(19)
(11) EP 3 787 848 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
03.01.2024 Bulletin 2024/01

(45) Mention of the grant of the patent:
11.10.2023 Bulletin 2023/41

(21) Application number: 19724256.3

(22) Date of filing: 02.05.2019
(51) International Patent Classification (IPC): 
B25J 9/00(2006.01)
B25J 9/10(2006.01)
(52) Cooperative Patent Classification (CPC):
B25J 9/0006; B25J 9/106
(86) International application number:
PCT/IB2019/053598
(87) International publication number:
WO 2019/211791 (07.11.2019 Gazette 2019/45)

(54)

EXOSKELETON COMPRISING RIGHT AND LEFT ACTUATION SYSTEMS

EXOSKELETT MIT RECHTEM UND LINKEM BETÄTIGUNGSYSTEM

EXOSQUELETTE AVEC SYSTÈMES D'ACTIONNEMENT DROIT ET GAUCHE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 02.05.2018 US 201862665805 P

(43) Date of publication of application:
10.03.2021 Bulletin 2021/10

(73) Proprietor: Iuvo S.r.L.
56025 Pontedera (PI) (IT)

(72) Inventors:
  • MOISÈ, Matteo
    56025 Pontedera (PI) (IT)
  • MUSCOLO, Marco
    56025 Pontedera (PI) (IT)
  • GIOVACCHINI, Francesco
    56025 Pontedera (PI) (IT)
  • VITIELLO, Nicola
    56025 Pontedera (PI) (IT)

(74) Representative: Inspicos P/S 
Agern Allé 24
2970 Hørsholm
2970 Hørsholm (DK)


(56) References cited: : 
WO-A1-2016/128877
US-A1- 2015 336 265
US-A1- 2013 331 744
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE DISCLOSURE



    [0001] The disclosure relates to an exoskeleton including a passive joint mechanism providing passive degrees of freedom.

    BACKGROUND



    [0002] Exoskeletons are becoming useful tools for addressing needs in healthcare and industrial applications. These devices are arranged to generate and transfer mechanical power to human joints. To work, these devices must achieve optimal kinematic coupling and compatibility between the human joints and rotation axes of the exoskeleton. An exoskeleton typically has mechatronic designs, control systems, and human-machine interfaces arranged differently according to the expected usage.

    [0003] A common problem with exoskeletons is a misalignment between the human joints and the robot joints, which may lead to undesired forces being exerted on the human joints resulting in discomfort or injury. These undesired forces may cause misapplication of forces on the human limb resulting in unreliable torque transmission and chaffing from shells or other means for securing against the human limbs, and inefficient movement and poor compliance.

    [0004] It is difficult to consistently align the human joints with the robot joints, in part because of the variability among individual human anatomies. Another reason is that even if the human and robot joints are properly aligned, the human joints do not perfectly rotate because the users' geometries are not consistent and are complex, fluctuating over a range of motion.

    [0005] Given the above considerations, many exoskeletons have regulation mechanisms or passive degrees of freedom (DoF) to fit the device to the human body. It has been found it is possible to unload human articulations from undesired translational forces by decoupling joint rotations and translations by adding passive DoFs to exoskeleton joints.

    [0006] An example of an exoskeleton is an active pelvis orthosis (APO), which is a wearable exoskeleton arranged to improve gait energy efficiency especially as affected by impairments of the hip. The APO may be of the type described in WO 2016/128877, which employs a chain or series of passive DoFs that allow the human flexion-extension axis to align with the control or actuation systems to give the user hip abduction/adduction rotation, and internal/external rotation. The APO includes a human interface to ensure comfort despite activation by the control or actuation system of the user's joints by the exoskeleton.

    [0007] An example of a wearable motion supporting device is described in US2013/0331744. The device substitutes for muscle strength of a wearer and comprises a waist portion frame that has a long base portion in a right-left direction of the wearer and is worn around a waist of the wearer. A pair of right and left lower extremity frames is connected to a lower portion of the waist portion frame and is worn on lower extremities of the wearer. A back portion frame is connected to an upper portion of the waist portion frame and has a locking fixture to tie the back portion frame on a shoulder of the wearer, and a rotational mechanism of one DOF (Degree Of Freedom) on a frontal plane connects the back portion frame and the base portion of the waist portion frame.

    [0008] Despite the advancements in exoskeletons, there still exists opportunities and needs for improvement for an exoskeleton to balance comfort with efficacy in offering an actuation system arranged to offer DoF for improving a user's gait.

    [0009] There are limitations in existing exoskeletons because the actuators are sub-optimally located on the device, causing discomfort and added bulk. Existing devices locate the actuators over a user's hips and align the axis or axes of rotation posterior to a user's femoral head. This creates problems because the motion of the user's hips through the gait cycle causes movement of and against the actuators, which interferes with the user's legs, causes discomfort, and requires the actuators to protrude posteriorly from the frame and the user. This also makes sitting difficult and uncomfortable, as the bulky actuators are positioned proximate a user's buttocks and lower back.

    [0010] The chain or series of passive DoFs lacks a smooth and intuitive operation, adding to the difficulty of use and discomfort, as the actuation system must be adjusted in series and limited directions.

    [0011] There is a need for an actuation system in an exoskeleton that overcomes these problems in existing devices without compromising the effectiveness of transmission of forces from the robot joints.

    SUMMARY



    [0012] Accordingly, the present disclosure provides an exoskeleton as defined in claim 1.

