FIELD OF THE DISCLOSURE
[0001] The disclosure relates to an exoskeleton including a passive joint mechanism providing
passive degrees of freedom.
BACKGROUND
[0002] Exoskeletons are becoming useful tools for addressing needs in healthcare and industrial
applications. These devices are arranged to generate and transfer mechanical power
to human joints. To work, these devices must achieve optimal kinematic coupling and
compatibility between the human joints and rotation axes of the exoskeleton. An exoskeleton
typically has mechatronic designs, control systems, and human-machine interfaces arranged
differently according to the expected usage.
[0003] A common problem with exoskeletons is a misalignment between the human joints and
the robot joints, which may lead to undesired forces being exerted on the human joints
resulting in discomfort or injury. These undesired forces may cause misapplication
of forces on the human limb resulting in unreliable torque transmission and chaffing
from shells or other means for securing against the human limbs, and inefficient movement
and poor compliance.
[0004] It is difficult to consistently align the human joints with the robot joints, in
part because of the variability among individual human anatomies. Another reason is
that even if the human and robot joints are properly aligned, the human joints do
not perfectly rotate because the users' geometries are not consistent and are complex,
fluctuating over a range of motion.
[0005] Given the above considerations, many exoskeletons have regulation mechanisms or passive
degrees of freedom (DoF) to fit the device to the human body. It has been found it
is possible to unload human articulations from undesired translational forces by decoupling
joint rotations and translations by adding passive DoFs to exoskeleton joints.
[0006] An example of an exoskeleton is an active pelvis orthosis (APO), which is a wearable
exoskeleton arranged to improve gait energy efficiency especially as affected by impairments
of the hip. The APO may be of the type described in
WO 2016/128877, which employs a chain or series of passive DoFs that allow the human flexion-extension
axis to align with the control or actuation systems to give the user hip abduction/adduction
rotation, and internal/external rotation. The APO includes a human interface to ensure
comfort despite activation by the control or actuation system of the user's joints
by the exoskeleton.
[0007] An example of a wearable motion supporting device is described in
US2013/0331744. The device substitutes for muscle strength of a wearer and comprises a waist portion
frame that has a long base portion in a right-left direction of the wearer and is
worn around a waist of the wearer. A pair of right and left lower extremity frames
is connected to a lower portion of the waist portion frame and is worn on lower extremities
of the wearer. A back portion frame is connected to an upper portion of the waist
portion frame and has a locking fixture to tie the back portion frame on a shoulder
of the wearer, and a rotational mechanism of one DOF (Degree Of Freedom) on a frontal
plane connects the back portion frame and the base portion of the waist portion frame.
[0008] Despite the advancements in exoskeletons, there still exists opportunities and needs
for improvement for an exoskeleton to balance comfort with efficacy in offering an
actuation system arranged to offer DoF for improving a user's gait.
[0009] There are limitations in existing exoskeletons because the actuators are sub-optimally
located on the device, causing discomfort and added bulk. Existing devices locate
the actuators over a user's hips and align the axis or axes of rotation posterior
to a user's femoral head. This creates problems because the motion of the user's hips
through the gait cycle causes movement of and against the actuators, which interferes
with the user's legs, causes discomfort, and requires the actuators to protrude posteriorly
from the frame and the user. This also makes sitting difficult and uncomfortable,
as the bulky actuators are positioned proximate a user's buttocks and lower back.
[0010] The chain or series of passive DoFs lacks a smooth and intuitive operation, adding
to the difficulty of use and discomfort, as the actuation system must be adjusted
in series and limited directions.
[0011] There is a need for an actuation system in an exoskeleton that overcomes these problems
in existing devices without compromising the effectiveness of transmission of forces
from the robot joints.
SUMMARY
[0012] Accordingly, the present disclosure provides an exoskeleton as defined in claim 1.
[0013] Embodiments of the disclosure relate to an exoskeleton including at least one passive
joint mechanism providing passive degrees of freedom, and by example in an active
pelvic orthosis (APO) having a human interface. The embodiments have the benefit of
limiting excursion into areas of activity of the user during use, while not encumbering
the user's gait.
[0014] The APO can provide assistive pairs of flexion-extension actuators or actuation systems
at one or both hips of the user. The exoskeletal structure in the APO extends from
the user's torso to the hip, and at least a part of the user's lower limbs. The actuation
system has limited lateral dimensions, allowing the user to freely move the arms such
as by allowing the arms to swing freely at the user's sides. Such a limited lateral
encumbrance is a consequence of the positioning of an actuator in the back of the
system itself and the posterior side of the user.
[0015] The actuation system enables the user to freely perform abduction-adduction movements
of the leg without obstructing the user's gait. The actuation system may also offer
an intra-extra rotation of the hip, realizing a "floating" configuration of the actuators
on the frame of the exoskeleton.
[0016] From the location and configuration of the actuation system in the embodiments, the
actuation system is configured to adapt to different anthropometries or dimensions
of the user. The system includes a transmission device extending substantially parallel
to the sagittal plane of the user and has an adjustable longitudinal dimension, to
allow a user to choose the distance between the actuator and a link which transmits
the assistive force or effect to the articular segment of the user's thigh.
