Technical Field
[0001] The present invention relates to a square tube forming method and a square tube forming
device of forming a metallic round tube into a square tube, particularly, to a square
tube forming method and a square tube forming device of a forming roll system using
forming roll stands in a plurality of states. In this description, a square tube means
a metallic square tube.
Background Art
[0002] A configuration employed as a square tube forming device of forming a round tube
having a round cross-sectional shape into a square tube having a rectangular cross-sectional
shape uses a forming roll stand array including a plurality of forming roll stands
arranged in a forming direction. The most common configuration uses a four-direction
forming roll stand for restraining the outer circumference of the same cross section
of a round tube from four directions including horizontal directions and vertical
directions. On the other hand, there are square tube forming devices not using such
a four-direction forming roll stand. One of these devices uses a forming roll stand
array in which a horizontal roll stand and a vertical roll stand are arranged alternately
in a forming direction, as presented in patent literature 1 and patent literature
2.
[0003] In each of the square tube forming devices, caliber rolls are used both as a horizontal
forming roll and a vertical forming roll. The caliber roll is a forming roll having
an outer circumferential surface recessed more deeply in an arc-like shape from opposite
end portions toward the center of the outer circumferential surface in a rotary axis
direction, and the arc-like recess is a roll caliber.
[0004] In either square tube forming device, the roll caliber at each stand is basically
designed to become shallower gradually from an upstream side toward a downstream side
of a material traveling direction. More specifically, the roll caliber is designed
in such a manner that the curvature of the roll caliber is reduced stepwise from a
value close to the curvature of a round tube as a raw tube to finally become zero,
which is equal to that of a linear portion held between a corner portion and a corner
portion of a square tube as a product.
[0005] In the square tube forming device shown in patent literature 1, to enhance forming
performance by suppressing springback of a tube member occurring between adjacent
rolls, effort is made to use the forming forces of the horizontal roll stand and the
vertical roll stand mutually by arranging these roll stands closely and alternately.
[0006] In the square tube forming device shown in patent literature 2, improvement is made
to the roll caliber of each forming roll. The conventional four-direction forming
roll stand is intended to form four corner portions at a time. This causes excessive
distortion at the corner portions, so that a section between two corner portions to
become a flat linear portion is prone to deformation such as undulation. This is particularly
observed in a relatively thin tube. In the square tube forming device shown in patent
literature 2, to form (linearize) shoulder portions adjacent to corner portions of
a square tube as a product (opposite end portions of a linear portion caught between
the two corner portions) before forming of other portions, the roll caliber of the
forming roll is divided in a circumferential direction into a corner portion corresponding
section, a shoulder portion corresponding section, and a section corresponding to
a linear portion other than the shoulder portion, and these corresponding sections
are given different curvatures. By doing so, a high-quality square tube having excellent
forming performance is obtained.
[0007] In either square tube forming device, the roll caliber is designed in such a manner
that the caliber bottom of the forming roll limitedly contacts the center of a linear
portion of a square tube as a product, thereby allowing forming of tube members of
different sizes using the same stand array within a certain range. However, as a range
of multi-use of the device is limited, development of a square tube forming device
having a wider range of roll multi-usability is expected.
[0008] Tubes including structural steel tubes have recently been requested to be accurate
in curvatures of corner portions at cross sections R conforming to definitions, namely,
requested to be free from thickness increase or reduction. In the square tube forming
device presented in patent literature 1, however, with the intention of trying to
enhance forming performance by suppressing springback, a small-diameter forming roll
is employed for the purpose of narrowing a gap between a horizontal roll and a vertical
roll adjacent to each other. This disables suppression of springback in a real sense
due to the reason of increase in invasion resistance, etc. to make it difficult to
respond to the foregoing request. By contrast, in the square tube forming device presented
in patent literature 2, a relatively high degree of dimension accuracy is ensured
by using the foregoing combination of a plurality of curvatures at the roll caliber.
On the other hand, this increases a likelihood that the caliber roll will be used
for dedicated purpose, so that roll multi-usability is unavoidably sacrificed.
[0009] In a recent round steel tube manufacturing factory, a tube manufacturing line available
for use for forming in a range of several times greater in diameter ratio has been
in practical use for encouraging roll multi-use. Incorporating the square tube forming
device into such a tube manufacturing line has been expected to achieve manufacture
of round tubes and square tubes of various diameters freely responsive to demand using
the same forming line. In this case, re-forming of a round tube into a square tube
involving a large amount of deformation of a cross section causes a large invasion
resistance, so that ensuring stable thrust and suppressing the entire length of a
stand array become important issues.
[0010] In the square tube forming devices of patent literatures 1 and 2, however, reducing
a gap between adjacent roll stands results in a large amount of springback of a tube
member between the adjacent roll stands to cause a considerably large resistance when
a tube member passes through a stand array. For this reason, a four-direction roll
stand with a combination of a horizontal roll and a vertical roll to produce large
thrust becomes necessary for driving the tube member forward. In an actual case, in
the square tube forming device presented in patent literature 2, four-direction roll
stands are arranged at the most upstream position and the most downstream position
of a forming line. In the square tube forming device presented in patent literature
1, four-direction roll stands are also actually required to be arranged in multiple
stages for driving for pressing-in a raw tube, for example. Hence, increase in the
entire length of the stand array along the forming line becomes unavoidable.
