

(11) **EP 3 772 183 A1**

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:

03.02.2021 Bulletin 2021/05

(51) Int Cl.: H04B 1/04 (2006.01)

H04B 1/18 (2006.01)

(21) Application number: 19189610.9

(22) Date of filing: 01.08.2019

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(71) Applicant: Stichting IMEC Nederland 5656 AE Eindhoven (NL)

(72) Inventors:

- Minyoung, Song 3001 Leuven (BE)
- Yao-Hong, Liu
 3001 Leuven (BE)
- (74) Representative: Roth, Sebastian Mitscherlich PartmbB Patent- und Rechtsanwälte Sonnenstraße 33 80331 München (DE)

(54) A METHOD FOR ADJUSTING AN IMPEDANCE OF A TUNABLE MATCHING NETWORK

(57) The present invention relates to a method for adjusting an impedance of a tunable matching network (TMN) connected between an antenna and a transceiver front-end. The TMN comprises a receive path to provide signals from the antenna to a receiver during a receive (Rx) mode, and a transmit path to provide signals from a transmitter to the antenna during a transmit (Tx) mode. The method comprises the steps of: tuning the TMN.

measuring values of an output DC-offset at the receiver in the Tx mode while tuning the TMN, wherein the output DC-offset is caused by a coupling between the transmitter and the receiver; determining a maximum value of the output DC-offset from the measured output DC-offset values; and adjusting the impedance of the TMN by tuning the TMN to the output DC-offset maximum value.

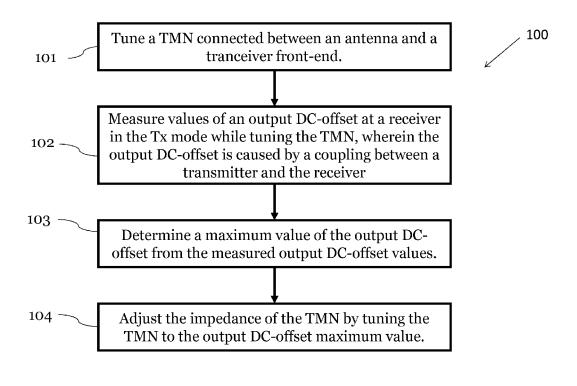


Fig. 1

Description

TECHNICAL FIELD

[0001] The present invention relates to the field of transceivers. More particularly, the present invention relates to a transceiver comprising a tunable matching network (TMN) and a method for adjusting the TMN. The adjusting of the TMN bases on coupling, particularly caused by self-mixing, between a transmitter and receiver of the transceiver.

BACKGROUND

10

30

35

50

[0002] A wireless device may generally include a wireless transceiver for transmitting and receiving data in a wireless communication system. For data transmission, the transceiver may modulate a radio frequency (RF) carrier signal with data to obtain a modulated signal, amplify the modulated signal to obtain an output RF signal having a desired output power level, and transmit the output RF signal via an antenna, for example, to another wireless device or base station. The transceiver may include various circuits for transmitting the data, including amplifiers, local oscillators, mixers, and filters.

[0003] For data reception, the transceiver may receive an RF signal via the antenna, amplify the received RF signal, and demodulate the amplified signal to decode or recover the data contained therein. The transceiver may further include various circuits for receiving data, such as amplifiers, filters, or demodulators. Some transceivers include a power amplifier (PA) in the transmit path and a low noise amplifier (LNA) in the receive path of the transceiver front-end, which are used for amplifying the transmitted and received signals, respectively.

[0004] Impedance matching is generally used to match the impedance of a source with the impedance of a load. Matching the impedance of the source and load enables the maximum amount of power to be transferred from the source to the load for a given signal.

[0005] Impedance matching networks in a transceiver are usually coupled between the antenna and the PA and LNA, in order to match the impedance of the antenna to the output impedance of the PA or to the input impedance of the LNA, respectively. The impedance matching networks increase the power efficiency of the transceiver, by enabling the maximum amount of power to be transferred between the antenna and the LNA in a receive (Rx) mode, or the PA and the antenna in a transmit (Tx) mode, for a given signal. A precise impedance matching is thus desired.

[0006] However, antenna impedance matching presents particular difficulties in mobile devices, such as mobile handsets, due to the constantly changing environment in which such devices typically operate. The changing environment can result in large changes in the antenna impedance, which cause a fixed matching network to be ineffective in providing an optimum impedance match between e.g. the antenna and the front-end circuitry of a transceiver in the mobile device. [0007] Another challengeable issue is the antenna proximity effect, which can significantly degrade the antenna and front-end performance, and hence battery lifetime. In order to reduce the antenna impedance mismatch caused by the proximity effect, adjustable TMNs are required to improve the RF front-end performance. The impedance mismatch detection is crucial in such tuning systems in terms of tuning speed and power consumption.

[0008] Therefore, there is a need for adjustable TMNs and for an improved method for adjusting an impedance of a TMN.

40 SUMMARY

[0009] In view of the above-mentioned problems and disadvantages, embodiments of the present invention aim to improve conventional methods of adjusting the impedance of a TMN for a transceiver. In particular, an objective is to provide a method for adjusting the impedance of the TMN precisely by means of an impedance correction technique. The TMN is thereby connected between an antenna and a transmitter and receiver of the transceiver, respectively. The intention is to find the optimum matching impedance of the TMN, in order to match the antenna impedance to the transmitter/receiver impedance. Self-adjustment of the TMN impedance should be possible, particularly self-correction of the impedance. However, additional hardware costs should be kept low. The TMN itself should show reduced losses. Further, the TMN should lead to reduced manufacturing costs of the transceiver.