[0017] The actuation system is configured in such a way that its axis of flexion-extension
of the hip and its axis of abduction/adduction of the hip are incident in a point
corresponding, in use, to the center of the femoral head of the user but without positioning
the actuators directly proximate the femoral head as in existing devices. This is
achieved through the above-mentioned adjustment of the longitudinal extension of the
transmission device and using corresponding adjustability of the width of the actuation
system on the frontal plane of the user.
[0018] The embodiments of the abduction/adduction control are achieved by a linkage or joint
located generally proximate the user's lumbar or torso region, as opposed to past
efforts and devices that locate the joint over the user's hips. The embodiments have
the advantage of mitigating interference with the user's legs, and mounting the linkage
in an area over the user that undergoes comparatively little movement during a user's
gait. There is improved seating comfort, and there is a reduced distance between the
actuation devices and the user's body. The linkage generally maintains the same center
of rotation as in past efforts and devices. The actuation system of the disclosure
advantageously provides enhanced comfort and compliance without compromising the effectiveness
of the exoskeleton, actuators, or otherwise.
[0019] The embodiments of the actuation system make the APO compatible with the degrees
of freedom, the angular extensions and, in general, the kinematics of the joints of
the user, including the passive ones. Of interest to the embodiments is the passive
joint mechanism for adduction/abduction, which relies on the linkage that is a multi-bar
linkage, enabling the linkage to be located remotely from the center of rotation,
while still providing effective and robust rotation of the actuation system to accommodate
adduction/abduction and rotation of the hip.
[0020] The embodiments of the actuation system are effective in assisting many physical
activities, particularly walking on the ground level and uphill/downhill, ascending/descending
steps, transitioning from sitting/standing ("sit-to-stand") or vice versa, and in
general, for engaging in motor activities for rehabilitation of the lower limbs.
[0021] These and other features, aspects, and advantages of the present disclosure will
become better understood regarding the following description, appended claims, and
accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022]
Fig. 1 is a perspective view of a prior art actuation system for an APO.
Fig. 2 is a detail view of a left monolateral aspect in the prior art actuation system
of Fig. 1.
Fig. 3 is a perspective view of an embodiment of an actuation system according to
the disclosure in an APO.
Fig. 4 is a detail view of a right monolateral aspect in the actuation system embodiment
of Fig. 3.
Fig. 5A is a sectional view of the passive joint mechanism of the actuation system
embodiment of Fig. 3 in a first position.
Fig. 5B is a sectional view of the passive joint mechanism of the actuation system
of Fig. 5A in a second position.
Fig. 6A is a partial perspective view of the actuation system embodiment of Fig. 3.
Fig. 6B is a detail view of the actuation system from Fig. 6A.
Fig. 7A is a rear perspective sectional view of the actuation system embodiment of
Fig. 3 in adduction.
Fig. 7B is a rear perspective sectional view of Fig. 7A without the housing on the
passive joint mechanism showing a position of the linkage of the passive joint mechanism
in at least one adduction position.
Fig. 8A is a rear perspective sectional view of the actuation system embodiment of
Fig. 3 in abduction.
Fig. 8B is a rear perspective sectional view of the passive joint mechanism of Fig.
8A without the housing on the passive joint mechanism and showing a position of the
linkage of the passive joint mechanism in at least one abduction position.
Fig. 9A is a perspective view showing another embodiment of a passive joint mechanism
useable in the actuation system embodiment of Fig. 3 without a housing over the linkage.
Fig. 9B is a perspective view of the embodiment of Fig. 9A with a housing over the
linkage.
Fig. 10A is a top perspective view showing another embodiment of a passive joint mechanism
useable in the actuation system embodiment of Fig. 3 in a first rotational position.
Fig. 10B is a top perspective view showing the embodiment of the passive joint mechanism
in Fig. 10A in a second rotational position.
Fig. 11A is a perspective view of an embodiment of a transmission device in a first
position and usable in the actuation system embodiment of Fig. 3.
Fig. 11B is a perspective view of the embodiment of Fig. 11A in a second position.
[0023] The drawing figures are not necessarily drawn to scale, but instead, are drawn to
provide a better understanding of the components, and are not intended to be limiting
in scope, but to provide exemplary illustrations.
DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS
A. Overview
[0024] A better understanding of different embodiments of the disclosure may be had from
the following description read with the accompanying drawings in which like reference
characters refer to like elements.
[0025] For further ease of understanding the embodiments of an actuation system and variants
as disclosed, a description of a few terms may be useful. As used, the term "proximal"
has its ordinary meaning and refers to a location next to or near the point of attachment
or origin or a central point, or located toward the center of the body. Likewise,
the term "distal" has its ordinary meaning and refers to a location situated away
from the point of attachment or origin or a central point, or located away from the
center of the body. The term "posterior" also has its ordinary meaning and refers
to a location behind or to the rear of another location. Last, the term "anterior"
has its ordinary meaning and refers to a location ahead of or to the front of another
location.
[0026] These anatomical terms are consistent with the user wearing the actuation system
referring to an anatomical position. An anatomical position is generally defined as
the erect position of the body with the face directed forward, the arms at the side,
and the palms of the hands facing forward, and which is a reference in describing
the relation of body parts to one another.
[0027] The terms "rigid," "flexible," "compliant," and "resilient" may distinguish characteristics
of portions of certain features of the actuation system. The term "rigid" should denote
that an element of the actuation system, such as a frame, is generally devoid of flexibility.
