EP 3 792 278 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.03.2021 Bulletin 2021/11 (51) Int Cl.: C07K 16/18 (2006.01)

A61P 25/28 (2006.01)

(21) Application number: 20178431.1

(22) Date of filing: 20.12.2013

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States:

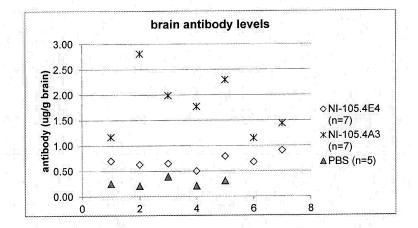
BA ME

(30) Priority: 21.12.2012 US 201261745410 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 13818637.4 / 2 935 326

- (71) Applicants:
 - · Biogen MA Inc. Cambridge, MA 02142 (US)
 - · Biogen International Neuroscience GmbH 6340 Baar (CH)
- (72) Inventors:
 - · WEINREB, Paul, H. Andover, MA Massachusetts 01810 (US)

- · CHEN, Feng 6340 Baar (CH)
- GARBER, Ellen, A. Cambridge, MA Massachusetts 02138 (US)
- GRIMM. Jan 8600 Dubendorf (CH)
- MONTRASIO, Fabio 8834 Schindellegi (CH)
- (74) Representative: Pohlman, Sandra M. df-mp Dörries Frank-Molnia & Pohlman Patentanwälte Rechtsanwälte PartG mbB Theatinerstrasse 16 80333 München (DE)


Remarks:

- •This application was filed on 05-06-2020 as a divisional application to the application mentioned under INID code 62.
- •Claims filed after the date of receipt of the divisional application (Rule 68(4) EPC).

HUMAN ANTI-TAU ANTIBODIES (54)

(57)Provided are novel human tau-specific antibodies as well as fragments, derivatives and variants thereof as well as methods related thereto. Assays, kits, and solid supports related to antibodies specific for tau are also disclosed. The antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for tau targeted immunotherapy and diagnosis, respectively.

Figure 6

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

10

15

20

25

30

35

40

45

50

55

[0001] The present invention generally relates to novel tau-specific binding molecules, particularly human antibodies as well as fragments, derivatives and variants thereof that recognize the tau protein, including pathologically phosphorylated tau and aggregated forms of tau. In addition, the present invention relates to pharmaceutical and diagnostic compositions comprising such binding molecules, antibodies and mimics thereof valuable both as a diagnostic tool to identify tau and toxic tau species in plasma and CSF and also in passive vaccination strategies for treating neurodegenerative tauopathies such as Alzheimer's disease (AD), amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC), argyrophilic grain dementia (AGD), British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration (CBD), Creutzfeldt-Jakob disease (CJD), dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration, Gerstmann-Straussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C (NP-C), non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease (PiD), postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy (PSP), subacute sclerosing panencephalitis, tangle only dementia, multi-infarct dementia and ischemic stroke.

Background Art

[0002] Protein accumulation, modifications and aggregation are pathological aspects of numerous neurodegenerative diseases. Pathologically modified and aggregated tau including hyperphosphorylated tau conformers are an invariant hallmark of tauopathies and correlate with disease severity.

[0003] Tau is a microtubule-associated protein expressed in the central nervous system with a primary function to stabilize microtubules. There are six major isoforms of tau expressed mainly in the adult human brain, which are derived from a single gene by alternative splicing. Under pathological conditions, the tau protein becomes hyperphosphorylated, resulting in a loss of tubulin binding and destabilization of microtubules followed by the aggregation and deposition of tau in pathogenic neurofibrillary tangles. Disorders related to tau - collectively referred to as neurodegenerative tauopathies - are part of a group of protein misfolding disorders including Alzheimer's disease (AD), progressive supranuclear palsy, Pick's disease, corticobasal degeneration, FTDP-17 among others. More than 40 mutations in tau gene have been reported to be associated with hereditary frontotemporal dementia demonstrating that tau gene mutations are sufficient to trigger neurodegeneration (Cairns et al., Am. J. Pathol. 171 (2007), 227-40). Studies in transgenic mice and cell culture indicate that in AD, tau pathology can be caused by a pathological cascade in which $A\beta$ lies upstream of tau (Götz et al., Science 293 (2001), 1491-1495). Other finding however point to a dual-pathway model where both cascades function independently of each other (van de Nes et al., Acta Neuropathol. 111 (2006), 126-138). Immunotherapies targeting the beta-amyloid peptide in AD have produced encouraging results in animal models and shown promise in clinical trials. More recent autopsy data from a small number of subjects suggests that clearance of beta-amyloid plaques in patients with progressed AD may not be sufficient to halt cognitive deterioration, emphasizing the need for additional therapeutic strategies for AD (Holmes et al., Lancet 372 (2008), 216-223; Boche et al., Acta Neuropathol. 120 (2010), 13-20). In the wake of the success of Abeta-based immunization therapy in transgenic animal models, the concept of active immunotherapy was expanded to the tau protein. Active vaccination of wild type mice using the tau protein was however found to induce the formation of neurofibrillary tangles, axonal damage and mononuclear infiltrates in the central nervous system, accompanied by neurologic deficits (Rosenmann et al., Arch Neurol. 63 (2006), 1459-1467). Subsequent studies in transgenic mouse lines using active vaccination with phosphorylated tau peptides revealed reduced brain levels of tau aggregates in the brain and slowed progression of behavior impairments (Sigurdsson, J. Alzheimers. Dis. 15 (2008), 157-168; Boimel et al., Exp. Neurol. 224 (2010), 472-485). These findings highlight the potential benefit but also the tremendous risks associated with active immunotherapy approaches targeting tau. Novel therapeutic strategies are urgently needed addressing pathological tau proteins with efficacious and safe therapy.

