(11) **EP 3 778 647 A1** (12) ### **EUROPEAN PATENT APPLICATION** (43) Date of publication: 17.02.2021 Bulletin 2021/07 (21) Application number: 20196712.2 (22) Date of filing: 02.11.2016 (51) Int CI.: C07K 16/32 (2006.01) A61K 39/395 (2006.01) A61P 35/00 (2006.01) C07K 16/28 (2006.01) A61K 31/00 (2006.01) _____ (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (30) Priority: 07.12.2015 KR 20150173281 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 16873228.7 / 3 362 480 (71) Applicant: Isu Abxis Co., Ltd. Seongnam-si, Gyeonggi-do 13488 (KR) (72) Inventors: BAE, Dong Goo Yongin-si Gyeonggi-do 16944 (KR) - KIM, Mi Young Seoul 06547 (KR) - HUR, Young Mi Yongin-si Gyeonggi-do 16840 (KR) - HONG, Mi Rim Seoul 04358 (KR) (74) Representative: Engelhard, Markus Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22 80336 München (DE) ### Remarks: This application was filed on 17.09.2020 as a divisional application to the application mentioned under INID code 62. ### (54) ANTIBODY SPECIFICALLY BINDING TO ERBB3 AND USE THEREOF (57) An antibody that specifically binds to ErbB3 or an antigen-binding fragment thereof, and use thereof, are provided. The antibody that specifically binds to ErbB3 or an antigen-binding fragment thereof may be effectively used to prevent or treat a disease related to activation or overexpression of ErbB3 protein. ### Description #### **Technical Field** ⁵ **[0001]** One or more example embodiments relate to an antibody specifically binding to a receptor tyrosine kinase ErbB3 protein or an antigen-binding fragment of the antibody, a method of preparing the same, and use thereof. ### **Background Art** [0002] The epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases includes ErbB1 (known also as epidermal growth factor receptor (EGFR)), ErbB2 (known also as human epidermal growth factor receptor 2 (HER2)), ErbB3 (known also as HER3), and ErbB4 (known also as HER4). The receptor tyrosine kinases of the ErbB family may form a homodimer or heterodimer by combination with a ligand and may activate the signal transduction pathway of mitogen-activated protein kinase kinase (MAP2K, MEK, or MAPKK)/ mitogen-activated protein kinase (MAPK), or the signal transduction pathway of phosphoinositide 3-kinase (PI3K)/ protein kinase B (PKB or Akt). The ErbB family of proteins is reported to be related to the occurrence, progress, or prognosis of cancer. **[0003]** Erbitux® (Cetuximab) or Tarceva® (Erlotinib) as ErbB1 inhibitors and Herceptin® (Trastuzumab) or Tyverb® (Lapatinib) as ErbB2 inhibitors, are commercially available anti-cancer drugs. However, a large number of patients are unresponsive to these anti-cancer drugs, and these anti-cancer drugs are accompanied with development of resistance. A specific inhibitor antibody to ErbB3 or ErbB4 has not yet been made commercially available. **[0004]** Therefore, there is a need for the development of new anti-cancer drugs that may cope with the genetic diversity of cancer and overcome resistance to anti-cancer drugs. ### **Disclosure of Invention** # 25 20 40 45 50 #### **Technical Problem** **[0005]** One or more example embodiments include an antibody specifically binding to ErbB3, or an antigen-binding fragment thereof. [0006] One or more example embodiments include a pharmaceutical composition for prevention or treatment of a disease related to the activation or overexpression of ErbB3 protein. **[0007]** One or more example embodiments include a method of prevention or treatment of a disease related to the activation or overexpression of ErbB3 protein in an individual. #### 35 Solution to Problem **[0008]** This application claims the benefit of Korean Patent Application No. 10-2015-0173281, filed on December 7, 2015, in the Korean Intellectual Property Office. [0009] Reference will now be made in detail to example embodiments, which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present example embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the example embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. **[0010]** According to an aspect of the present disclosure, an antibody specifically binding to ErbB3 or an antigen-binding fragment of the antibody includes: a heavy chain variable region including at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 61 to 85, and 102; a light chain variable region including at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 86 to 101, and 103; or the heavy chain variable region and the light chain variable region. **[0011]** There are five types of heavy chains denoted by γ , δ , α , μ , and ϵ . The type of heavy chain defines the class of antibody. The heavy chain types α and γ each chain consists of approximately 450 amino acids, whereas μ and ϵ each chain consists of approximately 550 amino acids. Each heavy chain has two regions, i.e., the variable region and the constant region. [0012] There are two types of light chains denoted by λ and κ . Each light chain consists of approximately 211 to 217 amino acids. Each human antibody contains only one type of light chain. Each light chain contains two successive domains including one constant region and one variable region. [0013] The variable region refers to a region of the antibody which binds to an antigen. **[0014]** The heavy chain variable region may include: a complementarity-determining region-H1 (CDR-H1) including an amino acid sequence selected from the group consisting of SEQ ID. NOs: 61 to 68; a CDR-H2 including an amino acid sequence selected from SEQ ID NOs: 69 to 77, and 102; and a CDR-H3 including an amino acid sequence selected from SEQ ID NOs: 78 to 85. For example, the heavy chain variable region may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 30. The term "complementarity-determining region (CDR)" refers to a site of the variable region of an antibody that imparts binding specificity of the antibody or antigen-binding fragment thereof to an antigen. **[0015]** The light chain variable region may include: a CDR-L1 including an amino acid sequence selected from the group consisting of SEQ ID NOs: 86, 87, and 103; a CDR-L2 including an amino acid sequence selected from the group consisting of SEQ ID NOs: 88 to 93; and a CDR-L3 including an amino acid sequence selected from the group consisting of SEQ ID NOs: 94 to 101. For example, the light chain variable region may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 31 to 60. **[0016]** The antibody or the antigen-binding fragment thereof may include a heavy chain variable region selected from the group consisting of heavy chain variable regions CDR-H1, CDR-H2, and CDR-H3, which represent amino acid sequences listed in Table 5. [Table 5] | No. | CDR-H1 | CDR-H2 | CDR-H3 | |-----|-----------------------|-----------------------------------|------------------------------| | 1 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTYYADSVQ | DLHMGPEGPFDY (SEQ ID NO: 78) | | | | G (SEQ ID NO: 69) | | | 2 | DYDMS (SEQ ID NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 3 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTDYADSVQ | DLHMGPEGPFDY (SEQ ID NO: 78) | | | | G (SEQ ID NO: 71) | | | 4 | DYDMS (SEQ ID NO: 61) | SIEPDFGSSYYADSVR | DLHMGPEGPFDY (SEQ ID NO: 78) | | | | G (SEQ ID NO: 72) | | | 5 | DYDMS (SEQ ID NO: 61) | IIEPDSGSIYYADSVQG (SEQ ID NO: 73) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 6 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTDYADSVQ | DRHMWPEGPFDY (SEQ ID NO: 79) | | | | G (SEQ ID NO: 71) | | | 7 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTYYADSVQ | DRHMWPEGPFDY (SEQ ID NO: 79) | | | | G (SEQ ID NO: 69) | | | 8 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTYYADSVQ | DRHMWPEGPFDY (SEQ ID NO: 79) | | | | G (SEQ ID NO: 69) | | | 9 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTYYADSVQ | DRHMWPEGPFDY (SEQ ID NO: 79) | | | | G (SEQ ID NO: 69) | | | 10 | DYDMS (SEQ ID NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 11 | DYDMS (SEQ ID NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 12 | DYDMS (SEQ ID NO: 61) | SIEPDSGSTDYADSVQ | DRHMWPEGPFDY (SEQ ID NO: 79) | | | | G (SEQ ID NO: 74) | | (continued) | | No. | CDR-H1 | CDR-H2 | CDR-H3 | |----|-----|-----------------------|-----------------------------------|------------------------------| | 5 | 13 | DYDMS (SEQ ID NO: 61) | TIEPDSGSTYYADSVQ | DLHMGPEGPFDY (SEQ ID NO: 78) | | | | | S (SEQ ID NO: 75) | | | | 14 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTYYADSVQ | DLHMGPEGPFDY (SEQ ID NO: 78) | | 10 | | | G (SEQ ID NO: 69) | | | | 15 | DYDMS (SEQ ID NO: 61) | SIYPDSGSTDYADSVQ | DLHMWPEGPFDY (SEQ ID NO: 80) | | | | | G (SEQ ID NO: 71) | | | 15 | 16 | DYDMS (SEQ ID NO: 61) | TIEPDYGSTLYADSVQ | DLHMGPEGPFDY (SEQ ID NO: 78) | | | | | G (SEQ ID NO: 102) | | | 20 | 17 | DYDMS (SEQ ID NO: 61) | GISYDGGNTYYADSVK | DPSWCLQDLCYYADG | | | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | | 18 | WYDMT (SEQ ID NO: 62) | GISYDGGNTYYADSVK | DPSWCLQDLCYYADG | | 25 | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | | 19 | WYDLA (SEQ ID NO: 63) | GISYDGGNTYYADSVK | DPSWCLQDLCYYADG | | | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | 30 | 20 | WYDMS (SEQ ID NO: 64) | GISYDGGNTYYADSVK |
DPSWCLQDLCYYADG | | | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | 25 | 21 | WYDIA (SEQ ID NO: 65) | GISYDGGNTYYADSVK | DPSWCLQDLCYYADG | | 35 | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | | 22 | WYDLS (SEQ ID NO: 66) | GISYDGGNTYYADSVK | DPSWCLQDLCYYADG | | 40 | | | G (SEQ ID NO: 76) | MDV (SEQ ID NO: 81) | | | 23 | DYDMS (SEQ ID NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFVSDSTFDY (SEQ ID NO: 82) | | | 24 | DYDMS (SEQ ID NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFMSDSTFDY (SEQ ID NO: 83) | | 45 | 25 | DYDMS (SEQ ID NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | | 45 | 26 | HYDMS (SEQ ID NO: 67) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | | | 27 | YYDMS (SEQ ID NO: 68) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | | | 28 | DYDMS (SEQ ID NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFESDSTFDY (SEQ ID NO: 85) | | 50 | 29 | HYDMS (SEQ ID NO: 67) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFESDSTFDY (SEQ ID NO: 85) | | | 30 | YYDMS (SEQ ID: 68) | AIYYDSGSIYYADSAKG (SEQ ID: 77) | DRLFESDSTFDY (SEQ ID: 85) | **[0017]** For example, the antibody or the antigen-binding fragment thereof may include a heavy chain variable region that includes a CDR-H1 including an amino acid sequence of SEQ ID NO: 61, a CDR-H2 including an amino acid sequence of SEQ ID NO: 69, and a CDR-H3 including an amino acid sequence of SEQ ID NO: 78. 55 **[0018]** The antibody or the antigen-binding fragment thereof may include a light chain variable region selected from the group consisting of light chain variable regions CDR-L1, CDR-L2, and CDR-L3, which include amino acid sequences listed in Table 6. 50 ### [Table 6] | 5 | No. | CDR-L1 | CDR-L2 | CDR-L3 | |----|-----|--------------------------------|-------------------------|------------------------------| | | 31 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 32 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | QGWDTSLSGHV (SEQ ID NO: 95) | | | 33 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | 10 | 34 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 35 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 36 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | 15 | 37 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNHRPS (SEQ ID NO: 90) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 38 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 39 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 40 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | VGWDSSLYGHV (SEQ ID NO: 96) | | 20 | 41 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLWGDV (SEQ ID NO: 97) | | | 42 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 43 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | 25 | 44 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLYVDV (SEQ ID NO: 98) | | | 45 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADNFRPS (SEQ ID NO: 91) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 46 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLSGDF (SEQ ID NO: 99) | | | 47 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | 30 | 48 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 49 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 50 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | 35 | 51 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 52 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 53 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 54 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | 40 | 55 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 56 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 57 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | 45 | 58 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 59 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 60 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | **[0019]** For example, the antibody or the antigen-binding fragment thereof may include a light chain variable region that includes a CDR-L1 including an amino acid sequence of SEQ ID NO: 86, a CDR-L2 including an amino acid sequence of SEQ ID NO: 88, and a CDR-L3 including an amino acid sequence of SEQ ID NO: 94. **[0020]** The ErbB3 may be an ErbB3 polypeptide or a fragment thereof. The ErbB3 polypeptide may be a human amino acid sequence with GenBank Accession No. NP_001005915, or a mouse amino acid sequence with GenBank Accession No. NP_034283. The fragment of the ErbB3 polypeptide may be a polypeptide including a partial amino acid sequence of the ErbB3 polypeptide. The ErbB3 is a receptor tyrosine kinase of the epidermal growth factor receptor (EGFR or ErbB) family, and is known also as HER3. **[0021]** The antibody or the antigen-binding fragment thereof that specifically binds to ErbB3 may have affinity to an ErbB3 polypeptide or a fragment thereof. **[0022]** The antibody or the antigen-binding fragment thereof may inhibit binding of ErbB3 protein with a material that specifically binds to ErbB3 protein, dimerization of ErbB1 protein and ErbB3 protein, dimerization of ErbB3 protein and ErbB3 protein, phosphorylation of ErbB3 or Akt, or a combination thereof. The material specifically binding to ErbB3 protein may be heregulin (HRG). **[0023]** The term "antibody" is interchangeably used with "immunoglobulin (Ig)." The whole antibody has a structure including two full-length light chains and two full-length heavy chains, which are connected by disulfide (SS) bonds. The antibody may be, for example, IgA, IgD, IgE, IgG, or IgM. The antibody may be a monoclonal antibody or a polyclonal antibody. The antibody may be an animal-derived antibody, a mouse-human chimeric antibody, a humanized antibody, or a human antibody. 10 20 30 35 40 45 50 55 **[0024]** The term "antigen-binding fragment" refers to a fragment of the whole immunoglobulin structure, which may be a part of a polypeptide including an antigen-binding site. For example, the antigen-binding fragment may be scFv, $(scFv)_2$, Fv, Fab, Fab', Fv F(ab')₂, or a combination thereof. [0025] The antibody or the antigen-binding fragment thereof may be modified. For example, the antibody or the antigen-binding fragment thereof may be modified by conjugation or binding, glycosylation, tag attachment, or a combination thereof. The antibody may be conjugated with other drugs such as anti-cancer drug. For example, the antibody or the antigen-binding fragment thereof may be conjugated with horseradish peroxidase (HRP), alkaline phosphatase, hapten, biotin, streptavidin, a fluorescent material, a radioactive material, quantum dots, polyethylene glycol (PEG), a histidine tag, or a combination thereof. The fluorescent material may be Alexa Fluor®532, Alexa Fluor®546, Alexa Fluor®568, Alexa Fluor®750, Alexa Fluor®790, or Alexa Fluor™ 350. **[0026]** According to another aspect of the present disclosure, a pharmaceutical composition for prevention or treatment of a disease related to activation or overexpression of ErbB3 protein includes the antibody or the antigen-binding fragment thereof according to any of the above-described example embodiments. [0027] The antibody, antigen-binding fragment, and ErbB3 protein are the same as described above. [0028] The disease related to the activation or overexpression of ErbB3 protein may be cancer. The cancer may be a solid cancer or a non-solid cancer. Solid cancers refer to the incidence of cancerous tumors in solid organs such as the liver, lung, breast, or skin, whereas non-solid cancers refer to cancers affecting the blood, and so are called blood cancer. For example, the cancer may be selected from the group consisting of breast cancer, skin cancer, head and neck cancer, pancreatic cancer, lung cancer, colon cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer, bladder cancer, uterine cancer, liver cancer, kidney cancer, clear cell sarcoma, melanoma, cerebrospinal tumors, brain cancer, thymoma, mesothelioma, esophageal cancer, billiary tract cancer, testicular cancer, germinal cancer, thyroid cancer, parathyroid cancer, cervical cancer, endometrial cancer, lymphoma, myelodysplastic syndromes (MDS), myelofibrosis, acute leukemia, chronic leukemia, multiple myeloma, Hodgkin's disease, endocrine cancer, and sarcoma. [0029] The term "prevention" refers to any act that suppresses or delays the onset of a disease related to the activation or overexpression of ErbB3 protein by administration of the pharmaceutical composition. The term "treatment" refers to any act that alleviates symptoms of a disease related to the activation or overexpression of ErbB3 protein by administration of the pharmaceutical composition. [0030] The pharmaceutical composition may include a pharmaceutically acceptable carrier. The carrier may be construed as meaning an excipient, a diluent, or an adjuvant. For example, the carrier may be selected from the group consisting of lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin,
calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, physiological saline, a buffer such as phosphate-buffered saline (PBS), methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate, glycine, histidine, serine, polysorbate, and mineral oil. The pharmaceutical composition may include a filler, an anti-coagulant, a lubricant, a wetting agent, a flavoring agent, an emulsifier, a preservative, or a combination thereof. [0031] The pharmaceutical composition may be formulated in any form using any common method in the art. For example, the pharmaceutical composition may be formulated in oral dosage form (for example, powders, tablets, capsules, syrups, pills, or granules), or parenteral dosage form (for example, injection). The pharmaceutical composition may be prepared in formulation for systemic delivery, or in a formulation for local delivery. **[0032]** The pharmaceutical composition may further include an anti-cancer drug. The anti-cancer drug may be Cetuximab, Panitumumab, Erlotinib, Gefitinib, Trastuzumab, T-DM1, Pertuzumab, Lapatinib, Paclitaxel, Tamoxifen, Cisplatin, anti-CTLA-4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, 5-fluorouracil (5FU), Gemcitabine, or a combination thereof. The pharmaceutical composition may include a single composition or separate compositions. For example, the antibody or the antigen-binding fragment thereof of the pharmaceutical composition may be a composition in parenteral dosage form, and the anti-cancer drug may be a composition in oral dosage form. **[0033]** The pharmaceutical composition may include an effective amount of the antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof. The term "effective amount" used herein refers to an amount sufficient to prevent or treat a disease related to activation or overexpression of ErbB3 protein when administered to an individual who needs such prevention or treatment. The effective amount may be appropriately selected depending on a selected cell or individual by one of ordinary skill in the art. For example, the effective amount may be determined depending on disease severity, a patient's age, body weight, health conditions, gender, a patient's drug sensitivity, administration duration, administration route, excretion rate, treatment duration, and other factors, including use of a drug in combination with or at the same time as the pharmaceutical composition, and other factors known in the medical field. The effective amount may be about $0.5~\mu g$ to about 2~g, about $1~\mu g$ to about 1~g, about $1~\mu g$ to about 1~g, about 1~g to about 1~g0 mg, or about 1~g0 mg of the pharmaceutical composition. **[0034]** A dose of the pharmaceutical composition may be, for example, about 0.001 mg/kg to about 100 mg/kg, about 0.01 mg/kg to about 10 mg/kg, or about 0.1 mg/kg to about 1 mg/kg when administered to an adult. The number of administrations may be, for example, once or multiple times a day, once a week, once in two weeks, once in three weeks, once in four weeks, or once a year. **[0035]** According to another aspect of the present disclosure, a method of prevention or treatment of a disease related to activation or overexpression of ErbB3 protein in an individual includes administering the antibody or an antigen-binding fragment thereof according to any of the above-described example embodiments to the individual. [0036] The antibody, antigen-binding fragment, ErbB3 protein, disease related to the activation or overexpression of ErbB3 protein, prevention, or treatment may be the same as described above. **[0037]** The individual may be a mammal, for example, a human, cow, horse, pig, dog, sheep, goat, or cat. The individual may be an individual who suffers from a disease related to the activation or overexpression of ErbB3 protein or who is susceptible to the disease, which may be cancer. **[0038]** The method may further include administering an anti-cancer drug to the individual. The anti-cancer drug may be administered at the same time with, separately from, or sequentially with the antibody or an antigen-binding fragment thereof according to any of the above-described example embodiments. **[0039]** For example, the antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof may be directly administered to the individual by any method, for example, by oral, intravenous, intramuscular, transdermal, mucosal, intransal, intratracheal, or subcutaneous administration. The antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof may be administered systemically or locally. The antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof may be administered alone or together with a pharmaceutically active compound. **[0040]** A dose of the antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof may vary depending on a patient's condition, body weight, disease severity, drug formulation, administration route, and administration duration, and may be appropriately selected by one of ordinary skill in the art. For example, a dose of the antibody or the antigen-binding fragment thereof, an anti-cancer drug, or a combination thereof may be about 0.001 mg/kg to about 100 mg/kg, about 0.01 mg/kg to about 10 mg/kg, or about 0.1 mg/kg to about 1 mg/kg when administered to an adult. The number of administrations may be, for example, once or multiple times a day, once a week, once in two weeks, once in four weeks, or once a year. **[0041]** According to another aspect of the present disclosure, a method of prevention or treatment of cancer drug resistance in an individual includes administering the antibody or the antigen-binding fragment of any one of claims 1 to 10 to the individual. ### 40 Brief Description of Drawings 10 30 35 **[0042]** These and/or other aspects will become apparent and more readily appreciated from the following description of the example embodiments, taken in conjunction with the accompanying drawings in which: - FIGS. 1a and 1b illustrate amino acid sequences and complementarity-determining regions (CDRs) in variable regions of heavy chains (FIG. 1a) and light chains (FIG. 1b) of lead antibodies and modified antibodies thereof; - FIG. 2 is a graph showing the binding affinity (%) of ErbB3 protein and HRG in the presence of anti-ErbB3 antibodies; FIG. 3 is a graph showing the binding affinity (%) of ErbB2 protein and ErbB3 protein in the presence of anti-ErbB3 antibodies; - FIGS. 4a and 4b are graphs showing phosphorylation ratios (%) of ErbB3 and Akt, respectively, in the presence of anti-ErbB3 antibodies; - FIG. 5 is a graph of relative proliferation (%) of BxPC3 pancreatic cancer cells in the presence of anti-ErbB3 antibodies; FIG. 6 is a graph of tumor volume (mm³) in a BT474 breast cancer xenograft model after administration of anti-ErbB3 antibodies; - FIG. 7 is a graph of tumor volume (mm³) in a MDA-MB-468 breast cancer xenograft model after administration of anti-ErbB3 antibodies; - FIG. 8 is a graph of tumor volume (mm³) in an A431 skin cancer xenograft model after administration of anti-ErbB3 antibodies; FIG. 9 is a graph of tumor volume (mm³) in a FaDu head and neck cancer xenograft model after administration of anti-ErbB3 antibodies or combined administration of anti-ErbB3 antibodies and Cetuximab; FIG. 10 is a graph of the activity of caspase 3/7 (in relative luminance units (RLU)) in breast cancer cells after combined administration of paclitaxel, HRG, and anti-ErbB3 antibody; FIG. 11 is a graph of cancer cell proliferation rate (%) in colorectal cancer cells after combined administration of Cetuximab, HRG, and anti-ErbB3 antibody; and FIG. 12 is a graph of tumor volume in an Cetuximab-resistant xenograft model after combined administration of Cetuximab and anti-ErbB3 antibody. #### 10 Mode for the Invention 5 15 30 35 40 50 55 **[0043]** Hereinafter, one or more embodiments of the present disclosure will now be described in detail with reference to the following examples. However, these examples are only for illustrative purposes and are not intended to limit the scope of the one or more embodiments of the present disclosure. Example 1. Preparation of anti-ErbB3 antibody #### 1. Screening of lead antibody **[0044]** To obtain human anti-ErbB3 antibodies, the human synthetic scFv-phage display library (provided by H.B. SHIM of Ewha Womans University, Korea) was screened against ErbB3 protein (R&D systems) to obtain phage displaying scFv fragments that bind to ErbB3. [0045] Nucleic acid sequences encoding the scFV fragments of the obtained phage were analyzed, and amino acid sequences of the VH and VL domains of the scFv fragments that bind to ErbB3 were identified by amino acid sequence analysis. After the sequences of the scFv fragments that bind to ErbB3 were obtained, the VH and VL domains were reconstructed using a Selexis 085 vector (Selexis) encoding IgG1, to thereby assemble the whole antibody gene. The reconstructed expression vectors encoding IgG1 were transformed and expressed at a small scale in Chinese hamster ovary (CHO) cell lines. The expressed anti-ErbB3 antibodies were subjected to measurement of binding affinity to ErbB3 and cellular-based analysis, to thereby screen anti-ErbB3 lead antibodies 442P, 472P, and 451P that inhibit heregulin (HRG)-dependent ErbB3 signal transduction. ### 2. Screening of modified antibodies from lead antibodies **[0046]** Fab-phage display libraries were constructed by introducing mutations into six CDR sites of the screened anti-ErbB3 lead antibodies 442P, 472P, and 451P of Example 1.1 by random mutagenesis. The Fab-phage display libraries were amplified by polymerase chain reaction (PCR) with primers (by Integrated DNA Technologies, Inc.), which were made to order, and Phusion polymerase (New England
Biolabs). **[0047]** The constructed Fab-phage display libraries were screened against the recombinant human ErbB3 protein (R&D systems) to screen for antibodies with improved binding affinity to the recombinant human ErbB3, as compared with the lead antibodies. The screened antibodies were reconstructed to IgG as described in Example 1.1 and transformed and expressed at a small scale in CHO cell lines. [0048] The binding affinity of the anti-ErbB3 antibodies was measured using an Octet® QK384 system (Pall Life Sciences). The antibodies with improved binding affinity compared to the lead antibodies were screened based on the results and subjected to cellular-based analysis to verify efficacy. Amino acid sequences of the variable regions of the anti-ErbB3 lead antibodies and the modified antibodies were analyzed, and complementarity-determining regions (CDRs) were determined according to the Kabat definition. The amino acid sequences (SEQ ID NOs: 1 to 60) in the various regions of heavy chains and light chains of the screened antibodies are presented in FIGS. 1a and 1b, and the amino acid sequences in the CDRs of the heavy chains and light chains are shown in Table 1 and 2, respectively. [Table 1] | Antibod y | CDR-H1 | CDR-H2 | CDR-H3 | |-----------|--------------------------|--------------------------------------|------------------------------| | 442P | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTYYADSVQG (SEQ ID
NO: 69) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 442S1 | DYDMS (SEQ ID
NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | (continued) | | Antibod y | CDR-H1 | CDR-H2 | CDR-H3 | |----|-----------|--------------------------|--------------------------------------|------------------------------| | 5 | 442S2 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTDYADSVQG (SEQ ID NO: 71) | DLHMGPEGPFDY (SEQ ID NO: 78) | | | 442S4 | DYDMS (SEQ ID
NO: 61) | SIEPDFGSSYYADSVRG (SEQ ID
NO: 72) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 10 | 442S5 | DYDMS (SEQ ID
NO: 61) | IIEPDSGSIYYADSVQG (SEQ ID NO: 73) | DLHMGPEGPFDY (SEQ ID NO: 78) | | | 442S6 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTDYADSVQG (SEQ ID NO: 71) | DRHMWPEGPFDY (SEQ ID NO: 79) | | 15 | 442S9 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTYYADSVQG (SEQ ID
NO: 69) | DRHMWPEGPFDY (SEQ ID NO: 79) | | | 442S10 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTYYADSVQG (SEQ ID
NO: 69) | DRHMWPEGPFDY (SEQ ID NO: 79) | | 20 | 442M3 | DYDMS (SEQ ID
NO: | SIYPDSGSTYYADSVQG | DRHMWPEGPFDY | | | | 61) | (SEQ ID NO: 69) | (SEQ ID NO: 79) | | | 442M4 | DYDMS (SEQ ID
NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 25 | 442M5 | DYDMS (SEQ ID
NO: 61) | TIDLDSGSIYYADSVQG (SEQ ID NO: 70) | DLHMGPEGPFDY (SEQ ID NO: 78) | | | 442M6 | DYDMS (SEQ ID
NO: 61) | SIEPDSGSTDYADSVQG (SEQ ID NO: 74) | DRHMWPEGPFDY (SEQ ID NO: 79) | | 30 | 442M7 | DYDMS (SEQ ID
NO: 61) | TIEPDSGSTYYADSVQS(SEQID NO: 75) | DLHMGPEGPFDY (SEQ ID NO: 78) | | | 442M8 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTYYADSVQG (SEQ ID
NO: 69) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 35 | 442M10 | DYDMS (SEQ ID
NO: 61) | SIYPDSGSTDYADSVQG (SEQ ID NO: 71) | DLHMWPEGPFDY (SEQ ID NO: 80) | | | 442M11 | DYDMS (SEQ ID
NO: 61) | TIEPDYGSTLYADSVQG(SEQIDNO: 102) | DLHMGPEGPFDY (SEQ ID NO: 78) | | 40 | 472P | DYDMS (SEQ ID | GISYDGGNTYYADSVKG (SEQ ID | DPSWCLQDLCYYADG | | | | NO: 61) | NO: 76) | MDV (SEQ ID NO: 81) | | | 472S1 | WYDMT (SEQ ID | GISYDGGNTYYADSVKG (SEQ ID NO: 76) | DPSWCLQDLCYYADG | | 45 | | NO: 62) | NO. 70) | MDV (SEQ ID NO: 81) | | | 472S2 | WYDLA (SEQ ID
NO: 63) | GISYDGGNTYYADSVKG (SEQ ID NO: 76) | DPSWCLQDLCYYADG | | 50 | | 140.03) | NO. 70) | MDV (SEQ ID NO: 81) | | 50 | 472S3 | WYDMS (SEQ ID
NO: 64) | GISYDGGNTYYADSVKG (SEQ ID NO: 76) | DPSWCLQDLCYYADG | | | | NO. 04) | NO. 70) | MDV (SEQ ID NO: 81) | | 55 | 472S4 | WYDIA (SEQ ID
NO: 65) | GISYDGGNTYYADSVKG (SEQ ID | DPSWCLQDLCYYADG | | | | 140.00) | NO: 76) | MDV (SEQ ID NO: 81) | (continued) | | Antibod y | CDR-H1 | CDR-H2 | CDR-H3 | |---|-----------|--------------------------|--------------------------------------|------------------------------| | | 472M1 | WYDLS (SEQ ID
NO: 66) | GISYDGGNTYYADSVKG (SEQ ID
NO: 76) | DPSWCLQDLCYYADG | | | | | | MDV (SEQ ID NO: 81) | | | 451P | DYDMS (SEQ ID
NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFVSDSTFDY (SEQ ID NO: 82) | |) | 451M1 | DYDMS (SEQ ID
NO: | AIYYDSGSIYYADSAKG | DRLFMSDSTFDY (SEQ | | | | 61) | (SEQ ID NO: 77) | ID NO: 83) | | 5 | 451M2 | DYDMS (SEQ ID
NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | | | 451M3 | HYDMS (SEQ ID
NO: 67) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | |) | 451M4 | YYDMS (SEQ ID
NO: 68) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFASDSTFDY (SEQ ID NO: 84) | | | 451M5 | DYDMS (SEQ ID
NO: 61) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFESDSTFDY (SEQ ID NO: 85) | | 5 | 451M6 | HYDMS (SEQ ID
NO: 67) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFESDSTFDY (SEQ ID NO: 85) | | | 451M7 | YYDMS (SEQ ID
NO: 68) | AIYYDSGSIYYADSAKG (SEQ ID NO: 77) | DRLFESDSTFDY (SEQ ID NO: 85) | [Table 2] | | Antibod
y | CDR-L1 | CDR-L2 | CDR-L3 | |----|--------------|--------------------------------|-------------------------|-----------------------------| | 35 | 442P | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442S1 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | QGWDTSLSGHV (SEQ ID NO: 95) | | 40 | 442S2 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442S4 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | 45 | 442S5 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442S6 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | 50 | 442S9 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNHRPS (SEQ ID NO: 90) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442S10 | SGSSSNIGSNSVS (SEQID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | 55 | 442M3 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442M4 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | VGWDSSLYGHV (SEQ ID NO: 96) | (continued) | | Antibod
y | CDR-L1 | CDR-L2 | CDR-L3 | |----|--------------|--------------------------------|-------------------------|------------------------------| | 5 | 442M5 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLWGDV (SEQ ID NO: 97) | | | 442M6 | SGSSSN IGSNSGS (SEQ ID NO: 87) | ADNWRPS (SEQ ID NO: 89) | AAWDSSLSGYV (SEQ ID NO: 94) | | 10 | 442M7 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442M8 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLYVDV (SEQ ID NO: 98) | | 15 | 442M10 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADNFRPS (SEQ ID NO: 91) | AAWDSSLSGYV (SEQ ID NO: 94) | | | 442M11 | SGSSSN IGSNSVS (SEQ ID NO: 86) | SDNHRPS (SEQ ID NO: 88) | HAWDSSLSGDF (SEQ ID NO: 99) | | 20 | 472P | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 472S1 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | 25 | 472S2 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 472S3 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | 30 | 472S4 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | | 472M1 | SGSSSN IGSNSVS (SEQ ID NO: 86) | ADSNRPS (SEQ ID NO: 92) | GSWDYSLSGYV (SEQ ID NO: 100) | | 35 | 451P | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 451M1 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | 40 | 451M2 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 451M3 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | 45 | 451M4 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 451M5 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | 50 | 451M6 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | | | 451M7 | SGSPSNIGNNSVT (SEQ ID NO: 103) | YDSHRPS (SEQ ID NO: 93) | GSWDASLNGYV (SEQ ID NO: 101) | ### Example 2. In-vitro effect of anti-ErbB3 antibody 5 10 15 #### 1. Binding affinity of anti-ErbB3 antibody to human ErbB3 protein [0049] Binding affinities of the screened antibodies (Example 1.2) to ErbB3 protein (antigen) were measured. [0050] In particular, the binding affinities of the anti-ErbB3 antibodies to the recombinant human ErbB3 protein (R&D systems) and the antigen-antibody interactive dynamics were measured using an Octet® QK384 system (Pall Life Sciences). After activation of carboxyl groups in 20 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 40 mM of N-hydroxysulfosuccinimide (sulfo-NHS) solution on an AR2G sensor (ForteBio), 10 μg/mL of human ErbB3 protein solution diluted with 10 mM of sodium acetate (pH 4.0) (ForteBio) was added to immobilize human ErbB3 protein onto the AR2G sensor. The AR2G sensor to which the human ErbB3 protein was immobilized was treated with 1 M of ethanolamine (ForteBio) to inactivate the remaining unreacted carboxyl groups. 12.5 nM, 25 nM, and 50 nM antibody solutions were each added onto the AR2G sensor and then the binding phase of the reaction product was observed for about 900 seconds. Next, a 1x kinetics buffer (ForteBio) was added to the reaction product, and the dissociation phase of the reaction product was observed for about 1200 seconds, followed by determination of an association constant (ka), a dissociation constant (kd), and an equilibrium