Within the context of features that are "rigid," it should indicate that they do not
lose their overall shape when force is applied and may break if bent with sufficient
force. The term "flexible" should denote that features are capable of repeated bending
such that the features may be bent into non-retained shapes or the features do not
retain a general shape, but continuously deform when force is applied.
[0028] The term "compliant" may qualify such flexible features as generally conforming to
the shape of another object when placed in contact therewith, via any suitable natural
or applied forces, such as gravitational forces, or forces applied by external mechanisms,
for example, strap mechanisms. The term "resilient" may qualify such flexible features
as generally returning to an initial general shape without permanent deformation.
As for the term "semi-rigid," this term may connote properties of support members
or shells that provide support and are free-standing; however, such support members
or shells may have flexibility or resiliency.
[0029] The embodiments of the disclosure are adapted for a human body and may be dimensioned
to accommodate different types, shapes, and sizes of human body sizes and contours.
For explanatory purposes, the actuation system embodiments described correspond to
different sections of a body and are denoted by general anatomical terms for the human
body.
[0030] The embodiments of the actuation system may correspond to anterior and posterior
body sections defined by an anterior-posterior plane. The anatomical terms described
are not intended to detract from the normal understanding of such terms as readily
understood by one of ordinary skill in the art of orthopedics, prosthetics, braces,
human interfaces, medical devices, and supports.
B. Description of Prior Art APO
[0031] Figs. 1 and 2 exemplify a prior art APO 30, as discussed in
WO 2016/128877. The mechanical structure of the APO 30 is symmetrical regarding the sagittal plane,
and includes two main actuation systems, one for each hip articulation, denoted respectively
by 1, 1'. Each of the actuation systems 1, 1' has transmission devices that transfer
the assistive torque from the actuation unit to the human hip articulation. Since
the two actuation systems 1, 1' are identical, unless there are necessary adaptations
to make them suitable to left and right articulation, respectively, reference simply
will be made to the left actuation system denoted by 1'.
[0032] The actuation system 1' comprises firstly a fixed frame 11, for the connection, permanently
or removably, to the structure of the APO 30. In the present case, the fixed frame
11 includes a connection plate or flange 14. The fixed frame 11 interfaces and stabilizes
the APO 30 on the body of the user, and can be secured to the latter using an appropriate
orthotic shell 12 configured for the user's pelvis or torso. On the connection plate
or flange 14 is mounted plates 15 which each support a transmission device 2.
[0033] The transmission device 2 is mechanically connected to a motor axis M and configured
to transfer an assistive force or effect on an output axis D which reproduces or augments
the physiological axis of flexion-extension of the hip. The M and D axes are parallel
or substantially parallel and may be spaced apart by a distance I, facilitating placement
of a drive system posterior of the user's hips/legs/buttocks, or generally as advantageous
for a particular use.
[0034] An actuation system 20 has a rotary joint for abduction-adduction of the hip, and
a rotary joint for intra/extra-rotation of the hip, collectively denoted as the passive
joint mechanism 22, which allow the execution of movement at the hip. The passive
joint mechanism 22 for abduction/adduction is located just over the user's hip and
protrudes well beyond the posterior of the user. The passive joint mechanism 22 kinematically
couples with a rotational degree of freedom around, respectively, an adduction/abduction
axis and an axis parallel to the axis of physiological intra-/extra-rotation.
[0035] A drive system 10 connects to the transmission device 2, which is connected mechanically
in series with the passive joint mechanism 22, to the fixed frame 11.
[0036] The passive joint mechanism 22, which comprises primarily two rotary joints configured
for facilitating abduction/adduction and intra/extra rotation of the hip, performs
a chain or series of degrees-of-freedom adjustments via the two rotary joints by means
of which the drive system 10 and the transmission device 2 are connected to the fixed
frame 11. The center of rotation CR1 is arranged to be proximate the femoral head
of the user. These degrees of freedom can be passive or actuated or connected to elastic
elements.
[0037] The drive system 10 may be of the type called SEA ("Series Elastic Actuator"), which
is known in the art. The drive system 10 is disposed at a rear portion of the APO
30 posterior of the user and corresponding to the user's back. The drive system 10
is configured to provide an assistive force or effect at its own motor axis M. The
motor axis M is an axis substantially parallel to the axis around which takes place
the movement of flexion-extension of the hip of the subject, in other words, an axis
substantially perpendicular to the sagittal plane.
[0038] The transmission device 2 connects to a rotatably connecting rod or link 3 which
transmits forces to an orthotic shell 13 arranged on a user's leg and suitable for
assisting in driving the user's leg. The passive joint mechanism 22 may be spaced
apart from a center of the frame 11 by a distance f, accommodating the user's dimensions
and facilitating effective and comfortable transmission of forces.
C. Description of Various Embodiments
[0039] Fig. 3 generally illustrates an embodiment of the disclosure having an actuation
system 104 in an exoskeleton 100, such as an APO. The actuation system 104 includes
a passive joint mechanism 110, preferably having a multi-bar linkage. A drive system
112 is linked to the passive joint mechanism 110 and driven by a power unit 102. The
drive system 112 is positionable according to the passive joint mechanism 110. A transmission
device 114 is arranged to be driven by the drive system 112. A lower body support
116 is secured to the transmission device 114.