Prior Art Literatures
Patent Literatures
[0011]
Patent Literature 1: Japanese Patent Application Publication No. 2000-301233
Patent Literature 2: Japanese Patent Application Publication No. 2006-150377
Summary of Invention
Problem to be Solved by Invention
[0012] In view of the foregoing circumstances, it is an object of the present invention
to provide a square tube forming method and a square tube forming device of excellent
forming performance allowing a wide range of multi-use of a roll installable on a
current tube manufacturing line, allowing suppression of the entire length of a roll
stand array, and reducing a likelihood of the occurrence of thickness increase or
reduction at a corner portion of a product.
Means of Solving Problem
[0013] To achieve the foregoing object, the present inventors focused on a flat roll stand
with a combination of rod-like flat rolls without roll calibers, particularly, on
a flat roll stand array in which a horizontal flat roll stand and a vertical flat
roll stand are arranged alternately in a tube member forming direction. Unlike the
caliber roll, the flat roll is not recessed in an arc-like shape at an outer circumferential
surface. This makes a minimum outer diameter and a maximum outer diameter substantially
equal to each other to allow reduction in a gap between the roll stands compared to
that in a caliber roll stand. As a result, the entire length of the roll stand array
is suppressed, and roll multi-usability is enhanced considerably compared to that
of a caliber roll stand array.
[0014] Then, the flat roll stand array was analyzed repeatedly from a variety of viewpoints
to find the following issues about forming performance, which is the most significant
feature of a square tube forming device.
[0015] First, compared to the case of the caliber roll stand array, the alternate arrangement
of the horizontal roll stand and the vertical roll stand basically achieves bending
forming using two-direction rolls to prevent the occurrence of distortion at a corner
portion to be caused by constriction forming using four-direction rolls. Additionally,
a forming roll in each roll stand is a flat roll with a controlled maximum diameter,
so that a gap between roll stands can actually be reduced. Even if a gap between the
roll stands can be reduced, however, it is still impossible to suppress the springback
of a tube member occurring between roll stands adjacent to each other.
[0016] Second, the performance of forming from a round tube into a square tube is affected
largely by a ratio of allocation of a rolling amount to each stand in the roll stand
array, namely, a rolling amount distribution, rather than the caliber shape of the
caliber roll. What is particularly effective is operation of applying an extremely
large rolling amount at some of the forming roll stands in the roll stand array and
operation of largely changing a rolling amount distribution involving such large change
in response to the dimension (outer diameter, thickness) and material of the round
tube and the dimension of the square tube.
[0017] Third, the flat roll stand is considerably effective in performing these operations.
The reason for this is as follows. In the case of the caliber roll with the roll caliber,
an outer diameter is larger at opposite end portions than at a portion corresponding
to a caliber bottom to abut on the tube member, so that a gap between rolls and change
in a rolling amount are limited by a portion where the outer diameter is at maximum.
By contrast, in the case of the flat roll with substantially no roll caliber, a gap
between rolls changes in a wide range to allow adjustment of a rolling amount in a
wide range, and this works particularly effectively in forming into the square tube.
[0018] Fourth, applying a large rolling amount at the flat roll stand increases springback,
and this involves increase in passage resistance of the tube member. This causes difficulty
in passing the tube member through the roll stand array, which cannot be handled even
by providing a four-direction roll stand additionally such as that disclosed in patent
literature 2. To solve this, strong thrust is required to be applied to the tube member
passing through the flat roll stand array along its entire length by driving flat
rolls to rotate at as many roll stands as possible along the entire length of the
flat roll stand array. More specifically, a flat roll is driven to rotate at at least
one of the horizontal roll stand and the vertical roll stand adjacent to each other.
[0019] A square tube forming method and a square tube forming device of the present invention
have been developed on the basis of the foregoing findings. This square tube forming
method is a square tube forming method of forming a round tube of any diameter as
a forming target raw tube into a square tube of any dimension as a product by passing
the round tube through a plurality of roll stands arranged in a raw tube forming direction,
comprising:
using a flat roll stand array in which a first flat roll stand and a second flat roll
stand of rolling directions orthogonal to each other are arranged alternately in a
forming direction for a tube member and in which a rolling amount at each roll stand
is independently settable;
allocating a forming rolling amount distribution individually as a rolling amount
at each roll stand in the flat roll stand array, the forming rolling amount distribution
being determined in advance for the stands from a first-stage stand to a final-stage
stand in response to the outer diameter, thickness, and material of the forming target
raw tube to be used and an intended dimension of the square tube as a product; and
forming the forming target raw tube into the square tube as a product having the intended
dimension by driving at least one of the first flat roll stand and the second flat
roll stand adjacent to each other.
[0020] The square tube forming device of the present invention is a square tube forming
device for implementing the square tube forming method of the present invention comprising:
a flat roll stand array in which a first flat roll stand and a second flat roll stand
of rolling directions orthogonal to each other are arranged alternately in a forming
direction, wherein
each roll stand in the flat roll stand array includes roll gap adjusting means by
which a rolling amount is independently settable, and at least one of the first flat
roll stand and the second flat roll stand adjacent to each other includes roll driving
means.