dissociation constant (KD) of each type of antibody with Octet® analysis software (Pall Life® Sciences). | | antibody with Octet® analysis software (Pall Life® Sciences). | | | | | |----|---|----------|-----------|-----------|----------| | | | | [Tab | le 3] | | | 20 | | Antibody | KD (M) | ka(1/Ms) | kd(1/s) | | | | 442P | 2.83E-10 | 1.25E+06 | 3.52E-04 | | | | 442S1 | <1.0E-12 | 5.22E+05 | 3.94E-07 | | 25 | | 442S2 | 7.11E-11 | 1.17E+06 | 8.28E-05 | | | | 442S4 | 3.71E-11 | 1.48E+06 | 5.47E-05 | | | | 442S5 | 1.75E-11 | 1.57E+06 | 2.74E-05 | | | | 442S6 | <1.0E-12 | 8.72E+05 | <1.0E-07 | | 30 | | 442S9 | 7.16E-11 | 8.21 E+05 | 5.87E-05 | | | | 442S10 | 1.14E-10 | 8.14E+05 | 9.29E-05 | | | | 442M3 | 3.40E-12 | 7.71E+05 | 2.62E-06 | | 35 | | 442M4 | <1.0E-12 | 5.73E+05 | <1.0E-07 | | | | 442M5 | <1.0E-12 | 6.65E+05 | <1.0E-07 | | | | 442M6 | 2.01 E-11 | 9.69E+05 | 1.95E-05 | | | | 442M7 | 2.91 E-11 | 1.56E+06 | 4.55E-05 | | 40 | | 442M8 | 2.56E-12 | 8.70E+05 | 2.23E-06 | | | | 442M10 | <1.0E-12 | 4.71 E+05 | <1.0E-07 | | | | 442M11 | 5.43E-12 | 1.49E+06 | 8.09E-06 | | 45 | | 472P | 2.84E-10 | 1.79E+06 | 5.08E-04 | | | | 472S1 | <1.0E-12 | 6.49E+05 | 3.33E-07 | | | | 472S2 | <1.0E-12 | 1.07E+06 | <1.0E-07 | | 50 | | 472S3 | <1.0E-12 | 5.22E+05 | 1.43E-07 | | 50 | | 472S4 | 9.41E-12 | 1.15E+06 | 1.09E-05 | | | | 472M1 | 1.25E-11 | 1.39E+06 | 1.74E-05 | | | | 451P | 5.35E-11 | 1.18E+06 | 6.33E-05 | | 55 | | 451M1 | 2.48E-11 | 1.24E+06 | 3.08E-05 | | | | 451M2 | 1.26E-11 | 1.24E+06 | 1.56E-05 | | | | 1 | | | | 451M3 1.87E+06 2.30E-07 <1.0E-12 (continued) | Antibody | KD (M) | ka(1/Ms) | kd(1/s) | |----------|----------|-----------|----------| | 451M4 | 6.12E-12 | 2.01 E+06 | 1.23E-05 | | 451M5 | 2.17E-11 | 1.52E+06 | 3.29E-05 | | 451M6 | 3.47E-12 | 1.20E+06 | 4.17E-06 | | 451M7 | 4.92E-12 | 1.35E+06 | 6.63E-06 | 10 15 20 30 35 50 55 5 **[0051]** Referring to Table 3, the selected antibodies were found to have an equilibrium dissociation constant (KD) of about 0.1 nM to about 0.1 pM, indicating high binding affinities to the recombinant human ErbB3 protein. ### 2. ErbB3 protein-HRG binding inhibitory ability of anti-ErbB3 antibody **[0052]** Whether the selected antibodies of Example 1.2 inhibit binding of ErbB3 protein and HRG as a ligand thereof was investigated. [0053] In particular, a binding affinity of HRG (R&D systems) to human ErbB3 protein (R&D systems) was measured using an Octet® QK384 system (Pall Life Sciences). After 10 μ g/mL of HRG protein was immobilized onto an AR2G sensor according to the same method as used in Example 2.1, the remaining unreacted carboxyl groups were inactivated using a 1M ethanolamine (ForteBio). Next, a mixed solution of 5 μ g/mL of human ErbB3 protein (R&D systems) and 10 nM or 100 nM of anti-ErbB3 antibodies was added onto the AR2G sensor with the HRG protein immobilized thereon, and then the binding phase was observed for about 900 seconds. A reaction product to which no anti-ErbB3 antibodies were added was used as a negative control group. The amount of the remaining human ErbB3 protein bound to the HRG protein immobilized to the AR2G sensor was measured. A binding affinity (%) of ErbB3 protein and HRG in the presence of the anti-ErbB3 antibodies with respect to the negative control group was calculated. The results are shown in FIG. 2, in which the Y-axis represents a binding affinity (%) relative to the negative control group, and the X-axis represents antibodies at different concentrations of 0 nM, 10 nM, and 100 nM. **[0054]** Referring to FIG. 2, the selected antibodies were found to inhibit binding of human ErbB3 protein and HRG protein, depending on the concentrations of the antibodies, whereas the hlgG control group showed no effect on the binding of ErbB3 and HRG. ### 3. ErbB2-ErbB3 dimerization inhibition ability of anti-ErbB3 antibody **[0055]** An investigation was carried out to assess the ability of the selected antibodies of Example 1. 2 to inhibit dimerization of ErbB2 protein and ErbB3 protein. [0056] In particular, 100 $\mu\ell$ of recombinant human ErbB2 protein (1 μ g/mL) was applied to a multi-array 96-well plate (Thermo scientific) and incubated at 4°C for about 16 hours to coat the ErbB2 protein on the multi-array 96-well plate. 200 $\mu\ell$ of 5% (w/v) BSA/PBS solution was applied to the coated plate and incubated at 37°C for about 1 hour. A mixture of 50 $\mu\ell$ of the recombinant human ErbB3 protein (0.6 μ g/mL) and 50 $\mu\ell$ of the selected anti-ErbB3 antibodies (0.2 μg/mL) was applied to the plate and the reaction mixture was incubated at 37°C for about 2 hours. The resulting plate was washed three times with 0.05%(v/v) Tween/PBS solution. 100 $\mu\ell$ of goat-anti-ErbB3 polyclonal antibody (1 μ g/mL, R&D systems) was applied to the washed plate and incubated at 37°C for about 1 hour. The plate was then washed three times with a 0.05%(v/v) Tween/PBS solution. 100 $\mu\ell$ of anti-goat Fc-horseradish peroxidase (HRP) (Jackson Immunoresearch), diluted at 1:5000 with a 5% (w/v) BSA/PBS solution, was applied to the plate and then incubated at 37° C for about 1 hour. The plate was then washed three times with a 0.05%(v/v) Tween/PBS solution. 100 $\mu\ell$ of 3,3',5,5'tetramethylbenzidine (TMB) as a substrate was applied to each well and incubated at room temperature for about 5 minutes, followed by terminating the reaction with 100 $\mu\ell$ of a 2N sulfuric acid solution. A reaction mixture to which no anti-ErbB3 antibodies were added was used as a negative control group. The absorbance of the plate at a wavelength of 450 nm was measured. The binding affinities of ErbB2 protein and ErbB3 protein under the presence of anti-ErbB3 antibodies were calculated from the measured absorbance. Human IgG, which does not bind to ErbB3, was used as another negative control group. **[0057]** The binding affinities (%) of ErbB2 protein and ErbB3 protein in the presence of anti-ErbB3 antibodies with respect to the negative control group were calculated. The results are shown in FIG. 3, wherein the Y-axis denotes a binding affinity (%) relative to the negative control group, and hlgG denotes human lgG. **[0058]** Referring to FIG. 3, the selected antibodies were found to inhibit the dimerization of ErbB2 protein and ErbB3 protein, whereas the hlgG control group did not demonstrate any inhibition of dimerization. ### 4. ErbB3 and Akt phosphorylation inhibition ability of anti-ErbB3 antibody 10 30 35 40 45 50 [0059] An investigation was carried out to assess the ability of the selected antibodies of Example 1. 2 to inhibit phosphorylation of ErbB3 protein and Akt. [0060] In particular, about 5x10⁵ MCF7 breast cancer cells (from the National Institutes of Health) were inoculated onto a 24-well plate, and Roswell Park Memorial Institute (RPMI)-1640 medium (Invitrogen) including penicillin-streptomycin antibiotic (Invitrogen) and 10%(v/v) of fetal bovine serum (FBS) was added to the cells on the 24-well plate and incubated at 37°C under 5% CO₂ conditions for about 24 hours. Next, the medium was exchanged with fresh RPMI-1640 medium, and the cells were cultured under serum starving conditions for about 24 hours. Next, the selected anti-ErbB3 antibodies were added to the cells and incubated at 37°C under 5% CO₂ conditions for about 2 hours. The antibodies 442P and 472P were each added to the cells at concentrations of about 67 nM, 13 nM, 3 nM, 534 pM, 107 pM, 21 pM, and 4 pM, while the antibodies 442S1, 442S5, 442M6, 472S2, and 472M1 were added to the cells at concentrations of 13 nM, 3 nM, 834 pM, 208 pM, 52 pM, and 13 pM. After 1 hours and 45 minutes, HRG was added to the cells and incubated at 37°C under 5% CO₂ conditions for about 15 minutes to stimulate the cells (total antibody treatment time: 2 hours). The cells were washed with cooled PBS and Cell Lysis Solution (Cell Signaling Technology) was added to thereby collect the cells. After quantification of protein in the selected cells was performed by BCA assay, phosphorylation levels of ErbB3 or Akt were analyzed. **[0061]** The phosphorylation level of ErbB3 was assayed using a Phospho-ErbB3 Detection Kit (Cell Signaling Technology). After binding the cell protein to an ErbB3 antibody-coated ELISA plate, phosphotyrosine mouse detection antibody and HRP-conjugated anti-mouse antibody were developed on the ELISA plate. Next, tetramethylbenzidine (TMB) substrate was added to the reaction product, the reaction was stopped with reaction stop solution of the kit, and absorbance was measured with a plate reader. **[0062]** The phosphorylation level of Akt1 was assayed using a Phospho-Akt1 Detection Kit (Cell Signaling Technology). After binding the cell protein to an anti-phosphoserine-coated ELISA plate, Akt1-specific detection antibody and HRP-conjugated antibody were developed on the ELISA plate. Next, after reaction with TMB substrate, the reaction was stopped with Reaction Stop Solution of the kit, and absorbance was measured with a plate reader. **[0063]** FIGS. 4a and 4b are graphs of ErbB3 and Akt phosphorylation ratios, respectively, with respect to antibody concentration, plotted based on the measured absorbance. The half maximal inhibitory concentrations (IC_{50}) of the antibodies were calculated. The results are shown in Table 4. [Table 4] | / 1) | |-------------| | | | | | | | • | | | | | | | | | | | | | | | | | | | [0064] Referring to FIGS. 4a and 4b and Table 4, the selected antibodies were found to inhibit phosphorylation of ErbB3 and Akt. **[0065]** Similarly, it was also found that the selected antibodies inhibit phosphorylation of ErbB3 and Akt in breast cancer cell lines MDA-MB-468 and BT474, skin cancer cell line A431, pancreatic cancer cell line BxPC3, head and neck cancer cell line FaDu, lung cancer cell line A549, colorectal cancer cell line LoVo, melanoma cell line MALME-3M, ovarian cancer
cell line OVCAR-8, and prostate cancer cell line DU145. 5. Pancreatic cancer cell line BxPC3 proliferation inhibition ability of anti-ErbB3 antibody [0066] An investigation was carried out to assess the ability of the selected antibodies of Example 1.2 to inhibit proliferation of BxPC3 pancreatic cancer cells. [0067] In particular, about $1x10^4$ BxPC3 pancreatic cancer cells (American Type Culture Collection) were inoculated onto a 96-well plate, and RPMI-1640 medium (Invitrogen) including 10% FBS was added to the cells on the 96-well plate and incubated at 37° C under 5% CO $_2$ conditions for about 24 hours. Next, the medium was exchanged with an RPMI-1640 medium including 0.1%(v/v) FBS. $0.02~\mu\text{g/mL}$, $0.2~\mu\text{g/mL}$, $0.2~\mu\text{g/mL}$, and $0.2~\mu\text{g/mL}$ of the 442S1 antibody or 442M6 antibody were added to the incubated cells and cultured at $0.2~\mu\text{g/mL}$ cunder $0.2~\mu\text{g/mL}$ conditions for about 2 hours. 50 ng/mL of HRG was further added to the cultured cells and incubated at $0.2~\mu\text{g/mL}$ cunder $0.2~\mu\text{g/mL}$ conditions for about 120 hours. Cultured cells without added antibodies were used as a negative control group. The number of viable cells was measured using a CellTiter-Glo Luminescent Cell Viability Assay (Promega). The relative proliferation rates were calculated based on the measured results. The results are shown in FIG. 5. **[0068]** Referring to FIG. 5, the selected antibodies were found to inhibit proliferation of BxPC3 pancreatic cancer cells in a concentration-dependent manner. **Example** 3. in-vivo effect of anti-ErbB3 antibody 20 30 35 50 1. Tumor growth inhibition using BT474 breast cancer xenograft model **[0069]** An investigation was carried to assess the ability of the selected antibodies of Example 1.2 to inhibit growth of tumors in a breast cancer cell xenograft animal model. **[0070]** In particular, human breast cancer BT474 cells (American Type Culture Collection) were cultured in Dulbecco's Modified Eagle's *medium* (DMEM) medium (Hyclone) including 10% FBS. 17 β-estradiol-sustained release pellets (0.36 mg/60 days, Innovative Research of America) were subcutaneously inoculated into female NOD/SCID mice (HFK Bio-Technology Co. Ltd.) one day before the inoculation of cancer cells to maintain blood estrogen level. About $1x10^7$ of BT474 cancer cells were suspended in $100 \mu \ell$ of PBS containing 50% Matrigel, and the suspended cancer cells were injected into the fat tissue under a nipple of each mouse. Weights of the mice were measured twice a week, and the tumor volume was calculated using the equation of "0.5 a x b^2 ", where a and b were the long and short diameters of the tumor, respectively. When the tumor volume reached about 210 mm³ after 7 days from the inoculation of the cancer cells, the mice were randomly assigned to 7 groups, each including 10 mice. PBS (negative control group), antibodies 442P, 442S1, 442S5, 442M6, 472S2, and 472M1 were administered into the tail veins of the mice in each group twice a week at a dose of 10 mg/kg of body weight for 4 weeks. After the inoculation of the cancer cells, the tumor volume after the administration of the antibodies was calculated. The results are shown in FIG. 6. **[0071]** Referring to FIG. 6, it was found that the tumor volume was reduced by the administration of the antibodies relative to the negative control group, and the selected antibodies inhibited tumor growth. 2. Tumor growth inhibition using MDA-MB-468 breast cancer xenograft model 40 [0072] Human breast cancer cells MDA-MB-468 (American Type Culture Collection) were incubated in an L-15 medium (Hyclone) including 10%(v/v) of fetal bovine serum. About 5x10⁶ cancer cells were suspended in 100 μℓ of PBS including 50% Matrigel and subcutaneously injected into the flank region of female Nu/Nu mice (Vital River laboratories, Ltd). Weights of the mice were measured twice a week, and a tumor volume was calculated using the equation of "0.5 a x b²", where a and b were the long and short diameters of the tumor, respectively. When the tumor volume reached about 210 mm³ after 7 days from the injection of the cancer cells, the mice were randomly assigned to 7 groups, each including 10 mice. PBS (negative control group), antibodies 442P, 442S1, 442S5, 442M6, 472S2, and 472M1 were administered into the tail veins of the mice in each group twice a week at a dose of 10 mg/kg of body weight for 4 weeks. After the inoculation of the cancer cells, the tumor volume after the administration of the antibodies was calculated. The results are shown in FIG. 7. **[0073]** Referring to FIG. 7, it was found that the tumor volume was reduced by the administration of the antibodies relative to the negative control group, and the selected antibodies inhibited tumor growth. 3. Tumor growth inhibition using A431 skin cancer xenograft model [0074] Human skin cancer A431 cells (American Type Culture Collection) were incubated in DMEM medium (Hyclone) including 10% FBS. About 5x10⁶ cancer cells were suspended in 100 μℓ of PBS including 50% of Matrigel and subcutaneously injected into the flank region of female Balb/c nude mice (HFK Bio-Technology Co. Ltd.). Weights of the mice were measured twice a week, and a tumor volume was calculated using the equation of "0.5 a x b²", where a and b were the long and short diameters of the tumor, respectively. When the tumor volume reached about 160 mm³ after 7 days from the inoculation of the cancer cells, the mice were randomly assigned to 7 groups, each including 10 mice. PBS (negative control group), antibodies 442P, 442S1, 442S5, 442M6, 472S2, and 472M1 were administered into the tail veins of the mice in each group twice a week at a dose of 10 mg/kg of body weight for 4 weeks. After the inoculation of the cancer cells, the tumor volume after the administration of the antibodies was calculated. The results are shown in FIG. 8. **[0075]** Referring to FIG. 8, it was found that the tumor volume was reduced by the administration of the antibodies relative to the negative control group, and the selected antibodies inhibited tumor growth. 4. Tumor growth inhibition using tumor xenograft model 20 30 35 40 50 **[0076]** The antibody 442S1 was administered into FaDu head and neck cancer, pancreatic cancer, or lung cancer animal model, and the antibodies 442P or 472P antibodies were administered into gastric cancer animal model, in the same manner as described in Examples 3.1 to 3.3. As a result, it was found that the tumor volume was reduced by the administration of the antibodies relative to the negative control group, and the selected antibodies inhibited tumor growth. Example 4. Effect of combined administration of anti-cancer drug and anti-ErbB3 antibody **[0077]** An investigation was carried out to assess the ability of combined use of the antibodies 442S1 and Cetuximab to improve anti-cancer effects in FaDu head and neck cancer model. [0078] Human head and neck cancer FaDu cells (Shanghai Institutes for Biological Sciences) were incubated in EMEM medium (Hyclone) including 10% FBS. About $5x10^6$ cancer cells were suspended in $100~\mu\ell$ of PBS including 50% Matrigel and subcutaneously injected into the flank region of the female NOD/SCID mice (HFK Bio-Technology Co. Ltd). Weights of the mice were measured twice a week, and a tumor volume was calculated using the equation of "0.5 a x b^2 ", where a and b were the long and short diameters of the tumor, respectively. When the tumor volume reached about $150~mm^3$ after 7 days from the inoculation of the cancer cells, the mice were randomly assigned to 4 groups, each including 10 mice. PBS (negative control group), antibodies 442S1 and Cetuximab (Merck) were administered into the tail veins of the mice in each group twice a week at a dose of 5 mg/kg of body weight for 4 weeks. In a combined use treatment group, antibodies 442S1 and Cetuximab were administered into the tail veins of the mice twice a week at a dose of 5 mg/kg of body weight for 4 weeks. Then, no antibodies were administered for one week. The tumor sizes were measured twice a week. The volume of the tumors after the administration of the antibodies or the combined administration was calculated. The results are shown in FIG. 9, in which down arrows (\downarrow) denote time injecting cancer cells, and *** denotes results of Tukey's multiple comparison test after one-way ANOVA (p<0.001). **[0079]** Referring to FIG. 9, in the combined use of antibodies 442S1 and Cetuximab treatment group, the tumor volume was reduced from the initial administration stage and was about 68 mm³ on average at the end of the test (n=10/group). Accordingly, the combined administration of the selected antibody and Cetuximab was found to improve anti-cancer efficacy. **Example** 5. Anti-cancer drug resistance improvement effect of anti-ErbB3 antibody 1. Paclitaxel resistance improvement effect in breast cancer **[0080]** Apoptotic effects of Paclitaxel in breast cancer cell line ZR-75-30 may be reduced in the presence of HRG due to the activation of an ErbB3 signal transduction pathway (Wang S. et al., Oncogene, 29, 4225-4236, 2010). An investigation was carried out to assess the ability of the screened antibodies to improve resistance to Paclitaxel used as an anti-cancer drug and impart an anti-cancer effect. [0081] About 1×10^4 ZR-75-30 cells (American Type Culture Collection) were inoculated onto a plate and incubated in RPMI 1640 medium (Invitrogen) including 10%(v/v) FBS at 37° C under 5% CO $_2$ conditions for about 24 hours. The medium was then exchanged with fresh medium (100 ng/mL HRG added) including 0.1%(v/v) FBS, and further incubation was performed at 37° C under 5% CO $_2$ conditions for about 24 hours. 10 nM of Paclitaxel (Bristol-Myers Squibb) and 25 μ g/mL of antibody 442S1 were added to the cultured cells and incubated at 37° C under 5%