[0040] The exoskeleton 100 comprises a frame 106, which supports the power unit 102, and
upon which the actuation system 104 mounts. A plate 108 connects to the frame 106,
and the passive joint mechanism 110 secures to the plate 108. The frame 106 may include
support elements, such as shells, straps, belts, and other known means for securing
the exoskeleton to the user.
[0041] Fig. 4 shows how the plate 108 is above the user's waist, and generally is about
the lumbar region or posterior torso of the user. This arrangement is advantageous
because it retains the advantages of existing devices in that it locates the center
of rotation proximate the femoral head in order to properly and effectively transfer
the assistive force to the user's leg/thigh at an anatomically advantaged location.
The arrangement relocates the actuator system such that the disruptions and interferences
to the user are minimized. The embodiments have the advantage of mitigating interference
with the user's legs and mounting the linkage in an area over the user that undergoes
little movement during a user's gait. There is improved seating comfort, and there
is a reduced distance between the actuation devices and the user's body. The linkage
generally maintains the same center of rotation as in past efforts, but without being
located in an obstructive area.
[0042] As the passive joint mechanism 110 is a multi-bar linkage, not only can it be mounted
a distance apart from the center of rotation, as shown by CR2 in Fig. 4, but it also
has a lower profile than in the prior art, and does not extend significantly posteriorly
from the user's body.
[0043] Figs. 5A and 5B show the passive joint mechanism 110 as having a multi-bar linkage,
as in a four-bar mechanism, and includes first and second links 136, 138. The first
and second links 136, 138 have first and second connections 118, 120, respectively,
pivotally securing to the plate 108, as shown in Figs. 6A - 6B.
[0044] There may be at least one range-of-motion stop 122, 124, 126 located on the plate
108, and arranged to limit a range of motion of at least one of the first and second
links 136, 138. The plate 108 defines at least one series of openings 128, 130, 132
for accommodating and supporting the at least one range-of-motion stop 122, 124, 126
and allows for adjustments to the positions of the at least one range-of-motion stop
122, 124, 126 based on the needs of a particular user.
[0045] Figs. 5A - 5B and 7A - 8B illustrate the passive joint mechanism 110 as having a
housing 134 at least partially covering the first and second connections 118, 120.
The housing 134 covers at least the first link 136, which is arranged to pivot therein.
The housing 134 may limit a range of motion of the first link 136 in at least a first
direction, for example by being arranged to abut the first link 136 at a certain degree
of motion. The second link 138 may have a portion that extends beyond the periphery
of the housing 134, as the second link 138 pivots. Accordingly the housing 134 may
define an opening or an aperture proximate the second link 138 allowing for movement
outside of the housing 134.
[0046] The first and second links 136, 138 couple to the drive system 112 by third and fourth
connections 140, 142, such that the third and fourth connections 140, 142 pivotally
connect to the drive system 112, and thus via the first and second links 136, 138
to the housing 134 and plate 108. Fig. 5B exemplifies how the first and second links
136, 138 translate relative to the housing 134 from a first position defined along
with axial locations A1, B1, to a second position defined along with axial locations
A2, B2, respectively.
[0047] Figs. 7B and 8B illustrate how the first and second links 136, 138 rotate from a
first position A to a second position B, whereby position A exemplifies adduction
and position B exemplifies abduction. Unlike in the prior art, it is found with the
passive joint mechanism having a multi-bar linkage, such as with links 136, 138, the
drive system 112 can be mounted or extend below the frame 106. This mechanism enables
locating the passive joint mechanism preferably over the torso or lumbar region of
the user, as opposed to posteriorly of the user's hip and center of rotation of the
hip, while still offering adduction/abduction control. This mechanism provides a more
comfortable device and overcomes challenges of existing devices, particularly the
inconveniences of having the actuator system mounted at and affecting the motion of
the hips.
[0048] Fig. 7A shows how the passive joint mechanism in adduction generally has parallel
axes A1 and A2, whereby axis A1 is at the passive joint mechanism 110 at the frame
106 with the first and second connections 118, 120 fixed on the plate 108, and axis
A2 is along with the transmission device 114. As the passive joint mechanism 110 goes
into abduction, as shown in Fig. 7B, axis A3 (as compared to axis A2 in adduction)
exemplifies how the linkage provides for translation of the transmission device 114
relative to the frame 106. In embodiments, the axis A3 may be rotated relative to
the axis A2 by a rotation R corresponding to an angle of abduction.
[0049] Figs. 9A and 9B exemplify a variation of a multi-bar linkage 149 having a four-bar
linkage with a first link 150 and a second link 152, such that the second link 152
has a greater width W2 than a width W1 of the first link 150. As the second link 152
bears force greater than the first link 150, the second link 152 is advantageously
stronger than the first link 150, which may be achieved by its size and geometry.
Due to the second link 152 bearing greater forces, the dimensions of the first link
150 can be minimized to save space. The second link 152 may have a range-of-motion
stop 154 defined along a length thereof. In embodiments, the range of motion stop
may be defined on the second link 152 and arranged to abut against a surface of the
housing or the drive system 112. In other embodiments, the extension stop may be defined
along a different surface.
[0050] The multi-bar linkage 149 includes a housing 160 in which the first and second links
150, 152 are generally located. The housing 160 preferably has first and second sections
156, 158 configured and dimensioned to accommodate the widths of the first and second
links 150, 152, respectively.
