be triggered using electronic, pneumatic, hydraulic, or even mechanical methods, e.g.
a component activated by a component with free movement as previously stated.
[0016] In a particularly preferred embodiment, the present invention describes the addition
of a locking system that is activated by a mass with free movement. The additional
locking system of the present invention is activated by the presence of a vibration,
owing to the movement that the vibration produces in the previously mentioned mass,
which does not remain fixed to the rest of the locking system or the door lock, which
additionally enables the system to lock just at the moment when the vibration can
open the door lock.
[0017] Even more particularly, in a preferred embodiment, the present invention describes
a type of door lock which comprises a latch and a latch-locking system which comprises
a short lever and a long lever which maintain their locked position through the action
of their respective short lever spring and long lever spring, enabling the unlocking
of the latch through the engagement of the long lever and enabling the unlocking of
the long lever through the engagement of the short lever, the lock additionally comprises
an anti-vibration security system having a second locking system and a vibrationsensing
system comprising a component with freedom of movement to detect the vibration, wherein
the second locking system acts on the short lever and/or the long lever, wherein the
second locking system is located in a unit that is fixed to the main body of the door
lock.
[0018] The component with free movement can be, preferably, a free mass.
[0019] The component with free movement or the free mass, not being fixed, can be moved
by a vibration, activating the system. Preferably, the free mass comprises at least
one component that is free to move in a confined space. Also, preferably, the free
mass can comprise one or more components. In an advantageous way, the components are
rolling components, especially spheres, though they take any shape.
[0020] The present invention foresees that the component for locking the position of the
short lever and/or the long lever remains pivoted. Pivot joining is a very simple
method for transforming the movement of the mass triggered by vibration into a locking
action in the opposite direction to the movement of the short lever and/or long lever.
Thus, in particularly preferred embodiments, the component for locking the position
of the short lever and/or long lever has a pivot point around which, one end of the
lock of the short lever and one end of reception of the action of the mass with free
movement, having the locking end of the short lever and the end that receives the
action of the mass on opposite sides with respect to the pivot point.
[0021] Preferably, the component for locking the position of the short lever and/or long
lever comprises a recovery component, e.g. they could be magnets or a resilient component,
e.g. a spring, which acts on the component to maintain its resting position. The resilient
or lever spring present various advantages, one of which includes enabling the recovery
of the resting position. Another use is that, in the resting position, it allows the
component to exercise an action on the free mass, in a way that allows the free mass
to stay between the locking component of the short lever and a threshold or wall.
In this case, it should be taken into account, therefore, that in order for the mass
to activate the anti-vibration security system it should surmount the force that the
lever spring exerts in the resting position. To do so, it may be advisable that in
the resting position, the resilient or lever spring component should be such that
it does not exert any substantial resilient force greater than that needed to maintain
the locked system. In such an embodiment, the said force in the resting position can
be basically null.
[0022] In an advantageous way, the invention allows the component for locking the position
of the short lever to be located in a unit that is fixed, e.g. screwed, to the main
body of the door lock. This makes adaptation possible for existing door locks. Certainly,
the invention can also be implemented integrally with door locks.
[0023] To understand this better, some drawings are attached as an explanatory illustration,
though not a limited one, of an embodiment of the door lock featured in the present
invention.
Fig. 1 is a schematic view of the internal components of an example of an embodiment
of the door lock according to the present invention, in a closed or resting position.
Fig. 2 is a view of the door lock in an open and unresting position.
Fig. 3 is a view of the door lock in a resting position, and the effects of a vibration
on the same are represented.
Fig. 4 is a detailed view of the vibration action on the anti-vibration security system
on the door lock shown.
Fig. 5 is a detailed view of the reaction that the vibration in the anti-vibration
security system of the door lock shown triggers.
Fig. 6 is a schematic view of an alternative embodiment of the anti-vibration security
system.
Fig. 7 is a schematic view of another alternative embodiment of the anti-vibration
security system.
Fig. 8 is a schematic view of yet another alternative embodiment of the anti-vibration
security system.
[0024] Figs. 1 to 5 show a door lock comprising a casing or body -4- which has a latch -1-,
and a latch-locking mechanism that comprises a long lever -2- positioned around a
pivot point -22- and which comprises a recovery lever spring -21- and a locking lever
or short lever -3- also with a pivot point -32- and a recovery lever spring -31-.