CO $_2$ conditions for about 72 hours. The cultured cells were collected, and the activity of caspase 3/7 as an apoptotic marker was measured using a Caspase 3/7 Substrate Assay (Promega). The measured activity of caspase 3/7 is shown in FIG. 10, in which RLU denotes relative luminescence units, and ** denotes t-test results (p < 0.01). **[0082]** Referring to FIG. 10, the activity of caspase 3/7 was reduced by Paclitaxel, but was improved by the combined treatment of Paclitaxel and antibody 442S1, compared with the treatment with Paclitaxel alone (n=3). Accordingly, it was found that the apoptotic effect of Paclitaxel may be reduced in the presence of HRG, but recovered by administration of antibody 442S1. #### 2. Cetuximab resistance improvement effect in colorectal cancer **[0083]** Cetuximab is effective in suppressing cancer cell proliferation in DiFi colorectal cancer cells, but loses its efficacy in the presence of HRG due to the activation of an ErbB3 signal transduction pathway. An investigation was carried out to assess the ability of the screened antibodies to overcome resistance to Cetuximab and impart cancer cell proliferation suppression effects. [0084] In particular, DiFi colon cancer cells were incubated in RPMI-1640 medium (Invitrogen) including an antibiotic (Penicillin-Streptomycin, Invitrogen) and 10% FBS. About $1x10^4$ DiFi cells were inoculated onto a 96-well plate and incubated at 37°C under 5% CO_2 conditions for about 24 hours. Cetuximab and anti-ErbB3 antibody were mixed together in equal concentrations of 200 μ g/mL to obtain an Cetuximab/anti-ErbB3 antibody solution, which was then mixed with an equal amount of HRG (40 ng/mL). The Cetuximab/anti-ErbB3 antibody/HRG solution was applied to a 96-well plate and incubated at 37°C under 5% CO_2 conditions for about 72 hours. Cells cultured without antibodies and HRG were used as a negative control group. The number of viable cells was measured using a CellTiter-Glo luminescent cell viability assay (Promega). Cell proliferation rates were calculated based on the measured results. The results are shown in FIG. 11, in which *** denotes t-test results (p<0.001). **[0085]** Referring to FIG. 11, the cell proliferation suppression effect of Cetuximab was reduced in the presence of HRG, but recovered in the treatment group which received Cetuximab and 442S1 antibodies in combination. Accordingly, it was found that the cell proliferation suppression effect of Cetuximab may be reduced in the presence of HRG, i.e., an ErbB3 ligand, but may be recovered by 442S1 antibodies blocking the HRG-ErbB3 signaling pathway. ### 3. Improvement in resistance to Cetuximab in Cetuximab resistant xenograft model [0086] FaDu human head and neck cancer cells (Shanghai Institutes of Biological Sciences) were incubated in EMEM medium (Hyclone) including 10% FBS (Invitrogen), 0.01 mM NEAA (Non-Essential Amino Acid, Hyclone), and 2 mM L-glutamine (Invitrogen). About $5x10^6$ FaDu cancer cells were suspended in $100~\mu\ell$ of PBS and then subcutaneously injected into the frank region of the female NOD SCID mice (HFK Bio-Technology Co., Ltd.). Weights of the mice were measured twice a week, and tumor volume was calculated using the equation of "0.5 a x b^2 ", where a and b were the long and short diameters of the tumor, respectively. When the tumor volume reached about $165~mm^3$ after 8 days from the inoculation of the cancer cells, the mice were randomly selected. PBS (negative control group) or Cetuximab was administered into the tail veins of the mice in each group twice a week at a dose of 5~mg/kg of weight for 6.5~weeks. When the tumor growth suppression effect of Cetuximab was not maintained such that tumor volume increased to about 840 mm³, ten mice were randomly selected from each group, and 5~mg/kg of Cetuximab, 10~mg/kg of antibody 442S1 or combination of 5~mg/kg of Cetuximab and 10~mg/kg of antibody 442S1 was administered to the mice twice a week for 2~weeks. Tumor volumes were measured twice a week. The results are shown in FIG. 12. **[0087]** Referring to FIG. 12, it was found that a significant tumor suppression effect was observed in the treatment group that received antibody 442S1 alone or antibody 442S1 and Cetuximab in combination, compared with the treatment group that received Cetuximab alone, indicating that antibody 442S1 may overcome resistance to Cetuximab and suppress tumor growth. **[0088]** As described above, according to the one or more example embodiments, an antibody that specifically binds to ErbB3 or an antigen-binding fragment thereof, and use thereof, are provided. The antibody that specifically binds to ErbB3 or an antigen-binding fragment thereof may be effectively used to prevent or treat a disease related to activation or overexpression of ErbB3 protein. **[0089]** It should be understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other embodiments. 50 45 5 10 15 20 25 30 35 55 | | <110> | ISU ABXIS | |----|----------------------------------|---| | | <120> | Antibody specifically binding to ErbB3 and use thereof | | 5 | <130> | I13290WOEP-A | | | <150>
<151> | KR 2015 0173281
2015-12-07 | | 10 | <160> | 103 | | 10 | <170> | KopatentIn 2.0 | | 15 | <210>
<211>
<212>
<213> | 1
121
PRT
Artificial Sequence | | | <220>
<223> | Heavy chain variable region of antibody 442P | | 20 | <400>
Glu Val
1 | 1
Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
5 10 15 | | 25 | Ser Leu | Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30 | | | Asp Met | Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45 | | 30 | Ser Ser
50 | Ile Tyr Pro Asp Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val 55 60 | | | Gln Gly | Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 70 75 80 | | 35 | Leu Gln | Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 | | | Ala Lys | Asp Leu His Met Gly Pro Glu Gly Pro Phe Asp Tyr Trp Gly
100 105 110 | | 40 | _ | Thr Leu Val Thr Val Ser Ser
115 120 | | 45 | <210>
<211>
<212>
<213> | 2
121
PRT
Artificial Sequence | | 50 | <220>
<223> | Heavy chain variable region of antibody 442S1 | | | <400>
Glu Val
1 | 2 Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 5 10 15 | | 55 | Ser Leu | Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30 | | | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | Lys Gly | Leu Glu Trp Val
45 | |----|----------------------------------|----------------------------|---------------|----------------|----------------|---------------|------------------------| | 5 | Ser Thr
50 | Ile Asp | Leu Asp | Ser Gly
55 | Ser Ile | Tyr Tyr
60 | Ala Asp Ser Val | | | Gln Gly
65 | Arg Phe | Thr Ile
70 | _ | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | | 10 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala | Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Leu
100 | His Met | Gly Pro | Glu Gly
105 | Pro Phe | Asp Tyr Trp Gly
110 | | 15 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 20 | <210>
<211>
<212>
<213> | 3
121
PRT
Artific | cial Seq | uence | | | | | 25 | <220>
<223> | Heavy (| chain va | riable r | egion of | antibody | y 442S2 | | | <400>
Glu Val
1 | 3
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly | Leu Val | Gln Pro Gly Gly
15 | | 30 | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly
25 | Phe Thr | Phe Ser Asp Tyr
30 | | 35 | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | Lys Gly | Leu Glu Trp Val
45 | | | Ser Ser
50 | Ile Tyr | Pro Asp | Ser Gly
55 | Ser Thr | Asp Tyr
60 | Ala Asp Ser Val | | 40 | Gln Gly
65 | Arg Phe | Thr Ile
70 | _ | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | | | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala | Val Tyr Tyr Cys
95 | | 45 | Ala Lys | Asp Leu
100 | His Met | Gly Pro | Glu Gly
105 | Pro Phe | Asp Tyr Trp Gly
110 | | | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 50 | <210>
<211>
<212>
<213> | 4
121
PRT
Artific | cial Seq | uence | | | | | 55 | <220>
<223> | Heavy (| chain va | riable r | egion of | antibody | y 442S4 | | | <400
Glu
1 | | 4
Gln | Leu | Leu
5 | Glu | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | |----|------------------------------|-----------|------------------------|------------|-----------|-----------|-----------|------------|------------|------------------|-----------|-----------|-----------|------------|-----------|------------------| | 5 | Ser | Leu | Arg | Leu
20 | Ser | Cys | Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Asp | Tyr | | | Asp | Met | Ser
35 | Trp | Val | Arg | Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
45 | Glu | Trp | Val | | 10 | Ser | Ser
50 | Ile | Glu | Pro | Asp | Phe
55 | Gly | Ser | Ser | Tyr | Tyr
60 | Ala | Asp | Ser | Val | | 15 | Arg
65 | Gly | Arg | Phe | Thr | Ile
70 | Ser | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | 15 | Leu | Gln | Met | Asn | Ser
85 | Leu | Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | 20 | Ala | Lys | Asp | Leu
100 | His | Met | Gly | Pro | Glu
105 | Gly | Pro | Phe | Asp | Tyr
110 | Trp | Gly | | | Gln | Gly | Thr
115 | Leu | Val | Thr | Val | Ser
120 | Ser | | | | | | | | | 25 | <210
<211
<212
<213 | L>
?> | 5
121
PRI
Art | r | cial | Sequ | ience | è | | | | | | | | | | 30 | <220
<223 | | Hea | avy o | chair | ı vai | riabl | le re |
gior | ı of | anti | ibody | 7 442 | 285 | | | | | <400 |)> | 5 | | | | | | | | | | | | | | | 35 | Glu
1 | Val | Gln | Leu | Leu
5 | Glu | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | | | Ser | Leu | Arg | Leu
20 | Ser | Cys | Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Asp | Tyr | | 40 | Asp | Met | Ser
35 | Trp | Val | Arg | Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
45 | Glu | Trp | Val | | | Ser | Ile
50 | Ile | Glu | Pro | Asp | Ser
55 | Gly | Ser | Ile | Tyr | Tyr
60 | Ala | Asp | Ser | Val | | 45 | Gln
65 | Gly | Arg | Phe | Thr | Ile
70 | Ser | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | | Leu | Gln | Met | Asn | Ser
85 | Leu | Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | 50 | Ala | Lys | Asp | Leu
100 | His | Met | Gly | Pro | Glu
105 | Gly | Pro | Phe | Asp | Tyr
110 | Trp | Gly | | | Gln | Gly | Thr
115 | Leu | Val | Thr | Val | Ser
120 | Ser | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | | <210 | | 6 | | | | | | | | | | | | | | | | <211>
<212>
<213> | 121
PRT
Artifi | cial Se | quenc | 9 | | | | | | | | | |----|-------------------------|----------------------|---------|-------------|------------|------------|-----------|-----------|-----------|---------------------------|------------|------------------|-----------| | 5 | <220>
<223> | Heavy | chain v | ariab | le re | egior | n of | ant | ibod | y 442 | 256 | | | | 10 | <400>
Glu Val | 6
L Gln Leu | Leu Gl | u Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | | | Ser Le | a Arg Leu
20 | _ | s Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Asp | Tyr | | 15 | Asp Met | Ser Trp
35 | Val Ar | g Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
45 | Glu | Trp | Val | | | Ser Ser
50 | : Ile Tyr | Pro As | p Ser
55 | Gly | Ser | Thr | Asp | Tyr
60 | Ala | Asp | Ser | Val | | 20 | Gln Gly
65 | Arg Phe | Thr Il | | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | | Leu Glr | n Met Asn | Ser Le | u Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | 25 | Ala Lys | Asp Arg | | t Trp | Pro | Glu
105 | Gly | Pro | Phe | Asp | Tyr
110 | Trp | Gly | | | Gln Gly | Thr Leu
115 | Val Th | r Val | Ser
120 | Ser | | | | | | | | | 30 | 1010: | - | | | | | | | | | | | | | | <210>
<211>
<212> | 7
121
PRT | | | | | | | | | | | | | 35 | <213> | Artifi | cial Se | quenc | 9 | | | | | | | | | | | <220>
<223> | Heavy | chain v | ariab: | le re | ∍gior | of | anti | ibod | y 442 | 259 | | | | 40 | <400> | 7 | | | | | | | | | | | | | 40 | Glu Val | l Gln Leu | Leu Gl | u Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | | 45 | Ser Le | a Arg Leu
20 | | s Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Asp | Tyr | | 45 | Asp Met | Ser Trp
35 | Val Ar | g Gln | Ala
40 | Pro | Gly | Lys | Gly | Le u
4 5 | Glu | Trp | Val | | 50 | Ser Ser
50 | : Ile Tyr | Pro As | p Ser
55 | Gly | Ser | Thr | Tyr | Tyr
60 | Ala | Asp | Ser | Val | | | Gln Gly
65 | Arg Phe | Thr Il | | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | 55 | Leu Glr | n Met Asn | Ser Le | u Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | | Ala Lys | s Asp Arg | His Me | t Trp | Pro | Glu | Gly | Pro | Phe | Asp | Tyr | Trp | Gly | | | | 100 | | 105 | 110 | |----|----------------------------------|---------------------------------------|--------------------|----------------------|---------------------------| | 5 | Gln Gly | Thr Leu Val
115 | Thr Val Ser
120 | Ser | | | 10 | <210>
<211>
<212>
<213> | 8
121
PRT
Artificial | Sequence | | | | | <220>
<223> | Heavy chair | n variable ro | egion of antib | ody 442S10 | | 15 | <400>
Glu Val
1 | 8
Gln Leu Leu
5 | Glu Ser Gly | Gly Gly Leu V | al Gln Pro Gly Gly
15 | | 20 | Ser Leu | Arg Leu Ser
20 | Cys Ala Ala | Ser Gly Phe T | thr Phe Ser Asp Tyr
30 | | | Asp Met | Ser Trp Val | Arg Gln Ala
40 | Pro Gly Lys G | ly Leu Glu Trp Val
45 | | 25 | Ser Ser
50 | Ile Tyr Pro | Asp Ser Gly
55 | Ser Thr Tyr T | yr Ala Asp Ser Val
60 | | | Gln Gly
65 | Arg Phe Thr | Ile Ser Arg
70 | Asp Asn Ser L
75 | ys Asn Thr Leu Tyr
80 | | 30 | Leu Gln | Met Asn Ser
85 | Leu Arg Ala | Glu Asp Thr A | la Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Arg His
100 | Met Trp Pro | Glu Gly Pro P
105 | he Asp Tyr Trp Gly
110 | | 35 | Gln Gly | Thr Leu Val
115 | Thr Val Ser
120 | Ser | | | 40 | <210>
<211>
<212>
<213> | 9
121
PRT
A rtificial | Sequence | | | | 45 | <220>
<223> | Heavy chair | n variable re | egion of antib | ody 442M3 | | | <400>
Glu Val
1 | 9
Gln Leu Leu
5 | Glu Ser Gly | Gly Gly Leu V | al Gln Pro Gly Gly
15 | | 50 | Ser Leu | Arg Leu Ser
20 | Cys Ala Ala | Ser Gly Phe T | hr Phe Ser Asp Tyr
30 | | | Asp Met | Ser Trp Val | Arg Gln Ala
40 | Pro Gly Lys G | ly Leu Glu Trp Val
45 | | 55 | Ser Ser
50 | Ile Tyr Pro | Asp Ser Gly
55 | Ser Thr Tyr T | yr Ala Asp Ser Val
60 | | | Gln Gly
65 | Arg Phe | Thr Ile
70 | Ser Arg | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | |----|---|-----------------------------|---------------|----------------|----------------|---------------|-----------------------| | 5 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala | Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Arg
100 | His Met | Trp Pro | Glu Gly
105 | Pro Phe | Asp Tyr Trp Gly | | 10 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 15 | <210>
<211>
<212>
<213>
<220> | 10
121
PRT
Artific | cial Seq | uence | | | | | | <223> | Heavy o | chain va | riable re | egion of | antibody | 7 442M4 | | 20 | <400>
Glu Val
1 | 10
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly
10 | Leu Val | Gln Pro Gly Gly
15 | | 25 | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly
25 | Phe Thr | Phe Ser Asp Tyr
30 | | | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | Lys Gly | Leu Glu Trp Val
45 | | 30 | Ser Thr
50 | Ile Asp | Leu Asp | Ser Gly
55 | Ser Ile | Tyr Tyr
60 | Ala Asp Ser Val | | | Gln Gly
65 | Arg Phe | Thr Ile
70 | Ser Arg | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | | 35 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala | Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Leu
100 | | | Glu Gly
105 | Pro Phe | Asp Tyr Trp Gly | | 40 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 45 | <210>
<211>
<212>
<213> | 11
121
PRT
Artific | cial Seq | uence | | | | | 50 | <220>
<223> | Heavy o | chain va | riable re | egion of | antibody | / 442M5 | | | <400>
Glu Val
1 | 11
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly
10 | Leu Val | Gln Pro Gly Gly
15 | | 55 | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly
25 | Phe Thr | Phe Ser Asp Tyr | | | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | Lys Gly | Leu Glu Trp Val
45 | |----|----------------------------------|----------------------------|---------------|----------------|----------------|---------------|------------------------| | 5 | Ser Thr
50 | Ile Asp | Leu Asp | Ser Gly
55 | Ser Ile | Tyr Tyr
60 | Ala Asp Ser Val | | | Gln Gly
65 | Arg Phe | Thr Ile
70 | Ser Arg | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | | 10 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala | Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Leu
100 | His Met | Gly Pro | Glu Gly
105 | Pro Phe | Asp Tyr Trp Gly
110 | | 15 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 20 | <210>
<211>
<212>
<213> | 12
121
PRT
Artifi | cial Seq | uence | | | | | 25 | <220>
<223> | Heavy (| chain va | riable r | egion of | antibody | 7 442M6 | | | <400>
Glu Val
1 | 12
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly
10 | Leu Val | Gln Pro Gly Gly
15 | | 30 | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly
25 | Phe Thr | Phe Ser Asp Tyr
30 | | 35 | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | Lys Gly | Leu Glu Trp Val
45 | | | Ser Ser
50 | Ile Glu | Pro Asp | Ser Gly
55 | Ser Thr | Asp Tyr
60 | Ala Asp Ser Val | | 40 | Gln Gly
65 | Arg Phe | Thr Ile
70 | Ser Arg | Asp Asn | Ser Lys
75 | Asn Thr Leu Tyr
80 | | | | | 85 | _ | 90 | | Val Tyr Tyr Cys
95 | | 45 | | 100 | | _ | 105 | Pro Phe | Asp Tyr Trp Gly