[0010] The objective is achieved by the embodiments provided in the enclosed independent claims. Advantageous implementations of the embodiments are further defined in the dependent claims.

[0011] According to a first aspect, the invention relates to a method for adjusting an impedance of a tunable matching network, TMN, connected between an antenna and a transceiver front-end, wherein the TMN comprises a receive path to provide signals from the antenna to a receiver during a receive (Rx) mode, and a transmit path to provide signals from a transmitter to the antenna during a transmit (Tx) mode, wherein the method comprises the steps of: tuning the TMN, measuring values of an output DC-offset at the receiver in the Tx mode while tuning the TMN, wherein the output DC-offset is caused by a coupling between the transmitter and the receiver; determining a maximum value of the output DC-offset from the measured output DC-offset values; and adjusting the impedance of the TMN by tuning the TMN to

the output DC-offset maximum value.

10

15

20

25

30

35

40

45

50

55

[0012] The method of the first aspect bases on the realization that the coupling between the transmitter and the receiver of the tranceiver can advantageosuly be used to obtain an optimum matching impedance between antenna and transmitter/receiver, respectively. The optimum matching impedance is found when the outpot DC-offset maximum value is reached. In this way, a self-adjustment of the TMN is possible, without needing any additional ardware costs. A correction time in case of an impedance mismatch can be greatly reduced.

[0013] The TMN and the improved impedance adjusting of the TMN provide the advantage that costs can be reduced by finding optimum impedance, thanks to the use of a self-impedance matching detection. Moreover, they provide the advantage that, besides small area, low power can be achieved thanks to a Rx-based impedance detection method.

[0014] The TMN being connected between the antenna and the transceiver front-end means in particualr that the TMN is connected between the transmitter and receiver of the transceiver front-end, respectively. Typically, the TMN is also a part of the transceiver front-end, e.g. forming the transceiver front-end's connection to the antenna. It is, however, also possible that transceiver front-end and TMN are separate components.

[0015] In an implementation form of the method of the first aspect, the coupling between the transmitter and the receiver is caused by self-mixing.

[0016] The self-mixing phenomenon is typically present in transceivers. In particular, cost-sensitive Internet of Things (IOT) applications are vulnerable to this phenomenon. However, the method of the first aspect advantageosuly leverages the self-mixing phenomenon, in order to determine the optimum matching impedance of the TMN. This provides the advantage that a more precise impedance matching can be achieved, and that correction times are reduced. Further, test costs can be reduced.

[0017] In an implementation form of the method of first aspect, the self-mixing is between an output of a local oscillator (LO) of the transmitter and the output of an amplifier, in particular a low noise amplifier (LNA) of the receiver.

[0018] In an implementation form of the method of first aspect, the value of the output DC-offset at the receiver is given by:

DC_{offset}=A_{LNAin}*k+TIA_{offset}+LPF_{offset}, with k=0.5*G_{LNA}*A_{LO},

wherein A_{LNAin} is an amplitude of an input of an amplifier, in particular a LNA, of the receiver, TIA_{offset} is an offset of a transimpedance amplifier (TIA) of the receiver, LPF_{offset} is an offset of a low-pass filter (LPF) of the receiver, G_{LNA} is a gain of the amplifier, and A_{LO} is an amplitude of a LO of the transmitter.

[0019] In an implementation form of the method of first aspect, the TMN comprises at least one tunable capacitor, and tuning the TMN comprises tuning the at least one tunable capacitor.

[0020] In an implementation form of the method of first aspect, the TMN comprises a tunable bank, wherein the tunable bank comprises a tunable series capacitor and a tunable shunt capacitor, and tuning the TMN comprises tuning the tunable series capacitor and/or the tunable shunt capacitor.

[0021] This provides the advantage that a wide tunability of the TMN is achieved.

[0022] In an implementation form of the method of first aspect, tuning the TMN comprises tuning the tunable series capacitor and the tunable shunt capacitor independently from another, one after the other.

[0023] This provides the advantage that a flexible tunability of the TMN is achieved.

[0024] In an implementation form of the method of first aspect, the tuning the TMN comprises: fixing a value of a first capacitor of the tunable series capacitor and the tunable shunt capacitor; tuning the second capacitor of the tunable series capacitor and the tunable shunt capacitor, in order to detect a first value of the second capacitor, for which a first maximum value of the output DC-offset is measured; fixing a value of the second capacitor to the first value; tuning the first capacitor, in order to detect a second value of the first capacitor, for which a second maximum value of the output DC-offset is measured; and fixing a value of the first capacitor to the second value.

[0025] According to a second aspect, the invention relates to a transceiver front-end, comprising: a receiver and a transmitter, a TMN connectable to an antenna and connected to the transmitter and the receiver, wherein the TMN comprises a receive path to provide signals from the antenna to the receiver during a Rx mode, and a transmit path to provide signals from the transmitter to the antenna during a Tx mode, wherein the transceiver front-end is configured to: tune the TMN, measure values of an output DC-offset at the receiver in the Tx mode while tuning the TMN, wherein the output DC-offset is caused by a coupling between the transmitter and the receiver; determine a maximum value of the output DC-offset from the measured output DC-offset values; and adjust the impedance of the TMN by tuning the TMN to the output DC-offset maximum value.