    [0013] Embodiments of the disclosure relate to an exoskeleton including at least one passive joint mechanism providing passive degrees of freedom, and by example in an active pelvic orthosis (APO) having a human interface. The embodiments have the benefit of limiting excursion into areas of activity of the user during use, while not encumbering the user's gait.

    [0014] The APO can provide assistive pairs of flexion-extension actuators or actuation systems at one or both hips of the user. The exoskeletal structure in the APO extends from the user's torso to the hip, and at least a part of the user's lower limbs. The actuation system has limited lateral dimensions, allowing the user to freely move the arms such as by allowing the arms to swing freely at the user's sides. Such a limited lateral encumbrance is a consequence of the positioning of an actuator in the back of the system itself and the posterior side of the user.

    [0015] The actuation system enables the user to freely perform abduction-adduction movements of the leg without obstructing the user's gait. The actuation system may also offer an intra-extra rotation of the hip, realizing a "floating" configuration of the actuators on the frame of the exoskeleton.

    [0016] From the location and configuration of the actuation system in the embodiments, the actuation system is configured to adapt to different anthropometries or dimensions of the user. The system includes a transmission device extending substantially parallel to the sagittal plane of the user and has an adjustable longitudinal dimension, to allow a user to choose the distance between the actuator and a link which transmits the assistive force or effect to the articular segment of the user's thigh.

    [0017] The actuation system is configured in such a way that its axis of flexion-extension of the hip and its axis of abduction/adduction of the hip are incident in a point corresponding, in use, to the center of the femoral head of the user but without positioning the actuators directly proximate the femoral head as in existing devices. This is achieved through the above-mentioned adjustment of the longitudinal extension of the transmission device and using corresponding adjustability of the width of the actuation system on the frontal plane of the user.

    [0018] The embodiments of the abduction/adduction control are achieved by a linkage or joint located generally proximate the user's lumbar or torso region, as opposed to past efforts and devices that locate the joint over the user's hips. The embodiments have the advantage of mitigating interference with the user's legs, and mounting the linkage in an area over the user that undergoes comparatively little movement during a user's gait. There is improved seating comfort, and there is a reduced distance between the actuation devices and the user's body. The linkage generally maintains the same center of rotation as in past efforts and devices. The actuation system of the disclosure advantageously provides enhanced comfort and compliance without compromising the effectiveness of the exoskeleton, actuators, or otherwise.

    [0019] The embodiments of the actuation system make the APO compatible with the degrees of freedom, the angular extensions and, in general, the kinematics of the joints of the user, including the passive ones. Of interest to the embodiments is the passive joint mechanism for adduction/abduction, which relies on the linkage that is a multi-bar linkage, enabling the linkage to be located remotely from the center of rotation, while still providing effective and robust rotation of the actuation system to accommodate adduction/abduction and rotation of the hip.

    [0020] The embodiments of the actuation system are effective in assisting many physical activities, particularly walking on the ground level and uphill/downhill, ascending/descending steps, transitioning from sitting/standing ("sit-to-stand") or vice versa, and in general, for engaging in motor activities for rehabilitation of the lower limbs.

    [0021] These and other features, aspects, and advantages of the present disclosure will become better understood regarding the following description, appended claims, and accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] 

    Fig. 1 is a perspective view of a prior art actuation system for an APO.

    Fig. 2 is a detail view of a left monolateral aspect in the prior art actuation system of Fig. 1.

    Fig. 3 is a perspective view of an embodiment of an actuation system according to the disclosure in an APO.

    Fig. 4 is a detail view of a right monolateral aspect in the actuation system embodiment of Fig. 3.

    Fig. 5A is a sectional view of the passive joint mechanism of the actuation system embodiment of Fig. 3 in a first position.

    Fig. 5B is a sectional view of the passive joint mechanism of the actuation system of Fig. 5A in a second position.

    Fig. 6A is a partial perspective view of the actuation system embodiment of Fig. 3.

    Fig. 6B is a detail view of the actuation system from Fig. 6A.

    Fig. 7A is a rear perspective sectional view of the actuation system embodiment of Fig. 3 in adduction.

    Fig. 7B is a rear perspective sectional view of Fig. 7A without the housing on the passive joint mechanism showing a position of the linkage of the passive joint mechanism in at least one adduction position.

    Fig. 8A is a rear perspective sectional view of the actuation system embodiment of Fig. 3 in abduction.

    Fig. 8B is a rear perspective sectional view of the passive joint mechanism of Fig. 8A without the housing on the passive joint mechanism and showing a position of the linkage of the passive joint mechanism in at least one abduction position.

    Fig. 9A is a perspective view showing another embodiment of a passive joint mechanism useable in the actuation system embodiment of Fig. 3 without a housing over the linkage.

    Fig. 9B is a perspective view of the embodiment of Fig. 9A with a housing over the linkage.

    Fig. 10A is a top perspective view showing another embodiment of a passive joint mechanism useable in the actuation system embodiment of Fig. 3 in a first rotational position.

    Fig. 10B is a top perspective view showing the embodiment of the passive joint mechanism in Fig. 10A in a second rotational position.

    Fig. 11A is a perspective view of an embodiment of a transmission device in a first position and usable in the actuation system embodiment of Fig. 3.

    Fig. 11B is a perspective view of the embodiment of Fig. 11A in a second position.



    [0023] The drawing figures are not necessarily drawn to scale, but instead, are drawn to provide a better understanding of the components, and are not intended to be limiting in scope, but to provide exemplary illustrations.

    DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS


    A. Overview



    [0024] A better understanding of different embodiments of the disclosure may be had from the following description read with the accompanying drawings in which like reference characters refer to like elements.

    [0025] For further ease of understanding the embodiments of an actuation system and variants as disclosed, a description of a few terms may be useful. As used, the term "proximal" has its ordinary meaning and refers to a location next to or near the point of attachment or origin or a central point, or located toward the center of the body. Likewise, the term "distal" has its ordinary meaning and refers to a location situated away from the point of attachment or origin or a central point, or located away from the center of the body. The term "posterior" also has its ordinary meaning and refers to a location behind or to the rear of another location. Last, the term "anterior" has its ordinary meaning and refers to a location ahead of or to the front of another location.

    [0026] These anatomical terms are consistent with the user wearing the actuation system referring to an anatomical position. An anatomical position is generally defined as the erect position of the body with the face directed forward, the arms at the side, and the palms of the hands facing forward, and which is a reference in describing the relation of body parts to one another.

    [0027] The terms "rigid," "flexible," "compliant," and "resilient" may distinguish characteristics of portions of certain features of the actuation system. The term "rigid" should denote that an element of the actuation system, such as a frame, is generally devoid of flexibility. Within the context of features that are "rigid," it should indicate that they do not lose their overall shape when force is applied and may break if bent with sufficient force. The term "flexible" should denote that features are capable of repeated bending such that the features may be bent into non-retained shapes or the features do not retain a general shape, but continuously deform when force is applied.

    [0028] The term "compliant" may qualify such flexible features as generally conforming to the shape of another object when placed in contact therewith, via any suitable natural or applied forces, such as gravitational forces, or forces applied by external mechanisms, for example, strap mechanisms. The term "resilient" may qualify such flexible features as generally returning to an initial general shape without permanent deformation. As for the term "semi-rigid," this term may connote properties of support members or shells that provide support and are free-standing; however, such support members or shells may have flexibility or resiliency.

    [0029] The embodiments of the disclosure are adapted for a human body and may be dimensioned to accommodate different types, shapes, and sizes of human body sizes and contours. For explanatory purposes, the actuation system embodiments described correspond to different sections of a body and are denoted by general anatomical terms for the human body.

    [0030] The embodiments of the actuation system may correspond to anterior and posterior body sections defined by an anterior-posterior plane. The anatomical terms described are not intended to detract from the normal understanding of such terms as readily understood by one of ordinary skill in the art of orthopedics, prosthetics, braces, human interfaces, medical devices, and supports.

    B. Description of Prior Art APO



    [0031] Figs. 1 and 2 exemplify a prior art APO 30, as discussed in WO 2016/128877. The mechanical structure of the APO 30 is symmetrical regarding the sagittal plane, and includes two main actuation systems, one for each hip articulation, denoted respectively by 1, 1'. Each of the actuation systems 1, 1' has transmission devices that transfer the assistive torque from the actuation unit to the human hip articulation. Since the two actuation systems 1, 1' are identical, unless there are necessary adaptations to make them suitable to left and right articulation, respectively, reference simply will be made to the left actuation system denoted by 1'.

    [0032] The actuation system 1' comprises firstly a fixed frame 11, for the connection, permanently or removably, to the structure of the APO 30. In the present case, the fixed frame 11 includes a connection plate or flange 14. The fixed frame 11 interfaces and stabilizes the APO 30 on the body of the user, and can be secured to the latter using an appropriate orthotic shell 12 configured for the user's pelvis or torso. On the connection plate or flange 14 is mounted plates 15 which each support a transmission device 2.

    [0033] The transmission device 2 is mechanically connected to a motor axis M and configured to transfer an assistive force or effect on an output axis D which reproduces or augments the physiological axis of flexion-extension of the hip. The M and D axes are parallel or substantially parallel and may be spaced apart by a distance I, facilitating placement of a drive system posterior of the user's hips/legs/buttocks, or generally as advantageous for a particular use.

    [0034] An actuation system 20 has a rotary joint for abduction-adduction of the hip, and a rotary joint for intra/extra-rotation of the hip, collectively denoted as the passive joint mechanism 22, which allow the execution of movement at the hip. The passive joint mechanism 22 for abduction/adduction is located just over the user's hip and protrudes well beyond the posterior of the user. The passive joint mechanism 22 kinematically couples with a rotational degree of freedom around, respectively, an adduction/abduction axis and an axis parallel to the axis of physiological intra-/extra-rotation.

    [0035] A drive system 10 connects to the transmission device 2, which is connected mechanically in series with the passive joint mechanism 22, to the fixed frame 11.

    [0036] The passive joint mechanism 22, which comprises primarily two rotary joints configured for facilitating abduction/adduction and intra/extra rotation of the hip, performs a chain or series of degrees-of-freedom adjustments via the two rotary joints by means of which the drive system 10 and the transmission device 2 are connected to the fixed frame 11. The center of rotation CR1 is arranged to be proximate the femoral head of the user. These degrees of freedom can be passive or actuated or connected to elastic elements.

    [0037] The drive system 10 may be of the type called SEA ("Series Elastic Actuator"), which is known in the art. The drive system 10 is disposed at a rear portion of the APO 30 posterior of the user and corresponding to the user's back. The drive system 10 is configured to provide an assistive force or effect at its own motor axis M. The motor axis M is an axis substantially parallel to the axis around which takes place the movement of flexion-extension of the hip of the subject, in other words, an axis substantially perpendicular to the sagittal plane.