110 | | | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 50 | <210>
<211>
<212>
<213> | 13
121
PRT
Artifi | cial Seq | uence | | | | | 55 | <220>
<223> | Heavy (| chain va | riable r | egion of | antibody | y 442M7 | | | <400>
Glu Val | 13
Gln I | Leu Le | eu Glu
5 | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | |----------------|---|--|--|---|----------------------------|----------------------------|------------------------------------|--------------------------------|---------------------------------------|------------------------|---------------------------------------|---------------------------------------|---------------------------|--------------------------------| | 5 | Ser Leu | Arg I | Leu Se | | Ala | Ala | Ser
25 | | Phe | Thr | Phe | Ser
30 | | Tyr | | | Asp Met | Ser T | rp Va | al A rg | Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
45 | Glu | Trp | Val | | 10 | Ser Thr
50 | | Slu Pi | ro Asp | Ser
55 | Gly | Ser | Thr |
Tyr | Tyr
60 | Ala | Asp | Ser | Val | | | Gln Ser
65 | Arg P | he Tl | hr Ile
70 | | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | 15 | Leu Gln | Met A | | er Leu
85 | Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | 20 | Ala Lys | - | Leu H: | is Met | Gly | Pro | Glu
105 | Gly | Pro | Phe | Asp | Tyr
110 | Trp | Gly | | | Gln Gly | Thr I
115 | ieu Va | al Thr | Val | Ser
120 | Ser | | | | | | | | | 25 | <210>
<211>
<212>
<213> | 14
121
PRT
Arti | lficia | al Seq | uence | = | 30 | <220>
<223> | Heav | y cha | ain va | riab: | le re | ∍gioı | n of | anti | ibody | 7 442 | 2м8 | | | | 30
35 | | 14 | | | | | - | | | | | | Gly
15 | Gly | | | <223> <400> Glu Val | 14
Gln I | -
Leu Le | eu Glu
5 | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | 15 | _ | | | <223> <400> Glu Val | 14
Gln I | Leu Le
Leu Se
20 | eu Glu
5
er Cys | Ser
Ala | Gly
Ala | Gly
Ser
25 | Gly
10
Gly | Leu
Phe | Val
Thr | Gln
Phe | Pro
Ser
30 | 15
Asp | Tyr | | 35 | <223> <400> Glu Val 1 Ser Leu | 14
Gln I
Arg I
Ser I
35 | Leu Le
Leu Se
20 | eu Glu
5
er Cys
al Arg | Ser
Ala
Gln | Gly
Ala
Ala
40 | Gly
Ser
25 | Gly
10
Gly | Leu
Phe
Lys | Val
Thr
Gly | Gln
Phe
Leu
45 | Pro
Ser
30
Glu | 15
Asp
Trp | Tyr
Val | | 35 | <223> <400> Glu Val 1 Ser Leu Asp Met Ser Ser | 14 Gln I Arg I Ser I 35 Ile I | Leu Leu Se
20
Erp Va | eu Glu
5
er Cys
al Arg | Ser Ala Gln Ser 55 | Gly Ala Ala 40 | Gly Ser 25 Pro | Gly
10
Gly
Gly | Leu
Phe
Lys
Tyr | Val Thr Gly Tyr 60 | Gln
Phe
Leu
45 | Pro
Ser
30
Glu | 15
Asp
Trp
Ser | Tyr
Val | | 35
40 | <223> <400> Glu Val 1 Ser Leu Asp Met Ser Ser 50 Gln Gly | 14 Gln I Arg I Ser I 35 Ile I | Leu Leu Se 20 Prp Va | eu Glu
5
er Cys
al Arg
ro Asp
hr Ile | Ser Ala Gln Ser 55 | Gly Ala Ala 40 Gly Arg | Gly Ser 25 Pro Ser | Gly
10
Gly
Thr | Leu
Phe
Lys
Tyr
Ser
75 | Val Thr Gly Tyr 60 | Gln
Phe
Leu
45
Ala
Asn | Pro
Ser
30
Glu
Asp | 15 Asp Trp Ser | Tyr
Val
Val
Tyr
80 | | 35
40 | <223> <400> Glu Val 1 Ser Leu Asp Met Ser Ser 50 Gln Gly 65 | 14 Gln I Arg I Ser I 35 Ile I Arg P | Leu Se
20
Erp Va
Eyr Pr
Phe Th | eu Glu 5 er Cys al Arg ro Asp hr Ile 70 er Leu | Ser Ala Gln Ser 55 Ser | Gly Ala Ala 40 Gly Arg | Gly Ser 25 Pro Ser Asp | Gly
10
Gly
Thr
Asn | Leu
Phe
Lys
Tyr
Ser
75 | Val Thr Gly Tyr 60 Lys | Gln Phe Leu 45 Ala Asn | Pro
Ser
30
Glu
Asp
Thr | 15 Asp Trp Ser Leu Tyr 95 | Tyr
Val
Val
Tyr
80 | | 35
40
45 | <223> <400> Glu Val 1 Ser Leu Asp Met Ser Ser 50 Gln Gly 65 Leu Gln | 14 Gln I Arg I Ser I 35 Ile I Arg F | Leu Leu Se 20 Erp Va Err Pr Phe Th | eu Glu 5 er Cys al Arg ro Asp hr Ile 70 er Leu 85 | Ser Ala Gln Ser 55 Ser Arg | Gly Ala Ala 40 Gly Arg Ala | Gly Ser 25 Pro Ser Asp Glu Glu 105 | Gly
10
Gly
Thr
Asn | Leu
Phe
Lys
Tyr
Ser
75 | Val Thr Gly Tyr 60 Lys | Gln Phe Leu 45 Ala Asn | Pro Ser 30 Glu Asp Thr Tyr | 15 Asp Trp Ser Leu Tyr 95 | Tyr
Val
Val
Tyr
80 | | | <211>
<212>
<213> | 121
PRT
Artifici | ial Seque | ence | | | |----|----------------------------------|------------------------------|-------------------|-------------------|-------------------|------------------------| | 5 | <220>
<223> | Heavy ch | nain vari | able region | of antibody | 7 442M10 | | 10 | <400>
Glu Val
1 | 15
Gln Leu I | Leu Glu S
5 | er Gly Gly | Gly Leu Val
10 | Gln Pro Gly Gly
15 | | | Ser Leu | Arg Leu S | Ser Cys A | ala Ala Ser
25 | Gly Phe Thr | Phe Ser Asp Tyr | | 15 | Asp Met | Ser Trp V | al A rg G | In Ala Pro
40 | Gly Lys Gly | Leu Glu Trp Val
45 | | | Ser Ser
50 | Ile Tyr P | | Ser Gly Ser
55 | Thr Asp Tyr
60 | Ala Asp Ser Val | | 20 | Gln Gly
65 | Arg Phe I | Thr Ile S
70 | er Arg Asp | Asn Ser Lys
75 | Asn Thr Leu Tyr
80 | | | Leu Gln | Met Asn S | Ser Leu A
85 | arg Ala Glu | Asp Thr Ala
90 | Val Tyr Tyr Cys
95 | | 25 | Ala Lys | Asp Leu H | His Met T | rp Pro Glu
105 | Gly Pro Phe | Asp Tyr Trp Gly
110 | | 20 | Gln Gly | Thr Leu V | al Thr V | al Ser Ser
120 | | | | 30 | <210>
<211>
<212>
<213> | 16
121
PRT
Artifici | ial Seque | ence | | | | 35 | <220>
<223> | Heavy ch | nain v ari | able region | of antibody | 7 442M11 | | 40 | <400>
Glu Val
1 | 16
Gln Leu I | Leu Glu S
5 | er Gly Gly | Gly Leu Val
10 | Gln Pro Gly Gly
15 | | | Ser Leu | Arg Leu S
20 | Ser Cys A | ala Ala Ser
25 | Gly Phe Thr | Phe Ser Asp Tyr
30 | | 45 | Asp Met | Ser Trp V | /al Arg G | In Ala Pro
40 | Gly Lys Gly | Leu Glu Trp Val
45 | | 50 | Ser Thr
50 | Ile Glu F | - | yr Gly Ser
55 | Thr Leu Tyr
60 | Ala Asp Ser Val | | | Gln Gly
65 | Arg Phe I | Thr Ile S
70 | er Arg Asp | Asn Ser Lys
75 | Asn Thr Leu Tyr
80 | | 55 | Leu Gln | Met Asn S | Ser Leu A
85 | arg Ala Glu | Asp Thr Ala
90 | Val Tyr Tyr Cys
95 | | | Ala Lys | Asp Leu H | lis Met G | Sly Pro Glu | Gly Pro Phe | Asp Tyr Trp Gly | | | | 100 | | | 105 | 110 | | |----|---|-----------------------------|---------------|----------------|-----------------|-----------------------|---------------| | 5 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 10 | <210>
<211>
<212>
<213>
<220> | 17
127
PRT
Artific | cial Seq | uence | | | | | | <223> | Heavy o | chain va | riable r | egion of a | ntibody 472P | | | 15 | <400>
Glu Val
1 | 17
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly L | eu Val Gln Pro | Gly Gly
15 | | | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly P
25 | he Thr Phe Ser | Asp Tyr | | 20 | Asp Met | Ser Trp | Val Arg | Gln Ala
40 | Pro Gly L | ys Gly Leu Glu
45 | Trp Val | | 25 | Ser Gly
50 | Ile Ser | Tyr Asp | Gly Gly
55 | Asn Thr T | yr Tyr Ala Asp
60 | Ser Val | | 20 | Lys Gly
65 | Arg Phe | Thr Ile | Ser Arg | Asp Asn S | er Lys Asn Thr
75 | Leu Tyr
80 | | 30 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp T | hr Ala Val Tyr | Tyr Cys
95 | | | Ala Arg | Asp Pro
100 | Ser Trp | Cys Leu | Gln Asp L | eu Cys Tyr Tyr
110 | Ala Asp | | 35 | Gly Met | Asp Val
115 | Trp Gly | Gln Gly
120 | Thr Leu V | al Thr Val Ser
125 | Ser | | 40 | <210>
<211>
<212>
<213> | 18
127
PRT
Artific | cial Seq | uence | | | | | 45 | <220>
<223> | Heavy (| chain va | riable r | egion of a | ntibody 472S1 | | | 50 | 1 | | 5 | | 10 | eu Val Gln Pro | 15 | | | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly P
25 | he Thr Phe Ser
30 | Trp Tyr | | 55 | Asp Met | Thr Trp
35 | Val Arg | Gln Ala
40 | Pro Gly L | ys Gly Leu Glu
45 | Trp Val | | | Ser Gly | Ile Ser | Tyr Asp | Gly Gly | Asn Thr T | yr Tyr Ala Asp | Ser Val | | | 50 | 55 | 60 | | |----|---|---------------------------|------------------------------|------------------| | | Lys Gly Arg Phe
65 | Thr Ile Ser Arg Asp | p Asn Ser Lys Asn Tl
75 | hr Leu Tyr
80 | | 5 | Leu Gln Met Asn | Ser Leu Arg Ala Glu
85 | u Asp Thr Ala Val Ty
90 | yr Tyr Cys
95 | | 10 | Ala Arg Asp Pro
100 | Ser Trp Cys Leu Gl: | n Asp Leu Cys Tyr Ty
5 | yr Ala Asp
10 | | | Gly Met Asp Val
115 | Trp Gly Gln Gly The | r Leu Val Thr Val Se
125 | er Ser | | 15 | | | | | | | <210> 19
<211> 127
<212> PRT | | | | | 20 | <213> Artific | cial Sequence | | | | | <220>
<223> Heavy (| chain variable regio | on of antibody 472S2 | 2 | | 25 | <400> 19
Glu Val Gln Leu
1 | Leu Glu Ser Gly Gl | y Gly Leu Val Gln Pr
10 | ro Gly Gly
15 | | 30 | Ser Leu Arg Leu
20 | Ser Cys Ala Ala Se | r Gly Phe Thr Phe Se
5 | er Trp Tyr
30 | | | Asp Leu Ala Trp
35 | Val Arg Gln Ala Pro | o Gly Lys Gly Leu G
45 | lu Trp Val | | 35 | Ser Gly Ile Ser
50 | Tyr Asp Gly Gly Ass
55 | n Thr Tyr Tyr Ala As
60 | sp Ser Val | | | Lys Gly Arg Phe
65 | Thr Ile Ser Arg Asp
70 | p Asn Ser Lys Asn Tl
75 | hr Leu Tyr
80 | | 40 | Leu Gln Met Asn | Ser Leu Arg Ala Glu
85 | u Asp Thr Ala Val Ty
90 | yr Tyr Cys
95 | | | Ala Arg Asp Pro
100 | Ser Trp Cys Leu Gla
10 | n Asp Leu Cys Tyr Ty
5 1: | yr Ala Asp
10 | | 45 | Gly Met Asp Val
115 | Trp Gly Gln Gly The | r Leu Val Thr Val Se
125 | er Ser | | 50 | <210> 20
<211> 127
<212> PRT
<213> Artific | cial Sequence | | | | 55 | <220>
<223> Heavy o | chain variable regio | on of antibody 472S | 3 | | | <400
Glu
1 | | 20
Gln | Leu | Leu
5 | Glu | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | |----------------|--|-------------------------------------|-----------------------------------|-------------------------|--------------------------------------|----------------------------|------------------------|------------------------|--------------------------------|--------------------------|---------------------------------------|------------------------|--------------------------|--------------------------------|--------------------------------|---------------------------------------| | 5 | Ser | Leu | Arg | Leu
20 | Ser | Cys | Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Trp | Tyr | | | Asp | Met | Ser
35 | Trp | Val | Arg | Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
4 5 | Glu | Trp | Val | | 10 | Ser | Gly
50 | Ile | Ser | Tyr | Asp | Gly
55 | Gly | Asn | Thr | Tyr | Tyr
60 | Ala | Asp | Ser | Val | | 15 | 65 | _ | Arg | | | 70 | | | _ | | 75 | _ | | | | 80 | | | | |
Met | | 85 | | | | | 90 | | | | | 95 | _ | | 20 | | | Asp | 100 | | | | | 105 | | | | | 110 | | Asp | | | Gly | Met | Asp
115 | Val | Trp | Gly | Gln | Gly
120 | Thr | Leu | Val | Thr | Val
125 | Ser | Ser | | | 25 | -0.1 | | 0.1 | | | | | | | | | | | | | | | | <210
<211 | | 21
127 | 7 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | <212 | 2> | PRI | | | | | | | | | | | | | | | 30 | <212
<213 | | | r
:ific | cial | Sequ | ience | • | | | | | | | | | | 30 | | 3>
)> | Art | | | Ī | | | egior | n of | anti | ibody | , 4 72 | 2S 4 | | | | 35 | <213
<220
<223 | 3>
)>
3> | Art
Hea | ific | | Ī | | | egior | n of | anti | i.body | , 472 | 2 S4 | | | | | <213 <220 <223 <400 | 3>
)>
3> | Art
Hea | ific | chair | n v ai | riabl | le r∈ | - | | | - | | | Gly
15 | Gly | | | <213 <220 <223 <400 Glu 1 | 3>
)>
3>
)>
Val | Art
Hea | ific
avy c | chair
Leu
5 | u vai | riab]
Ser | le re | Gly | Gly
10 | Leu | Val | Gln | Pro | 15 | | | 35 | <213 <220 <223 <400 Glu 1 Ser | 3>
)>
3>
)>
Val | Art Hea | Leu
Leu
20 | Leu
5
Ser | Glu
Cys | riabl
Ser
Ala | Gly
Ala | Gly
Ser
25 | Gly
10
Gly | Leu
Phe | Val
Thr | Gln
Phe | Pro
Ser
30 | 15
Trp | Tyr | | 35 | <213 <220 <223 <400 Glu 1 Ser | 3>)> 3> Val Leu | Hea
21
Gln
Arg | Leu
Leu
20 | Leu
5
Ser
Val | Glu
Cys | Ser
Ala | Gly
Ala
Ala | Gly
Ser
25 | Gly
10
Gly | Leu
Phe
Lys | Val
Thr | Gln
Phe
Leu
45 | Pro
Ser
30
Glu | 15
Trp
Trp | Tyr
Val | | 35
40 | <213 <220 <223 <400 Glu 1 Ser Asp | 3>)> 3> Val Leu Ile Gly 50 | Head 21 Gln Arg Ala 35 | Leu
Leu
20
Trp | Leu
5
Ser
Val | Glu
Cys
Arg | Ser Ala Gln Gly 55 | Gly Ala Ala 40 | Gly
Ser
25
Pro | Gly
10
Gly
Gly | Leu
Phe
Lys
Tyr | Val Thr Gly Tyr 60 | Gln
Phe
Leu
45 | Pro
Ser
30
Glu
Asp | 15
Trp
Trp
Ser | Tyr
Val
Val | | 35
40 | <213 <220 <223 <400 Glu 1 Ser Asp Ser Lys 65 | 3>)> 3> Val Leu Ile Gly 50 | Head 21 Gln Arg Ala 35 | Leu Leu 20 Trp Ser | Leu
5
Ser
Val
Tyr | Glu Cys Arg Asp | Ser Ala Gln Gly 55 Ser | Gly Ala Ala 40 Gly Arg | Gly
Ser
25
Pro
Asn | Gly
10
Gly
Thr | Leu
Phe
Lys
Tyr
Ser
75 | Val Thr Gly Tyr 60 | Gln Phe Leu 45 Ala Asn | Pro
Ser
30
Glu
Asp | 15
Trp
Trp
Ser
Leu | Tyr
Val
Val
Tyr
80 | | 35
40
45 | <213 <220 <223 <400 Glu 1 Ser Asp Ser Lys 65 Leu | 3>)> 3> Val Leu Ile Gly 50 Gly Gln | Art Hea 21 Gln Arg Ala 35 Ile Arg | Leu Leu 20 Trp Ser Phe | Leu
5
Ser
Val
Tyr
Thr | Glu Cys Arg Asp Ile 70 Leu | Ser Ala Gln Gly 55 Ser | Gly Ala Ala 40 Gly Arg | Gly Ser 25 Pro Asn Asp Glu | Gly
Gly
Thr
Asn | Leu Phe Lys Tyr Ser 75 | Val Thr Gly Tyr 60 Lys | Gln Phe Leu 45 Ala Asn | Pro Ser 30 Glu Asp Thr | 15 Trp Trp Ser Leu Tyr 95 | Tyr
Val
Val
Tyr
80
Cys | | | <210> | 22 | | | | | |----|----------------|-------------|------------|--------------|------------------------|-----------| | | <211> | 127 | | | | | | | <212> | PRT | _ | | | | | F | <213> | Artificial | . Sequence | • | | | | 5 | <220> | | | | | | | | <223> | Heavy chai | n variabl | e region of | antibody 472M1 | | | | | | | | | | | | 400 | | | | | | | 10 | <400> | 22 | Clu Com | C1 C1 C1 | Leu Val Gln Pro | - Cl. Cl. | | | 1 | Gin Leu Leu | | 10 | Leu vai Gin Fi | 15 | | | - | | • | | | 20 | | | Ser Leu | Arg Leu Sei | Cys Ala | Ala Ser Gly | Phe Thr Phe Se | r Trp Tyr | | | | 20 | | 25 | 30 | 0 | | 15 | | ~ | - ~- | | - 61 - 61 | | | | Asp Leu | Ser Trp Val | . Arg Gin | | Lys Gly Leu Gl | u Trp Val | | | | 33 | | 40 | 45 | | | | Ser Gly | Ile Ser Tyr | Asp Gly | Gly Asn Thr | Tyr Tyr Ala Asj | o Ser Val | | 20 | 50 | - | 55 | - | 60 | • | | 20 | | | | | | | | | | Arg Phe Thi | | Arg Asp Asn | Ser Lys Asn Th | - | | | 65 | | 70 | | 75 | 80 | | | Leu Gln | Met Asn Ser | Leu Arg | Ala Glu Asp | Thr Ala Val Ty | r Tvr Cvs | | 25 | | 85 | _ | 90 | | 95 | | | | | | | | | | | Ala Arg | _ | Trp Cys | _ | Leu Cys Tyr Ty: | _ | | | | 100 | | 105 | 110 | 0 | | | Clw Met | Aco Val Trr | Cly Cln | Cly Thr Lau | Val Thr Val Co | r Car | | 30 | GIY Mec | 115 | GIY GIN | 120 | Val Thr Val Se:
125 | r ser | 35 | 10105 | 0.2 | | | | | | | <210>
<211> | 23
121 | | | | | | | <212> | PRT | | | | | | | <213> | Artificial | Sequence | • | | | | | | | | | | | | 40 | <220> | | | | 1 1 1 4545 | | | | <223> | Heavy Chai | n variabl | e region of | antibody 451P | | | | | | | | | | | | <400> | 23 | | | | | | 45 | Glu Val | Gln Leu Leu | Glu Ser | Gly Gly Gly | Leu Val Gln Pro | o Gly Gly | | 45 | 1 | 5 | • | 10 | | 15 | | | Com Tou | Ame Tou Co. | Com Nin | Ala Cam Clas | Dhe Mhe Dhe Co | | | | ser Leu | arg Leu Sei | Cys Ala | Ala Ser Gly | Phe Thr Phe Se: | | | | | 20 | | 23 | 3. | • | | 50 | Asp Met | Ser Trp Val | Arg Gln | Ala Pro Gly | Lys Gly Leu Gl | u Trp Val | | | | 35 | _ | 40 | 45 | _ | | | | | | | | | | | | Ile Tyr Tyr | _ | Gly Ser Ile | Tyr Tyr Ala Ası | p Ser Ala | | | 50 | | 55 | | 60 | | | 55 | Lys Glv | Arg Phe Thi | : Ile Ser | Arg Asp Asn | Ser Lys Asn Th | r Leu Tvr | | | 65 | <u> </u> | 70 | 3 <u>F</u> | 75 | 80 | | | | | | | | | | | Leu Gln Me | t Asn Ser
85 | | Ala Glu Asp | | l Tyr Tyr Cys
95 | |----|--------------------|-----------------------------|---------------|--------------------|------------------|----------------------| | 5 | Ala Lys As | p Arg Leu
100 | Phe Val | Ser Asp Ser
105 | Thr Phe As | p Tyr Trp Gly
110 | | | Gln Gly Th | | Thr Val | Ser Ser
120 | | | | 10 | <211> 1
<212> E | 4
21
RT
.rtificial | Sequence | - | | | | 15 | <220>
<223> F | eavy chai | n variabl | le region of | antibody 4 | 51 m 1 | | 20 | | 4
n Leu Leu
5 | | Gly Gly Gly | | n Pro Gly Gly
15 | | | Ser Leu Ar | g Leu Ser
20 | Cys Ala | Ala Ser Gly
25 | Phe Thr Ph | e Ser Asp Tyr
30 | | 25 | _ | r Trp Val | Arg Gln | Ala Pro Gly
40 | | u Glu Trp Val
5 | | | Ser Ala II
50 | e Tyr Tyr | Asp Ser
55 | Gly Ser Ile | Tyr Tyr Al
60 | a Asp Ser Ala | | 30 | Lys Gly Ar
65 | g Phe Thr | Ile Ser
70 | Arg Asp Asr | Ser Lys As
75 | n Thr Leu Tyr
80 | | | Leu Gln Me | t Asn Ser
85 | _ | Ala Glu Asp
90 | | l Tyr Tyr Cys
95 | | 35 | Ala Lys As | p Arg Leu
100 | Phe Met | Ser Asp Ser
105 | Thr Phe As | p Tyr Trp Gly
110 | | 40 | Gln Gly Th | | Thr Val | Ser Ser
120 | | | | 45 | <211> 1
<212> E | 5
21
RT
rtificial | Sequence | = | | | | .0 | <220>
<223> F | eavy chai | n variabl | le region of | antibody 4 | 51 m 2 | | 50 | | 5
n Leu Leu
5 | | Gly Gly Gly | | n Pro Gly Gly
15 | | 55 | Ser Leu Ar | g Leu Ser
20 | Cys Ala | Ala Ser Gly
25 | Phe Thr Ph | e Ser Asp Tyr
30 | | | Asp Met Se | r Trp Val | Arg Gln | Ala Pro Gly | Lys Gly Le | u Glu Trp Val | | | | 35 | | 40 | | • | 15 | |----|----------------------------------|-----------------------------|---------------|----------------|----------------|------------------|-----------------------| | | Ser Ala
50 | Ile Tyr | Tyr Asp | Ser Gly
55 | Ser Ile | Tyr Tyr A | la Asp Ser Ala | | 5 | Lys Gly
65 | Arg Phe | Thr Ile | _ | Asp Asn | Ser Lys A: | on Thr Leu Tyr
80 | | 10 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala Va | al Tyr Tyr Cys
95 | | | Ala Lys | Asp Arg
100 | Leu Phe | Ala Ser | Asp Ser
105 | Thr Phe A | p Tyr Trp Gly
110 | | 15 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | | <210>
<211>
<212> | 26
121
PRT | | | | | | | 20 | <213> | Artific | cial Seq | uence | | | | | | <220>
<223> | Heavy o | chain va | riable re | egion of | antibody (| 451M3 | | 25 | <400>
Glu Val
1 | 26
Gln Leu | Leu Glu
5 | Ser Gly | Gly Gly
10 | Leu Val G | ln Pro Gly Gly
15 | | 30 | Ser Leu | Arg Leu
20 | Ser Cys | Ala Ala | Ser Gly
25 | Phe Thr Pl | ne Ser His Tyr
30 | | | Asp Met | Ser Trp
35 | Val Arg | Gln Ala
40 | Pro Gly | | eu Glu Trp Val
15 | | 35 | Ser Ala
50 | | Tyr Asp | Ser Gly
55 | Ser Ile | Tyr Tyr A | la Asp Ser Ala | | | Lys Gly
65 | Arg Phe | Thr Ile
70 | _ | Asp Asn | Ser Lys A:
75 | sn Thr Leu Tyr
80 | | 40 | Leu Gln | Met Asn | Ser Leu
85 | Arg Ala | Glu Asp
90 | Thr Ala Va | al Tyr Tyr Cys
95 | | | Ala Lys | Asp Arg
100 | Leu Phe | Ala Ser | Asp Ser
105 | Thr Phe A | sp Tyr Trp Gly
110 | | 45 | Gln Gly | Thr Leu
115 | Val Thr | Val Ser
120 | Ser | | | | 50 | <210>
<211>
<212>
<213> | 27
121
PRT
Artific | cial Seq | uence | | | | | 55 | <220>
<223> | Heavy o | chain va | riable re | egion of | antibody (| 151M4 | | | <400> | 27 | | | | | | | | Glu Val
1 | Gln Leu | Leu
5 | Glu | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | |-----------|---|---|-------------------------------|----------------------------|--------------------------------|--------------------------------|---|-------------------------|--------------------|-------------------------|--------------------------|--------------------------------|---------------------------|--------------------------------| | 5 | Ser Leu | Arg Leu
20 | Ser | Cys | Ala | Ala | Ser
25 | Gly | Phe | Thr | Phe | Ser
30 | Tyr | Tyr | | | Asp Met | Ser Trp
35 | Val | Arg | Gln | Ala
40 | Pro | Gly | Lys | Gly | Leu
4 5 | Glu | Trp | Val | | 10 | Ser Ala
50 | Ile Tyr | Tyr | Asp | Ser
55 | Gly | Ser | Ile | Tyr | Tyr