[0051] Turning to Figs. 10A - 10B, a linkage 144 secures to a slider 146 slidably connected
to the frame 106. The linkage 144 may pivotally connect to the transmission device
114 for providing extra-intra rotation of the hip. The linkage 144 pivotally secures
to a mount 148 provided on the drive system 112. The linkage 144 may be arranged similarly
as in the preceding embodiments. The slider 146 may be arranged to translate the linkage
144 a distance T relative to the frame 106. The slider 146 allows for greater flexibility
of use of the exoskeleton system as it can adapt to a user's dimensions and provide
optimized force transmission.
[0052] The pivoting or rotation of the linkage 144 relative to the frame 106 may advantageously
be driven by the cuff or shell 166 as the user rotates their hip inward or outward.
The mount 148 may attach and pivot along an axis located at a first position P1, independent
of or in cooperation with translation along the slider 146. As the linkage 144 thus
translates and rotates, the linkage 144 may move from a parallel arrangement with
the frame 106 to an offset or rotated relationship. The mount 148 may translate to
a second position P2, with a varying clearance between the linkage 144 and the frame
106. The depicted arrangement of the linkage 144 as slidably and pivotally arranged
on the frame 106 is merely exemplary and not intended to be limiting, and the linkage
144 may attach to the frame 106 in any suitable manner.
[0053] Figs. 11A and 11B illustrate an embodiment of a transmission device 114 defining
a housing 180 in which first and second pivot plates 182, 184 are located and pivotable
about axes or pivot points 186, 188. The second pivot plate 184 is driven by at least
one link 190, 192 secured to the first pivot plate 182. The first pivot plate 182
is actuated by the drive system 112. The at least one link 190, 192 is pivotally connected
to the first and second pivot plates 182, 184 at pivot points 194, 196, 198, 200.
[0054] The at least one link 190, 192 defines first and second arcuate segments 202, 204,
206, 208 adapted to strike a bearing 187, which surrounds the pivot point 186 of the
first pivot plate 182, and at least one strike part 189 of the second pivot plate
184. Upon striking the bearing 187 or the at least one strike part 189, the range
of motion of the at least one link 190, 192 is prevented in the direction of rotation
upon colliding of the arcuate segments 202, 204, 206, 208 at collision zones 210,
212, 214, 216. The at least one strike part 189 is preferably defined on opposed sides
of the second pivot plate 184.
[0055] This arrangement of collision zones 210, 212, 214, 216, bearing 187, and strike part
189 advantageously provides a range of control for the linkage 144 of the transmission
device 114, thus facilitating smooth motion that controls, e.g., abduction/adduction
while allowing a more intuitive operation for a user. The depicted embodiment is merely
exemplary, and the disclosure is not limited thereto; rather, an actuation system
according to the disclosure may have any suitable configuration.
[0056] The embodiments described herein provide improvements over existing exoskeletons
comprising actuator systems by relocating the actuators to a portion of the user's
body that causes less interference and discomfort while not compromising the efficacy
of the actuator unit in providing forces to aid a user's movements.
1. An exoskeleton (100), comprising:
a frame (106); and
right and left actuation systems (104) adapted for right and left hip articulation,
respectively, each of the right and left actuation systems (104) individually including:
a transmission device (114) adapted to extend substantially parallel to a sagittal
plane and having an adjustable longitudinal dimension;
a passive joint mechanism (110) connecting the frame (106) to the transmission device
(114), the passive joint mechanism (110) having a four-bar linkage;
a drive system (112) coupling the passive joint mechanism (110) to the transmission
device (114), and arranged to drive the transmission device (114), the drive system
(112) having an axis arranged substantially perpendicular to the sagittal plane.
2. The exoskeleton (100) of claim 1, further comprising a plate (108) connecting to the
frame (106), the four-bar linkage (110) connecting to the plate (108) and a leg support
(116) coupled to the transmission device (114).
3. The exoskeleton (100) of claim 1, wherein a center of rotation (CR2) for the passive
joint mechanism (110) is spaced from the passive joint mechanism (100).
4. The exoskeleton (100) of claim 2, wherein the four-bar linkage (110) includes first
and second links (136, 138), the first and second links (136, 138) having first and
second connections (118, 120), respectively, pivotally connecting to the plate (108).
5. The exoskeleton (100) of claim 4, wherein at least one range-of-motion stop (122,
124, 126) is located on the plate (108), and is arranged to limit a range of motion
of at least one of the first and second links (136, 138) and wherein the plate (108)
defines at least one series of openings (128, 130, 132) arranged to accommodate the
at least one range-of-motion stop (122, 124, 126).
6. The exoskeleton (100) of claim 4, further comprising a housing (134) from which the
first and second connections (118, 120) extend, and at least the first link (136)
pivoting therein, the housing (134) arranged to limit a range of motion of the first
link (136) in at least a first direction.
7. The exoskeleton (100) of claim 6, further comprising third and fourth connections
(140, 142) pivotally connecting to the drive system (112), to the housing (134), and
the first and second links (136, 138), respectively.
8. The exoskeleton (100) of claim 6, wherein the first and second links (136, 138) are
arranged to move relative to the housing (134), the second link (138) arranged to
move outside of the housing (134).
9. The exoskeleton (100) of claim 4, wherein the first and second links (136, 138) rotate
from a first position to a second position, and is arranged so that the drive system
(112) goes between adduction and abduction according to rotation of the first and
second links (136, 138).