    [0038] The transmission device 2 connects to a rotatably connecting rod or link 3 which transmits forces to an orthotic shell 13 arranged on a user's leg and suitable for assisting in driving the user's leg. The passive joint mechanism 22 may be spaced apart from a center of the frame 11 by a distance f, accommodating the user's dimensions and facilitating effective and comfortable transmission of forces.

    C. Description of Various Embodiments



    [0039] Fig. 3 generally illustrates an embodiment of the disclosure having an actuation system 104 in an exoskeleton 100, such as an APO. The actuation system 104 includes a passive joint mechanism 110, preferably having a multi-bar linkage. A drive system 112 is linked to the passive joint mechanism 110 and driven by a power unit 102. The drive system 112 is positionable according to the passive joint mechanism 110. A transmission device 114 is arranged to be driven by the drive system 112. A lower body support 116 is secured to the transmission device 114.

    [0040] The exoskeleton 100 comprises a frame 106, which supports the power unit 102, and upon which the actuation system 104 mounts. A plate 108 connects to the frame 106, and the passive joint mechanism 110 secures to the plate 108. The frame 106 may include support elements, such as shells, straps, belts, and other known means for securing the exoskeleton to the user.

    [0041] Fig. 4 shows how the plate 108 is above the user's waist, and generally is about the lumbar region or posterior torso of the user. This arrangement is advantageous because it retains the advantages of existing devices in that it locates the center of rotation proximate the femoral head in order to properly and effectively transfer the assistive force to the user's leg/thigh at an anatomically advantaged location. The arrangement relocates the actuator system such that the disruptions and interferences to the user are minimized. The embodiments have the advantage of mitigating interference with the user's legs and mounting the linkage in an area over the user that undergoes little movement during a user's gait. There is improved seating comfort, and there is a reduced distance between the actuation devices and the user's body. The linkage generally maintains the same center of rotation as in past efforts, but without being located in an obstructive area.

    [0042] As the passive joint mechanism 110 is a multi-bar linkage, not only can it be mounted a distance apart from the center of rotation, as shown by CR2 in Fig. 4, but it also has a lower profile than in the prior art, and does not extend significantly posteriorly from the user's body.

    [0043] Figs. 5A and 5B show the passive joint mechanism 110 as having a multi-bar linkage, as in a four-bar mechanism, and includes first and second links 136, 138. The first and second links 136, 138 have first and second connections 118, 120, respectively, pivotally securing to the plate 108, as shown in Figs. 6A - 6B.

    [0044] There may be at least one range-of-motion stop 122, 124, 126 located on the plate 108, and arranged to limit a range of motion of at least one of the first and second links 136, 138. The plate 108 defines at least one series of openings 128, 130, 132 for accommodating and supporting the at least one range-of-motion stop 122, 124, 126 and allows for adjustments to the positions of the at least one range-of-motion stop 122, 124, 126 based on the needs of a particular user.

    [0045] Figs. 5A - 5B and 7A - 8B illustrate the passive joint mechanism 110 as having a housing 134 at least partially covering the first and second connections 118, 120. The housing 134 covers at least the first link 136, which is arranged to pivot therein. The housing 134 may limit a range of motion of the first link 136 in at least a first direction, for example by being arranged to abut the first link 136 at a certain degree of motion. The second link 138 may have a portion that extends beyond the periphery of the housing 134, as the second link 138 pivots. Accordingly the housing 134 may define an opening or an aperture proximate the second link 138 allowing for movement outside of the housing 134.

    [0046] The first and second links 136, 138 couple to the drive system 112 by third and fourth connections 140, 142, such that the third and fourth connections 140, 142 pivotally connect to the drive system 112, and thus via the first and second links 136, 138 to the housing 134 and plate 108. Fig. 5B exemplifies how the first and second links 136, 138 translate relative to the housing 134 from a first position defined along with axial locations A1, B1, to a second position defined along with axial locations A2, B2, respectively.

    [0047] Figs. 7B and 8B illustrate how the first and second links 136, 138 rotate from a first position A to a second position B, whereby position A exemplifies adduction and position B exemplifies abduction. Unlike in the prior art, it is found with the passive joint mechanism having a multi-bar linkage, such as with links 136, 138, the drive system 112 can be mounted or extend below the frame 106. This mechanism enables locating the passive joint mechanism preferably over the torso or lumbar region of the user, as opposed to posteriorly of the user's hip and center of rotation of the hip, while still offering adduction/abduction control. This mechanism provides a more comfortable device and overcomes challenges of existing devices, particularly the inconveniences of having the actuator system mounted at and affecting the motion of the hips.

    [0048] Fig. 7A shows how the passive joint mechanism in adduction generally has parallel axes A1 and A2, whereby axis A1 is at the passive joint mechanism 110 at the frame 106 with the first and second connections 118, 120 fixed on the plate 108, and axis A2 is along with the transmission device 114. As the passive joint mechanism 110 goes into abduction, as shown in Fig. 7B, axis A3 (as compared to axis A2 in adduction) exemplifies how the linkage provides for translation of the transmission device 114 relative to the frame 106. In embodiments, the axis A3 may be rotated relative to the axis A2 by a rotation R corresponding to an angle of abduction.

    [0049] Figs. 9A and 9B exemplify a variation of a multi-bar linkage 149 having a four-bar linkage with a first link 150 and a second link 152, such that the second link 152 has a greater width W2 than a width W1 of the first link 150. As the second link 152 bears force greater than the first link 150, the second link 152 is advantageously stronger than the first link 150, which may be achieved by its size and geometry. Due to the second link 152 bearing greater forces, the dimensions of the first link 150 can be minimized to save space. The second link 152 may have a range-of-motion stop 154 defined along a length thereof. In embodiments, the range of motion stop may be defined on the second link 152 and arranged to abut against a surface of the housing or the drive system 112. In other embodiments, the extension stop may be defined along a different surface.