[0021] In the description of the present invention given below, a roll stand array means
a flat roll stand array and a forming raw member means a forming target raw tube.
[0022] According to the square tube forming method and the square tube forming device of
the present invention, as long as rolling directions are orthogonal to each other
at the first flat roll stand and the second flat roll stand adjacent to each other,
each rolling direction may be at any angle relative to a vertical line or a horizontal
line. In terms of reality, however, one of the first flat roll stand and the second
flat roll stand is preferably a horizontal roll stand and the other is preferably
a vertical roll stand. Regarding roll driving at each roll stand, both the first flat
roll stand and the second flat roll stand adjacent to each other may be driven, namely,
all the rolls may be driven. Driving both the horizontal roll and the vertical roll
allows forming into a square tube of different rectangular ratios. While both of these
rolls can be driven only at some of the stands, driving only one of the rolls in each
of all the stands is rational and desirable in terms of giving rationality to a device
configuration and reducing cost of manufacturing the device.
[0023] Basically, the flat roll at each roll stand has an outer diameter constant along
its entire length in a rotary axis direction. In this regard, at some of the roll
stands, particularly, at one or a plurality of successive roll stands in a part of
the flat roll stand array, shallow arc-like recesses having larger curvatures than
an outer surface R of a roll contact surface of the tube member to pass through the
one or plurality of roll stands may be formed at both of the rolls in each roll stand,
regardless of whether the rolls are to be driven or not to be driven. This is also
within the range of the present invention. As a result of formation of this arc-like
recess at the outer circumferential surface of a driven roll in a section requiring
large thrust to the tube member, for example, in an upstream section of the roll stand
array, for example, large thrust is obtained. Further, formation of a similar arc-like
recess at the outer circumferential surface of a non-driven roll allows the tube member
to be driven forward smoothly and allows smooth forming of the tube member.
[0024] A gap adjusting motor of a roll gap adjusting mechanism for the roll stand array
is preferably shared in the roll stand array. More specifically, while gap adjusting
motors in a pair intended for the first flat roll stand and the second flat roll stand
in a pair adjacent to each other are movable along the roll stand array, these gap
adjusting motors are preferably shared between the first flat roll stands and the
second flat roll stands in a plurality of pairs. This simplifies the configuration
of the device and reduces the weight of the device, thereby reducing cost of manufacturing
the device.
[0025] Referring to the inventions disclosed in patent literatures 1 and 2, while the horizontal
roll stand and the vertical roll stand are arranged alternately, these inventions
basically relate to a technique of square tube forming using the caliber roll stand
array, namely, a technique of roll forming of a round tube as a raw tube gradually
into a square tube as a product by reducing the curvature of the roll caliber stepwise
at the stands.
[0026] According to the square tube forming using the caliber roll stand array, a total
forming amount is allocated substantially uniformly to all the stages in response
to the number of stands to be used. On the basis of the allocation, a caliber curvature
at each stand is designed. A rolling amount at each stand is also determined by allocating
a total rolling amount uniformly to the stands in response to a caliber curvature
distribution.
Advantageous Effects of Invention
[0027] The square tube forming method and the square tube forming device of the present
invention use the roll stand array in which the first flat roll stand and the second
flat roll stand of rolling directions orthogonal to each other are arranged alternately
in the forming direction to remove limitation on forming dimensions imposed by the
roll caliber, thereby achieving considerably high roll multi-usability. Moreover,
in addition to suppressing the entire length of the flat roll stand array by reducing
a gap between flat roll stands adjacent to each other, a need for a sizing stand (four-direction
roll stand) conventionally indispensable for ensuring thrust is eliminated, thereby
facilitating incorporation into a current tube manufacturing line. As a result of
the foregoing, it becomes possible to form a round tube of any diameter, more specifically,
of any dimension (outer diameter, thickness) and any material into a square tube of
any dimension.
[0028] Specifically, considerably high roll multi-usability is achieved by the use of the
flat roll, a rolling amount at each stand in the stand array is independently settable
to allow a rolling amount to be allocated freely, and suppressing the entire length
of the roll stand array allows increase in the number of stages of the roll stands.
Thus, even in the case of a large rolling amount, a forming amount at one stage of
roll stand is still suppressed, thereby reducing the occurrence of winding around
a roll to reduce an invasion resistance. Moreover, bending forming is performed using
two-direction rolls unlike constriction forming using four rolls, and at least one
of the first flat roll stand and the second flat roll stand adjacent to each other
is driven to allow application of stable thrust to a tube member to pass through the
stand array. As a result, even in the absence of a sizing stand (four-direction roll
stand) for ensuring thrust and even with the suppressed entire length of the flat
roll stand array, high tube manufacturing efficiency is still ensured stably and thickness
increase or reduction is unlikely to occur at a corner portion of a product, thereby
ensuring excellent forming performance.
[0029] Thus, the square tube forming method and the square tube forming device of the present
invention achieve manufacture of high-quality square tubes economically.