The short lever -3- presents a recess -33- in which a conjugated projection -23- of
the long lever -2- is located. When the projection -23- of the long lever is in the
recess -33- of the short lever, the long lever is prevented from pivoting, as it is
necessary for it to move forward prior to the pivoting of the short lever -3-.
[0025] The anti-vibration security system comprises a second locking system drawn up in
a unit -5- that is screwed into the body -4- of the door lock at the end in which
the short lever -3- is located.
[0026] Inside, the unit -5- comprises a metal strip -54- that pivots around a pivot point
-52-. When locked, the metal strip maintains its position thanks to a lever spring
located on one of its two sides. Two steel spheres -51-, -51'- are located in housings.
In this case, the housings are located at the side of the metal strip -54- that is
opposite the lever spring. Due to the action of the lever spring, the spheres come
into contact with the wall and bring the metal strip -54- into the resting position.
At the other end, the metal strip features a puncher -53- which, at the required moment,
will come into contact with the short lever -3-to lock its opening, preventing it
from being displaced.
[0027] In a situation where there is vibration, the balls -51-, -51'- will be displaced
from their resting position, occupying more space and, owing to the shape of their
housings, generating a movement in the direction of the lever spring exceeding its
pressure, this movement forces the metal strip to pivot on its pivot point and rotate
the puncher -53- until it comes into contact with the short lever -3-, blocking possible
movement of the same.
[0028] When the vibration stops, the lever spring of the metal strip -54- returns to its
position, realigning all the components of its starting position.
Functioning without vibration (see figs. 1 and 2)
[0029] As is known, the functioning of door locks is that they generate the locking or unlocking
between the short -3- and long -2- levers, ensuring locking or enabling opening.
[0030] In figs. 1 to 5 a door lock with an integrated anti-vibration system can be seen.
Fig. 1 shows the mechanism in a locked state (without vibration). Fig. 2 shows the
door lock in an unlocked state (and open). The step from one state to another involves
the displacement of the levers -2-, -3-, turning of the latch -1-, etc.
[0031] Given that the anti-vibration security system is normally in an inactive position,
it does not interfere with the normal functioning of the door lock if there is no
vibration.
Functioning with vibration (see figs. 3 to 5)
[0032] The door lock is in a resting position (closed/locked) when a vibration is produced.
In fig. 3, the door lock has been shown in a resting position with the initial action
of the vibration. As can be seen, there is a risk that the lever spring -31- of the
short lever will be squeezed and if the vibration manages to squeeze the lever spring
-31- and a load is simultaneously exerted on the latch -1-, the mechanism will open.
[0033] In this situation, the anti-vibration security system comes into action.
[0034] As has been shown in fig. 4, the two steel spheres -51-, -51'- start to vibrate in
their housings, trying to displace themselves, occupying more space. The spheres -51-,
-51'-, being limited in their movement by a ceiling or end (in this case, a dividing
wall between the unit -5- and the main body -4- of the door lock), put pressure on
the metal strip -54- and force it to pivot around its own pivot point -52-, while
also squeezing the lever spring of the metal strip. At the same time, the puncher
-53- displaces itself into its contact position with the short lever -3-.
[0035] When the action is complete (see fig. 5), the puncher -53- is in contact with the
lower part of the short lever -3-, forming a threshold or lock that prevents it from
being displaced by the vibration, keeping the system locked and ensuring that the
door will be closed.
[0036] When the state of vibration ceases, the lever spring of the metal strip -54- returns
the system to its prior position.
[0037] The unit -5- shown in the examples also has a connecting bolt -59- with the main
body -4- of the door lock, and which crosses the metal strip -54- via an opening -58-,
the dimensions of which allow the previously mentioned metal strip -54- to pivot.
Furthermore, the end -532- of the puncher -53- features a recess -531- to prevent
the short lever -3- from jamming in the punch during authorised opening shown in fig.
2.
[0038] On the other hand, the component -51- can be integrated into the spring -511-, it
can be integrated into any door lock system.
[0039] Preferred embodiments are those in which the second locking system is activated with
the same vibration as that which would open or contribute to the opening of the mechanism.
The second locking system can lock other components at the edge of the short lever,
e.g. the long lever -2- with the same system as the short lever, or by using either
of the two systems. The system could also lock the latch of the lock.
[0040] Other embodiments can use a sensor that detects vibrations and activates a coil (electric,
pneumatic, etc.) which secures the short lever, long lever or latch.