    [0050] The multi-bar linkage 149 includes a housing 160 in which the first and second links 150, 152 are generally located. The housing 160 preferably has first and second sections 156, 158 configured and dimensioned to accommodate the widths of the first and second links 150, 152, respectively.

    [0051] Turning to Figs. 10A - 10B, a linkage 144 secures to a slider 146 slidably connected to the frame 106. The linkage 144 may pivotally connect to the transmission device 114 for providing extra-intra rotation of the hip. The linkage 144 pivotally secures to a mount 148 provided on the drive system 112. The linkage 144 may be arranged similarly as in the preceding embodiments. The slider 146 may be arranged to translate the linkage 144 a distance T relative to the frame 106. The slider 146 allows for greater flexibility of use of the exoskeleton system as it can adapt to a user's dimensions and provide optimized force transmission.

    [0052] The pivoting or rotation of the linkage 144 relative to the frame 106 may advantageously be driven by the cuff or shell 166 as the user rotates their hip inward or outward. The mount 148 may attach and pivot along an axis located at a first position P1, independent of or in cooperation with translation along the slider 146. As the linkage 144 thus translates and rotates, the linkage 144 may move from a parallel arrangement with the frame 106 to an offset or rotated relationship. The mount 148 may translate to a second position P2, with a varying clearance between the linkage 144 and the frame 106. The depicted arrangement of the linkage 144 as slidably and pivotally arranged on the frame 106 is merely exemplary and not intended to be limiting, and the linkage 144 may attach to the frame 106 in any suitable manner.

    [0053] Figs. 11A and 11B illustrate an embodiment of a transmission device 114 defining a housing 180 in which first and second pivot plates 182, 184 are located and pivotable about axes or pivot points 186, 188. The second pivot plate 184 is driven by at least one link 190, 192 secured to the first pivot plate 182. The first pivot plate 182 is actuated by the drive system 112. The at least one link 190, 192 is pivotally connected to the first and second pivot plates 182, 184 at pivot points 194, 196, 198, 200.

    [0054] The at least one link 190, 192 defines first and second arcuate segments 202, 204, 206, 208 adapted to strike a bearing 187, which surrounds the pivot point 186 of the first pivot plate 182, and at least one strike part 189 of the second pivot plate 184. Upon striking the bearing 187 or the at least one strike part 189, the range of motion of the at least one link 190, 192 is prevented in the direction of rotation upon colliding of the arcuate segments 202, 204, 206, 208 at collision zones 210, 212, 214, 216. The at least one strike part 189 is preferably defined on opposed sides of the second pivot plate 184.

    [0055] This arrangement of collision zones 210, 212, 214, 216, bearing 187, and strike part 189 advantageously provides a range of control for the linkage 144 of the transmission device 114, thus facilitating smooth motion that controls, e.g., abduction/adduction while allowing a more intuitive operation for a user. The depicted embodiment is merely exemplary, and the disclosure is not limited thereto; rather, an actuation system according to the disclosure may have any suitable configuration.

    [0056] The embodiments described herein provide improvements over existing exoskeletons comprising actuator systems by relocating the actuators to a portion of the user's body that causes less interference and discomfort while not compromising the efficacy of the actuator unit in providing forces to aid a user's movements.


    Claims

    1. An exoskeleton (100), comprising:

    a frame (106); and

    right and left actuation systems (104) adapted for right and left hip articulation, respectively, each of the right and left actuation systems (104) individually including:

    a transmission device (114) adapted to extend substantially parallel to a sagittal plane and having an adjustable longitudinal dimension;

    a passive joint mechanism (110) connecting the frame (106) to the transmission device (114), the passive joint mechanism (110) having a four-bar linkage;

    a drive system (112) coupling the passive joint mechanism (110) to the transmission device (114), and arranged to drive the transmission device (114), the drive system (112) having an axis arranged substantially perpendicular to the sagittal plane.


     
    2. The exoskeleton (100) of claim 1, further comprising a plate (108) connecting to the frame (106), the four-bar linkage (110) connecting to the plate (108) and a leg support (116) coupled to the transmission device (114).
     
    3. The exoskeleton (100) of claim 1, wherein a center of rotation (CR2) for the passive joint mechanism (110) is spaced from the passive joint mechanism (100).
     
    4. The exoskeleton (100) of claim 2, wherein the four-bar linkage (110) includes first and second links (136, 138), the first and second links (136, 138) having first and second connections (118, 120), respectively, pivotally connecting to the plate (108).
     
    5. The exoskeleton (100) of claim 4, wherein at least one range-of-motion stop (122, 124, 126) is located on the plate (108), and is arranged to limit a range of motion of at least one of the first and second links (136, 138) and wherein the plate (108) defines at least one series of openings (128, 130, 132) arranged to accommodate the at least one range-of-motion stop (122, 124, 126).
     
    6. The exoskeleton (100) of claim 4, further comprising a housing (134) from which the first and second connections (118, 120) extend, and at least the first link (136) pivoting therein, the housing (134) arranged to limit a range of motion of the first link (136) in at least a first direction.
     
    7. The exoskeleton (100) of claim 6, further comprising third and fourth connections (140, 142) pivotally connecting to the drive system (112), to the housing (134), and the first and second links (136, 138), respectively.
     