Brief Description of Drawings
[0030]
Fig. 1 is a perspective view of a square tube forming device showing an embodiment
of the present invention;
Fig. 2 is a perspective view of the square tube forming device taken from a different
angle from which a roll driving mechanism is omitted;
Fig. 3 is a perspective view of a horizontal roll stand in the square tube forming
device;
Fig. 4 is a perspective view of a vertical roll stand in the square tube forming device;
Fig. 5 is a perspective view showing one example of a square tube forming method of
the present invention and showing a square tube forming process continuously and entirely
according to this example;
Fig. 6 is an explanatory view showing the square tube forming process of forming a
raw round tube into a square tube as a product in stages according to the one example
by illustrating cross-sectional shapes of the tube at respective stands;
Fig. 7 is a perspective view showing a different example of the square tube forming
method of the present invention and showing a square tube forming process continuously
and entirely according to this example; and
Fig. 8 is an explanatory view showing the square tube forming process of forming a
raw round tube into a square tube as a product in stages according to the different
example by illustrating cross-sectional shapes of the tube at respective stands.
Embodiments for Carrying Out Invention
[0031] An embodiment of the present invention will be described below.
[0032] A square tube forming device of the embodiment is a device of forming a round tube
as a forming raw member continuously into a square tube by passing the round tube
through a plurality of forming roll stands sequentially. The square tube forming device
is arranged in a round tube manufacturing line and used for forming a part of a manufactured
round tube into a square tube to allow manufacture of both the round tube and the
square tube.
[0033] As shown in Figs. 1 and 2, this square tube forming device includes a roll stand
array 10 of a square tubular shape extending long in a tube member forming direction.
The square tubular roll stand array 10 has a configuration in which a horizontal roll
stand 20A of a square frame-like shape having a small thickness in the tube member
forming direction and a vertical roll stand 20B of a square frame-like shape also
having a small thickness in the tube member forming direction are arranged alternately
on a stand base 30 in the tube member forming direction. A round tube as a forming
raw member passes through the roll stand array 10 from a front side toward a back
side of Fig. 1. Namely, the front side of Fig. 1 is an upstream side of the roll stand
array 10, and the back side of Fig. 1 is a downstream side of the roll stand array
10.
[0034] As shown in Fig. 3, the horizontal roll stand 20A includes: upper and lower horizontal
fixed bases 22A, 22A coupled by a total of four vertical rods 21A arranged two on
the right and two on the left; upper and lower horizontal movable bases 23A, 23A supported
to be vertically movable by the right and left vertical rods 21A between the upper
and lower horizontal fixed bases 22A, 22A; and upper and lower horizontal rolls 24A,
24A attached to respective surfaces of the movable bases 23A, 23A facing each other.
[0035] Each of the upper and lower horizontal rolls 24A is a flat roll having an outer diameter
substantially constant along its entire length in a center axis direction. A horizontal
support shaft supporting the horizontal roll 24A is rotatably supported by brackets
25A, 25A provided in bearings on the opposite sides of the horizontal roll 24A. One
end portion of this support shaft projects as an input shaft 24A' toward one side
of the roll stand array 10 and is coupled to a roll driving mechanism 40 as roll driving
means arranged on the one side, thereby driving the horizontal roll 24A to rotate
(see Fig. 1).
[0036] A roll gap between the upper and lower horizontal rolls 24A, 24A in a pair is adjusted
by a mechanical upper jack 26A attached in a downward-pointing position to the upper
surface of the upper horizontal fixed base 22A at the center and by a mechanical lower
jack 26A attached in an upward-pointing position to the lower surface of the lower
horizontal fixed base 22A at the center.
[0037] Specifically, the downward-pointing upper jack 26A has a tip portion coupled to the
upper surface of the upper movable base 23A while penetrating the upper horizontal
fixed base 22A, and is driven by a horizontal roll gap adjusting motor 50A (see Figs.
1 and 2) arranged on the one side of the roll stand array 10 through a horizontal
input shaft 27A. The upward-pointing lower jack 26A has a tip portion coupled to the
lower surface of the lower movable base 23A while penetrating the lower horizontal
fixed base 22A, and is driven symmetrically to and synchronously with the upper jack
26A as driving force of the horizontal roll gap adjusting motor 50A (see Figs. 1 and
2) is transmitted to the lower jack 26A through a gear box 28A attached to a lateral
upper surface of the upper horizontal fixed base 22A on the other side, a vertical
power transmission shaft 29A, and a gear box 28A attached to a lateral lower surface
of the lower horizontal fixed base 22A on the other side.
[0038] The symmetric and synchronous driving using the upper and lower jacks 26A, 26A described
above drives the upper and lower movable bases 23A, 23A to move up and down symmetrically,
thereby adjusting a roll gap between the upper and lower horizontal rolls 24A, 24A.
Namely, a gap adjusting mechanism for the upper and lower horizontal rolls 24A, 24A
is configured using the upper and lower jacks 26A, 26A, the horizontal roll gap adjusting
motor 50A, and a power transmission mechanism including the input shaft 27A, the upper
and lower gear boxes 28A, 28A, and the power transmission shaft 29A.