[0041] In another embodiment, the same locking vibration can offset the short lever, long
lever or latch, preventing it from moving to its normal open position, and, thus,
automatically locking the components.
[0042] Figs. 6 to 8 are three conceptual schematic views corresponding to the respective
possible alternative embodiments. Components that are equal to or the equivalent of
those previously described have been indicated with identical numerals and will not
be described in detail. Likewise, components that facilitate the explanation have
been omitted.
[0043] In fig. 6, the shaft -532- remains slightly outside of the opening -39- when the
short lever -3- is in a lockeddoor position. If there is no vibration, the short lever
-3- moves with its opening -39- aligning with the shaft -532-. Thus, without vibration,
the system allows the short lever to pivot -3-. However, if there is a vibration,
the shaft -532- moves in relation to the position shown in fig. 6 and no longer stays
centred in relation to the opening -39- thus preventing the short lever -3- from rotating.
Once the vibration stops, the lever spring - 511- returns the system to the starting
position, pivoting around the pivot point -52- until the shaft -532- aligns with the
opening -39-.
[0044] Fig. 7 features a sensor -100- (e.g. an electronic motion sensor, e.g. an accelerometer)
which is responsible for detecting a vibration. When the vibration reaches a value
greater than the detection value, or a predetermined value, it sends a signal to a
coil -101- (it could also be any type of driver) that activates the second locking
system which locks the movement of, for example, the short lever -3-.
[0045] Fig. 8 shows a second locking system that acts directly on the latch. Similarly,
in this embodiment, the second locking system comprises two shafts -532-, -532'- which
have free movement and are connected to spring passages that are fixed, for example,
to the casing of the door lock. The two shafts are facing each other, and the springs
are aligned or parallel. Similarly, in a resting position, each one of the shafts
are aligned facing openings -11-, -11'- that are both worked into the latch -1-. In
the presence of either of the two types of vibration, the action of the springs will
make at least one of the shafts enter its corresponding opening, preventing or at
least making it difficult to move it.
[0046] Although the invention has been presented and described with reference to embodiments
thereof, it should be understood that these are not limiting to the invention, such
that multiple variable constructive or other details may be evident to the technicians
of the sector after interpreting the embodiment disclosed in the present description,
claims and drawings. Thus, all variants and equivalents will be included within the
scope of the present invention if they can be considered to fall within the broader
scope of the following claims.
1. Door lock which comprises a main body (4) which comprises a latch (1) and a first
latch-locking system which comprises a short lever (3) and a long lever (2) which
maintain their locked position through the action of their respective short lever
spring (31) and long lever spring (21), enabling the unlocking of the latch through
the engagement of the long lever and enabling the unlocking of the long lever through
the engagement of the short lever, the door lock additionally comprising an anti-vibration
security system having a second locking system, with the anti-vibration security system
comprising vibration sensing system that engages the second locking system, the vibration
sensing system comprising a component (51, 51'; 532, 532'; 100) with freedom of movement
to detect the vibration wherein the second locking system activates its locking action
in the presence of a vibration and wherein the second locking system acts on the short
lever and/or the long lever, characterised in that the second locking system is located in a unit (5) that is fixed to the main body
of the door lock
2. Door lock, according to any one of the preceding claims, characterised in that it comprises a vibration sensor (100) that produces a signal for detecting vibrations.
3. Door lock, according to any one of claims 1 or 2, characterised in that it comprises at least one component with freedom of movement, arranged in a way that
it can be moved by vibration.
4. Door lock, according to claim 3, in which the component with freedom of movement comprise
at least one mass that can move freely in a confined space.
5. Door lock, according to any one of claims 3 to 4, in which the component for locking
the position of the short lever and/or the long lever has a resilient or magnetic
component that acts on the component in a direct or indirect way so as to maintain
its resting position.
6. Door lock, according to any one of claims 3 to 5, characterised in that the first locking system also comprises one or more rolling or swinging parts, an
electronic or pneumatic motor, which allow the latch to unlock and act directly or
indirectly on any one of the mobile components which act on the latch lock.
7. Door lock, according to any one of claims 4 to 6, in which the component for locking
the position of the lever features a zone that comes into contact with the locking
component when the mass is displaced.
8. Door lock, according to any one of claims 4 to 7, in which the component for locking
the position of the short lever and/or long lever and/or rolling or swinging component
has a pivot point around which one locking end for the short lever and one receiving
end of the action of the mass with freedom of movement can pivot, with the locking
end of the short lever and the end that receives the action of the mass being at opposite
sides with respect to the pivot point.