[0026] In an implementation form of the transceiver front-end of the second aspect, the TMN comprises at least one tunable capacitor, and the transceiver front-end is configured to tune the at least one tunable capacitor, in order to tune the TMN.

[0027] In an implementation form of the transceiver front-end of the second aspect, the TMN comprises a tunable

bank, wherein the tunable bank comprises a tunable series capacitor and a tunable shunt capacitor, and the transceiver front-end is configured to tune the tunable series capacitor and/or the tunable shunt capacitor, in order to tune the TMN. **[0028]** In an implementation form of the transceiver front-end of the second aspect, the transmitter, the receiver, and the TMN are provided on an integrated circuit chip connectable to the antenna via the antenna port of the TMN.

[0029] In an implementation form of the transceiver front-end of the second aspect, the TMN comprises an inductance connected in the transmit path, and a mode switch configured to selectively connect the inductance to ground in the Rx mode and disconnect the inductance from ground in the Tx mode.

[0030] This provides the advantage that the TMN has a small size since only a single inductor is used. Furthermore, inductive losses are minimized.

[0031] According to a third aspect, the invention relates to a transceiver comprising: the transceiver front-end according to the second aspect and any one of the implementation forms thereof, and an antenna connected to the transceiver front-end via the antenna port of the TMN.

[0032] The transceiver front-end of the second aspect and the transceiver of the third aspect provide the same advantages as described above for the method of the first aspect. The transceiver front-end and transceiver can have implementation forms corresponding to the implementation forms of the method of the first aspect.

BRIEF DESCRIPTION OF DRAWINGS

10

15

35

40

45

50

[0033] The above described aspects and implementation forms of the present invention will be explained in the following description of specific embodiments in relation to the enclosed drawings, in which:

- FIG. 1 shows a method for adjusting an impedance of a TMN according to an embodiment;
- Fig. 2 shows a transceiver comprising a receiver that can be used to adjust an impedance of a TNM according to an embodiment;
 - Fig. 3 shows a transceiver comprising a receiver that can be used to adjust an impedance of a TNM according to an embodiment;
- Fig. 4 shows a transceiver comprising a receiver that can be used to adjust an impedance of a TNM according to an embodiment;
 - Fig. 5 shows an impedance of a receiver Z_{TB_PA} of a transceiver, power P_{OUT} and DC-offset of two capacitors of a TMN of the transceiver according to an embodiment;
 - Fig. 6 shows power P_{OUT} and DC-offset of two capacitors of a TMN in a transceiver according to an embodiment; and
 - Fig. 7 shows a schematic representation of a measured result of power (a) and efficiency (b) gap between maximum and correlated matching condition according to an embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

[0034] FIG. 1 and FIG. 2 illustrate a method 100 for adjusting an impedance of a tunable matching network TMN 222 according to an embodiment. In particualr, FIG. 1 shows a flow-diagram of the steps of the method 100, while FIG. 2 shows a transceiver 200 comprising the TMN 222, wherein the transceiver 200 is capable of performing the method 100. [0035] The TMN 222 is connected between an antenna 214 and a transceiver front-end of the transceiver 200, in particualr between the antenna 214 and a receiver 204a and transmitter 202a of the transceiver front-end. The TMN 222 can be part of the transceiver front-end. The TMN 222 comprises a receive path to provide signals from the antenna 214 to the receiver 204a of the transceiver 200, during a Rx mode, and a transmit path to provide signals from the transmitter 202a of the transceiver 200 to the antenna 214, during a Tx mode.

[0036] The method 100 comprises in particular the steps of:

- Tuning 101 the TMN 222. That is, varying stepwise or continuously the impedance of the TMN 222.
- Measuring 102 values of an output DC-offset at the receiver 204a in the Tx mode, while tuning the TMN 222, wherein the output DC-offset is caused by a coupling between the transmitter 202a and the receiver 204a. The output DC-offset value changes when the impedance of the TMN 222 changes.

Determining 103 a maximum value of the output DC-offset from the measured output DC-offset values.

5

30

35

50

Adjusting 104 the impedance of the TMN 222 by tuning the TMN 222 to the output DC-offset maximum value. That
is, for isntance, after an impedance sweep(s) of the TMN 222 has been conducted, the impedance can be set to
the impedance value, at which the highest DC-offset value was determined.

[0037] Fig. 2 shows the transceiver 200 comprising the receiver 204a, which can be used to adjust the impedance of a TNM 222 according to an embodiment, i.e. according to the method 100.

[0038] The TMN 222 is shown particularly as it can be used in the transceiver 200 according to an embodiment. The transceiver 200 may include the TMN 222, and further includes a receiver 204a and a transmitter 202a. Together, the receiver 204a and the transmitter 202a may form the transceiver's front-end. However, also the TMN 222 can belong to the transceiver front-end. The transceiver 200 further includes an antenna 214. The TMN 222 is connected between the antenna 214 and the transceiver front-end.

[0039] The TMN 222 according to the embodiment may further comprise an antenna port for connecting to the antenna 214, a receiver port for connecting to the receiver 204a, and a transmitter port for connecting to the transmitter 202a. The TMN 222 has a receive path to provide signals from the antenna port to the receiver port during the Rx mode, and has a transmit path to provide signals from the transmitter port to the antenna port during the Tx mode. The Rx mode and Tx mode may relate to the TMN 222 and transceiver 200, respectively.