    8. The exoskeleton (100) of claim 6, wherein the first and second links (136, 138) are arranged to move relative to the housing (134), the second link (138) arranged to move outside of the housing (134).
     
    9. The exoskeleton (100) of claim 4, wherein the first and second links (136, 138) rotate from a first position to a second position, and is arranged so that the drive system (112) goes between adduction and abduction according to rotation of the first and second links (136, 138).
     
    10. The exoskeleton (100) of claim 1, wherein a linkage (144) pivotally secures to a mount (148) provided on the drive system (112).
     
    11. The exoskeleton (100) of claim 10, wherein the mount (148) secures to a slider (146) slidably connected to the frame (106), the linkage (144) pivotally connecting to the transmission device (114) and arranged to provide intra-rotation.
     
    12. The exoskeleton (100) of claim 1, wherein the passive joint mechanism (149) comprises a four-bar linkage having a first link (150) and a second link (152), the second link (152) having a greater width (W2) than a width (WI) of the first link (150), the second link (152) comprising a range-of-motion stop (154) defined along a length thereof.
     
    13. The exoskeleton (100) of claim 12, wherein the passive joint mechanism (149) includes a housing (180) in which the first and second links (150, 152) are generally located, the housing (160) having first and second sections (156, 158) accommodating the widths (WI, W2) of the first and second links (150, 152), respectively.
     
    14. The exoskeleton (100) of claim 1, wherein the transmission device (114) defines a housing (180) in which first and second pivot plates (182, 184) are located and pivotable about pivot points (186, 188).
     
    15. The exoskeleton (100) of claim 14, wherein the second pivot plate (184) is driven by at least one link (190, 192) secured to the first pivot plate (182), the first pivot plate (182) actuated by the drive system (112) and pivotally connected to the first and second pivot plates (182, 184) at pivot points (194, 196, 198, 200).
     
    16. The exoskeleton (100) of claim 15, wherein the at least one link (190, 192) defines first and second arcuate segments (202, 204, 206, 208) adapted to strike a bearing (187) about the pivot point (186) of the first pivot plate (182), and at least one strike part (189) of the second pivot plate (184).
     
    17. The exoskeleton (100) of claim 16, wherein upon striking the bearing (187) or the at least one strike part (189), range of motion of the at least one link (190, 192) is arranged to be prevented in the direction of rotation upon colliding of the first and second arcuate segments (202, 204, 206, 208) at collision zones (210, 212, 214, 216).
     
    18. The exoskeleton (100) of claim 17, wherein the bearing (187) surrounds the pivot point (186) and the at least one strike part (189) is defined on opposed sides of the second pivot plate (184).
     


    Ansprüche

    1. Exoskelett (100), umfassend:

    einen Rahmen (106); und

    ein rechtes und ein linkes Betätigungssystem (104), die für eine rechte bzw. linke Hüftgelenksbewegung ausgelegt sind, wobei sowohl das rechte als auch das linke Betätigungssystem (104) jeweils aufweisen:

    eine Übertragungsvorrichtung (114), die so ausgelegt ist, dass sie sich im Wesentlichen parallel zu einer Sagittalebene erstreckt und eine einstellbare Längsabmessung aufweist;

    einen passiven Gelenkmechanismus (110), der den Rahmen (106) mit der Übertragungsvorrichtung (114) verbindet, wobei der passive Gelenkmechanismus (110) ein Vierstabgestänge aufweist;

    ein Antriebssystem (112), das den passiven Gelenkmechanismus (110) mit der Übertragungsvorrichtung (114) koppelt und angeordnet ist, um die Übertragungsvorrichtung (114) anzutreiben, wobei das Antriebssystem (112) eine Achse aufweist, die im Wesentlichen senkrecht zu der Sagittalebene angeordnet ist.


     
    2. Exoskelett (100) nach Anspruch 1, ferner umfassend eine Platte (108), die mit dem Rahmen (106) verbunden ist, wobei das Vierstabgestänge (110) mit der Platte (108) verbunden ist, und einen Beinträger (116), der mit der Übertragungsvorrichtung (114) gekoppelt ist.
     
    3. Exoskelett (100) nach Anspruch 1, wobei ein Drehpunkt (CR2) für den passiven Gelenkmechanismus (110) von dem passiven Gelenkmechanismus (100) beabstandet ist.
     
    4. Exoskelett (100) nach Anspruch 2, wobei das Vierstabgestänge (110) ein erstes und ein zweites Verbindungsglied (136, 138) umfasst, wobei das erste und das zweite Verbindungsglied (136, 138) eine erste bzw. eine zweite Verbindung (118, 120) aufweisen, die schwenkbar mit der Platte (108) verbunden sind.
     
    5. Exoskelett (100) nach Anspruch 4, wobei sich mindestens ein Bewegungsbereichsanschlag (122, 124, 126) auf der Platte (108) befindet und so angeordnet ist, dass er einen Bewegungsbereich von dem ersten und/oder dem zweiten Verbindungsglied (136, 138) begrenzt, und wobei die Platte (108) mindestens eine Reihe von Öffnungen (128, 130, 132) definiert, die so angeordnet sind, dass sie den mindestens einen Bewegungsbereichsanschlag (122, 124, 126) aufnehmen.
     
