(11) EP 3 779 200 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 17.02.2021 Bulletin 2021/07

(21) Application number: 18912376.3

(22) Date of filing: 17.10.2018

(51) Int CI.: F04C 29/02 (2006.01) F04C 23/00 (2006.01)

F04C 18/356 (2006.01)

(86) International application number: **PCT/JP2018/038727**

(87) International publication number: WO 2019/187272 (03.10.2019 Gazette 2019/40)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

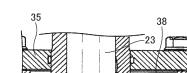
Designated Extension States:

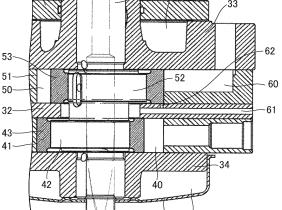
BAME

Designated Validation States:

KH MA MD TN

(30) Priority: 29.03.2018 JP 2018063470


(71) Applicant: Panasonic Intellectual Property Management Co., Ltd. Osaka-shi, Osaka 540-6207 (JP)


(72) Inventor: OGASAWARA Hirotsugu Osaka-shi, Osaka 540-6207 (JP)

(74) Representative: Eisenführ Speiser
Patentanwälte Rechtsanwälte PartGmbB
Postfach 31 02 60
80102 München (DE)

(54) ROTARY COMPRESSOR

Provided is a rotary compressor in which an amount of oil to be supplied through an oil supply hole can be properly adjusted with a simple configuration. The rotary compressor comprises, in a sealed container 10, a drive motor 20, a first stage rotary compression mechanism 30 and a second stage rotary compression mechanism 31 that are rotated and driven by rotation of the drive motor 20, and an intermediate partition plate 32 provided between the first stage rotary compression mechanism 30 and the second stage rotary compression mechanism 31. In the intermediate partition plate 32, an oil supply passage 61 that extends from a center of the sealed container 10 toward outside is provided, an oil supply hole 62 that communicates between the oil supply passage 61 and a second compression chamber 50 of the second stage rotary compression mechanism 31 is formed, and the oil supply hole 62 is formed at a position to be opened in a case where a second roller 53 of the second stage rotary compression mechanism 31 is at a position other than a compression stroke.

36

FIG.2

Technical Field

[0001] The present invention relates to a rotary compressor, and in particular to a rotary compressor of an internal intermediate pressure multi-stage (two stages) rotary compressor comprising first and second rotary compression elements in a sealed container.

1

Background Art

[0002] Heretofore, for example, an internal intermediate pressure multi-stage (two stages) compression rotary compressor comprising first and second rotary compression elements has been known.

[0003] Such a rotary compressor has a configuration including, in a sealed container, a drive motor and first and second rotary compression mechanisms that are driven with this drive motor. Refrigerant gas is taken into a low pressure chamber side of a cylinder through an intake port of the first rotary compression mechanism, and compressed by an operation of a roller and a vane to obtain an intermediate pressure, and the gas is discharged from a high pressure chamber side of the cylinder through a discharge port and a discharge muffler into the sealed container. The intermediate pressure refrigerant gas in this sealed container is taken into a low pressure chamber side of the cylinder through an intake port of the second rotary compression mechanism, and subjected to second stage compression by an operation of a roller and a vane. Resulting high-temperature highpressure refrigerant gas is discharged from the high pressure chamber side to the outside. This technology is disclosed.

[0004] In the rotary compressor in which such twostage compression is performed, a compressed refrigerant is discharged from a second stage compression chamber directly to the outside of the rotary compressor, and hence the refrigerant and oil cannot be separated. Consequently, a mainstream lies in a mechanism on which an oil separator is externally mounted and in which oil is returned in a system circuit.

[0005] Therefore, for example, a conventional technology is disclosed in which oil separation means for reducing discharge of oil to the outside of a sealed container by centrifugal separation is used, so that the oil can be separated in the rotary compressor (e.g., see Patent Literature 1).

Citation List

Patent Literature

[0006] Patent Literature 1: Japanese Patent Laid-Open No. 2012-072716

Summary of Invention

Technical Problem

[0007] In a technology of Patent Literature 1, however, there is a problem that performance loss due to pressure bypass is generated in a process of returning oil separated in a rotary compressor. Generally, in the rotary compressor of a two-stage compression direct discharge specification, intermediate pressure oil in a sealed container is always supplied into compression chambers for improvement of sealability in a second stage compression chamber.