[0040] In this embodiment of the transceiver 200, the antenna 214 may be directly connected to an input/output (I/O) pin (antenna port) of the transceiver's front-end. The transceiver front-end may include various circuits configured to receive and transmit RF signals via the antenna 214.

[0041] In one embodiment, all circuitry used to implement the transceiver front-end may be provided on a common semiconductor substrate, and/or as a monolithic integrated circuit (IC) chip. In another embodiment, one or more components of the transceiver front-end may be provided on a separate substrate, which is coupled or bonded to the IC chip.

[0042] In the embodiment shown in FIG. 2, the transceiver front-end includes a first amplifier 204 (belonging to the receiver 204a), a second amplifier 202 (belonging to the transmitter 202a), and the TMN 222.

[0043] The first amplifier 204 of the receiver 204a is coupled within the receive path, and the second amplifier 202 of the transmitter 202a is coupled within the transmit path of the transceiver front-end. The first amplifier 204 is configured to amplify RF signals received by the antenna 214, for instance, from a wireless device or base station, during the Rx mode of the transceiver 200.

[0044] The second amplifier 202 is configured to amplify RF signals to be transmitted from the antenna 214 to, for instance, another wireless device or base station, during the Tx mode of the transceiver 200. In an exemplary embodiment, the first amplifier 204 of the receiver 204a is a LNA, and the second amplifier 202 of the transmitter 202a is a PA. It is noted, however, that the first 204 and second 202 amplifiers are not strictly limited to LNAs and PAs, and may be implemented with other types of amplifiers in other embodiments.

[0045] In an embodiment, the transceiver front-end is a time division duplex (TDD) transceiver front-end. In a TDD transceiver, the transmitter 202a and receiver 204a are not utilized simultaneously (i.e., Tx and Rx modes occur at different times). In order to conserve power in a TDD transceiver, the LNA may be powered down or turned off during the Tx mode, and the PA may be utilized to amply RF signals to be transmitted by the transceiver front-end. During the Rx mode, the PA may be powered down or turned off and the LNA may be utilized to amplify RF signals received by the transceiver front-end.

[0046] As shown in Fig. 2, the TMN 222 may be coupled between the antenna 214 and a shared node, to which the first amplifier 204 and the second amplifier 202 are connected. More specifically, the TMN 222 may be directly connected to the I/O pin, and may be directly connected to the shared node, where "directly connected" means that no intervening circuit components are coupled between the recited components.

[0047] An advantage of the transceiver 200 shown in Fig. 2 is that the transceiver front-end of the transceiver 200 may include a single, shared, on-chip TMN 222 to provide the impedance transformations desired during the Rx and Tx modes.

[0048] In a general embodiment, the TMN 222 may include a plurality of reactive elements (e.g., inductors and/or capacitors), which are configured to transform the impedance of the antenna 214 into a desired resistance (R) at the shared node

[0049] In order to provide the impedance transformations desired during the Rx and Tx modes, the plurality of reactive elements may generally include at least one variable reactive element having a tunable reactance (or a tunable susceptance), which is reconfigurable to modify the resistance (R) provided at the shared node.

[0050] By adjusting the reactance (or susceptance) of the at least one variable reactive element, the TMN 222 shared by the first amplifier 204 and the second amplifier may be reconfigured to: (a) transform the impedance of the antenna 214 into a desired resistance at the input of the first amplifier during the Rx mode, and (b) transform the impedance of the antenna 214 into a desired resistance at the output of the second amplifier during the Tx mode. In particular, by

adjusting the reactance (or susceptance) of the at least one variable reactive element, the TMN 222 can be tuned 101. During the tuning 101, the DC-offset can be monitored.

[0051] The desired resistance at the input of the first amplifier 204, the desired resistance at the output of the second amplifier, and the configuration of the TMN 222 may depend on circuitry and operating characteristics of the first amplifier 204 and/or the second amplifier 202.

[0052] In general, the at least one variable reactive element may be selected from a group consisting of variable capacitors and/or variable inductors (otherwise referred to as tunable capacitors and/or tunable inductors). In one embodiment, the at least one variable reactive element is implemented as a variable capacitor, and more specifically, as a digitally controlled capacitor array.

[0053] Fig. 3 shows a transceiver 200 comprising the receiver 204a, which can be used to adjust the impedance of the TNM 222 according to an embodiment. Fig. 3 is a more detailed representation of Fig. 2, wherein besides the amplifier 202, the transmitter 202a further comprises a module 206. The module 206 comprising a LO 206a, and an amplifier 206b. [0054] Furthermore, the receiver 204a can comprise the amplifier 204, a TIA 204c, and a LPF 204d.

10

30

35

40

50

55

[0055] In an embodiment, the self-mixing occurs between an output of the LO 206a of the transmitter 202a and the output of an amplifier, in particular the LNA 204 of the receiver, as indicated by the cross 204b. This self-mixing can be leveraged to optimize the impedance of the TMN 222 in the transceiver 200.

[0056] Fig. 4 shows the transceiver 200 comprising the receiver 204a used to adjust the impedance of the TNM 222 according to an embodiment.

[0057] Fig. 4 is a more detailed representation of Fig. 3, wherein the TMN 222 comprises a tunable bank 106, which comprises at least one tunable capacitor 106a, 106b, and is connected to the antenna port in a shared part of the receive path and the transmit path.

[0058] Notably, the TMN 222 is generally shared for matching the impedance of the transmitter 202a and the receiver 204a, respectively, to the impedance of the antenna 214.