    6. Exoskelett (100) nach Anspruch 4, ferner umfassend ein Gehäuse (134), von dem sich die erste und zweite Verbindung (118, 120) erstrecken, und mindestens das erste Verbindungsglied (136), das darin schwenkt, wobei das Gehäuse (134) so angeordnet ist, dass es einen Bewegungsbereich des ersten Verbindungsglieds (136) in mindestens einer ersten Richtung begrenzt.
     
    7. Exoskelett (100) nach Anspruch 6, ferner umfassend eine dritte und eine vierte Verbindung (140, 142), die schwenkbar mit dem Antriebssystem (112), dem Gehäuse (134) und dem ersten bzw. zweiten Verbindungsglied (136, 138) verbunden sind.
     
    8. Exoskelett (100) nach Anspruch 6, wobei das erste und das zweite Verbindungsglied (136, 138) so angeordnet sind, dass sie sich relativ zu dem Gehäuse (134) bewegen, wobei das zweite Verbindungsglied (138) so angeordnet ist, dass es sich außerhalb des Gehäuses (134) bewegt.
     
    9. Exoskelett (100) nach Anspruch 4, wobei das erste und das zweite Verbindungsglied (136, 138) sich von einer ersten Position in eine zweite Position drehen und so angeordnet ist, dass das Antriebssystem (112) entsprechend der Drehung des ersten und des zweiten Verbindungsglieds (136, 138) zwischen Adduktion und Abduktion wechselt.
     
    10. Exoskelett (100) nach Anspruch 1, wobei ein Gelenkglied (144) schwenkbar an einer Halterung (148) befestigt ist, die auf dem Antriebssystem (112) vorgesehen ist.
     
    11. Exoskelett (100) nach Anspruch 10, wobei die Halterung (148) an einem Schieber (146) befestigt ist, der verschiebbar mit dem Rahmen (106) verbunden ist, wobei das Gelenkglied (144) schwenkbar mit der Übertragungsvorrichtung (114) verbunden und so angeordnet ist, dass es eine Einwärtsdrehung ermöglicht.
     
    12. Exoskelett (100) nach Anspruch 1, wobei der passive Gelenkmechanismus (149) ein Vierstabgestänge mit einem ersten Verbindungsglied (150) und einem zweiten Verbindungsglied (152) umfasst, wobei das zweite Verbindungsglied (152) eine größere Breite (W2) als eine Breite (WI) des ersten Verbindungsglieds (150) aufweist, wobei das zweite Verbindungsglied (152) einen Bewegungsbereichsanschlag (154) umfasst, der entlang einer Länge davon definiert ist.
     
    13. Exoskelett (100) nach Anspruch 12, wobei der passive Gelenkmechanismus (149) ein Gehäuse (180) umfasst, in dem das erste und das zweite Verbindungsglied (150, 152) im Allgemeinen angeordnet sind, wobei das Gehäuse (160) einen ersten und einen zweiten Abschnitt (156, 158) aufweist, die die Breiten (WI, W2) des ersten bzw. zweiten Verbindungsglieds (150, 152) aufnehmen.
     
    14. Exoskelett (100) nach Anspruch 1, wobei die Übertragungsvorrichtung (114) ein Gehäuse (180) definiert, in dem sich eine erste und eine zweite Schwenkplatte (182, 184) befinden, die um Schwenkpunkte (186, 188) schwenkbar sind.
     
    15. Exoskelett (100) nach Anspruch 14, wobei die zweite Schwenkplatte (184) durch mindestens ein Verbindungsglied (190, 192) angetrieben wird, das an der ersten Schwenkplatte (182) befestigt ist, wobei die erste Schwenkplatte (182) durch das Antriebssystem (112) betätigt wird und mit der ersten und der zweiten Schwenkplatte (182, 184) an Schwenkpunkten (194, 196, 198, 200) schwenkbar verbunden ist.
     
    16. Exoskelett (100) nach Anspruch 15, wobei das mindestens eine Verbindungsglied (190, 192) ein erstes und ein zweites bogenförmiges Segment (202, 204, 206, 208) definiert, die so ausgelegt sind, dass sie auf ein Lager (187) um den Drehpunkt (186) der ersten Drehplatte (182) und mindestens einen Schlagteil (189) der zweiten Drehplatte (184) schlagen.
     
    17. Exoskelett (100) nach Anspruch 16, wobei beim Aufschlagen auf das Lager (187) oder den mindestens einen Schlagteil (189) der Bewegungsbereich des mindestens einen Verbindungsglieds (190, 192) so angeordnet ist, dass er in der Drehrichtung beim Zusammenprall des ersten und des zweiten bogenförmigen Segments (202, 204, 206, 208) an Kollisionszonen (210, 212, 214, 216) verhindert wird.
     
    18. Exoskelett (100) nach Anspruch 17, wobei das Lager (187) den Drehpunkt (186) umgibt und der mindestens eine Schlagteil (189) auf gegenüberliegenden Seiten der zweiten Schwenkplatte (184) definiert ist.
     


    Revendications

    1. Exosquelette (100) comprenant :

    un cadre (106) ; et

    des systèmes d'actionnement droit et gauche (104) adaptés pour des articulations de hanche droite et gauche, respectivement, chacun des systèmes d'actionnement droit et gauche (104) incluant individuellement :

    un dispositif de transmission (114) adapté pour s'étendre substantiellement parallèlement à un plan sagittal et présentant une dimension longitudinale réglable ;

    un mécanisme d'articulation passive (110) reliant le cadre (106) au dispositif de transmission (114), le mécanisme d'articulation passive (110) comportant une liaison à quatre barres ;

    un système d'entraînement (112) accouplant le mécanisme d'articulation passive (110) au dispositif de transmission (114) et conçu pour entraîner le dispositif de transmission (114), le système d'entraînement (112) comportant un axe disposé substantiellement perpendiculairement au plan sagittal.