60 | Ala | Asp | Ser | Ala | | | Lys Gly
65 | Arg Phe | Thr | Ile
70 |
Ser | Arg | Asp | Asn | Ser
75 | Lys | Asn | Thr | Leu | Tyr
80 | | 15 | Leu Gln | Met Asn | Ser
85 | Leu | Arg | Ala | Glu | Asp
90 | Thr | Ala | Val | Tyr | Tyr
95 | Cys | | | Ala Lys | Asp Arg
100 | Leu | Phe | Ala | Ser | Asp
105 | Ser | Thr | Phe | Asp | Tyr
110 | Trp | Gly | | 20 | Gln Gly | Thr Leu
115 | Val | Thr | Val | Ser
120 | Ser | | | | | | | | | 25 | <210>
<211>
<212> | 28
121
PRT | ai al | Com | .on aa | | | | | | | | | | | | <213>
<220> | Artifi | | _ | | | | | | | 45 | | | | | 30 | <223> | Heavy | chali | n var | labl | le re | egior | ı of | anti | rpodi | 7 45. | LM5 | <400>
Glu Val
1 | 28
Gln Leu | Leu
5 | Glu | Ser | Gly | Gly | Gly
10 | Leu | Val | Gln | Pro | Gly
15 | Gly | | 35 | Glu Val
1 | | 5 | | | | | 10 | | | | | 15 | _ | | | Glu Val
1
Ser Leu | Gln Leu | 5
Ser | Cys | Ala | Ala | Ser
25 | 10 | Phe | Thr | Phe | Ser
30 | 15
Asp | Tyr | | 35 | Glu Val
1
Ser Leu
Asp Met | Arg Leu
20
Ser Trp | 5
Ser
Val | Cys
Ar g | Ala
Gln | Ala
Ala
40 | Ser
25
Pro | Gly | Phe
Lys | Thr
Gly | Phe
Leu
45 | Ser
30
Glu | 15
Asp
Trp | Tyr
Val | | 40 | Glu Val
1
Ser Leu
Asp Met
Ser Ala
50 | Arg Leu
20
Ser Trp
35 | 5
Ser
Val
Tyr | Cys
Arg
Asp | Ala
Gln
Ser
55 | Ala
Ala
40
Gly | Ser
25
Pro | 10
Gly
Gly
Ile | Phe
Lys
Tyr | Thr
Gly
Tyr
60 | Phe
Leu
45
Ala | Ser
30
Glu
Asp | 15
Asp
Trp
Ser | Tyr
Val
Ala | | | Glu Val 1 Ser Leu Asp Met Ser Ala 50 Lys Gly 65 | Arg Leu
20
Ser Trp
35 | 5
Ser
Val
Tyr | Cys Arg Asp Ile 70 | Ala Gln Ser 55 | Ala
40
Gly
Arg | Ser
25
Pro
Ser | 10 Gly Gly Ile | Phe Lys Tyr Ser | Thr Gly Tyr 60 | Phe Leu 45 Ala Asn | Ser
30
Glu
Asp | 15
Asp
Trp
Ser | Tyr
Val
Ala
Tyr
80 | | 40 | Glu Val 1 Ser Leu Asp Met Ser Ala 50 Lys Gly 65 Leu Gln | Arg Leu 20 Ser Trp 35 Ile Tyr Arg Phe | 5
Ser
Val
Tyr
Thr | Cys Arg Asp Ile 70 Leu | Ala
Gln
Ser
55
Ser | Ala
40
Gly
Arg | Ser
25
Pro
Ser
Asp | Gly Gly Ile Asn Asp | Phe Lys Tyr Ser 75 | Thr Gly Tyr 60 Lys | Phe Leu 45 Ala Asn | Ser
30
Glu
Asp
Thr | 15 Asp Trp Ser Leu Tyr 95 | Tyr Val Ala Tyr 80 Cys | | 40
45 | Glu Val 1 Ser Leu Asp Met Ser Ala 50 Lys Gly 65 Leu Gln Ala Lys | Arg Leu 20 Ser Trp 35 Ile Tyr Arg Phe Met Asn Asp Arg | 5 Ser Val Tyr Thr Ser 85 Leu | Cys Arg Asp Ile 70 Leu Phe | Ala Gln Ser 55 Ser Arg | Ala
40
Gly
Arg
Ala | Ser
25
Pro
Ser
Asp
Glu
Asp
105 | Gly Gly Ile Asn Asp | Phe Lys Tyr Ser 75 | Thr Gly Tyr 60 Lys | Phe Leu 45 Ala Asn | Ser
30
Glu
Asp
Thr | 15 Asp Trp Ser Leu Tyr 95 | Tyr Val Ala Tyr 80 Cys | | | <213> | Artificial | Sequence | | | | | |----|----------------------------------|---|--------------------------|-------------------------------------|--|--|--| | | <220>
<223> | Heavy chain variable region of antibody 451M6 | | | | | | | 5 | | | | | | | | | | <400>
Glu Val
1 | 29
Gln Leu Leu
5 | | ly Leu Val Gln Pro Gly Gly
10 15 | | | | | 10 | Ser Leu | Arg Leu Ser
20 | Cys Ala Ala Ser G
25 | ly Phe Thr Phe Ser His Tyr
30 | | | | | 45 | Asp Met | Ser Trp Val
35 | Arg Gln Ala Pro G
40 | ly Lys Gly Leu Glu Trp Val
45 | | | | | 15 | Ser Ala
50 | Ile Tyr Tyr | Asp Ser Gly Ser I
55 | le Tyr Tyr Ala Asp Ser Ala
60 | | | | | 20 | Lys Gly
65 | Arg Phe Thr | Ile Ser Arg Asp A | sn Ser Lys Asn Thr Leu Tyr
75 80 | | | | | | Leu Gln | Met Asn Ser
85 | _ | sp Thr Ala Val Tyr Tyr Cys
90 95 | | | | | 25 | Ala Lys | Asp Arg Leu
100 | Phe Glu Ser Asp S
105 | er Thr Phe Asp Tyr Trp Gly
110 | | | | | | Gln Gly | Thr Leu Val
115 | Thr Val Ser Ser
120 | | | | | | 30 | <210>
<211>
<212>
<213> | 30
121
PRT
Artificial | Sequence | | | | | | 35 | <220>
<223> | Heavy chai: | n variable region | of antibody 4 51M7 | | | | | 40 | <400>
Glu Val
1 | 30
Gln Leu Leu
5 | | ly Leu Val Gln Pro Gly Gly
10 15 | | | | | | Ser Leu | Arg Leu Ser
20 | Cys Ala Ala Ser G
25 | ly Phe Thr Phe Ser Tyr Tyr
30 | | | | | 45 | Asp Met | Ser Trp Val
35 | Arg Gln Ala Pro G
40 | ly Lys Gly Leu Glu Trp Val
45 | | | | | | Ser Ala
50 | Ile Tyr Tyr | Asp Ser Gly Ser I
55 | le Tyr Tyr Ala Asp Ser Ala
60 | | | | | 50 | Lys Gly
65 | Arg Phe Thr | Ile Ser Arg Asp A | sn Ser Lys Asn Thr Leu Tyr
75 80 | | | | | | Leu Gln | Met Asn Ser
85 | = | sp Thr Ala Val Tyr Tyr Cys
90 95 | | | | | 55 | Ala Lys | Asp Arg Leu
100 | Phe Glu Ser Asp S
105 | er Thr Phe Asp Tyr Trp Gly
110 | | | | 120 Gln Gly Thr Leu Val Thr Val Ser Ser 115 | | | 113 | | 120 | | | |----|----------------------------------|--------------------------------|-------------------|--------------------|------------------------|---------------| | 5 | <210>
<211>
<212>
<213> | 31
111
PRT
Artificial | Sequence | 1 | | | | 10 | <220>
<223> | Light chai | n variabl | e region of | antibody 442P | | | 15 | <400>
Gln Ser
1 | 31
Val Leu Thr
5 | Gln Pro | Pro Ser Ala
10 | Ser Gly Thr Pro | Gly Gln
15 | | | Arg Val | Thr Ile Ser
20 | Cys Ser | Gly Ser Ser
25 | Ser Asn Ile Gly
30 | Ser Asn | | 20 | Ser Val | Ser Trp Tyr
35 | Gln Gln | Leu Pro Gly
40 | Thr Ala Pro Lys
45 | Leu Leu | | | Ile Tyr
50 | Ser Asp Asn | His Arg
55 | Pro Ser Gly | Val Pro Asp Arg
60 | Phe Ser | | 25 | Gly Ser
65 | Lys Ser Gly | Thr Ser
70 | Ala Ser Leu | Ala Ile Ser Gly
75 | Leu Arg
80 | | | Ser Glu | Asp Glu Ala
85 | Asp Tyr | Tyr Cys Ala
90 | Ala Trp Asp Ser | Ser Leu
95 | | 30 | Ser Gly | Tyr Val Phe
100 | Gly Gly | Gly Thr Lys
105 | Leu Thr Val Leu
110 | Gly | | 35 | <210>
<211>
<212>
<213> | 32
111
PRT
Artificial | Sequence | | | | | | <220>
<223> | Light chai | n varia bl | e region of | antibody 442S1 | | | 40 | 14005 | 20 | | | | | | | <400>
Gln Ser
1 | 32
Val Leu Thr
5 | Gln Pro | Pro Ser Ala
10 | Ser Gly Thr Pro | Gly Gln
15 | | 45 | Arg Val | Thr Ile Ser
20 | Cys Ser | Gly Ser Ser
25 | Ser Asn Ile Gly
30 | Ser Asn | | | Ser Val | Ser Trp Tyr
35 | Gln Gln | Leu Pro Gly
40 | Thr Ala Pro Lys
45 | Leu Leu | | 50 | Ile Tyr
50 | Ser Asp Asn | His Arg
55 | Pro Ser Gly | Val Pro Asp Arg
60 | Phe Ser | | | Gly Ser
65 | Lys Ser Gly | Thr Ser
70 | Ala Ser Leu | Ala Ile Ser Gly
75 | Leu Arg
80 | | 55 | Ser Glu | Asp Glu Ala
85 | | Tyr Cys Gln
90 | Gly Trp Asp Thr | Ser Leu
95 | Ser Gly His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105 110 | | | | _ | | | |----|----------------------------------|--|----------------------|----------------------|-----------------------| | 5 | <210>
<211>
<212> | 33
111
PRT | | | | | | <213> | Artificial | Sequence | | | | 10 | <220>
<223> | Light chair | n variable reg | ion of antibody | 44 2S2 | | 15 | 1 | 5 | | 10 | Thr Pro Gly Gln
15 | | | Arg Val | Thr Ile Ser
20 | | er Ser Ser Asn
25 | Ile Gly Ser Asn
30 | | 20 | Ser Val | Ser Trp Tyr
35 | Gln Gln Leu P:
40 | ro Gly Thr Ala | Pro Lys Leu Leu
45 | | | Ile Tyr
50 | Ser Asp Asn | His Arg Pro Se | er Gly Val Pro
60 | Asp Arg Phe Ser | | 25 | Gly Ser
65 | Lys Ser Gly | Thr Ser Ala Se | er Leu Ala Ile
75 | Ser Gly Leu Arg
80 | | | Ser Glu | Asp Glu Ala
85 | Asp Tyr Tyr C | ys Ala Ala Trp
90 | Asp Ser Ser Leu
95 | | 30 | Ser Gly | Tyr Val Phe
100 | | hr Lys Leu Thr
05 | Val Leu Gly
110 | | 35 | <210>
<211>
<212>
<213> | 3 4
111
PRT
A rtificial | Sequence | | | | 40 | <220>
<223> | Light chair | n variable reg | ion of antibody | 44254 | | | <400>
Gln Ser
1 | 34
Val Leu Thr
5 | Gln Pro Pro Se | er Ala Ser Gly
10 | Thr Pro Gly Gln
15 | | 45 | Arg Val | Thr Ile Ser
20 | | er Ser Ser Asn
25 | Ile Gly Ser Asn
30 | | 50 | Ser Val | Ser Trp Tyr
35 | Gln Gln Leu P:
40 | ro Gly Thr Ala | Pro Lys Leu Leu
45 | | | Ile Tyr
50 | Ser Asp Asn | His Arg Pro Se
55 | er Gly Val Pro
60 | Asp Arg Phe Ser | | 55 | Gly Ser
65 | Lys Ser Gly | Thr Ser Ala So | er Leu Ala Ile
75 | Ser Gly Leu Arg
80 | | | Ser Glu | Asp Glu Ala | Asp Tyr Tyr C | ys Ala Ala Trp | Asp Ser Ser Leu | | | | | | | 85 | | | | | 90 | | | | | 95 | | |----|------------------------------|------------------|-------------------------|------------|------------------|-----------|-----------|-----------|------------|------------------|------------------|-----------|-----------|-------------------|-----------|-----------| | | Ser | Gly | Tyr | Val | Phe | Gly | Gly | Gly | Thr
105 | Lys | Leu | Thr | Val | Leu
110 | Gly | | | 5 | | | | | | | | | | | | | | | | | | 10 | <210
<211
<212
<213 | L>
?> | 35
111
PRI
Art | ľ | cial | Sequ | ience | è | | | | | | | | | | | <220
<223 | | Liç | ght o | chair | ı vai | riabl | le re | gior | ı of | anti | ibody | y 442 | 285 | | | | 15 | <400
Gln
1 | | 35
Val | Leu | Thr
5 | Gln | Pro | Pro | Ser | Ala
10 | Ser | Gly | Thr | Pro | Gly
15 | Gln | | 20 | Arg | Val | Thr | Ile
20 | Ser | Cys | Ser | Gly | Ser
25 | Ser | Ser | Asn | Ile | Gly
30 | Ser | Asn | | | Ser | Val | Ser
35 | Trp | Tyr | Gln | Gln | Leu
40 | Pro | Gly | Thr | Ala | Pro
45 | Lys | Leu | Leu | | 25 | Ile | Tyr
50 | Ser | Asp | Asn | His | Arg
55 | Pro | Ser | Gly | Val | Pro
60 | Asp | Arg | Phe | Ser | | | Gly
65 | Ser | Lys | Ser | Gly | Thr
70 | Ser | Ala | Ser | Leu | Ala
75 | Ile | Ser | Gly | Leu | Arg
80 | | 30 | Ser | Glu | Asp
Glu	Ala 85	Asp	Tyr	Tyr	Cys	Ala 90	Ala	Trp	Asp	Ser	Ser 95	Leu			Ser	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			35	<210 <211 <212 <213	L> ?>	36 111 PRI Art	ľ	cial	Sequ	ience	è										40	<220 <223		Liç	ght o	chair	ı vaı	riabl	le re	egior	n of	anti	ibody	y 442	286				45	<400 Gln 1		36 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn		50	Ser	Gly	Ser 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Ala	Asp	Asn	Trp	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		55	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp 85 90	95 Ser Ser Leu		----	--	---------------------		5	Ser Gly Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val 100 105	l Leu Gly 110		10	<210> 37 <211> 111 <212> PRT <213> Artificial Sequence				<220> <223> Light chain variable region of antibody 44	1 2S9		15	<pre><400> 37 Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr 1 5 10</pre>	r Pro Gly Gln 15		20	Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile 20 25	e Gly Ser Asn 30			Ser Gly Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro 35 40 45			25	Ile Tyr Ala Asp Asn His Arg Pro Ser Gly Val Pro Asp 50 55 60	Arg Phe Ser			Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser 65 70 75	r Gly Leu Arg 80		30	Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp 85 90	o Ser Ser Leu 95			Ser Gly Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val 100 105	l Leu Gly 110		35	<210> 38 <211> 111 <212> PRT <213> Artificial Sequence			40	<220> <223> Light chain variable region of antibody 44	4 2S10		45	<pre><400> 38 Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thi 1 5 10</pre>	r Pro Gly Gln 15			Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile 20 25	e Gly Ser Asn 30		50	Ser Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro 35 40 45	_			Ile Tyr Ser Asp Asn His Arg Pro Ser Gly Val Pro Asp 50 55 60	Arg Phe Ser		55	Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser 65 70 75	r Gly Leu Arg 80			Ser Glu	Asp Glu Ala 85	Asp Tyr Tyr	Cys Ala Ala Trp 90	Asp Ser Ser Leu 95		----	----------------------------------	--------------------------------	-------------------	------------------------	-----------------------		5	Ser Gly	Tyr Val Phe 100	Gly Gly Gly	Thr Lys Leu Thr 105	Val Leu Gly 110		10	<210> <211> <212> <213>	39 111 PRT Artificial	Sequence					<220> <223>	Light chai:	n variable ro	egion of antibod	ly 442M3		15	<400> Gln Ser 1	39 Val Leu Thr 5	Gln Pro Pro	Ser Ala Ser Gly	Thr Pro Gly Gln 15		20	Arg Val	Thr Ile Ser 20	Cys Ser Gly	Ser Ser Ser Asn 25	Ile Gly Ser Asn 30			Ser Gly	Ser Trp Tyr 35	Gln Gln Leu 40	Pro Gly Thr Ala	Pro Lys Leu Leu 45		25	Ile Tyr 50	Ala Asp Asn	Trp Arg Pro 55	Ser Gly Val Pro	Asp Arg Phe Ser			Gly Ser 65	Lys Ser Gly	Thr Ser Ala 70	Ser Leu Ala Ile 75	Ser Gly Leu Arg 80		30	Ser Glu	Asp Glu Ala 85	Asp Tyr Tyr	Cys Ala Ala Trp 90	Asp Ser Ser Leu 95		-	Ser Gly	Tyr Val Phe 100	Gly Gly Gly	Thr Lys Leu Thr 105	Val Leu Gly 110		35	<210> <211> <212> <213>	40 111 PRT Artificial	Sequence				40	<220> <223>	Light chai:	n variable re	egion of antibod	ly 442M4		45	<400> Gln Ser 1	40 Val Leu Thr 5	Gln Pro Pro	Ser Ala Ser Gly	Thr Pro Gly Gln 15		50	Arg Val	Thr Ile Ser 20	Cys Ser Gly	Ser Ser Ser Asn 25	Ile Gly Ser Asn 30			Ser Val	Ser Trp Tyr 35	Gln Gln Leu 40	Pro Gly Thr Ala	Pro Lys Leu Leu 45		55	Ile Tyr 50	Ser Asp Asn	His Arg Pro 55	Ser Gly Val Pro	Asp Arg Phe Ser			Gly Ser	Lys Ser Gly	Thr Ser Ala	Ser Leu Ala Ile	e Ser Gly Leu Arg			65	70	75	5 80		----	--------------------	--------------------------------	----------------------------	-----------------------------			Ser Glu As	p Glu Ala Asp 85	Tyr Tyr Cys Val Gly 90	7 Trp Asp Ser Ser Leu 95		5	Tyr Gly Hi	s Val Phe Gly 100	Gly Gly Thr Lys Let 105	1 Thr Val Leu Gly 110		10	<211> 1 <212> P	1 11 RT rtificial Seq	uence			15	<220> <223> I	ight chain va	riable region of ant	:ibody 442M5		20		1 1 Leu Thr Gln 5	Pro Pro Ser Ala Ser 10	r Gly Thr Pro Gly Gln 15			Arg Val Th	r Ile Ser Cys 20	Ser Gly Ser Ser Ser 25	r Asn Ile Gly Ser Asn 30		25		r Trp Tyr Gln 5	Gln Leu Pro Gly Thi	r Ala Pro Lys Leu Leu 45			Ile Tyr Se 50	r Asp Asn His	Arg Pro Ser Gly Val	l Pro Asp Arg Phe Ser 60		30	Gly Ser Ly 65	s Ser Gly Thr 70		a Ile Ser Gly Leu Arg 80			Ser Glu As	p Glu Ala Asp 85	Tyr Tyr Cys His Ala 90	a Trp Asp Ser Ser Leu 95		35	Trp Gly As	p Val Phe Gly 100	Gly Gly Thr Lys Let 105	ı Thr Val Leu Gly 110		40	<211> 1 <212> P	2 11 RT rtificial Seq	uence			45	<220> <223> I	ight chain va	riable region of ant	:ibody 442M6				2 l Leu Thr Gln 5	Pro Pro Ser Ala Ser 10	r Gly Thr Pro Gly Gln 15		50	Arg Val Th	r Ile Ser Cys 20	Ser Gly Ser Ser Ser 25	r Asn Ile Gly Ser Asn 30				r Trp Tyr Gln 5	Gln Leu Pro Gly Thi	r Ala Pro Lys Leu Leu 45		55	Ile Tyr Al 50	a Asp Asn Trp	Arg Pro Ser Gly Val	l Pro Asp Arg Phe Ser 60			Gly Ser 65	Lys Ser	Gly Thr 70	Ser Ala	Ser Leu	Ala Ile 75	Ser Gly	Leu Arg 80		----	----------------------------------	-----------------------------	---------------	---------------	----------------	---------------	----------------	---------------		5	Ser Glu	Asp Glu	Ala Asp 85	Tyr Tyr	Cys Ala 90	Ala Trp	Asp Ser	Ser Leu 95			Ser Gly	Tyr Val 100	Phe Gly	Gly Gly	Thr Lys	Leu Thr	Val Leu 110	Gly		10	<210> <211> <212> <213>	43 111 PRT Artific	cial Seq	uence						15	<220> <223>	Light (chain va	riable re	egion of	antibody	y 442M7			20	<400> Gln Ser 1	43 Val Leu	Thr Gln 5	Pro Pro	Ser Ala	Ser Gly	Thr Pro	Gly Gln 15			Arg Val	Thr Ile 20	Ser Cys	Ser Gly	Ser Ser 25	Ser Asn	Ile Gly 30	Ser Asn		25	Ser Val	Ser Trp 35	Tyr Gln	Gln Leu 40	Pro Gly	Thr Ala	Pro Lys 45	Leu Leu			Ile Tyr 50	Ser Asp	Asn His	Arg Pro 55	Ser Gly	Val Pro 60	Asp Arg	Phe Ser		30	Gly Ser 65	Lys Ser	Gly Thr 70	Ser Ala	Ser Leu	Ala Ile 75	Ser Gly	Leu Arg 80			Ser Glu	Asp Glu	Ala Asp 85	Tyr Tyr	Cys Ala 90	Ala Trp	Asp Ser	Ser Leu 95		35	Ser Gly	Tyr Val 100	Phe Gly	Gly Gly	Thr Lys 105	Leu Thr	Val Leu 110	Gly		40	<210> <211> <212> <213>	44 111 PRT Artifi	cial Seq	uence						45	<220> <223>	Light (chain va	riable re	egion of	antibody	y 442M8				<400> Gln Ser 1	44 Val Leu	Thr Gln 5	Pro Pro	Ser Ala	Ser Gly	Thr Pro	Gly Gln 15		50	Arg Val	Thr Ile	Ser Cys	Ser Gly	Ser Ser 25	Ser Asn	Ile Gly 30	Ser Asn			Ser Val	Ser Trp 35	Tyr Gln	Gln Leu 40	Pro Gly	Thr Ala	Pro Lys 45	Leu Leu		55	Ile Tyr 50	Ser Asp	Asn His	Arg Pro 55	Ser Gly	Val Pro 60	Asp Arg	Phe Ser			Gly Ser 65	Lys S	Ser Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		----	----------------------------------	---	----------------	-----------	-----------	-----------	------------	-----------	-----------	-----------	-----------	-------------------	-----------	-----------		5	Ser Gl	ı Asp (Glu Ala 85	Asp	Tyr	Tyr	Cys	His 90	Ala	Trp	Asp	Ser	Ser 95	Leu			Tyr Va	_	Val Phe 100	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			10	<210><211><211><212><213>	4 5 111 PRT Art	ificial	Seq	uence	.										15	<220> <223>	Ligh	ht chai	n va:	riabl	le re	∍gior	of	anti	ibody	7 442	2 M1 0				20	<400> Gln Ser 1	45 Val 1	Leu Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg Va	l Thr I	Ile Ser 20	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn		25	Ser Va	35 35	Irp Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile Ty:		Asp Asn	Phe	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		30	Gly Sea	Lys S	Ser Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser Gl	a Asp (Glu Ala 85	_	Tyr	Tyr	Cys	Ala 90	Ala	Trp	Asp	Ser	Ser 95	Leu		35	Ser Gl	-	Val Phe 100	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