[0059] Furthermore, the TMN 222 comprises an inductance 112 connected in the transmit path between the tunable bank 106 and the transmitter port. The TMN 222 also comprises a device configured to connect the inductance 112 to ground in the Rx mode, and to disconnect the inductance 112 from ground in the Tx mode.

[0060] The device can be implemented by one of a mode switch 401, as in Fig. 4, configured to connect the inductance 112 to ground or a capacitance for notch filter in the Rx mode or a balun with a capacitance for notch in Rx-mode (equivalent circuit)

[0061] The mode switch 401 can be big-sized, in order to ensure that the Q-factor of the TMN 222 is not degraded.

[0062] In Fig. 4, the TMN 222 comprises the tunable bank 106, the mode switch 401, and the inductance 112. The tunable bank 106 can be used to tune 101 the impedance of the TMN 222 while monitoring the DC-offset.

[0063] The tunable bank 106 can consist of at least one tunable capacitor 106a, 106b, wherein the tunable capacitors 106a, 106b can be tuned by an impedance detection unit (not shown in Fig. 4). In particular, the tunable bank 106 can consist of a tunable series capacitor 106a and a tunable shunt capacitor 106b, wherein the tunable series capacitor 106a is connected to the antenna port, and the tunable shunt capacitor 106b is connected to ground and is arranged after the tunable series capacitor 106a. In one embodiment, the tunable series capacitor 106a and the tunable shunt capacitor 106b are tunable independently from another. The one or more tunable capacitors 106a, 106b can be tuned, in order to tune 101 the impedance of the TMN 222 while monitoring the DC-offset.

[0064] In an embodiment, the inductance 112 may be the only inductance 112 included in the TMN 222, and the inductance 112 may be connected between the receiver port and the transmitter port.

[0065] In order to further reduce the area of the transceiver 200, embodiments of the present invention may comprise a single-inductor topology, as shown in Fig. 4. The merged Tx/Rx TMN 222 in this case may have the mode switch (SWo) 401, which is located outside of the signal path, so that the signal loss is dramatically reduced.

[0066] The tunability of the proposed TMN 222 may be provided by the (shared) tunable bank (TB) 106, comprising a series capacitor (CSE) 106a and a shunt (CSH) capacitor 106b. Advantageously, in the proposed matching topology with only one on-chip inductor 112, the area and the loss of the TMN 222 are minimized.

[0067] By targeting the typical impedance area of pattern antennas and selecting the impedance seen from the TB 106 to the PA 202 and the LNA 204 (Z*TB_PA and Z*TB_LNA) in the capacitive region, a wide impedance coverage can be achieved with a capacitive only TB 106 and a single inductor 112.

[0068] Moreover, in another embodiment, the mode switch 401 may be located outside of the transmit path and the receive path, respectively, and in the Tx mode, the mode switch 401 may provide a fringe capacitance between ground and the inductance 112.

[0069] To be able to self-adjust the impedance of TMN 222, the loop-back antenna matching impedance detection and correction technique based on the self-mixing can be used, as illustrated in Fig. 4 and as described already above. [0070] Zero-IF receivers are widely used in many cost-sensitive IoT applications, since they are free from image rejection and complex LO generation. However, they are vulnerable to the self-mixing, which is proportional to magnitude of two mixer inputs, LNA and LO output.

[0071] In the embodiments of this invention, the self-mixing phenomenon is leveraged and the optimum matching impedance can be detected. During the Tx matching impedance detection, the LNA 204 may advantageosuly operate at the lowest gain to minimize the power consumption for the impedance detection and to avoid saturation. Since the delays introduced by LNA 204 (t_{LNA}), PA 202 (t_{PA}) and TMN 222 (t_{TMN}) are relatively small compared to one LO period (t_{LO}), the phase difference (ϕ) between the mixer's LO 206a and RF port is close to zero.

[0072] Hence, the RX output DC offset can be approximated as:

DC offset = A_{LNAin} *k+TIAoffset+LPFoffset (1)

 $k = 0.5 * G_{LNA} * A_{LO} (2)$

where A_{LNAin} , TIAoffset, LPFoffset, G_{LNA} and A_{LO} are amplitude of LNA input, TIA and LPF DC offset, LNA gain and amplitude of LO, respectively.

[0073] The DC offset due to the self-mixing can be used to detect the LNA input magnitude A_{LNAin} . Since A_{LNAin} has a linear relationship with the PA output amplitude (P_{OUT}), the detected DC offset also indicates the level of PA output power. This indicates a quality of the mathching impedance of the TMN 222 with respect to antenna 214 and transceiver front-end. The DC offset can be monitored while tuning the TMN 222, in particular while adjusting at least one tunable capacitor 106 of the TMN 222.

[0074] Fig. 5 shows an impedance of a receiver Z_{TB_PA} of a transceiver, power P_{OUT} and DC-offset of the two capacitors 106a, 106b of the TMN 222 of the transceiver 200 according to an embodiment.

[0075] As described in Fig, 5, the matching impedance detection and correction method can have two steps:

- First, CSHUNT is swept while CSERIES is fixed in order to detect for an optimum value (i.e., C_{SH_OPT}) by finding the maximum DC offset.
 - Then, CSHUNT is fixed to $C_{SH\ OPT}$, and C_{SERIES} is swept till the optimum value $C_{SE\ OPT}$ is found.
- 30 This can also be performed vice-versa.