9. Door lock, according to any one of claims 4 to 8 in which the component for locking
the position of the short lever and/or long lever comprises a metal strip (54), which
comprises at least one housing which contains the previously mentioned mass.
10. Door lock, according to any one of claims 4 to 9, in which the mass with freedom of
movement and the component for locking the position of the short lever and/or long
lever are positioned in a unit fixed to the main body of the door.
11. Door lock, according to any one of the preceding claims in which the component for
locking the first locking system comes into action owing to the signal emitted from
a vibration sensor.
1. Türschloss, das einen Hauptkörper (4) umfasst, der einen Riegel (1) und ein erstes
Riegel-Verriegelungssystem umfasst, das einen kurzen Hebel (3) und einen langen Hebel
(2) umfasst, die ihre verriegelte Position durch die Wirkung ihrer jeweiligen Feder
(31) des kurzen Hebels und Feder (21) des langen Hebels beibehalten, was die Entriegelung
des Riegels durch den Eingriff des langen Hebels ermöglicht und die Entriegelung des
langen Hebels durch den Eingriff des kurzen Hebels ermöglicht, wobei das Türschloss
zusätzlich ein Anti-Vibrations-Sicherheitssystem mit einem zweiten Verriegelungssystem
umfasst, wobei das Anti-Vibrations-Sicherheitssystem ein Vibrationserfassungssystem
umfasst, das in das zweite Verriegelungssystem eingreift, wobei das Vibrationserfassungssystem
ein Bauteil (51, 51', 532, 532', 100) mit Bewegungsfreiheit umfasst, um die Vibration
zu erfassen, wobei das zweite Verriegelungssystem seine Verriegelungswirkung in Gegenwart
einer Vibration aktiviert und wobei das zweite Verriegelungssystem auf den kurzen
Hebel und/oder den langen Hebel wirkt, dadurch gekennzeichnet, dass das zweite Verriegelungssystem in einer Einheit (5) angeordnet ist, die an dem Hauptkörper
des Türschlosses befestigt ist.
2. Türschloss nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Vibrationssensor (100) umfasst, der ein Signal zur Erfassung von Vibrationen
erzeugt.
3. Türschloss nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es mindestens ein frei bewegliches Bauteil umfasst, das so angeordnet ist, dass es
durch Vibration bewegt werden kann.
4. Türschloss nach Anspruch 3, bei dem das Bauteil mit Bewegungsfreiheit mindestens eine
Masse umfasst, die sich in einem begrenzten Raum frei bewegen kann.
5. Türschloss nach einem der Ansprüche 3 bis 4, bei dem das Bauteil zur Verriegelung
der Stellung des kurzen Hebels und/oder des langen Hebels ein federndes oder magnetisches
Bauteil aufweist, das direkt oder indirekt auf das Bauteil einwirkt, um dessen Ruhestellung
beizubehalten.
6. Türschloss nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das erste Verriegelungssystem auch ein oder mehrere rollende oder schwingende Teile,
einen elektronischen oder pneumatischen Motor umfasst, die es ermöglichen, den Riegel
zu entriegeln und direkt oder indirekt auf eines der beweglichen Elemente einzuwirken,
die auf die Riegel-Verriegelung wirken.
7. Türschloss nach einem der Ansprüche 4 bis 6, bei dem das Bauteil zum Verriegeln der
Hebelstellung einen Bereich aufweist, der beim Verschieben der Masse mit dem Verriegelungsbauteil
in Berührung kommt.
8. Türschloss nach einem der Ansprüche 4 bis 7, bei dem das Bauteil zum Verriegeln der
Stellung des kurzen Hebels und/oder langen Hebels und/oder Roll- oder Schwingelements
einen Drehpunkt aufweist, um den ein Verriegelungsende für den kurzen Hebel und ein
Aufnahmeende der Einwirkung der Masse mit Bewegungsfreiheit schwenkbar sind, wobei
das Verriegelungsende des kurzen Hebels und das die Einwirkung der Masse aufnehmende
Ende bezüglich des Drehpunktes auf gegenüberliegenden Seiten liegen.
9. Türschloss nach einem der Ansprüche 4 bis 8, bei dem das Bauteil zur Arretierung der
Stellung des Kurzhebels und/oder Langhebels ein Metallband (54) umfasst, das mindestens
ein Gehäuse aufweist, das die zuvor genannte Masse enthält.