40	<210> <211> <212> <213>	46 111 PRT Arti	ificial	Seq	uence	÷										45	<220> <223>	Ligl	ht chai	n va:	riabl	le re	egior	n of	anti	ibody	7 442	2M11					<400> Gln Ser 1	46 Val 1	Leu Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		50	Arg Va	l Thr I	Ile Ser 20	Суз	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn		55	Ser Va	Ser 3	Irp Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile Ty	Ser 1	Asp Asn	His	Arg	Pro	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser				50					55					60						----	------------------------------	------------------	-------------------------	------------	------------------	-----------	-----------	-----------	------------	-----------	------------------	-----------	---------------	------------	-----------	-----------			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		5	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	His 90	Ala	Trp	Asp	Ser	Ser 95	Leu		10	Ser	Gly	Asp	Phe 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210 <211 <212 <213	L> 2> 3>	47 11: PR: Art	ľ	cial	Sequ	uence	e											<220 <223		Li	ght o	chair	n vai	riab:	le re	egior	n of	ant	ibody	y 4 72	2 P				20	<400 Gln 1		47 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		25	Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn			Ser	Val	Ser 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		30	Ile	Tyr 50	Ala	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		35	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu			Ser	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			40	<210 <211 <212 <213	L> 2>	48 11: PR:	C	cial	Sea	1ence	-										45	<220 <223)>				-		le re	egior	n of	ant	ibody	y 4 72	2S1				50	<400 Gln 1		48 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn		55	Ser	Val	Ser 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Ala	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		----	------------------------------	------------------	-------------------------	------------	-----------	-----------	-----------	-----------	------------	-----------	------------------	-----------	---------------	--------------	-----------	-----------		5	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu		10	Ser	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210 <211 <212 <213	L> 2> 3>	49 111 PR1 Art		cial	Sequ	ience	è											<223	3>	Liq	ght o	chair	n vai	riabl	le re	gior	n of	anti	ibody	, 472	2S2				20	<400 Gln 1	-	49 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		25	Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn			Ser	Val	Ser 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		30	Ile	Tyr 50	Ala	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		35	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu			Ser	Gly		Val 100		Gly	Gly		Thr 105		Leu	Thr	Val	Leu 110	Gly			40	<210 <211 <212	L> 2>	50 111 PR	ľ														45	<213 <220 <223)>		tific		-			egior	n of	anti	ibody	, 4 72	2 s 3				50	<400 Gln 1		50 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn		55	Ser	Val	Ser 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu				yr Ala 50	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		----	---------------------------	------------------------------	------------	-------------------	-----------	-----------	-----------	------------	-----------	-----------	-----------	-----------	-------------	-----------	-----------		5	Gly So	er Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser G	lu Asp	Glu	Al a 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu		10	Ser G	Ly Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210><211><212><212><213>	51 11 PR A r	1	cial	Seq	uence	e										20	<223>	Li	ght (chai	n va	riabl	le re	egio	n of	ant	ibody	7 472	2S 4				20	<400> Gln So	51 er Val		Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		25	Arg V	al Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn			Ser V	al Ser 35	-	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		30	-	yr Ala 50	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly S	er Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		35	Ser G	lu Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu		40	Ser G	Ly Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			45	<210><211><211><212><213>		1	cial	Seq	ience	€										45	<220> <223>	Li	ght (chai	n va:	riab]	le re	egio	n of	ant:	ibody	, 472	2M1				50	<400> Gln Se	52 er Val		Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		55	Arg V	al Thr	Ile 20	Ser	Суз	Ser	Gly	Ser 25	Ser	Ser	Asn	Ile	Gly 30	Ser	Asn			Ser V	al Ser	Trp	Tyr	Gln	Gln	Leu	Pro	Gly	Thr	Ala	Pro	Lys	Leu	Leu					35					40					45					----	------------------------------	-----------	-------------------------	------------	---	-----------	-----------	-----------	------------	-----------	------------------	-----------	---------------	------------	-----------	-----------			Ile	Tyr 50	Ala	Asp	Ser	Asn	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		5	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		10	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Tyr	Ser 95	Leu			Ser	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210 <211 <212 <213	L> 2>	53 111 PRI Art	ľ	cial	Sequ	1ence	è										20	<220 <223		T.i c	tht c	chair	าซลา	riabl	le re	ea i or	n of	anti	i body	z 451	ΙÞ							nr.	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		100		.g	. 01	anci		, 43.					25	<400 Gln 1	-	53 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn		30	Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		35	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu		40	Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			45	<210 <211 <212 <213	L> 2>	54 111 PRI Art	r	cial	Sequ	ience	è																																																																																																													
		50	<220 <223		Lig	ght d	chair	ı vaı	riabl	le re	egior	n of	anti	ibody	y 4 51	LM1					<400 Gln 1		54 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		55	Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn			Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		----	------------------------------	------------------	---------------------------------	------------	------------------	-----------	-----------	-----------	------------	------------	------------------	-----------	-----------	-------------------	-----------	-----------		5	Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		10	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu			Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210 <211 <212 <213	1> 2>	55 111 PRI Art	ľ	cial	Sequ	ience	•										20	<220 <223		Liq	ght o	chair	ı vaı	riabl	e re	egior	o f	anti	body	7 451	LM2				25	<400 Gln 1)> Ser	55 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn		30	Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		35	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		40	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu		40	Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			45	<210 <211 <212 <213	1> 2>	56 111 PRI Ar t		cial	Sequ	ience	•										50	<220 <223		Liç	ght o	chair	ı vaı	riabl	e re	egior	of	anti	Lbody	7 451	LM3					<400 Gln 1)> Ser	56 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		55	Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn			Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		----	------------------------------	-----------	-------------------------	------------	-------------------	-----------	-----------	-----------	------------	-----------	------------------	-----------	---------------	------------	-----------	-----------		5	Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		10	Ser	Glu	Asp	Glu	Al a 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu			Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			15	<210 <211 <212 <213	> >	57 111 PRI Art		cial	Sequ	ience	è										20	<220 <223		Lig	ght o	chair	ı vaı	riabl	le re	gior	ı of	anti	ibody	, 4 51	LM4				25	<400 Gln 1		57 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn		30	Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		35	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		40	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu			Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			45	<210 <211 <212 <213	> >	58 111 PR1 Art		cial	Sequ	ience	.										50	<220 <223		Liç	ght o	chair	n vai	iabl	le re	egior	n of	anti	ibody	7 4 51	LM5				55	<400 Gln 1		58 Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile	Ser	Cys	Ser	Gly	Ser	Pro	Ser	Asn	Ile	Gly	Asn	Asn						20					25					30				----	----------------------	------------------	------------------	------------	------------------	-----------	-----------	-----------	------------	-----------	-----------	-----------	---------------	------------	-----------	-----------		_	Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		5	Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		10	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu		15	Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly				<210 <211 <212	L>	59 111 PR1															20	<213				cial	Sequ	ience	9											<220 <223	-	Liç	ght (chair	ı va	riabl	le re	egio	n of	ant:	ibody	y 4 51	LM6				25	<400	٦.	59																	Ser		Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln		30	Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn			Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu		35	Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser			Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80		40	Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu		_	Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly			45																			<210 <211 <212	L> 2>	60 111 PR	Г		_												50	<213	3>	Art	:1110	cial	Sequ	ience	€											<220 <223		Liç	ght o	chair	ı va	riabl	le re	egio	n of	ant:	ibody	y 4 5:	LM7				55	<400)>	60															55		Ser		Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Thr	Pro	Gly 15	Gln			Arg	Val	Thr	Ile 20	Ser	Cys	Ser	Gly	Ser 25	Pro	Ser	Asn	Ile	Gly 30	Asn	Asn		----	------------------------------	------------------	-----------------------	------------	------------------	-----------	-----------	-----------	------------	-----------	------------------	-----------	-----------	-------------------	-----------	-----------		5	Ser	Val	Thr 35	Trp	Tyr	Gln	Gln	Leu 40	Pro	Gly	Thr	Ala	Pro 45	Lys	Leu	Leu			Ile	Tyr 50	Tyr	Asp	Ser	His	Arg 55	Pro	Ser	Gly	Val	Pro 60	Asp	Arg	Phe	Ser		10	Gly 65	Ser	Lys	Ser	Gly	Thr 70	Ser	Ala	Ser	Leu	Ala 75	Ile	Ser	Gly	Leu	Arg 80			Ser	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Суѕ	Gly 90	Ser	Trp	Asp	Ala	Ser 95	Leu		15	Asn	Gly	Tyr	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110	Gly				<210 <211	l>	61 5	_														20	<212 <213	3>	PRI Ar t		cial	Sequ	uence	•										25	<220 <223		Неа	avy o	chair	n CDI	R1											25	<400 Asp 1		61 Asp	Met	Ser 5													30	<210 <211 <212 <213	L> 2>	62 5 PRI		cial	Seq	uence	e										35	<220 <223	3>		ıvy (chair	n CDI	R1											40	<400 Trp 1		62 Asp	Met	Thr 5													45	<210 <211 <212 <213	L> 2>	63 5 PRI Art		cial	Seqi	uence	e											<220 <223		Неа	avy o	chair	n CDI	R1											50	<400 Trp		63 As p	Leu	Ala 5													55	<210 <211		6 4 5																<212> <213>			----	----------------------------------	------------------------		5	<220> <223>	Heavy chain CDR1		10
<400>
Trp Tyr
1 | 64
Asp Met Ser
5 | | | | | | 15 | <210>
<211>
<212>
<213> | | | | <220>
<223> | Heavy chain CDR1 | | 20 | <400>
Trp Tyr | 65
Asp Ile Ala | | | 1 | 5 | | 25 | <210>
<211> | | | | <212> | | | | | Artificial Sequence | | 30 | <220>
<223> | Heavy chain CDR1 | | | .400- | | | | <400>
Trp Tvr | Asp Leu Ser | | 35 | 1 | 5 | | | | | | | <210> | 67 | | | <211> | 5 | | 40 | <212> | | | | <213> | Artificial Sequence | | | <220> | | | | <223> | Heavy chain CDR1 | | 45 | | | | | <400> | | | | His Tyr
1 | Asp Met Ser 5 | | | - | J | | 50 | -01 0- | 60 | | | <210>
<211> | 68
5 | | | <211> | PRT | | | <213> | Artificial Sequence | | 55 | <220> | | | | <223> | Heavy chain CDR1 | | | | | ``` <400> 68 Tyr Tyr Asp Met Ser 1 5 <210> 69 <211> 17 <212> PRT <213> Artificial Sequence 10 <220> <223> Heavy chain CDR2 <400> 69 Ser Ile Tyr Pro Asp Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val Gln 15 Gly 20 70 <210> <211> 17 <212> PRT <213> Artificial Sequence 25 <220> <223> Heavy chain CDR2 <400> 70 Thr Ile Asp Leu Asp Ser Gly Ser Ile Tyr Tyr Ala Asp Ser Val Gln 30 1 Gly 35 <210> 71 <211> 17 <212> PRT <213> Artificial Sequence 40 <220> <223> Heavy chain CDR2 <400> 71 Ser Ile Tyr Pro Asp Ser Gly Ser Thr Asp Tyr Ala Asp Ser Val Gln 45 10 Gly 50 <210> 72 <211> 17 <212> PRT <213> Artificial Sequence 55 <220> <223> Heavy chain CDR2 ``` | | <400>
Ser Ile | 72
Glu Pro | | Phe | Gly | Ser | Ser | | Tyr | Ala | Asp | Ser | | Arg | |----|-------------------|---------------|----------|----------|-------|-----|------|-----|-------|-----|-----|-----|------|------| | | 1 | | 5 | | | | | 10 | | | | | 15 | | | 5 | Gly | <210> | 73 | | | | | | | | | | | | | | 10 | <211>
<212> | 17
PRT | | | | | | | | | | | | | | | <213> | Artifi | cial | Sequ | ience | 9 | | | | | | | | | | | <220> | | | | | | | | | | | | | | | | <223> | Heavy | chair | n CDI | R2 | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | | <400> | 73 | | | | | | | | | | | | | | | Ile Ile | Glu Pro | | Ser | Gly | Ser | Ile | | Tyr | Ala | Asp | Ser | | Gln | | | 1 | | 5 | | | | | 10 | | | | | 15 | | | 20 | Gly | <210> | 74 | | | | | | | | | | | | | | 25 | <211> | 17 | | | | | | | | | | | | | | | <212> | PRT | | | | | | | | | | | | | | | <213> | Artifi | cial | Sequ | ience | 9 | | | | | | | | | | | <220> | | | | | | | | | | | | | | | 30 | <223> | Heavy | chair | n CDI | R2 | <400> | 74 | | | | | | | | | | | | | | | Ser Ile | Glu Pro | | Ser | Gly | Ser | Thr | | Tyr | Ala | Asp | Ser | | Gln | | 35 | 1 | | 5 | | | | | 10 | | | | | 15 | | | | Gly | | | | | | | | | | | | | | | | _ | 40 | <210> | 75 | | | | | | | | | | | | | | | <211> | 17 | | | | | | | | | | | | | | | <212> | PRT | | a | | _ | | | | | | | | | | | <213> | Artifi | Clai | sequ | ience | 2 | | | | | | | | | | 45 | <220> | | | | | | | | | | | | | | | | <223> | Heavy | chair | n CDI | R2 | | | | | | | | | | | | 4400 - | 75 | | | | | | | | | | | | | | | <400>
Thr Ile | 75
Glu Pro | Aen | Ser | GI v | Ser | Thr | Тут | Тиг | Δls | Aen | Ser | Va 1 | Gl n | | 50 | 1 | JIU FIL | Asp
5 | ⊃€T | GTA | SET | -111 | 10 | - Y T | n.a | rah | ⊃€T | 15 | -111 | | | | | | | | | | - | | | | | | | | | Ser | 55 | <210> | 76 | | | | | | | | | | | | | | | <211> | 17 | | | | | | | | | | | | | ``` <212> PRT Artificial Sequence <213> <220> <223> Heavy chain CDR2 5 <400> 76 Gly Ile Ser Tyr Asp Gly Gly Asn Thr Tyr Tyr Ala Asp Ser Val Lys 10 10 Gly <210> 77 15 <211> 17 <212> PRT <213> Artificial Sequence <220> Heavy chain CDR2 20 <223> <400> Ala Ile Tyr Tyr Asp Ser Gly Ser Ile Tyr Tyr Ala Asp Ser Ala Lys 10 25 Gly <210> 78 30 <211> 12 <212> PRT <213> Artificial Sequence <220> 35 <223> Heavy chain CDR3 <400> 78 Asp Leu His Met Gly Pro Glu Gly Pro Phe Asp Tyr 40 <210> 79 <211> 12 <212> PRT 45 <213> Artificial Sequence <220> <223> Heavy chain CDR3 50 <400> 79 Asp Arg His Met Trp Pro Glu Gly Pro Phe Asp Tyr 5 10 80 <210> 55 <211> 12 <212> PRT ``` ``` <213> Artificial Sequence <220> Heavy chain CDR3 <223> 5 <400> 80 Asp Leu His Met Trp Pro Glu Gly Pro Phe Asp Tyr 10 <210> 81 <211> 18 <212> PRT <213> Artificial Sequence 15 <220> <223> Heavy chain CDR3 <400> 81 Asp Pro Ser Trp Cys Leu Gln Asp Leu Cys Tyr Tyr Ala Asp Gly Met 20 10 Asp Val 25 <210> 82 <211> 12 <212> PRT <213> Artificial Sequence 30 <220> <223> Heavy chain CDR3 <400> 82 35 Asp Arg Leu Phe Val Ser Asp Ser Thr Phe Asp Tyr 5 <210> 83 12 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Heavy chain CDR3 45 <400> 83 Asp Arg Leu Phe Met Ser Asp Ser Thr Phe Asp Tyr 5 1 50 <210> 84 <211> 12 <212> PRT <213> Artificial Sequence 55 <220> <223> Heavy chain CDR3 ``` | | <400> 84 | |----|---| | | Asp Arg Leu Phe Ala Ser Asp Ser Thr Phe Asp Tyr | | | 1 5 10 | | £ | | | 5 | | | | <210> 85 | | | <211> 12 | | | <212> PRT | | | <213> Artificial Sequence | | 10 | <u>-</u> | | | <220> | | | <223> Heavy chain CDR3 | | | - | | | | | 45 | <400> 85 | | 15 | Asp Arg Leu Phe Glu Ser Asp Ser Thr Phe Asp Tyr | | | 1 5 10 | | | | | | | | | <210> 86 | | 20 | <211> 13 | | | <212> PRT | | | | | | <213> Artificial Sequence | | | <220> | | 05 | | | 25 | <223> Light chain CDR1 | | | | | | 1400 | | | <400> 86 | | | Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Ser Val Ser | | 30 | 1 5 10 | | | | | | | | | <210> 87 | | | <211> 13 | | 35 | <212> PRT | | 33 | <213> Artificial Sequence | | | | | | <220> | | | <223> Light chain CDR1 | | | | | 40 | | | | <400> 87 | | | Ser Gly Ser Ser Asn Ile Gly Ser Asn Ser Gly Ser | | | 1 5 10 | | | | | 45 | | | | <210> 88 | | | <211> 7 | | | <212> PRT | | | <213> Artificial Sequence | | 50 | | | 50 | <220> | | | <223> Light chain CDR2 | | | | | | | | | <400> 88 | | 55 | Ser Asp Asn His Arg Pro Ser | | | 1 5 | | | | | | <210> 89 | |----------|--| | | <211> 7 | | | <212> PRT | | | <213> Artificial Sequence | | 5 | | | | <220> | | | <223> Light chain CDR2 | | | | | | <4 00> 89 | | 10 | Ala Asp Asn Trp Arg Pro Ser | | | 1 5 | | | | | | <210> 90 | | | <211> 7 | | 15 | <212> PRT | | | <213> Artificial Sequence | | | • | | | <220> | | | <223> Light chain CDR2 | | 20 | | | | <4 00> 90 | | | Ala Asp Asn His Arg Pro Ser | | | 1 5 | | | | | 25 | | | | <210> 91 | | | <211> 7 | | | <212> PRT | | | <213> Artificial Sequence | | 30 | <220> | | | <223> Light chain CDR2 | | | - | | | | | 35 | <400> 91 | | 35 | Ala Asp Asn Phe Arg Pro Ser
1 5 | | | ± 2 | | | | | | | | | <210> 92 | | 40 | <211> 7 | | 40 | <211> 7
<212> PRT | | 40 | <211> 7 | | 40 | <211> 7 <212> PRT <213> Artificial Sequence | | 40 | <211> 7 <212> PRT <213> Artificial Sequence <220> | | | <211> 7 <212> PRT <213> Artificial Sequence <220> | | 40 | <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 | | | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92</pre> | | | <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser | | | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92</pre> | | | <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser | | 45 | <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser 1 5 | | 45 | <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser | | 45 | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser</pre> | | 45 | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser</pre> | | 45 | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser</pre> | | 45
50 | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser</pre> | | 45
50 | <pre><211> 7 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR2 <400> 92 Ala Asp Ser Asn Arg Pro Ser</pre> | | | <400> 93 | |----|---| | | Tyr Asp Ser His Arg Pro Ser | | | 1 5 | | _ | | | 5 | | | | <210> 94 | | | <211> 11 | | | <212> PRT | | | <213> Artificial Sequence | | 10 | | | | <220> | | | | | | <223> Light chain CDR3 | | | | | | <400> 94 | | 15 | | | | Ala Ala Trp Asp Ser Ser Leu Ser Gly Tyr Val | | | 1 5 10 | | | | | | | | 20 | <210> 95 | | 20 | <211> 11 | | | <212> PRT | | | <213> Artificial Sequence | | | | | | <220> | | 25 | <223> Light chain CDR3 | | | - | | | | | | <400> 95 | | | Gln Gly Trp Asp Thr Ser Leu Ser Gly His Val | | •• | 1 5 10 | | 30 | | | | | | | <210> 96 | | | <211> 11 | | | <212> PRT | | 35 | | | | <213> Artificial Sequence | | | .000 | | | <220> | | | <223> Light chain CDR3 | | | | | 40 | | | | <400> 96 | | | Val Gly Trp Asp Ser Ser Leu Tyr Gly His Val | | | 1 5 10 | | | | | 45 | | | | <210> 97 | | | <211> 11 | | | <212> PRT | | | <213> Artificial Sequence | | | • | | 50 | <220> | | | <223> Light chain CDR3 | | | y | | | | | | <400> 97 | | 55 | His Ala Trp Asp Ser Ser Leu Trp Gly Asp Val | | | 1 5 10 | | | | | | <210>
<211> | 98
11 | |----|------------------
--| | | <212> | PRT | | 5 | <213> | Artificial Sequence | | | <220> | Tight chair CDD2 | | | <223> | Light chain CDR3 | | 10 | <400> | 98 | | ,, | 1 | Trp Asp Ser Ser Leu Tyr Val Asp Val 5 10 | | | .010 | 22 | | | <210>
<211> | 99
11 | | 15 | <212> | | | | <213> | | | | <220> | | | 20 | <223> | Light chain CDR3 | | | 4400b | 99 | | | <400>
His Ala | Trp Asp Ser Ser Leu Ser Gly Asp Phe | | | 1 | 5 10 | | 25 | | | | | <210> | | | | <211>
<212> | 11
PRT | | | <213> | Artificial Sequence | | 30 | <220> | | | | <223> | Light chain CDR3 | | | | 5 | | | <400> | 100 | | 35 | Gly Ser
1 | Trp Asp Tyr Ser Leu Ser Gly Tyr Val 5 10 | | | 1 | 5 10 | | | <210> | 101 | | 40 | <211> | 11 | | .• | <212>
<213> | PRT Artificial Sequence | | | | Altilitial bequence | | | <220> | Tink sheir CDD2 | | 45 | <223> | Light chain CDR3 | | 40 | | | | | <400> | 101 | | | Gly Ser