[0008] Therefore, there is a problem that an amount of oil to be discharged from the second stage compression chamber definitely increases. Furthermore, there is also a situation where it is difficult to decrease an amount of oil to be supplied to the second stage compression chamber due to manufacturing process constraint such as processing accuracy.

[0009] The present invention has been developed in view of the above described respects, and an object of the present invention is to provide a rotary compressor in which an amount of oil to be supplied through an oil supply hole can be properly adjusted with a simple configuration.

Solution to Problem

[0010] To achieve the above object, according to the present invention, provided is a rotary compressor comprising, in a sealed container, a drive motor, a first stage rotary compression mechanism and a second stage rotary compression mechanism that are rotated and driven by rotation of the drive motor, and an intermediate partition plate provided between the first stage rotary compression mechanism and the second stage rotary compression mechanism, wherein in the intermediate partition plate, an oil supply passage that extends from a center of the sealed container toward outside is provided, an oil supply hole that communicates between the oil supply passage and a second compression chamber of the second stage rotary compression mechanism is formed, and the oil supply hole is formed at a position to be opened in a case where a second roller of the second stage rotary compression mechanism is at a position other than a compression stroke.

[0011] Consequently, the oil supply hole to be opened in the case where the second roller is at the position other than the compression stroke is provided, and hence the oil supply hole can be held in an opened state or a closed state in accordance with a crank angle of the second roller. This makes it possible to adjust an amount of oil to be supplied through the oil supply hole.

[0012] Note that all contents of Japanese Patent Application No. 2018-063470 filed in Japan on March 29, 2018 are included in this description.

40

Advantageous Effect of Invention

[0013] According to the present invention, an oil supply hole is provided to be opened in a case where a second roller is at a position other than a compression stroke, and hence the oil supply hole can be held in an opened state or a closed state in accordance with a crank angle of the second roller. This makes it possible to adjust an amount of oil to be supplied through the oil supply hole with a simple configuration.

Brief Description of Drawings

[0014]

[Figure 1] Fig. 1 is a schematic vertical cross-sectional view showing an embodiment of a rotary compressor according to the present invention.

[Figure 2] Fig. 2 is an enlarged view of the rotary compressor of the present embodiment.

[Figure 3] Fig. 3 is a view showing an example where an oil supply hole of the present embodiment is formed at a position having a distance of 20 mm from a center of a rotary shaft and an angle of 120° from a second vane.

[Figure 4] Fig. 4 is a view showing an example where the oil supply hole of the present embodiment is formed at a position having a distance of 19.2 mm from the center of the rotary shaft and an angle of 120° from the second vane.

[Figure 5] Fig. 5 is a view showing an example where the oil supply hole of the present embodiment is formed at a position having a distance of 23.4 mm from the center of the rotary shaft and an angle of 10° from the second vane.

[Figure 6] Fig. 6 is a view showing an example where the oil supply hole of the present embodiment is formed at a position having a distance of 19.5 mm from the center of the rotary shaft and an angle of 10° from the second vane.

Description of Embodiment

[0015] In a first invention, a rotary compressor comprises, in a sealed container, a drive motor, a first stage rotary compression mechanism and a second stage rotary compression mechanism that are rotated and driven by rotation of the drive motor, and an intermediate partition plate provided between the first stage rotary compression mechanism and the second stage rotary compression mechanism, wherein in the intermediate partition plate, an oil supply passage that extends from a center of the sealed container toward outside is provided, an oil supply hole that communicates between the oil supply passage and a second compression chamber of the second stage rotary compression mechanism is formed, and the oil supply hole is formed at a position to be opened in a case where a second roller of the second stage rotary

compression mechanism is at a position other than a compression stroke.

[0016] Consequently, the oil supply hole to be opened in the case where the second roller is at the position other than the compression stroke is provided, and hence the oil supply hole can be held in an opened state or a closed state in accordance with a crank angle of the second roller. This makes it possible to adjust an amount of oil to be supplied through the oil supply hole with a simple configuration.

[0017] In a second invention, the oil supply hole is provided in a range from 0° to 120° on a suction passage side from a position of a second vane of the second stage rotary compression mechanism so that the oil supply hole communicates at a crank angle of the second roller in a range from 60° to 350°.