10. Türschloss nach einem der Ansprüche 4 bis 9, bei dem die frei bewegliche Masse und
das Bauteil zur Verriegelung der Stellung des kurzen und/oder langen Hebels in einer
am Hauptkörper der Tür befestigten Einheit angeordnet sind.
11. Türschloss nach einem der vorhergehenden Ansprüche, bei dem das Bauteil zum Verriegeln
des ersten Verriegelungssystems aufgrund des von einem Vibrationssensor abgegebenen
Signals in Aktion tritt.
1. Serrure de porte qui comprend un corps principal (4) qui comprend un loquet (1) et
un premier système de verrouillage de loquet qui comprend un levier court (3) et un
levier long (2) qui maintiennent leur position verrouillée par l'action de leurs ressort
de levier court (31) et ressort de levier long (21) respectifs, en permettant le déverrouillage
du pêne par la mise en prise du levier long et permettant le déverrouillage du levier
long par la mise en prise du levier court, la serrure de porte comprenant en outre
un système de sécurité anti-vibration présentant un second système de verrouillage,
le système de sécurité anti-vibration comprenant un système de détection de vibration
qui met en prise le second système de verrouillage, le système de détection de vibration
comprenant un composant (51, 51' ; 532, 532' ; 100) avec liberté de mouvement pour
détecter la vibration, dans lequel le second système de verrouillage active son action
de verrouillage en présence d'une vibration et dans lequel le second système de verrouillage
agit sur le levier court et/ou le levier long, caractérisé en ce que le second système de verrouillage est situé dans une unité (5) qui est fixée au corps
principal de la serrure de porte.
2. Serrure de porte, selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un capteur de vibration (100) qui produit un signal pour détecter des
vibrations.
3. Serrure de porte, selon l'une quelconque des revendications 1 ou 2, caractérisée en ce qu'elle comprend au moins un composant avec liberté de mouvement, agencé de manière à
pouvoir être déplacé par vibrations.
4. Serrure de porte, selon la revendication 3, dans laquelle le composant avec liberté
de mouvement comprend au moins une masse qui peut se déplacer librement dans un espace
confiné.
5. Serrure de porte, selon l'une quelconque des revendications 3 à 4, dans laquelle le
composant de verrouillage de la position du levier court et/ou du levier long présente
un composant élastique ou magnétique qui agit sur le composant de manière directe
ou indirecte de manière à maintenir sa position d'appui.
6. Serrure de porte, selon l'une quelconque des revendications 3 à 5, caractérisée en ce que le premier système de verrouillage comprend également une ou plusieurs pièces roulantes
ou oscillantes, un moteur électronique ou pneumatique, qui permettent au pêne de se
déverrouiller et d'agir directement ou indirectement sur l'une quelconque des composants
mobiles qui agissent sur la serrure à un seul pêne.
7. Serrure de porte, selon l'une quelconque des revendications 4 à 6, dans laquelle la
pièce de verrouillage de la position du levier présente une zone qui vient en contact
avec la pièce de verrouillage lorsque la masse est déplacée.
8. Serrure de porte, selon l'une quelconque des revendications 4 à 7, dans laquelle l'élément
de verrouillage de la position du levier court et/ou du levier long et/ou de l'élément
roulant ou oscillant présente un point d'articulation autour duquel une extrémité
de verrouillage du levier court et une extrémité de réception de l'action de la masse
avec liberté de mouvement peuvent pivoter, l'extrémité de verrouillage du levier court
et l'extrémité qui reçoit l'action de la masse étant à des côtés opposés par rapport
au point de pivotement.
9. Serrure de porte, selon l'une quelconque des revendications 4 à 8, dans laquelle le
composant de verrouillage de la position du levier court et/ou du levier long comprend
une bande métallique (54), qui comprend au moins un logement qui contient la masse
précédemment mentionnée.
10. Serrure de porte, selon l'une quelconque des revendications 4 à 9, dans laquelle la
masse à liberté de mouvement et le composant de verrouillage de la position du levier
court et/ou du levier long sont positionnés dans un ensemble fixé au corps principal
de la porte.
11. Serrure de porte, selon l'une quelconque des revendications précédentes, dans laquelle
le composant de verrouillage du premier système de verrouillage entre en action grâce
au signal émis par un capteur de vibration.