10. The exoskeleton (100) of claim 1, wherein a linkage (144) pivotally secures to a mount
(148) provided on the drive system (112).
11. The exoskeleton (100) of claim 10, wherein the mount (148) secures to a slider (146)
slidably connected to the frame (106), the linkage (144) pivotally connecting to the
transmission device (114) and arranged to provide intra-rotation.
12. The exoskeleton (100) of claim 1, wherein the passive joint mechanism (149) comprises
a four-bar linkage having a first link (150) and a second link (152), the second link
(152) having a greater width (W2) than a width (WI) of the first link (150), the second
link (152) comprising a range-of-motion stop (154) defined along a length thereof.
13. The exoskeleton (100) of claim 12, wherein the passive joint mechanism (149) includes
a housing (180) in which the first and second links (150, 152) are generally located,
the housing (160) having first and second sections (156, 158) accommodating the widths
(WI, W2) of the first and second links (150, 152), respectively.
14. The exoskeleton (100) of claim 1, wherein the transmission device (114) defines a
housing (180) in which first and second pivot plates (182, 184) are located and pivotable
about pivot points (186, 188).
15. The exoskeleton (100) of claim 14, wherein the second pivot plate (184) is driven
by at least one link (190, 192) secured to the first pivot plate (182), the first
pivot plate (182) actuated by the drive system (112) and pivotally connected to the
first and second pivot plates (182, 184) at pivot points (194, 196, 198, 200).
16. The exoskeleton (100) of claim 15, wherein the at least one link (190, 192) defines
first and second arcuate segments (202, 204, 206, 208) adapted to strike a bearing
(187) about the pivot point (186) of the first pivot plate (182), and at least one
strike part (189) of the second pivot plate (184).
17. The exoskeleton (100) of claim 16, wherein upon striking the bearing (187) or the
at least one strike part (189), range of motion of the at least one link (190, 192)
is arranged to be prevented in the direction of rotation upon colliding of the first
and second arcuate segments (202, 204, 206, 208) at collision zones (210, 212, 214,
216).
18. The exoskeleton (100) of claim 17, wherein the bearing (187) surrounds the pivot point
(186) and the at least one strike part (189) is defined on opposed sides of the second
pivot plate (184).
1. Exoskelett (100), umfassend:
einen Rahmen (106); und
ein rechtes und ein linkes Betätigungssystem (104), die für eine rechte bzw. linke
Hüftgelenksbewegung ausgelegt sind, wobei sowohl das rechte als auch das linke Betätigungssystem
(104) jeweils aufweisen:
eine Übertragungsvorrichtung (114), die so ausgelegt ist, dass sie sich im Wesentlichen
parallel zu einer Sagittalebene erstreckt und eine einstellbare Längsabmessung aufweist;
einen passiven Gelenkmechanismus (110), der den Rahmen (106) mit der Übertragungsvorrichtung
(114) verbindet, wobei der passive Gelenkmechanismus (110) ein Vierstabgestänge aufweist;
ein Antriebssystem (112), das den passiven Gelenkmechanismus (110) mit der Übertragungsvorrichtung
(114) koppelt und angeordnet ist, um die Übertragungsvorrichtung (114) anzutreiben,
wobei das Antriebssystem (112) eine Achse aufweist, die im Wesentlichen senkrecht
zu der Sagittalebene angeordnet ist.
2. Exoskelett (100) nach Anspruch 1, ferner umfassend eine Platte (108), die mit dem
Rahmen (106) verbunden ist, wobei das Vierstabgestänge (110) mit der Platte (108)
verbunden ist, und einen Beinträger (116), der mit der Übertragungsvorrichtung (114)
gekoppelt ist.
3. Exoskelett (100) nach Anspruch 1, wobei ein Drehpunkt (CR2) für den passiven Gelenkmechanismus
(110) von dem passiven Gelenkmechanismus (100) beabstandet ist.
4. Exoskelett (100) nach Anspruch 2, wobei das Vierstabgestänge (110) ein erstes und
ein zweites Verbindungsglied (136, 138) umfasst, wobei das erste und das zweite Verbindungsglied
(136, 138) eine erste bzw. eine zweite Verbindung (118, 120) aufweisen, die schwenkbar
mit der Platte (108) verbunden sind.
5. Exoskelett (100) nach Anspruch 4, wobei sich mindestens ein Bewegungsbereichsanschlag
(122, 124, 126) auf der Platte (108) befindet und so angeordnet ist, dass er einen
Bewegungsbereich von dem ersten und/oder dem zweiten Verbindungsglied (136, 138) begrenzt,
und wobei die Platte (108) mindestens eine Reihe von Öffnungen (128, 130, 132) definiert,
die so angeordnet sind, dass sie den mindestens einen Bewegungsbereichsanschlag (122,
124, 126) aufnehmen.
6. Exoskelett (100) nach Anspruch 4, ferner umfassend ein Gehäuse (134), von dem sich
die erste und zweite Verbindung (118, 120) erstrecken, und mindestens das erste Verbindungsglied
(136), das darin schwenkt, wobei das Gehäuse (134) so angeordnet ist, dass es einen
Bewegungsbereich des ersten Verbindungsglieds (136) in mindestens einer ersten Richtung
begrenzt.