[0018] Consequently, the oil supply hole is provided in the range from 0° to 120° on the suction passage side from the position of the second vane of the second stage rotary compression mechanism so that the oil supply hole communicates at the crank angle of the second roller in the range from 60° to 350°. Therefore, when the second roller is at the position other than the compression stroke, the oil supply hole can be opened. This makes it possible to adjust the amount of the oil to be supplied through the oil supply hole.

[0019] Hereinafter, description will be made as to an embodiment of the present invention with reference to the drawings.

[0020] Fig. 1 is a schematic vertical cross-sectional view showing the embodiment of a rotary compressor of the present invention. Fig. 2 is an enlarged view of the rotary compressor.

[0021] As shown in Fig. 1 and Fig. 2, a rotary compressor 1 comprises a vertical cylindrical sealed container 10 made of a steel plate, and a lid body 11 is attached to an upper part of the sealed container 10. In an upper part of an interior of the sealed container 10, a drive motor 20 is contained.

[0022] A terminal 12 is attached to a center of an upper surface of the lid body 11, to supply power to the drive motor 20.

[0023] The drive motor 20 comprises an annular stator 21 attached along an inner peripheral surface of an upper space of the sealed container 10, and a rotor 22 inserted and disposed inside the stator 21 with a gap. A rotary shaft 23 that extends in an axial direction of the sealed container 10 is attached to a center of the rotor 22.

[0024] The stator 21 comprises a laminate body 24 made of laminated annular electromagnetic steel plates, and a stator coil 25 wound around the laminate body 24. Furthermore, the rotor 22 comprises a laminate body 26 made of laminated electromagnetic steel plates, and a permanent magnet 27 disposed in the laminate body 26.

[0025] In a lower part of the interior of the sealed container 10, a first stage rotary compression mechanism 30 rotated and driven by the rotary shaft 23 of the drive motor 20 and a second stage rotary compression mech-

30

anism 31 located on an upper side are arranged. An intermediate partition plate 32 is disposed between the first stage rotary compression mechanism 30 and the second stage rotary compression mechanism 31.

[0026] An upper support member 33 that closes an upper surface opening of the second stage rotary compression mechanism 31 is disposed above the second stage rotary compression mechanism 31, and a lower support member 34 that closes a lower surface opening of the first stage rotary compression mechanism 30 is disposed below the first stage rotary compression mechanism 30. [0027] The first stage rotary compression mechanism 30 comprises a first cylinder 41 including a first compression chamber 40 to compress a refrigerant therein, a first eccentric member 42 provided in the first cylinder 41, a first roller 43 fitted in the first eccentric member 42 to be eccentrically rotated, and a first vane that abuts on an outer peripheral surface of the first roller 43 to divide the first compression chamber 40 in the first cylinder 41 into a low pressure chamber side and a high pressure chamber side.

[0028] Similarly, the second stage rotary compression mechanism 31 comprises a second cylinder 51 including a second compression chamber 50 to compress the refrigerant therein, a second eccentric member 52 provided in the second cylinder 51, a second roller 53 fitted in the second eccentric member 52 to be eccentrically rotated, and a second vane 54 that abuts on an outer peripheral surface of the second roller 53 to divide the second compression chamber 50 in the second cylinder 51 into a low pressure chamber side and a high pressure chamber side.

[0029] In the upper support member 33 and the lower support member 34, a suction passage (not shown) that communicates with interiors of the second cylinder 51 and first cylinder 41 in an unshown suction port is provided, and an upper cover 35 and a lower cover 36 are provided on an upper surface of the upper support member 33 and a lower surface of the lower support member 34, respectively. In the lower surface of the lower support member 34, an intermediate pressure first stage discharge muffler 37, partially formed in a recess shape, is provided. Furthermore, in the upper surface of the upper support member 33, a high pressure second stage discharge muffler 38, partially formed in a recess shape, is provided.

[0030] Furthermore, in the second stage rotary compression mechanism 31, a suction passage 60 is provided to communicate from the second compression chamber 50 to the interior of the sealed container 10.

[0031] Additionally, in the intermediate partition plate 32, an oil supply passage 61 is formed to extend from a center of the sealed container 10 toward outside, and intermediate pressure oil is supplied to the oil supply passage 61. In the oil supply passage 61, an oil supply hole 62 is formed to be opened in the second compression chamber 50 of the second stage rotary compression mechanism 31.