[0076] Advantageously, compared to the conventional exhaustive detection methods, the detection time and hardware complexity are dramatically reduced from $2(M^*N)$ to 2M+2N, where M and N are the bit widths of C_{SERIES} and C_{SHUNT} control, respectively.

[0077] Although the proposed method detects only T_X matching, the same setting is also reused in the R_X matching. Since Z*TB_PA and Z*TB_LNA are designed to be as close as possible in the capacitive area, and the sensitivity of the R_X NF to the impedance variation is much lower than PA output power, a same setting is applied in both T_X and R_X mode with a very limited impact.

[0078] Fig. 6 shows power P_{OUT} and DC-offset of the two capacitors 106a, 106b of the TMN 222 in the transceiver 200 according to an embodiment and Fig. 7 shows a schematic representation of a measured result of power (a) and efficiency (b) gap between maximum and correlated matching condition according to an embodiment.

[0079] The present invention has been described in conjunction with various embodiments, as examples, as well as aspects and implementations. However, other variations can be understood and effected by those skilled in the art and practicing the claimed invention, from the studies of the drawings, this disclosure and the independent claims. In the claims as well as in the description the word "comprising" does not exclude other elements or steps and the indefinite article "a" or "an" does not exclude a plurality.

Claims

- A method (100) for adjusting an impedance of a tunable matching network (222), TMN, connected between an
 antenna (214) and a transceiver front-end, wherein the TMN (222) comprises a receive path to provide signals from
 the antenna (202a) to a receiver (204a) during a receive, Rx, mode, and a transmit path to provide signals from a
 transmitter (202a) to the antenna (214) during a transmit, Tx, mode, wherein the method (100) comprises the steps of:
 - tuning (101) the TMN (222),
 - measuring (102) values of an output DC-offset at the receiver (204a) in the Tx mode while tuning the TMN (222), wherein the output DC-offset is caused by a coupling between the transmitter (202a) and the receiver

10

15

25

40

45

50

(204a);

- determining (103) a maximum value of the output DC-offset from the measured output DC-offset values; and
- adjusting (104) the impedance of the TMN (222) by tuning the TMN (222) to the output DC-offset maximum value.
- 5 **2.** The method (100) of claim 1, wherein:

the coupling between the transmitter (202a) and the receiver (204a) is caused by self-mixing.

3. The method (100) of claim 2, wherein:

the self-mixing is between an output of a local oscillator (2206a), LO, of the transmitter (202a) and the output of an amplifier (204), in particular a low noise amplifier, LNA, of the receiver (204a).

4. The method (100) of one of the claims 1 to 3, wherein the value of the output DC-offset at the receiver (204a) is given by:

DCoffset=Alnain*k+TIAoffset+LPFoffset, with k=0.5*Glna*Alo,

wherein A_{LNAin} is an amplitude of an input of an amplifier, in particular a LNA (204), of the receiver (204a), TIA offset is an offset of a transimpedance amplifier (204c), TIA, of the receiver (204a), LPF offset is an offset of a low-pass filter (204d), LPF, of the receiver (204a), G_{LNA} is a gain of the amplifier (204), and G_{LNA} is an amplitude of the LO (206a) of the transmitter (202a).

5. The method (100) of one of the claims 1 to 4, wherein:

the TMN (222) comprises at least one tunable capacitor, and tuning the TMN comprises tuning the at least one tunable capacitor.

6. The method (100) of one of the claims 1 to 5, wherein:

the TMN (222) comprises a tunable bank (106), wherein the tunable bank (106) comprises a tunable series capacitor (106a) and a tunable shunt capacitor (106b), and tuning the TMN (222) comprises tuning the tunable series capacitor (106a) and/or the tunable shunt capacitor (106b).

7. The method (100) of claim 5 or 6, wherein:

tuning the TMN (222) comprises tuning the tunable series capacitor (106a) and the tunable shunt capacitor (106b) independently from another, one after the other.

35

40

45

50

55

10

15

20

25

- 8. The method (100) of one of the claims 5 to 7, wherein tuning the TMN (222) comprises:
 - fixing a value of a first capacitor of the tunable series capacitor (106a) and the tunable shunt capacitor (106b);
 - tuning the second capacitor of the tunable series capacitor (106a) and the tunable shunt capacitor (106b), in order to detect a first value of the second capacitor, for which a first maximum value of the output DC-offset is measured:
 - fixing a value of the second capacitor to the first value;
 - tuning the first capacitor, in order to detect a second value of the first capacitor, for which a second maximum value of the output DC-offset is measured; and
 - fixing a value of the first capacitor to the second value.
- 9. A transceiver front-end, comprising:
 - a receiver (204a) and a transmitter (202a);
 - a TMN (222) connectable to an antenna (214) and connected to the transmitter (202a) and the receiver (204a), wherein the TMN (222) comprises a receive path to provide signals from the antenna (214) to the receiver (204a) during a receive, Rx, mode, and a transmit path to provide signals from the transmitter (202a) to the antenna (214) during a transmit, Tx, mode, wherein the transceiver front-end is configured to:
 - tune the TMN (222),
 - measure values of an output DC-offset at the receiver (204a) in the Tx mode while tuning the TMN (222), wherein the output DC-offset is caused by a coupling between the transmitter (202a) and the receiver (204a);
 - determine a maximum value of the output DC-offset from the measured output DC-offset values; and
 - adjust the impedance of the TMN (222) by tuning the TMN (222) to the output DC-offset maximum value.