[0039] As shown in Fig. 4, the vertical roll stand 20B includes: right and left vertical
fixed bases 21B, 21B in a pair; two upper and lower horizontal rods 22B, 22B coupling
the right and left vertical fixed bases 21B, 21B; right and left movable bases 23B,
23B supported to be horizontally movable by the two upper and lower horizontal rods
22B, 22B between the right and left vertical fixed bases 21B, 21B; and right and left
vertical rolls 24B, 24B rotatably supported by the right and left movable bases 23B,
23B respectively.
[0040] The right and left vertical fixed bases 21B, 21B are provided in standing positions
symmetrically to each other on opposite end portions of the lower horizontal fixed
base 22A of the horizontal roll stand 20A described above (see Fig. 3). Namely, the
foregoing lower horizontal fixed base 22A of the horizontal roll stand 20A extends
toward the downstream side of the roll stand array 10, and the vertical fixed bases
21B, 21B are attached to this extending portion. In this way, the horizontal roll
stand 20A and the vertical roll stand 20B in a pair adjacent to each other form a
horizontal and vertical stand pair 20 integrated by the common horizontal fixed base
22A.
[0041] Each of the right and left movable bases 23B includes upper and lower sliders slidably
supported by the upper and lower horizontal rods 22B, 22B, and a roll support frame
25B attached between the upper and lower sides. The roll support frame 25B, which
further functions as a coupling member between the upper and lower sliders, has a
configuration opened inwardly formed by a combination of upper and lower horizontal
members and an outer vertical member. The foregoing right and left vertical rolls
24B, 24B are rotatably supported between these upper and lower horizontal members.
A roll gap between the right and left vertical rolls 24B, 24B is adjusted by right
and left jacks 26B, 26B attached to outer side surfaces of the right and left vertical
fixed bases 22B, 22B respectively with the inner sides thereof pointing toward the
respective outer side surfaces.
[0042] Specifically, the jack 26B on the one side has a tip portion coupled to the outer
side surface of the outer vertical member of the movable base 23B on the one side
while penetrating the vertical fixed base 22B on the one side, and is driven by a
vertical roll gap adjusting motor 50B (see Figs. 1 and 2) arranged on the one side
of the roll stand array 10 through a vertical input shaft 27B. The jack 26B on the
other side has a tip portion coupled to the outer side surface of the outer vertical
member of the movable base 24B on the other side while penetrating the vertical fixed
base 22B on the other side, and is driven symmetrically to and synchronously with
the jack 26B on the one side as driving force of the vertical roll gap adjusting motor
50B (see Figs. 1 and 2) is transmitted to the jack 26B on the other side through a
gear box 28B attached to a lateral portion of the stand base 30 on the one side, a
horizontal power transmission shaft 29B, and a gear box 28B attached to a lateral
portion of the stand base 30 on the other side.
[0043] The symmetric and synchronous driving using the right and left jacks 26B, 26B described
above moves the right and left movable bases 23B, 23B horizontally and symmetrically
to each other, thereby adjusting a gap between the right and left vertical rolls 24B,
24B. Namely, a gap adjusting mechanism for the right and left vertical rolls 24B,
24B is configured using the right and left jacks 26B, 26B, the vertical roll gap adjusting
motor 50B, and a power transmission mechanism including the input shaft 27B, the right
and left gear boxes 28B, 28B, and the power transmission shaft 29B.
[0044] With the horizontal roll stand 20A and the vertical roll stand 20B in a pair having
the foregoing configurations defined as the horizontal and vertical stand pair 20,
a plurality of such pairs is arranged on the stand base 30 in the tube member forming
direction to form the roll stand array 10 of the square tube forming device. More
specifically, the roll stand array 10 is composed of 11 stand pairs 20 (23 roll stands
in total including the horizontal roll stand 20A in a final stage).
[0045] As described above, in this square tube forming device, a gap between the horizontal
rolls 24A, 24A in the horizontal roll stand 20A is adjusted by the horizontal roll
gap adjusting motor 50A, and a gap between the vertical rolls 24B, 24B in the vertical
roll stand 20B is adjusted by the vertical roll gap adjusting motor 50B. The horizontal
roll gap adjusting motor 50A and the vertical roll gap adjusting motor 50B are provided
only in one pair for one horizontal and vertical stand pair 20, and the horizontal
roll gap adjusting motor 50A and the vertical roll gap adjusting motor 50B in one
pair moves along the roll stand array 10 (here, in a self-propelled manner) to adjust
gaps between the horizontal rolls 24A, 24A and gaps between the vertical rolls 24B,
24B of the 12 horizontal and vertical stand pairs 20 sequentially.
[0046] Specifically, as shown in Figs. 1 and 2, particularly in Fig. 2, a support table
51 is provided on the one side of the roll stand array 10, particularly at the top
thereof while extending along the entire length of the roll stand array 10. The support
table 51 is supported horizontally by a stay 52, etc. extending from the top of the
stand pair 20 toward the one side. The horizontal roll gap adjusting motor 50A and
the vertical roll gap adjusting motor 50B in a pair are coupled to each other and
in this state, are movable on the support table 51 along the roll stand array 10.