[0032] The oil supply hole 62 is formed at a position to be opened in a case where the second roller 53 is at a position other than a compression stroke. Specifically, for example, when a position of the second vane 54 is set to 0° so that the oil supply hole communicates at a crank angle of the second roller 53 in a range from 60° to 350°, the oil supply hole 62 is provided in a range from 10° to 120° on a suction passage 60 side from the second vane 54. Furthermore, a distance of the oil supply hole 62 from a center of the rotary shaft 23 is also appropriately set.

[0033] Here, the oil supply hole 62 is formed at the position to be opened in the case where the second roller 53 is at the position other than the compression stroke, because there is concern that the oil flows backward due to pressure of compression, if the oil supply hole 62 opens in a case where the second roller 53 is at a position of the compression stroke.

[0034] Thus, the angle of the oil supply hole 62 from the second vane 54 and the distance of the hole from the center of the rotary shaft 23 are set, so that even in a case where an eccentric amount of the second roller 53 varies, it is possible to set a period in which the oil supply hole 62 is opened while the second roller 53 rotates once. [0035] Note that in the present embodiment, the oil supply hole 62 is provided in the range from 10° to 120° on the suction passage 60 side from the second vane 54, but this is not restrictive. That is, the oil supply hole is provided from 10° on the suction passage 60 side from the second vane 54, because in consideration of a width dimension of the second vane 54, the oil supply hole 62 cannot be formed at a position that overlaps with the second vane 54. Consequently, the position of the oil supply hole 62 may be set to a range from 0° to 10° in accordance with the width dimension of the second vane 54.

[0036] Fig. 3 is a view showing an example where the oil supply hole 62 is formed at a position having a distance of 20 mm from the center of the rotary shaft 23 and an angle of 120° from the second vane 54. Fig. 4 is a view showing an example where the oil supply hole 62 is formed at a position having a distance of 19.2 mm from the center of the rotary shaft 23 and an angle of 120° from the second vane 54.

[0037] Fig. 5 is a view showing an example where the oil supply hole 62 is formed at a position having a distance of 23.4 mm from the center of the rotary shaft 23 and an angle of 10° from the second vane 54. Fig. 6 is a view showing an example where the oil supply hole 62 is formed at a position having a distance of 19.5 mm from the center of the rotary shaft 23 and an angle of 10° from the second vane 54.

[0038] As shown in Fig. 3, in a case where the oil supply hole 62 is formed at the position having the distance of 20 mm from the center of the rotary shaft 23 and the angle of 120° from the second vane 54 and in a case where the crank angle of the second roller 53 is 0°, the oil supply hole 62 is closed. Even if the second roller 53 rotates to the crank angle of 180°, the oil supply hole 62

50

30

45

is closed.

[0039] Then, when the crank angle of the second roller 53 reaches 245°, the oil supply hole 62 starts opening, and when the crank angle of the second roller 53 is 350°, the oil supply hole 62 finishes opening.

[0040] Furthermore, as shown in Fig. 4, in a case where the oil supply hole 62 is formed at the position having the distance of 19.2 mm from the center of the rotary shaft 23 and the angle of 120° from the second vane 54 and in a case where the crank angle of the second roller 53 is 0°, the oil supply hole 62 is closed. Even when the second roller 53 rotates to the crank angle of 180°, the oil supply hole 62 is closed, and when the crank angle of the second roller 53 is 285°, the oil supply hole 62 starts opening. Then, when the crank angle of the second roller 53 is 320°, the oil supply hole 62 finishes opening. [0041] Additionally, as shown in Fig. 5, in a case where the oil supply hole 62 is formed at the position having the distance of 23.4 mm from the center of the rotary shaft 23 and the angle of 10° from the second vane 54 and in a case where the crank angle of the second roller 53 is 0°, the oil supply hole 62 is closed. When the second roller 53 rotates to the crank angle of 60°, the oil supply hole 62 starts opening. Then, when the crank angle of the second roller 53 is 180°, the oil supply hole 62 is in an opened state, and when the crank angle of the second roller 53 reaches 315°, the oil supply hole 62 finishes opening.