10. The transceiver front-end of claim 9, wherein:

the TMN (222) comprises at least one tunable capacitor, and the transceiver front-end is configured to tune the at least one tunable capacitor, in order to tune the TMN (222).

11. The transceiver front-end of claim 9 or 10, wherein:

the TMN (222) comprises a tunable bank (106), wherein the tunable bank (106) comprises a tunable series capacitor (106a) and a tunable shunt capacitor (106b), and the transceiver front-end is configured to tune the tunable series capacitor (106a) and/or the tunable shunt capacitor (106b), in order to tune the TMN (222).

10

5

- $\textbf{12.} \ \ \textbf{The transceiver front-end of one of the claims 9 to 11, wherein:}$
 - the transmitter (202a), the receiver (204a), and the TMN (222) are provided on an integrated circuit chip connectable to the antenna (214) via the antenna port of the TMN (222).
- 15 **13.** The transceiver front-end of one of the claims 9 to 12, wherein:

the TMN (222) comprises an inductance (112) connected in the transmit path, and a mode switch (401) configured to selectively connect the inductance (112) to ground in the Rx mode and disconnect the inductance (112) from ground in the Tx mode.

20

14. A transceiver comprising:

the transceiver front-end of any one of the claims 9 to 13, and an antenna (214) connected to the transceiver front-end via the antenna port of the TMN (222).

25

30

35

40

45

50

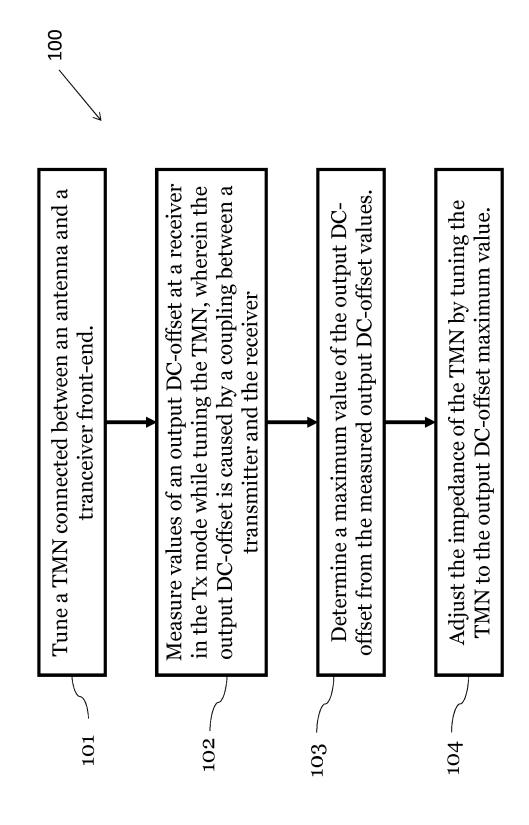


Fig. 1

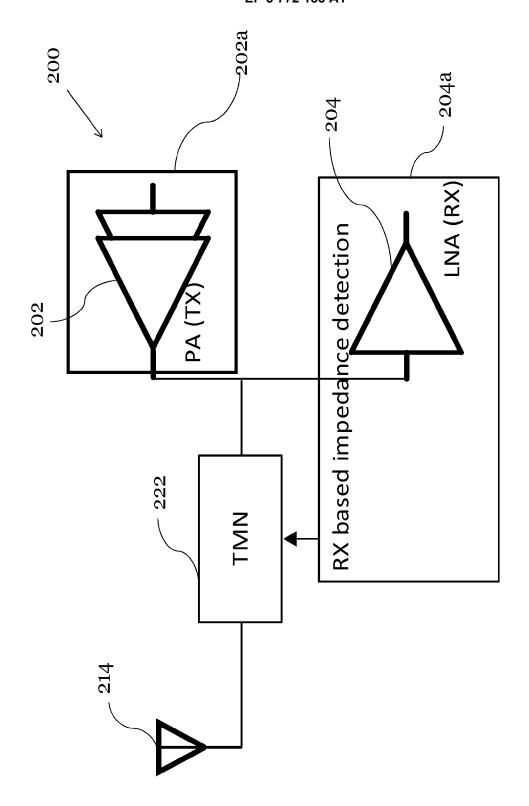
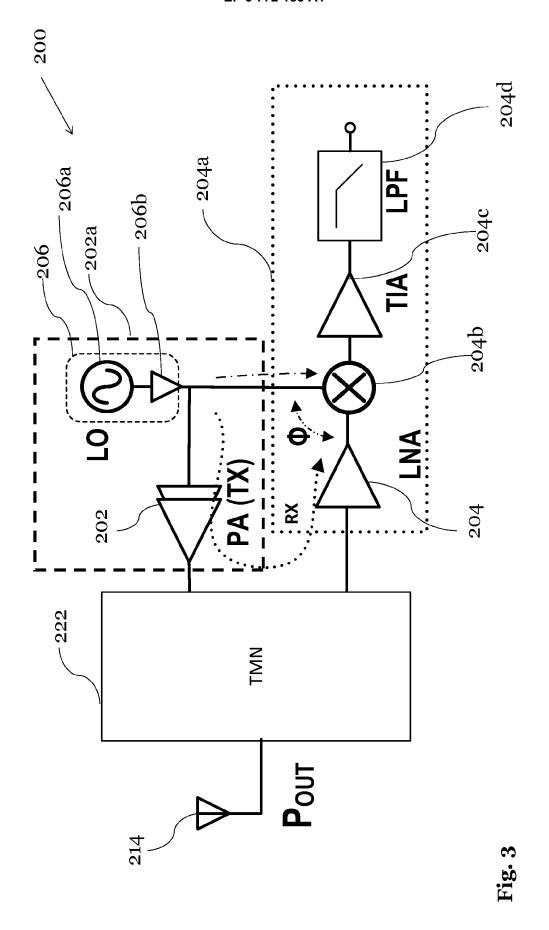