The horizontal roll gap adjusting motor 50A and the vertical roll gap adjusting motor
50B in a pair stop at positions corresponding to the 12 horizontal and vertical stand
pairs 20 and are coupled to the horizontal input shaft 27A in the horizontal roll
stand 20A and to the vertical input shaft 27A in the vertical roll stand 20B at each
of the stopping positions, thereby adjusting a gap between the horizontal rolls 24A,
24A in the horizontal roll stand 20A and a gap between the vertical rolls 24B, 24B
in the vertical roll stand 20B.
[0047] This operation is performed on each of all the horizontal and vertical stand pairs
20 to adjust the gaps between the horizontal rolls 24A, 24A and the gaps between the
vertical rolls 24B, 24B in all the respective horizontal and vertical stand pairs
20 independently of each other. Here, 53 is a flexible cable for feeding electricity
to the movable horizontal roll gap adjusting motor 50A and vertical roll gap adjusting
motor 50B.
[0048] As described above, in this square tube forming device, the horizontal rolls 24A,
24A in the horizontal roll stand 20A are driven to rotate by the roll driving mechanism
40 arranged on the one side of the roll stand array 10. The roll driving mechanism
40 mentioned herein is divided into three driving units 41. Each of the driving units
41 is coupled to four horizontal roll stands 20A in four stand pairs 20 adjacent to
each other in the roll stand array 10, thereby driving the upper and lower horizontal
rolls 24A, 24A in each of the four horizontal roll stands 20A to rotate.
[0049] Specifically, the roll driving mechanism 40 includes a driving motor 42 for driving
each driving unit 41, and includes upper and lower output shafts 43, 43 corresponding
to each of the four horizontal roll stands 20A and coupled to the input shafts 24A',
24A' of the upper and lower horizontal rolls 24A, 24A in each of the four horizontal
roll stands 20A. By doing so, with the four horizontal roll stands 20A defined as
one set, the upper and lower horizontal rolls 24A, 24A in each of the horizontal roll
stands 20A are driven to rotate.
[0050] In the square tube forming device of the embodiment, in some of the roll stands in
the roll stand array 10, here, some of the roll stands on the upstream side, more
specifically, two horizontal and vertical stand pairs 20, namely, two horizontal roll
stands 20A and two vertical roll stands 20B viewed from the most upstream position,
extremely shallow arc-like recesses having larger curvatures than an outer surface
R of the tube member to pass through between rolls are formed at the outer circumferential
surfaces of the horizontal rolls 24A, 24A in each horizontal roll stand 20A and at
the outer circumferential surfaces of the vertical rolls 24B, 24B in each vertical
roll stand 20B.
[0051] A method of forming a round tube into a square tube using the square tube forming
device of the embodiment will be described next as a square tube forming method of
the embodiment.
[0052] In response to the dimension (outer diameter, thickness) and material of the round
tube as a forming raw member, the dimension of the square tube as a product, etc.,
in a plurality of (here, 12) horizontal and vertical stand pairs 20 (namely, combinations
of the horizontal roll stands 20A and the vertical roll stands 20B) in the roll stand
array 10, a gap between the upper and lower horizontal rolls 24A, 24A in the horizontal
roll stand 20A and a gap between the right and left vertical rolls 24B, 24B in the
vertical roll stand 20B are adjusted for each stand pair 20 in order from the upstream
side toward the downstream side of the roll stand array 10, for example. As described
above, this adjustment is made using the movable horizontal roll gap adjusting motor
50A and vertical roll gap adjusting motor 50B in combination.
[0053] After the gap between the horizontal rolls 24A, 24A in the horizontal roll stand
20A and the gap between the vertical rolls 24B, 24B in the vertical roll stand 20B
are adjusted in each of all the stand pairs 20, the roll driving mechanism 40 drives
only the horizontal rolls 24A, 24A in the horizontal roll stand 20A in each of all
the stand pairs 20 to rotate.
[0054] In this state, the round tube as a forming raw member is passed through the roll
stand array 10. This tube member is passed through the stand pairs 20 in the roll
stand array 10 (namely, combinations of the horizontal roll stands 20A and the vertical
roll stands 20B) sequentially to be formed from the round tube into the square tube.
[0055] The roll stand array 10 is configured using the horizontal roll stand 20A and the
vertical roll stand 20B arranged alternately. Further, the horizontal rolls 24A, 24A
in the horizontal roll stand 20A and the vertical rolls 24B, 24B in the vertical roll
stand 20B are both flat rolls having outer diameters substantially constant along
their entire lengths in the center axis direction. These realize not only reduction
in a distance between adjacent stands but also ease of avoidance of interference between
rolls in the adjacent stands. This makes a roll gap in each stand independently adjustable
in a wide range. Moreover, even with a reduced gap between the adjacent stands, it
is still possible to use a flat roll of a relatively large diameter to avoid winding
of the tube member around the roll and avoid increase in invasion resistance to be
cause by such winding.
[0056] As a result, it becomes possible to increase a rolling amount at a particular position
in the roll stand array 10 such as a position corresponding to some of stands on the
upstream side, and to reduce a rolling amount gradually in the other positions, for
example. In such a way, a rolling amount distribution oriented to forming performance
can be set in consideration of a springback amount to be changed by the outer diameter,
material, or thickness of a forming raw member, for example.