     
    2. Exosquelette (100) selon la revendication 1, comprenant en outre une plaque (108) reliée au cadre (106), la liaison à quatre barres (110) étant reliée à la plaque (108) et un support de jambe (116) accouplé au dispositif de transmission (114).
     
    3. Exosquelette (100) selon la revendication 1, dans lequel un centre de rotation (CR2) pour le mécanisme d'articulation passive (110) est espacé du mécanisme d'articulation passive (100).
     
    4. Exosquelette (100) selon la revendication 2, dans lequel la liaison à quatre barres (110) inclut des première et deuxième liaisons (136, 138), les première et deuxième liaisons (136, 138) comportant des première et deuxième connexions (118, 120), respectivement, reliées de façon pivotante à la plaque (108).
     
    5. Exosquelette (100) selon la revendication 4, dans lequel au moins une butée d'amplitude de mouvement (122, 124, 126) se trouve sur la plaque (108), et est conçue pour limiter une amplitude de mouvement de l'une au moins parmi les première et deuxième liaisons (136, 138) et dans lequel la plaque (108) définit au moins une série d'ouvertures (128, 130, 132) conçues pour accueillir l'au moins une butée d'amplitude de mouvement (122, 124, 126).
     
    6. Exosquelette (100) selon la revendication 4, comprenant en outre un logement (134) à partir duquel s'étendent les première et deuxième connexions (118, 120), et dans lequel pivote au moins la première liaison (136), le logement (134) étant conçu pour limiter une amplitude de mouvement de la première liaison (136) au moins dans une première direction.
     
    7. Exosquelette (100) selon la revendication 6, comprenant en outre des troisième et quatrième connexions (140, 142) reliées de façon pivotante au système d'entraînement (112), au logement (134) et aux première et deuxième liaisons (136, 138), respectivement.
     
    8. Exosquelette (100) selon la revendication 6, dans lequel les première et deuxième liaisons (136, 138) sont conçues pour se déplacer par rapport au logement (134), la deuxième liaison (138) étant conçue pour se déplacer à l'extérieur du logement (134).
     
    9. Exosquelette (100) selon la revendication 4, dans lequel les première et deuxième liaisons (136, 138) tournent d'une première position vers une deuxième position, et sont conçues de telle façon que le système d'entraînement (112) passe de l'adduction à l'abduction en fonction de la rotation des première et deuxième liaisons (136, 138).
     
    10. Exosquelette (100) selon la revendication 1, dans lequel une liaison (144) est fixée de façon pivotante à une monture (148) disposée sur le système d'entraînement (112).
     
    11. Exosquelette (100) selon la revendication 10, dans lequel la monture (148) est fixée à un coulisseau (146) relié de façon coulissante au cadre (106), la liaison (144) étant reliée de façon pivotante au dispositif de transmission (114) et conçue pour fournir une intra-rotation.
     
    12. Exosquelette (100) selon la revendication 1, dans lequel le mécanisme d'articulation passive (149) comprend une liaison à quatre barres comportant une première liaison (150) et une deuxième liaison (152), la deuxième liaison (152) présentant une largeur (W2) supérieure à une largeur (WI) de la première liaison (150), la deuxième liaison (152) comprenant une butée d'amplitude de mouvement (154) définie le long d'une longueur de celle-ci.
     
    13. Exosquelette (100) selon la revendication 12, dans lequel le mécanisme d'articulation passive (149) inclut un logement (180) dans lequel se trouvent généralement les première et deuxième liaisons (150, 152), le logement (160) comportant des première et deuxième sections (156, 158) accueillant les largeurs (WI, W2) des première et deuxième liaisons (150, 152), respectivement.
     
    14. Exosquelette (100) selon la revendication 1, dans lequel le dispositif de transmission (114) définit un logement (180) dans lequel se trouvent des première et deuxième plaques pivotantes (182, 184), lesquelles peuvent pivoter autour de points de pivotement (186, 188) .
     
    15. Exosquelette (100) selon la revendication 14, dans lequel la deuxième plaque pivotante (184) est entraînée par au moins une liaison (190, 192) fixée à la première plaque pivotante (182), la première plaque pivotante (182) étant actionnée par le système d'entraînement (112) et reliée de façon pivotante aux première et deuxième plaques pivotantes (182, 184) à des points de pivotement (194, 196, 198, 200).
     
    16. Exosquelette (100) selon la revendication 15, dans lequel l'au moins une liaison (190, 192) définit des premier et deuxième segments arqués (202, 204, 206, 208) adaptés pour frapper un palier (187) autour du point de pivotement (186) de la première plaque pivotante (182), et au moins une partie de frappe (189) de la deuxième plaque pivotante (184).
     
    17. Exosquelette (100) selon la revendication 16, dans lequel, lors de la frappe sur le palier (187) ou l'au moins une partie de frappe (189), une amplitude de mouvement de l'au moins une liaison (190, 192) est conçue pour être empêchée dans la direction de rotation lors de la collision des premier et deuxième segments arqués (202, 204, 206, 208) au niveau de zones de collision (210, 212, 214, 216).
     
    18. Exosquelette (100) selon la revendication 17, dans lequel le palier (187) entoure le point de pivotement (186) et l'au moins une partie de frappe (189) est définie sur des côtés opposés de la deuxième plaque pivotante (184).
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description