1 | Trp Asp Ala Ser Leu Asn Gly Tyr Val 5 10 | | 50 | | · | | 50 | <210> | 102 | | | <211> | 17 | | | <212> | PRT | | | <213> | Artificial Sequence | | 55 | <220> | | | | <223> | Heavy chain CDR2 | ``` <400> 102 Thr Ile Glu Pro Asp Tyr Gly Ser Thr Leu Tyr Ala Asp Ser Val Gln 5 15 5 Gly <210> 103 <211> 13 10 <212> PRT <213> Artificial Sequence <220> <223> Light chain CDR1 15 <400> 103 Ser Gly Ser Pro Ser Asn Ile Gly Asn Asn Ser Val Thr 1 5 10 20 ``` #### **Claims** 25 30 35 40 45 - 1. A pharmaceutical composition for use in the prevention or treatment of a cancer or anti-cancer drug resistance, the pharmaceutical composition comprising an antibody or an antigen-binding fragment thereof that specifically binds to ErbB3, comprising heavy chain complementarity determining regions (CDR-Hs) and light chain complementarity determining regions (CDR-Ls), wherein the antibody is selected from the group consisting of: - (1) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 70, a CDR-H3 having the sequence of SEQ ID NO: 78, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 88, and a CDR-L3 having the sequence of SEQ ID NO: 95. - (2) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 73, a CDR-H3 having the sequence of SEQ ID NO: 78, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 88, and a CDR-L3 having the sequence of SEQ ID NO: 94; - (3) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 74, a CDR-H3 having the sequence of SEQ ID NO: 79, a CDR-L1 having the sequence of SEQ ID NO: 87, a CDR-L2 having the sequence of SEQ ID NO: 89, and a CDR-L3 having the sequence of SEQ ID NO: 94; - (4) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 63, a CDR-H2 having the sequence of SEQ ID NO: 76, a CDR-H3 having the sequence of SEQ ID NO: 81, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 92, and a CDR-L3 having the sequence of SEQ ID NO: 100; - (5) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 66, a CDR-H2 having the sequence of SEQ ID NO: 76, a CDR-H3 having the sequence of SEQ ID NO: 81, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 92, and a CDR-L3 having the sequence of SEQ ID NO: 100. - 2. The pharmaceutical composition of claim 1, wherein the cancer is selected from the group consisting of breast cancer, skin cancer, head and neck cancer, pancreatic cancer, lung cancer, colon cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer, bladder cancer, uterine cancer, liver cancer, kidney cancer, clear cell sarcoma, melanoma, cerebrospinal tumors, brain cancer, thymoma, mesothelioma, esophageal cancer, biliary tract cancer, testicular cancer, germinal cancer, thyroid cancer, parathyroid cancer, cervical cancer, endometrial cancer, lymphoma, myelodysplastic syndromes (MDS), myelofibrosis, acute leukemia, chronic leukemia, multiple myeloma, Hodgkin's disease, endocrine cancer, and sarcoma. - 3. The pharmaceutical composition of any one of claims 1 to 2, further comprising an anti-cancer drug. - **4.** The pharmaceutical composition of claim 3, wherein the anti-cancer drug is Cetuximab, Panitumumab, Erlotinib, Gefitinib, Trastuzumab, T-DM1, Pertuzumab, Lapatinib, Paclitaxel, Tamoxifen, Cisplatin, anti-CTLA-4 antibody, anti-PD-1 antibody, anti-PD-LI antibody, 5-fluorouracil (5FU), Gemcitabine, or a combination thereof. - 5 The pharmaceutical composition of claim 4, wherein the pharmaceutical composition further comprises a single composition or separate compositions. 10 15 20 25 30 40 45 50 55 - **6.** An antibody or antigen-binding fragment thereof for use in the prevention or treatment of a cancer or anti-cancer drug resistance in an individual, the antibody or the antigen-binding fragment thereof that specifically binds to ErbB3, comprising heavy chain complementarity determining regions (CDR-Hs) and light chain complementarity determining regions (CDR-Ls), wherein the antibody is selected from the group consisting of: - (1) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 70, a CDR-H3 having the sequence of SEQ ID NO: 78, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 88, and a CDR-L3 having the sequence of SEQ ID NO: 95: - (2) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 73, a CDR-H3 having the sequence of SEQ ID NO: 78, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 88, and a CDR-L3 having the sequence of SEQ ID NO: 94: - (3) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 61, a CDR-H2 having the sequence of SEQ ID NO: 74, a CDR-H3 having the sequence of SEQ ID NO: 79, a CDR-L1 having the sequence of SEQ ID NO: 87, a CDR-L2 having the sequence of SEQ ID NO: 89, and a CDR-L3 having the sequence of SEQ ID NO: 94; - (4) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 63, a CDR-H2 having the sequence of SEQ ID NO: 76, a CDR-H3 having the sequence of SEQ ID NO: 81, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 92, and a CDR-L3 having the sequence of SEQ ID NO: 100; - (5) an antibody comprising a CDR-H1 having the sequence of SEQ ID NO: 66, a CDR-H2 having the sequence of SEQ ID NO: 76, a CDR-H3 having the sequence of SEQ ID NO: 81, a CDR-L1 having the sequence of SEQ ID NO: 86, a CDR-L2 having the sequence of SEQ ID NO: 92, and a CDR-L3 having the sequence of SEQ ID NO: 100. - 7. The antibody or antigen-binding fragment thereof for use according to claim 6, further comprising administering an anti-cancer drug to the individual. 61 #### FIG. 1A CDR1 CDR2 CDR3 Antibody $evollesggglvqpggslrlscaasgftfs
\underline{\hspace{-0.05cm}}\underline{\hspace{-0.05cm$ -GPFDYWGQGTLVTVSS 442P evollesggglvopggsirlscaasgfffs<mark>dydms</mark>wrqapgkglewy<u>stidldsgstyyadsvog</u>rftisrdnskntlylomnslraedtavyycak<mark>dl+mgpe</mark> evollesggglvopggsirlscaasgfffs<u>dydms</u>wrqapgkglewy<u>stypdsgstdyadsvog</u>rftisrdnskntlylomnslraedtavyycak<u>Dl+mgp</u>i -GPFDYWGQGTLVTVSS 442S1 -GPFDYWGQGTLVTVSS 44252 EVOLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWVRQAPGKGLEWVSSIEPDFGSSYYADSVRGPFTISRDNSKNTLYLQMNSLRAEDTAVYYCAMDLHMGPE -GPFDYWGQGTLVTVSS 442S4 EVOLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWYRQAPGKGLEWYSLEPDSGSIYYADSVQGRFTISRDNSKYTLYLQMNSLRAEDTAVYYCAKDLHMGPE— EVOLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWYRQAPGKGLEWYSIYPDSGSTDYADSVQGRFTISRDNSKYTLYLQMNSLRAEDTAVYYCAKDRHMWPE EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWYRQAPGKGLEWYSIYPDSGSTYYADSVQGPFTISRDNSKYTLYLQMNSLRAEDTAVYYCAKDRHMWPE 442S5 <u>GPFDY</u>WGQGTLVTVSS -GPFDYWGQGTLVTVSS 44286 GPFDYWGQGTLVTVSS 44289 EVOLLESGGGLVOPGGSLRLSCAASGFTFSDYDMSWYROAPGKGLEWYSSIYPDSGSTYYADSVQGPFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKDRHMWPE EVOLLESGGGLVOPGGSLRLSCAASGFTFSDYDMSWYROAPGKGLEWYSSIYPDSGSTYYADSVQGPFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKDRHMWPE EVOLLESGGGLVOPGGSLRLSCAASGFTFSDYDMSWYROAPGKGLEWYSTIDLDSGSIYYADSVQGPFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKDLHMGPE--GPFDYWGQGTLVTVSS 442510 -GPFD\WGQGTLVTVSS 442M3 -GPFDYWGQGTLVTVSS 442M4 EVOLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWYRQAPGKGLEVW9TIDLDSGSIYYADSVQQRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDLHMGPE -GPFDYWGQGTLVTVSS 442M5 442M6 -GPFDYWGQGTLVTVSS 442M7 EVOLLESGGGLVQPGGSLRLSCAASGFTFS<mark>DYDMS</mark>WVRQAPGKGLEVVYS<mark>TIEPDSGSTYYADSVQS</mark>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDLHMGPE **GPFDYWGQGTLVTVSS** EVQLLESGGGLVQPGGSLRLSCAASGFTFS<mark>DYDMS</mark>WYRCAPGKGLEWYS<mark>SYYDSGSTYYADSVQQ</mark>RFTISRDNSKNTLYLQMNSLRAEDTAWYCAY<mark>DLHMGP</mark>F -GPFDYWGQGTLVTVSS 442M8 442M10 -GPFDYMGQGTLVTVSS GPFDYWGQGTLVTVSS EVOLLESGGGLVQPGGSLRLSCAASGFTFS<mark>DYDMS</mark>MVRQAPGKGLEWVS<u>TIEPDYGSTLYADSVQG</u>RFTISRDNSKNTLYLQMINSLRAEDTAVYYCAK<mark>DLHMGPE</mark> 442M11 EVQLLESGGGLVQPGGSLRLSCAASGFTF\$DYDM\$WYRQAPGKGLEWV\$GISYDGGNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAFDP\$WCLQDLCYYADGMDYWGQGTLVTVSS 472P EVOLLESGGGLVQPGGSLRLSCAASGFTF\$WYDMTWVRQAPGKGLEWV\$GISYDGGNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAFDPSWCLQDLCYYADGMDYWGQGTLVTVSS 472S1 EVQLLESGGGLVQPGGSLRLSCAASGFTF\$WYDLAWVRQAPGKGLEWV\$GISYDGGNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAPDPSWCLQDLCYYADGMDYNGQGTLYTV\$\$ 47282 EVOLLESGGGLVQPGGSLRLSCAASGFTFS<u>WYDMS</u>WVRQAPGKGLEWVS<u>GISYDGGNTYYADSVKG</u>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR<mark>DPSWCLQDLCYYADGMDW</mark>WGQGTLVTVSS EVOLLESGGGLVQPGGSLRLSCAASGFTFS<u>WYDM</u>WVRQAPGKGLEWVS<u>GISYDGGNTYYADSVKG</u>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR<u>DPSWCLQDLCYYADGMDW</u>WGQGTLVTVSS 472S3 47284 472M1 evgllesggglvqpggslrlscaasgftfs<u>wydls</u>wrqapgkglews<u>gisydggntyyadsvkg</u>rftisrdnskntlylqmnslaedtavyycaf<u>dpswclqdlcyyadgmd</u>wgggtlvtvss EVOLLESGGGLVQPGGSLRLSCAASGFTF5DYDMSWVRQAPGKGLEWWSAIYYDSGSIYYADSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAMDRLFVSD-451P -STFDYWGOGTLVTVSS EVOLLESGGGLVQPGGSLRLSCAASGFTF5DYDMSWVRQAPGKGLEWV9AIYYDSGSYYADSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRLFMSD--STFDYWGQGTLVTVSS 451M1 EVQLLESGGGLVQPGGSLRLSCAASGFTFSQVDMSWVRQAPGKGLEWVSAIYYDSGSIYYADSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRLFASD -STFDYWGQGTLVTVSS 451M2 ${\tt evollesggglvqpggslrlscaasgfff} \underline{{\tt hydm}} \underline{{\tt hydmp}} \underline{{\tt hydmp}} \underline{{\tt hydmp}} \underline{{\tt hydgs}} hydg$ STFDYWGQGTLVTVSS 451M3 451M4 <u>STFDY</u>WGQGTLVTVSS EVQLLESGGGLVQPGGSLRLSCAASGFTF<u>\$DYDM\$</u>WVRQAPGKGLEWV<u>\$AYYDSGSIYYADSAKG</u>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK<u>DRLFESD</u> EVQLLESGGGLVQPGGSLRLSCAASGFTF<u>\$HYDM\$</u>WVRQAPGKGLEWV<u>\$AYYDSGSIYYADSAKG</u>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK<u>DRLFESD</u> 451M6 STFDYWGQGTLVTVSS STFDYWGQGTLVTVSS 451M6 EVOLLESGGGLVQPGGSLRLSCAASGFTFSYYDMSWVRQAPGKGLEWVSAIYYDSGSIYYADSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRLFESD--STFDYWGQGTLVTVSS 451M7 Figure 2 Figure 4A Figure 4B Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Category Χ Χ 1 EPO FORM 1503 03.82 (P04C01) US #### **EUROPEAN SEARCH REPORT** Citation of document with indication, where appropriate, anti-cancer antibodies and combination HUMAN VACCINES AND IMMUNOTHERAPEUTICS. vol. 12, no. 3, 3 November 2015 (2015-11-03), pages * whole document, especially section "Monoclonal Antibodies Targeting HER3" and AURISICCHIO L ET AL: "The promise of ONCOTARGET, IMPACT JOURNALS LLC, UNITED vol. 3, no. 8, 10 August 2012 (2012-08-10), pages 744-758, XP002690058, anti-ErbB3 monoclonals as new cancer * whole document, especially section GIANLUCA SALA ET AL: "EV20, a Novel vol. 6, no. 6, 1 December 2013 (2013-12-01), pages ISSN: 1936-5233, DOI: 10.1593/tlo.13475 "Monospecific anti-ErbB3 antibodies" and Anti-ErbB-3 Humanized Antibody, Promotes ErbB-3 Down-Regulation and Inhibits Tumor of relevant passages NADEGE GABORIT ET AL: "Emerging therapies targeting HER3/ERBB3" ISSN: 2164-5515, DOI: 10.1080/21645515.2015.1102809 576-592, XP055405052, Tables 1, 2 * therapeuticals" , pages /44-/58, AP00 ISSN: 1949-2553, DOI: 10.18632/ONCOTARGET.550 TRANSLATIONAL ONCOLOGY. 676-IN9, XP055168432, * the whole document * STATES, Table 1 * Growth In Vivo" Application Number EP 20 19 6712 CLASSIFICATION OF THE APPLICATION (IPC) INV. C07K16/32 C07K16/28 A61K31/00 A61P35/00 A61K39/395 TECHNICAL FIELDS SEARCHED (IPC) C07K A61K A61P Relevant to claim 1-7 1-7 1-7 5 50 | | -/ | | |--
--|----------------| | The present search report has | been drawn up for all claims | | | Place of search | Date of completion of the search | Examiner | | The Hague | 18 December 2020 | Luyten, Kattie | | CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with anot document of the same category A: technological background O: non-written disclosure P: intermediate document | E : earlier patent docur
after the filing date
her D : document cited in t
L : document cited for | | | | | | 55 page 1 of 3 # **EUROPEAN SEARCH REPORT** Application Number EP 20 19 6712 5 | | | DOCUMENTS CONSID | ERED TO BE RELEVANT | |] | |-----------------------------------|---|---|---|--|---| | | Category | Citation of document with ir
of relevant pass | ndication, where appropriate,
ages | Relevant
to claim | CLASSIFICATION OF THE APPLICATION (IPC) | | 10 | X | Promotes Resistance
Head and Neck and O
Models",
MOLECULAR CANCER TH
vol. 13, no. 5, 5 M
pages 1345-1355, XF | ERAPEUTICS,
lay 2014 (2014-05-05), | 1-7 | | | | | US
ISSN: 1535-7163, DC
10.1158/1535-7163.M
* the whole documen | ICT-13-1033 | | | | 20 | X | AL) 12 December 201 | specially the Examples, | 1-7 | | | 25 | X | ET AL) 4 April 2013 | DALY CHRISTOPHER [US]
(2013-04-04)
especially the Examples | 1-7 | TECHNICAL FIELDS
SEARCHED (IPC) | | 30 | X | 27 December 2012 (2 | TAKAHASHI NOBUAKI [JP])
1012-12-27)
1012-12-27)
1012-12-27 | 1-7 | | | 35 | X | 2 April 2015 (2015- | ecially Examples 5-6, | 1-7 | | | | | | -/ | | | | 40 | | | | | | | 45 | | | | | | | 45 | | The present search report has l | been drawn up for all claims | | | | 1 | | Place of search | Date of completion of the search | | Examiner | | 04C01 | | The Hague | 18 December 2020 | Luy | ten, Kattie | | 90
PO FORM 1503 03.82 (P04C01) | X : part
Y : part
docu
A : tech
O : non | ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category innojolal backgroundwritten disclosure rmediate document | T: theory or principle E: earlier patent door after the filing date D: document cited in L: document cited fo | ument, but public
the application
rother reasons | shed on, or | 55 page 2 of 3 # **EUROPEAN SEARCH REPORT** Application Number EP 20 19 6712 5 | J | | |----|--| | 10 | | | 15 | | | 20 | | | 25 | | | 30 | | | 35 | | | 40 | | | 45 | | | 50 | | | 1 | ŀ | |----------|---| | (P04C01) | L | | 03.82 (F | | | 1503 | | | D FORM | | | ĕ | l | | | DOCUMENTS CONSID | ERED TO BE RELEVANT | | | |---|---|--|--|--| | Category | Citation of document with in
of relevant pass | ndication, where appropriate,
ages | Relevant
to claim | CLASSIFICATION OF THE
APPLICATION (IPC) | | Х | enhances antitumor
against erbB2-overe
cancer",
BREAST CANCER RESEA
GROUP LTD, GB,
vol. 15, no. 5, | with MM-121/SAR256212 activity of paclitaxel expressing breast arch, CURRENT MEDICINE 013-10-29), page R101, 01: 10.1186/BCR3563 | 1-7 | | | Х | | ERRIMACK PHARMACEUTICALS
by 2013 (2013-01-16)
Figures * | 1-7 | | | | | | | TECHNICAL FIELDS
SEARCHED (IPC) | The present search report has | been drawn up for all claims | | | | | Place of search The Hague | Date of completion of the search 18 December 2020 | Luy | Examiner
ten, Kattie | | X : part
Y : part
docu
A : tech
O : non | ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot unent of the same category inological background written disclosure rmediate document | T: theory or principle E: earlier patent door after the filing date b: document cited in L: document cited for | ument, but publise the application r other reasons | shed on, or | 55 page 3 of 3 #### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO. EP 20 19 6712 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5 18-12-2020 | | Patent document cited in search report | Publication date | Patent family
member(s) | Publication
date | |------------|--|------------------|---|--| | | US 2013330772 A1 | 12-12-2013 | AR 080873 A1 AU 2011245636 B2 BR 112012025730 A2 CA 2795799 A1 CN 102884085 A CN 105968206 A EP 2566895 A2 ES 2566602 T3 HK 1178184 A1 IL 222272 A JP 5906233 B2 JP 2013523166 A KR 20130043106 A MX 343227 B NZ 603271 A RU 2012147591 A SG 184452 A1 US 2011256154 A1 US 2013330772 A1 US 2016264679 A1 US 2018030149 A1 US 2020299406 A1 WO 2011136911 A2 ZA 201208290 B | 16-05-2012
22-12-2016
10-01-2017
03-11-2011
16-01-2013
28-09-2016
13-03-2013
14-04-2016
06-09-2013
30-04-2018
20-04-2016
17-06-2013
29-04-2013
28-10-2016
30-05-2014
29-11-2012
20-10-2011
12-12-2013
15-09-2016
01-02-2018
24-09-2020
03-11-2011
31-07-2013 | | FORM P0459 | US 2013084297 A1 | 04-04-2013 | AR 088171 A1 AU 2012316402 A1 AU 2017206185 A1 BR 112014007382 A2 CA 2849508 A1 CL 2014000758 A1 CN 103917562 A CO 6940383 A2 EA 201490717 A1 EA 201791393 A2 EP 2760893 A2 EP 2760893 A2 ES 2694153 T3 HK 1200468 A1 IL 231318 A JP 6271432 B2 JP 6563472 B2 JP 6563472 B2 JP 2014530215 A JP 2018080185 A KR 20140069331 A MX 357391 B NZ 623438 A | 14-05-2014
17-04-2014
03-08-2017
04-04-2017
04-04-2013
22-08-2014
09-07-2014
09-05-2014
30-09-2014
30-11-2017
06-08-2014
18-12-2018
07-08-2015
29-03-2018
31-01-2018
21-08-2019
17-11-2014
24-05-2018
09-06-2014
06-07-2018
30-10-2015 | $\stackrel{ ext{O}}{ ext{th}}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82 55 10 15 20 25 30 35 40 45 50 page 1 of 3 #### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO. EP 20 19 6712 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5 18-12-2020 | Patent document
cited in search report | Publication
date | Patent family
member(s) | Publication
date | |---|---------------------|--|--| | | | SG 11201400150T A TW 201329103 A TW 201809012 A US 2013084297 A1 US 2014308279 A1 US 2016144029 A1 US 2018036406 A1 US 2020276307 A1 WO 2013048883 A2 ZA 201401424 B | 28-03-2014
16-07-2013
16-03-2018
04-04-2013
16-10-2014
26-05-2016
08-02-2018
03-09-2020
04-04-2013
27-01-2016 | | US 2012328623 A | 1 27-12-2012 | AU 2012274461 A1
CA 2840461 A1
CN 103781800 A
EP 2722343 A1
JP W02012176779 A1
KR 20140033152 A
US 2012328623 A1
WO 2012176779 A1 | 16-01-2014
27-12-2012
07-05-2014
23-04-2014
23-02-2015
17-03-2014
27-12-2012
27-12-2012 | | WO 2015048008 A | 2 02-04-2015 | US 2016237162 A1
WO 2015048008 A2 | 18-08-2016
02-04-2015 | | EP 2544680 A | 2 16-01-2013 | AU 2011224186 A1 BR 112012022802 A2 CA 2792327 A1 CN 102858335 A DK 2544680 T3 EA 201201186 A1 EP 2544680 A2 EP 2859893 A1 ES 2535503 T3 HK 1174254 A1 IL 221693 A JP 6185102 B2 JP 2013522237 A JP 2016166203 A KR 20130005280 A MX 344355 B NZ
602084 A PL 2544680 T3 PT 2544680 E SG 183532 A1 UA 111149 C2 US 2013034548 A1 US 2015132292 A1 | 13-09-2012
15-05-2018
15-09-2011
02-01-2013
27-04-2015
29-11-2013
16-01-2013
15-04-2015
07-06-2013
29-10-2015
23-08-2017
13-06-2013
15-09-2016
15-01-2013
14-12-2016
25-07-2014
31-08-2015
06-05-2015
27-09-2012
11-04-2016
07-02-2013 | $\stackrel{\circ}{\mathbb{L}}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82 55 10 15 20 25 30 35 40 45 50 page 2 of 3 #### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO. EP 20 19 6712 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 18-12-2020 | Patent document cited in search report | Publication
date | | Patent family member(s) | | Publicatio
date | |--|---------------------|----------------------|---|----------|--| | | | US
US
WO
ZA | 2017291957
2019119401
2011112953
201206425 | A1
A2 | 12-10-2
25-04-2
15-09-2
26-08-2 | or more details about this annex : see | | | | | | page 3 of 3 #### REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. #### Patent documents cited in the description • KR 1020150173281 [0008] #### Non-patent literature cited in the description WANG S. et al. Oncogene, 2010, vol. 29, 4225-4236 [0080]