7. Exoskelett (100) nach Anspruch 6, ferner umfassend eine dritte und eine vierte Verbindung
(140, 142), die schwenkbar mit dem Antriebssystem (112), dem Gehäuse (134) und dem
ersten bzw. zweiten Verbindungsglied (136, 138) verbunden sind.
8. Exoskelett (100) nach Anspruch 6, wobei das erste und das zweite Verbindungsglied
(136, 138) so angeordnet sind, dass sie sich relativ zu dem Gehäuse (134) bewegen,
wobei das zweite Verbindungsglied (138) so angeordnet ist, dass es sich außerhalb
des Gehäuses (134) bewegt.
9. Exoskelett (100) nach Anspruch 4, wobei das erste und das zweite Verbindungsglied
(136, 138) sich von einer ersten Position in eine zweite Position drehen und so angeordnet
ist, dass das Antriebssystem (112) entsprechend der Drehung des ersten und des zweiten
Verbindungsglieds (136, 138) zwischen Adduktion und Abduktion wechselt.
10. Exoskelett (100) nach Anspruch 1, wobei ein Gelenkglied (144) schwenkbar an einer
Halterung (148) befestigt ist, die auf dem Antriebssystem (112) vorgesehen ist.
11. Exoskelett (100) nach Anspruch 10, wobei die Halterung (148) an einem Schieber (146)
befestigt ist, der verschiebbar mit dem Rahmen (106) verbunden ist, wobei das Gelenkglied
(144) schwenkbar mit der Übertragungsvorrichtung (114) verbunden und so angeordnet
ist, dass es eine Einwärtsdrehung ermöglicht.
12. Exoskelett (100) nach Anspruch 1, wobei der passive Gelenkmechanismus (149) ein Vierstabgestänge
mit einem ersten Verbindungsglied (150) und einem zweiten Verbindungsglied (152) umfasst,
wobei das zweite Verbindungsglied (152) eine größere Breite (W2) als eine Breite (WI)
des ersten Verbindungsglieds (150) aufweist, wobei das zweite Verbindungsglied (152)
einen Bewegungsbereichsanschlag (154) umfasst, der entlang einer Länge davon definiert
ist.
13. Exoskelett (100) nach Anspruch 12, wobei der passive Gelenkmechanismus (149) ein Gehäuse
(180) umfasst, in dem das erste und das zweite Verbindungsglied (150, 152) im Allgemeinen
angeordnet sind, wobei das Gehäuse (160) einen ersten und einen zweiten Abschnitt
(156, 158) aufweist, die die Breiten (WI, W2) des ersten bzw. zweiten Verbindungsglieds
(150, 152) aufnehmen.
14. Exoskelett (100) nach Anspruch 1, wobei die Übertragungsvorrichtung (114) ein Gehäuse
(180) definiert, in dem sich eine erste und eine zweite Schwenkplatte (182, 184) befinden,
die um Schwenkpunkte (186, 188) schwenkbar sind.
15. Exoskelett (100) nach Anspruch 14, wobei die zweite Schwenkplatte (184) durch mindestens
ein Verbindungsglied (190, 192) angetrieben wird, das an der ersten Schwenkplatte
(182) befestigt ist, wobei die erste Schwenkplatte (182) durch das Antriebssystem
(112) betätigt wird und mit der ersten und der zweiten Schwenkplatte (182, 184) an
Schwenkpunkten (194, 196, 198, 200) schwenkbar verbunden ist.
16. Exoskelett (100) nach Anspruch 15, wobei das mindestens eine Verbindungsglied (190,
192) ein erstes und ein zweites bogenförmiges Segment (202, 204, 206, 208) definiert,
die so ausgelegt sind, dass sie auf ein Lager (187) um den Drehpunkt (186) der ersten
Drehplatte (182) und mindestens einen Schlagteil (189) der zweiten Drehplatte (184)
schlagen.
17. Exoskelett (100) nach Anspruch 16, wobei beim Aufschlagen auf das Lager (187) oder
den mindestens einen Schlagteil (189) der Bewegungsbereich des mindestens einen Verbindungsglieds
(190, 192) so angeordnet ist, dass er in der Drehrichtung beim Zusammenprall des ersten
und des zweiten bogenförmigen Segments (202, 204, 206, 208) an Kollisionszonen (210,
212, 214, 216) verhindert wird.
18. Exoskelett (100) nach Anspruch 17, wobei das Lager (187) den Drehpunkt (186) umgibt
und der mindestens eine Schlagteil (189) auf gegenüberliegenden Seiten der zweiten
Schwenkplatte (184) definiert ist.
1. Exosquelette (100) comprenant :
un cadre (106) ; et
des systèmes d'actionnement droit et gauche (104) adaptés pour des articulations de
hanche droite et gauche, respectivement, chacun des systèmes d'actionnement droit
et gauche (104) incluant individuellement :
un dispositif de transmission (114) adapté pour s'étendre substantiellement parallèlement
à un plan sagittal et présentant une dimension longitudinale réglable ;
un mécanisme d'articulation passive (110) reliant le cadre (106) au dispositif de
transmission (114), le mécanisme d'articulation passive (110) comportant une liaison
à quatre barres ;
un système d'entraînement (112) accouplant le mécanisme d'articulation passive (110)
au dispositif de transmission (114) et conçu pour entraîner le dispositif de transmission
(114), le système d'entraînement (112) comportant un axe disposé substantiellement
perpendiculairement au plan sagittal.