[0042] In addition, as shown in Fig. 6, in a case where the oil supply hole 62 is formed at the position having the distance of 19.5 mm from the center of the rotary shaft 23 and the angle of 10° from the second vane 54 and in a case where the crank angle of the second roller 53 is 0°, the oil supply hole 62 is closed. When the second roller 53 rotates to the crank angle of 160°, the oil supply hole 62 starts opening. Then, when the crank angle of the second roller 53 is 180°, the oil supply hole 62 is in an opened state, and when the crank angle of the second roller 53 is 220°, the oil supply hole 62 finishes opening. [0043] Next, an operation of the present embodiment will be described.

[0044] Upon driving of the drive motor 20, the rotor 22 is rotated, and the rotary shaft 23 is rotated and driven, so that the first roller 43 and the second roller 53 are eccentrically rotated.

[0045] Consequently, low pressure refrigerant gas taken into the first cylinder 41 is compressed by an operation of the first roller 43 and the first vane to obtain an intermediate pressure, and is discharged from the first cylinder 41 into the sealed container 10. In consequence, the gas obtains the intermediate pressure in the sealed container 10.

[0046] Then, the intermediate pressure refrigerant gas in the sealed container 10 is taken into the second cylinder 51, the taken intermediate pressure refrigerant gas is subjected to second stage compression by an operation of the second roller 53 and the second vane 54, and the resulting high-temperature high-pressure refrigerant

gas is discharged.

[0047] At this time, the oil mixed in the refrigerant gas flows into the oil supply passage 61 of the intermediate partition plate 32, and flows through the oil supply hole 62 into the second cylinder 51.

[0048] As described above, the oil supply hole 62 is held in the opened state or a closed state in accordance with the crank angle of the second roller 53. Consequently, the oil supply hole 62 is not always opened, and hence an amount of oil to be supplied through the oil supply hole 62 can be properly adjusted.

[0049] As described above, in the present embodiment, the rotary compressor comprises, in the sealed container 10, the drive motor 20, the first stage rotary compression mechanism 30 and the second stage rotary compression mechanism 31 that are rotated and driven by rotation of the drive motor 20, and the intermediate partition plate 32 provided between the first stage rotary compression mechanism 30 and the second stage rotary compression mechanism 31, wherein in the intermediate partition plate 32, the oil supply passage 61 that extends from the center of the sealed container 10 toward outside is provided, the oil supply hole 62 that communicates between the oil supply passage 61 and the second compression chamber 50 of the second stage rotary compression mechanism 31 is formed, and the oil supply hole 62 is formed at the position to be opened in the case where the second roller 53 of the second stage rotary compression mechanism 31 is at the position other than the compression stroke.

[0050] Consequently, the oil supply hole 62 to be opened in the case where the second roller 53 is at the position other than the compression stroke is provided, and hence the oil supply hole 62 can be held in the opened state or the closed state in accordance with the crank angle of the second roller 53. This makes it possible to adjust the amount of the oil to be supplied through the oil supply hole 62.

[0051] Furthermore, in the present embodiment, the oil supply hole 62 is provided in a range from 0° to 120° on a suction passage 60 side from a position of the second vane 54 of the second stage rotary compression mechanism 31 so that the oil supply hole communicates at the crank angle of the second roller 53 in a range from 60° to 350°.

[0052] Consequently, the oil supply hole 62 is provided in the range from 0° to 120° on the suction passage 60 side from the position of the second vane 54 of the second stage rotary compression mechanism 31 so that the oil supply hole communicates at the crank angle of the second roller 53 in the range from 60° to 350°. Therefore, when the second roller 53 is at the position other than the compression stroke, the oil supply hole 62 can be opened. This makes it possible to adjust the amount of the oil to be supplied through the oil supply hole 62.

[0053] Note that the embodiment of the present invention has been described with reference to the drawings, but the present invention is not limited to the above em-

15

20

25

30

35

40

45

bodiment, and can be modified without departing from the scope of the invention.

Industrial Applicability

[0054] As described above, according to the present invention, an oil supply hole can be held in an opened state or a closed state in accordance with a crank angle of a second roller, and an amount of oil to be supplied through the oil supply hole can be adjusted with a simple configuration. Consequently, the invention is suitable as a rotary compressor.