[0057] Additionally, a tube member invasion resistance is inherently controlled low in the
roll stand array 10, and the horizontal rolls 24A, 24A are driven to rotate in each
of all the horizontal roll stands 20A to apply thrust to the entire length of a tube
member to pass through the roll stand array 10. Thus, even if a rolling amount at
a particular position in the roll stand array 10 is increased to cause large springback
correspondingly, the tube member is still passed smoothly through the roll stand array
10.
[0058] In particular, in the square tube forming device of the embodiment, in some of stands
on the upstream side (while these stands are two horizontal and vertical stand pairs
20, the number of such pairs may be greater), the extremely shallow arc-like recesses
having larger curvatures than the roll contact surface R of the tube member to pass
through between rolls are formed at the outer circumferential surfaces of the horizontal
rolls 24A, 24A in each horizontal roll stand 20A and at the outer circumferential
surfaces of the vertical rolls 24B, 24B in each vertical roll stand 20B. As a result,
particularly large thrust is applied to the tube member while the tube member passes
through the stands.
[0059] As a result of the provision of the foregoing arc-like recesses at the horizontal
rolls 24A, 24A in the horizontal roll stand 20A and at the vertical rolls 24B, 24B
in the vertical roll stand 20B on the upstream side of the roll stand array 10, force
of pulling the tube member into the roll stand array 10 is increased to allow smoother
passage of the tube member.
[0060] The tube member to pass through the roll stand array 10 is subjected to bending forming
applied from two directions using the flat horizontal rolls 24A, 24A and the flat
vertical rolls 24B, 24B to form a corner portion. This functions, in addition to the
smooth passage of the tube member, to enhance forming performance, thereby manufacturing
a high-quality square tube. More specifically, the square tube having a predetermined
sectional curvature is manufactured in the absence of a thickness reduction at the
corner portion. The absence of thickness reduction at the corner portion eliminates
a need to assume the occurrence of thickness reduction in the dimension of a forming
raw tube, thereby achieving the effect of reducing the diameter of a base tube or
the effect of giving substantially equal thicknesses to a round tube and a square
tube to be manufactured.
[0061] Additionally, in the square tube forming device of the embodiment, the horizontal
roll stand 20A and the vertical roll stand 20B are arranged alternately to suppress
interference between rolls in adjacent stands. Further, only the horizontal rolls
24A, 24A in the horizontal roll stand 20A are driven to rotate while the vertical
rolls 24B, 24B in the vertical roll stand 20B are free rollers. Thus, interference
between members in the adjacent stands is suppressed to a greater extent. As a result,
the entire length of the roll stand array 10 is controlled to a short length to facilitate
retention of space for arrangement of the device in a tube manufacturing factory.
Moreover, the weight of the device is reduced to encourage reduction in manufacturing
cost.
[0062] Further, a gap between rolls in the horizontal roll stand 20A and a gap between rolls
in the vertical roll stand 20B are adjusted for each horizontal and vertical stand
pair 20 using a pair of the movable horizontal roll gap adjusting motor 50A and vertical
roll gap adjusting motor 50B in combination. Namely, the horizontal roll gap adjusting
motor 50A and the vertical roll gap adjusting motor 50B are shared between a plurality
of the horizontal and vertical stand pairs 20. This simplifies the configuration of
the square tube forming device, resulting in reduction in the weight of the device
and further reduction in cost of manufacturing the device.
Examples
[0063] Finally, by referring to Figs. 5 to 8, analysis result about two square tube forming
examples will be described in detail as examples of the present invention. Analysis
software used for obtaining the analysis result is 3D elastic-plastic deformation
finite analysis software developed by the present inventors having accuracy sufficient
for reproducing actual forming. These drawings are schematic drawings generated on
the basis of result output from this software.
[0064] According to square tube forming examples 1 and 2, the same flat roll stand array
is used. Fig. 5 continuously and entirely shows a square tube forming process implemented
in the flat roll stand array according to the square tube forming example 1, and Fig.
6 shows change in a tube cross-sectional shape from a round tube as a forming raw
member to a square tube as a product in stages of respective stands according to the
square tube forming example 1. Likewise, Fig. 7 continuously and entirely shows a
square tube forming process implemented in the flat roll stand array according to
the square tube forming example 2, and Fig. 8 shows change in a tube cross-sectional
shape from a round tube as a forming raw member to a square tube as a product in stages
of respective stands according to the square tube forming example 2. The roll outer
diameters are shown at the same ratio in Figs. 5 and 7 to facilitate comparison between
the sizes of the outer diameters of the raw tubes.
[0065] The flat roll stand array used in the square tube forming examples 1 and 2 has a
configuration conforming to the square tube forming device shown in Figs. 1 to 4.
With a vertical roll stand and a horizontal roll stand defined as one pair, this roll
stand array includes 24 rolls with 12 pairs of vertical roll stands and horizontal
roll stands in total arranged alternately. A roll diameter in each roll stand is 150
mm, and the roll stand array has an entire length of 4660 mm. While a rolling amount
is individually settable for each of the 24 roll stands, the 12 pairs of roll stands
each including a vertical roll stand and a horizontal roll stand in one pair were
divided into three groups with one group including four pairs, and an individual rolling
amount was set for each of these groups.