2. Exosquelette (100) selon la revendication 1, comprenant en outre une plaque (108)
reliée au cadre (106), la liaison à quatre barres (110) étant reliée à la plaque (108)
et un support de jambe (116) accouplé au dispositif de transmission (114).
3. Exosquelette (100) selon la revendication 1, dans lequel un centre de rotation (CR2)
pour le mécanisme d'articulation passive (110) est espacé du mécanisme d'articulation
passive (100).
4. Exosquelette (100) selon la revendication 2, dans lequel la liaison à quatre barres
(110) inclut des première et deuxième liaisons (136, 138), les première et deuxième
liaisons (136, 138) comportant des première et deuxième connexions (118, 120), respectivement,
reliées de façon pivotante à la plaque (108).
5. Exosquelette (100) selon la revendication 4, dans lequel au moins une butée d'amplitude
de mouvement (122, 124, 126) se trouve sur la plaque (108), et est conçue pour limiter
une amplitude de mouvement de l'une au moins parmi les première et deuxième liaisons
(136, 138) et dans lequel la plaque (108) définit au moins une série d'ouvertures
(128, 130, 132) conçues pour accueillir l'au moins une butée d'amplitude de mouvement
(122, 124, 126).
6. Exosquelette (100) selon la revendication 4, comprenant en outre un logement (134)
à partir duquel s'étendent les première et deuxième connexions (118, 120), et dans
lequel pivote au moins la première liaison (136), le logement (134) étant conçu pour
limiter une amplitude de mouvement de la première liaison (136) au moins dans une
première direction.
7. Exosquelette (100) selon la revendication 6, comprenant en outre des troisième et
quatrième connexions (140, 142) reliées de façon pivotante au système d'entraînement
(112), au logement (134) et aux première et deuxième liaisons (136, 138), respectivement.
8. Exosquelette (100) selon la revendication 6, dans lequel les première et deuxième
liaisons (136, 138) sont conçues pour se déplacer par rapport au logement (134), la
deuxième liaison (138) étant conçue pour se déplacer à l'extérieur du logement (134).
9. Exosquelette (100) selon la revendication 4, dans lequel les première et deuxième
liaisons (136, 138) tournent d'une première position vers une deuxième position, et
sont conçues de telle façon que le système d'entraînement (112) passe de l'adduction
à l'abduction en fonction de la rotation des première et deuxième liaisons (136, 138).
10. Exosquelette (100) selon la revendication 1, dans lequel une liaison (144) est fixée
de façon pivotante à une monture (148) disposée sur le système d'entraînement (112).
11. Exosquelette (100) selon la revendication 10, dans lequel la monture (148) est fixée
à un coulisseau (146) relié de façon coulissante au cadre (106), la liaison (144)
étant reliée de façon pivotante au dispositif de transmission (114) et conçue pour
fournir une intra-rotation.
12. Exosquelette (100) selon la revendication 1, dans lequel le mécanisme d'articulation
passive (149) comprend une liaison à quatre barres comportant une première liaison
(150) et une deuxième liaison (152), la deuxième liaison (152) présentant une largeur
(W2) supérieure à une largeur (WI) de la première liaison (150), la deuxième liaison
(152) comprenant une butée d'amplitude de mouvement (154) définie le long d'une longueur
de celle-ci.
13. Exosquelette (100) selon la revendication 12, dans lequel le mécanisme d'articulation
passive (149) inclut un logement (180) dans lequel se trouvent généralement les première
et deuxième liaisons (150, 152), le logement (160) comportant des première et deuxième
sections (156, 158) accueillant les largeurs (WI, W2) des première et deuxième liaisons
(150, 152), respectivement.
14. Exosquelette (100) selon la revendication 1, dans lequel le dispositif de transmission
(114) définit un logement (180) dans lequel se trouvent des première et deuxième plaques
pivotantes (182, 184), lesquelles peuvent pivoter autour de points de pivotement (186,
188) .
15. Exosquelette (100) selon la revendication 14, dans lequel la deuxième plaque pivotante
(184) est entraînée par au moins une liaison (190, 192) fixée à la première plaque
pivotante (182), la première plaque pivotante (182) étant actionnée par le système
d'entraînement (112) et reliée de façon pivotante aux première et deuxième plaques
pivotantes (182, 184) à des points de pivotement (194, 196, 198, 200).
16. Exosquelette (100) selon la revendication 15, dans lequel l'au moins une liaison (190,
192) définit des premier et deuxième segments arqués (202, 204, 206, 208) adaptés
pour frapper un palier (187) autour du point de pivotement (186) de la première plaque
pivotante (182), et au moins une partie de frappe (189) de la deuxième plaque pivotante
(184).
17. Exosquelette (100) selon la revendication 16, dans lequel, lors de la frappe sur le
palier (187) ou l'au moins une partie de frappe (189), une amplitude de mouvement
de l'au moins une liaison (190, 192) est conçue pour être empêchée dans la direction
de rotation lors de la collision des premier et deuxième segments arqués (202, 204,
206, 208) au niveau de zones de collision (210, 212, 214, 216).
18. Exosquelette (100) selon la revendication 17, dans lequel le palier (187) entoure
le point de pivotement (186) et l'au moins une partie de frappe (189) est définie
sur des côtés opposés de la deuxième plaque pivotante (184).