Reference Signs List

[0055]

- 1 rotary compressor
- 10 sealed container
- 20 drive motor
- 23 rotary shaft
- 30 first stage rotary compression mechanism
- 31 second stage rotary compression mechanism
- 32 intermediate partition plate
- 40 first compression chamber
- 41 first cylinder
- 42 first eccentric member
- 43 first roller
- 50 second compression chamber
- 51 second cylinder
- 52 second eccentric member
- 53 second roller
- 54 second vane
- 60 suction passage
- 61 oil supply passage
- 62 oil supply hole

Claims

1. A rotary compressor comprising, in a sealed container, a drive motor, a first stage rotary compression mechanism and a second stage rotary compression mechanism that are rotated and driven by rotation of the drive motor, and an intermediate partition plate provided between the first stage rotary compression mechanism and the second stage rotary compression mechanism, wherein in the intermediate partition plate, an oil supply passage that extends from a center of the sealed container toward outside is provided, an oil supply hole that communicates between the oil supply passage and a second compression chamber of the second stage rotary compression mechanism is formed, and

the oil supply hole is formed at a position to be opened in a case where a second roller of the second stage rotary compression mechanism is at a position other than a compression stroke.

2. The rotary compressor according to claim 1, wherein the oil supply hole is provided in a range from 0° to 120° on a suction passage side from a position of a second vane of the second stage rotary compression mechanism so that the oil supply hole communicates at a crank angle of the second roller in a range from 60° to 350°.

10 Amended claims under Art. 19.1 PCT

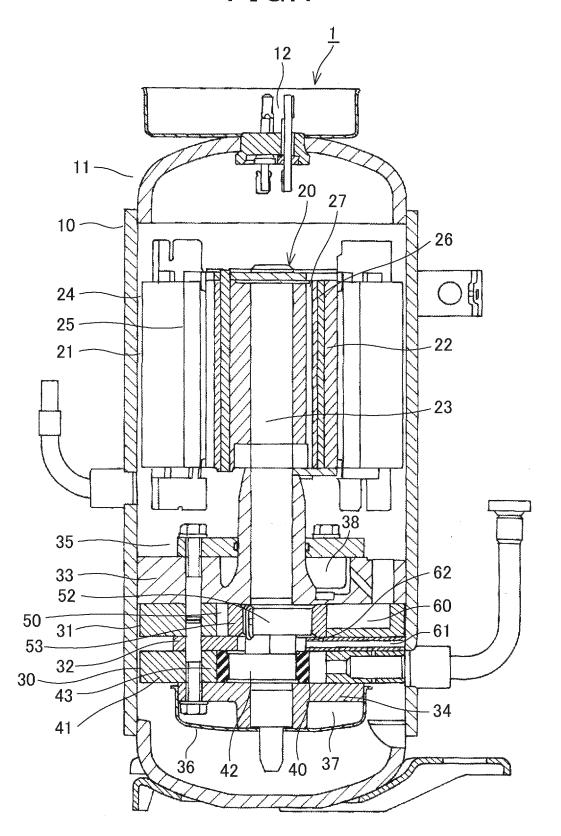
1. (Amended) A rotary compressor comprising, in a sealed container, a drive motor, a first stage rotary compression mechanism and a second stage rotary compression mechanism that are rotated and driven by rotation of the drive motor, and an intermediate partition plate provided between the first stage rotary compression mechanism and the second stage rotary compression mechanism, wherein in the intermediate partition plate, an oil supply passage that extends from a center of the sealed container toward outside is provided, an oil supply hole that communicates between the oil supply passage and a second compression chamber of the second stage rotary compression mechanism is formed,

the oil supply hole is formed at a position to be opened in a case where a second roller of the second stage rotary compression mechanism is at a position other than a compression stroke, **characterized in**

the oil supply hole is provided at a position of 120° on a suction passage side from a position of a second vane of the second stage rotary compression mechanism so that the oil supply hole communicates at a crank angle of the second roller in a range from 245° to 350°.

2. (deleted)

Statement under Art. 19.1 PCT


Claim 1 has been amended, and Claim 2 has been deleted.

The amendment of Claim 1 is limited by adding contents depicted in filed Figure 3 and Figure 4 among matters described in filed Claim 2.

It is not described in Cited Literature 1 that this configuration is provided.