[0066] In the first group at the most upstream position, for ensuring thrust, a shallow
arc-like recess having a larger curvature than an outer surface R of a roll contact
surface of a tube member to pass through each roll stand is formed at each roll.
[0067] In the square tube forming example 1 shown in Figs. 5 and 6, a raw round tube of
a relatively small diameter made of common steel (Ys = 360 Mpa) and having an outer
diameter of 44.45 mm and a thickness of 3.6 mm is to be formed into a square tube
as a product having a regular square cross section with one side of 38 mm and a thickness
of 3.6 mm. According to a rolling amount distribution employed for this raw tube made
of common steel, a ratio of 9:3:1 was set for the first group, for the second group,
and for the third group respectively.
[0068] Specifically, with a rolling amount required for forming the cross-sectional shape
of the raw round tube entirely into the cross-sectional shape of the square tube as
a product set at 13, the rolling amount distribution was determined in such a manner
as to perform forming of a rolling amount of 9/13 (about 69.3%) in the first group,
to perform forming of a rolling amount of 3/13 (about 23%) in the second group, and
to perform forming of a rolling amount of 1/13 (about 7.7%) in the third group. For
forming from the round tube into the regular square cross section, the same rolling
amount is set for a vertical roll and a horizontal roll in a pair, and as a result
of planarization of side sections, four corners of the regular square cross section
are formed.
[0069] As a result, about 69% forming of a total forming amount is finished at a final stand
RB8 in the first group, about 92% forming is finished at a final stand RB16 in the
second group, and 100% forming both in length and width is finished at a final stand
RB24 in the third group.
[0070] In the square tube forming example 2 shown in Figs. 7 and 8, a raw round tube of
a relatively large diameter made of the same common steel (Ys = 360 Mpa) and having
an outer diameter of 119.67 mm and a thickness of 7 mm is to be formed into a square
tube as a product having a flat rectangular shape with a length of 50 mm, a width
of 150 mm, and a thickness of 7 mm. In this example, a rolling amount distribution
was also set to provide a ratio of 9:3:1 for the first group, for the second group,
and for the third group respectively. For forming from the round tube into the rectangular
cross section, a position to become a corner can be set by determining a rolling amount
for a vertical roll and a horizontal roll in a pair in such a manner as to be larger
on the vertical side and to be smaller on the horizontal side. As a result of planarization
of side sections, four corners of the rectangular cross section are formed.
[0071] As a result, about 69% forming of a total forming amount is finished at the final
stand RB8 in the first group, about 92% forming is finished at the final stand RB16
in the second group, and 100% forming both in length and width is finished at the
final stand RB24 in the third group.
[0072] As comprehensibly shown particularly in Fig. 8, a rolling amount is distributed in
the foregoing manner for reason of employing a forming process of performing planarization
of side sections readily in the first group on the upstream side for corner forming,
continuously performing the planarization of the side sections gently in the second
group on the midstream side for the corner forming, and obtaining intended dimensions
in the third group on the downstream side. In the two cases of square tube forming,
such a rolling amount distribution is employed by giving consideration to intended
dimensions of a product. Allowing employment of a forming process responsive to such
product specifications according to circumstances forms the characteristic of the
present invention. A range of roll multi-use defined by a model for analysis is such
that an outer diameter ratio is up to three times and an aspect ratio is up to three
times. Result obtained from the analysis shows that manufacturing an actual machine
and actually operating the machine produces the same effect.
[0073] While roll stands in a flat roll stand array are divided into three groups with one
group including one pair × 4 (eight stands), these roll stands may alternatively be
divided into four groups with one group including one pair × 3 (six stands), into
six groups with one group including one pair × 2 (four stands), or into 12 groups
with one group including one pair × 1 (two stands). By choosing a method of defining
groups in various ways together with a rolling amount distribution in response to
a difference in forming specifications (the material, outer diameter, and thickness
of a raw round tube, and dimensions of a square tube as a product), it becomes possible
to perform a wide range of square tube forming.
Reference Signs List
[0074]
- 10
- Roll stand array
- 20
- Horizontal and vertical stand pair
- 20A
- Horizontal roll stand (first flat roll stand)
- 21A
- Vertical rod
- 22A
- Horizontal fixed base
- 23A
- Movable base
- 24A
- Horizontal roll
- 25A
- Bracket
- 26A
- Jack
- 27A
- Input shaft
- 28A
- Gear box
- 29A
- Power transmission shaft
- 20B
- Vertical roll stand (second flat roll stand)
- 21B
- Vertical fixed base
- 22B
- Horizontal rod
- 23B
- Movable base
- 24B
- Vertical roll
- 25B
- Roll support frame
- 26B
- Jack
- 27B
- Input shaft
- 28B
- Gear box
- 29B
- Power transmission shaft
- 30
- Stand base
- 40
- Roll driving mechanism (roll driving means)
- 41
- Driving unit
- 42
- Driving motor
- 50A
- Horizontal roll gap adjusting motor
- 50B
- Vertical roll gap adjusting motor
- 51
- Support table
- 52
- Stay
- 53
- Cable