Fig. 2



Fig. 4

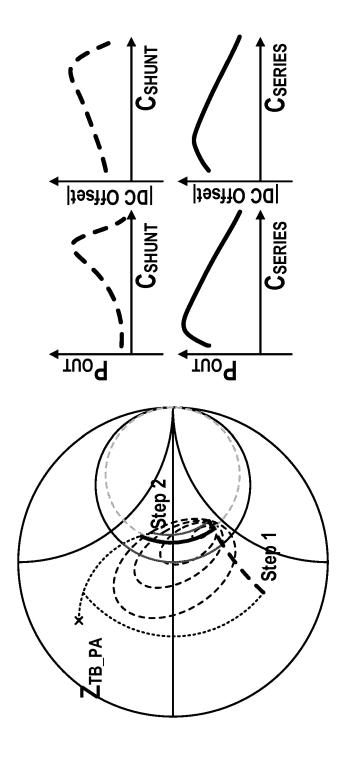


Fig. 5

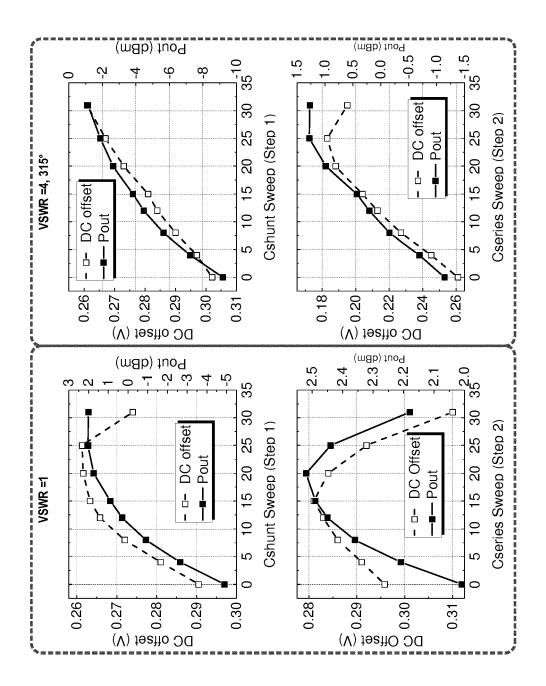


Fig. 6

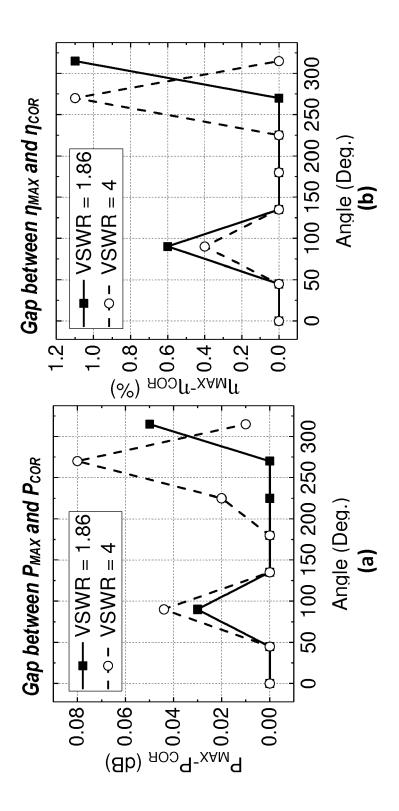


Fig. 7

EUROPEAN SEARCH REPORT

Application Number EP 19 18 9610

	DOCUMENTS CONSID	ERED TO BE	RELEVANT			
Category	Citation of document with i of relevant pass		ropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
Α	US 2009/121963 A1 (14 May 2009 (2009-6 * paragraph [0005] claim 1 *	5-14)		1-14	INV. H04B1/04 H04B1/18	
Α	US 2015/270864 A1 (24 September 2015 (* paragraph [0084] figure 3 *	BRYANT CARL 2015-09-24) - paragraph	[SE] ET AL) [0088];	1-14		
					TECHNICAL FIELDS SEARCHED (IPC) H04B H03H	
	The present search report has	·				
Place of search Munich			anuary 2020	Lindberg, Per		
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot iment of the same category inological background written disclosure rmediate document		T: theory or principle E: earlier patent doc after the filing date D: document cited in L: document cited fo 8: member of the sa document	underlying the ument, but publi the application r other reasons	invention shed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 18 9610

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-01-2020

10	Patent document cited in search report		Publication date	Patent family member(s)		Publication date
15	US 2009121963	A1	14-05-2009	US US US US WO	RE47412 E 2009121963 A1 2011250852 A1 2013095765 A1 2009064968 A1	28-05-2019 14-05-2009 13-10-2011 18-04-2013 22-05-2009
20	US 2015270864	A1 	24-09-2015	EP US WO	2923446 A1 2015270864 A1 2014079501 A1	30-09-2015 24-09-2015 30-05-2014
25						
30						
35						
40						
45						
50						
55 65409 MHOG						

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82