6

FIG.1

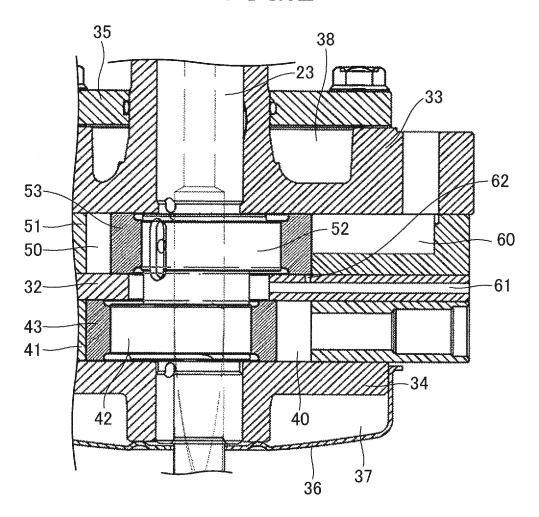
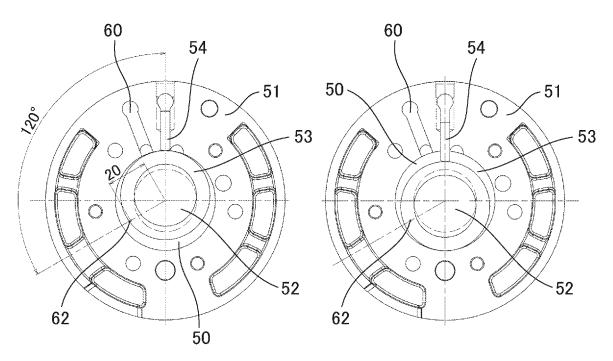
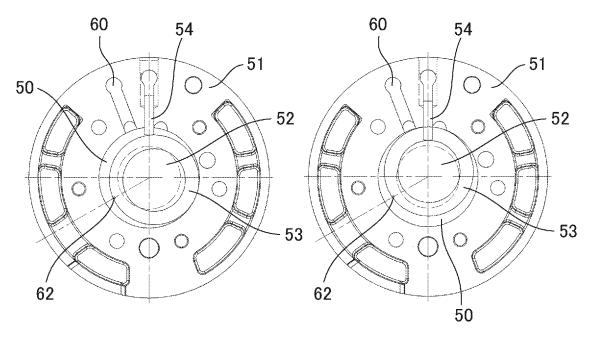
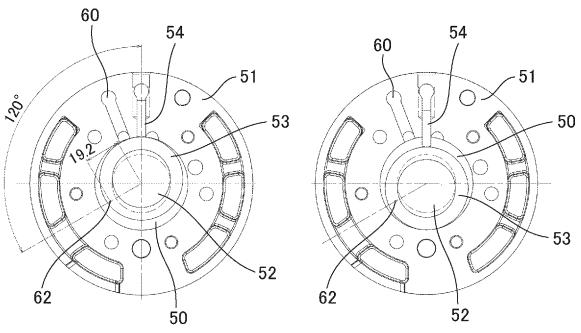




FIG.3


CRANK ANGLE 0 deg (BEING CLOSED)

CRANK ANGLE 180 deg (BEING CLOSED)

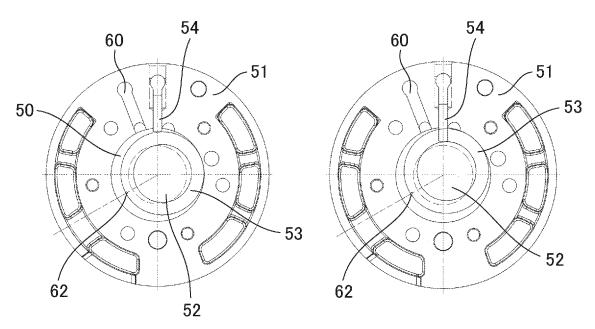
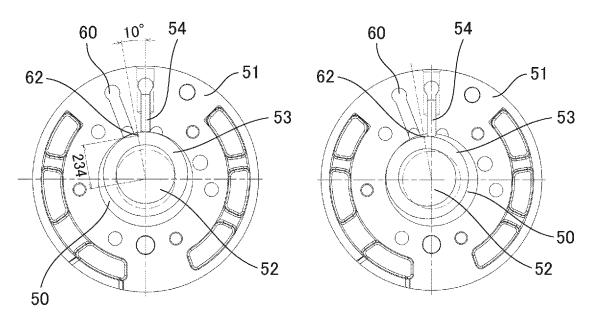

CRANK ANGLE 245 deg (START OPENING) CRANK ANGLE 350 deg (FINISH OPENING)

FIG.4


CRANK ANGLE 0 deg (BEING CLOSED)

CRANK ANGLE 180 deg (BEING CLOSED)

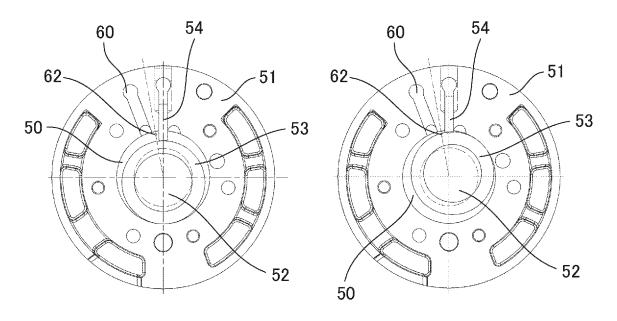
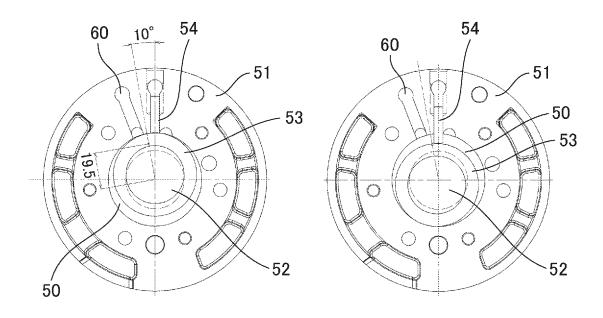

CRANK ANGLE 285 deg (START OPENING) CRANK ANGLE 320 deg (FINISH OPENING)

FIG.5

CRANK ANGLE 0 deg (BEING CLOSED)


CRANK ANGLE 60 deg (START OPENING)

CRANK ANGLE 180 deg (BEING OPENED)

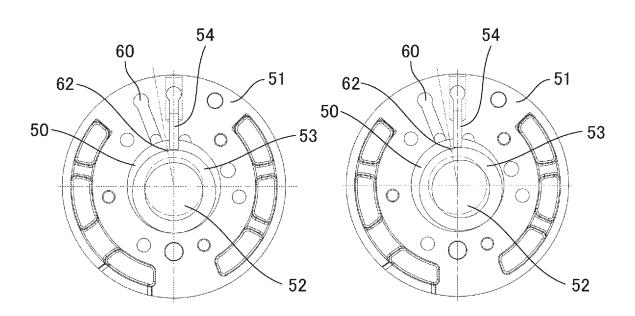

CRANK ANGLE 315 deg (FINISH OPENING)

FIG.6

CRANK ANGLE 0 deg (BEING CLOSED)

CRANK ANGLE 160 deg (START OPENING)

CRANK ANGLE 180 deg (BEING OPENED)

CRANK ANGLE 220 deg (FINISH OPENING)

EP 3 779 200 A1

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2018/038727 CLASSIFICATION OF SUBJECT MATTER Int. Cl. F04C29/02(2006.01)i, F04C18/356(2006.01)i, F04C23/00(2006.01)i 5 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 Int. Cl. F04C29/02, F04C18/356, F04C23/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Published examined utility model applications of Japan Published unexamined utility model applications of Japan Registered utility model specifications of Japan Published registered utility model applications of Japan 15 1994-2018 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2004-293330 A (SANYO ELECTRIC CO., LTD.) 21 1-2 October 2004, paragraphs [0010]-[0039], fig. 1-5 & 25 US 2004/0208769 A1, paragraphs [0125]-[0154], fig. 5, 12-15 & EP 1462656 A1 & KR 10-2004-0084798 A & CN 1532420 A & MY 140951 A & TW 200506216 A & ES 2387193 T3 30 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 45 document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art "P" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 50 19.12.2018 08.01.2019 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan Telephone No. 55

Form PCT/ISA/210 (second sheet) (January 2015)

EP 3 779 200 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2012072716 A **[0006]**

• JP 2018063470 A [0012]