[0004] Passive immunization with human antibodies derived from healthy human subjects which are evolutionarily optimized and affinity matured by the human immune system would provide a promising new therapeutic avenue with a high probability for excellent efficacy and safety.

BRIEF SUMMARY OF THE INVENTION

[0005] The present invention makes use of the tau-specific immune response of healthy human subjects for the

isolation of natural anti-tau specific human monoclonal antibodies. In particular, experiments performed in accordance with the present invention were successful in the isolation of monoclonal tau-specific antibodies from a pool of healthy human subjects with no signs of a neurodegenerative tauopathy.

[0006] The present invention is thus directed to human antibodies, antigen-binding fragments and similar antigen-binding molecules which are capable of specifically recognizing tau. By "specifically recognizing tau", "antibody specific to/for tau" and "anti-tau antibody" is meant specifically, generally, and collectively, antibodies to the native form of tau, or aggregated or pathologically modified tau isoforms. Provided herein are human antibodies selective for full-length, pathologically phosphorylated and aggregated forms.

[0007] In a particular embodiment of the present invention, the human antibody or antigen-binding fragment thereof demonstrates the immunological binding characteristics of an antibody characterized by the variable regions V_H and/or V_L as set forth in Fig. 7.

[0008] The antigen-binding fragment of the antibody can be a single chain Fv fragment, an F(ab) fragment, an F(ab) fragment, and an $F(ab)_2$ fragment, or any other antigen-binding fragment. In a specific embodiment, infra, the antibody or fragment thereof is a human IgG isotype antibody. Alternatively, the antibody is a chimeric human-murine or murinized antibody, the latter being particularly useful for diagnostic methods and studies in animals.

[0009] Furthermore, the present invention relates to compositions comprising the antibody of the present invention or active fragments thereof, or agonists and cognate molecules, or alternately, antagonists of the same and to immunotherapeutic and immunodiagnostic methods using such compositions in the prevention, diagnosis or treatment of a tauopathy, wherein an effective amount of the composition is administered to a patient in need thereof.

[0010] Naturally, the present invention extends to the immortalized human B memory lymphocyte and B cell, respectively, that produces the antibody having the distinct and unique characteristics as defined below.

[0011] The present invention also relates to polynucleotides encoding at least a variable region of an immunoglobulin chain of the antibody of the invention. In one embodiment, said variable region comprises at least one complementarity determining region (CDR) of the V_H and/or V_L of the variable region as set forth in Figure 7.

[0012] Accordingly, the present invention also encompasses vectors comprising said polynucleotides and host cells transformed therewith as well as their use for the production of an antibody and equivalent binding molecules which are specific for tau. Means and methods for the recombinant production of antibodies and mimics thereof as well as methods of screening for competing binding molecules, e.g., antibodies, are known in the art. However, as described herein, in particular with respect to therapeutic applications in human the antibody of the present invention is a human antibody in the sense that application of said antibody is substantially free of an immune response directed against such antibody otherwise observed for chimeric and even humanized antibodies.

[0013] Furthermore, disclosed herein are compositions and methods that can be used to identify tau in samples. The disclosed anti-tau antibodies can be used to screen human blood, CSF, and urine for the presence of tau in samples, for example, by using ELISA-based or surface adapted assay. The methods and compositions disclosed herein can aid in neurodegenerative tauopathies such as Alzheimer's disease diagnosis and can be used to monitor disease progression and therapeutic efficacy.

[0014] Hence, it is a particular object of the present invention to provide methods for treating, diagnosing or preventing a neurodegenerative tauopathy such as Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex, argyrophilic grain dementia, British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration, Creutzfeldt-Jakob disease, dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17, frontotemporal lobar degeneration, Gerstmann-Sträussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C, non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease, postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy, subacute sclerosing panencephalitis, tangle only dementia, multi-infarct dementia and ischemic stroke. The methods comprise administering an effective concentration of a human antibody or antibody derivative to the subject where the antibody targets tau.

[0015] Further embodiments of the present invention will be apparent from the description and Examples that follow.

50 BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0016]

55

10

15

30

35

FIG. 1. Amino acid and nucleotide sequences of the variable region, *i.e.* heavy chain and lambda light chain of human antibodies NI-105.4E4 (A), NI-105.24B2 (B) and NI-105.4A3 (C). Framework (FR) and complementarity determining regions (CDRs) are indicated with the CDRs being underlined. Due to the cloning strategy the amino acid sequence at the N-terminus of the heavy chain and light chain may potentially contain primer-induced alterations in FR1, which however do not substantially affect the biological activity of the antibody. In order to provide a consensus

human antibody, the nucleotide and amino acid sequences of the original clone were aligned with and tuned in accordance with the pertinent human germ line variable region sequences in the database; see, e.g., Vbase (http://vbase.mrc-cpe.cam.ac.uk/) hosted by the MRC Centre for Protein Engineering (Cambridge, UK). Those amino acids, which are considered to potentially deviate from the consensus germ line sequence due to the PCR primer and thus have been replaced in the amino acid sequence, are indicated in bold.

- FIG. 2. NI-105.4E4 binds to neurofibrillary tangles (NFT), dystrophic neurites and neuropil threads in AD brain and human TauP301L expressing mice. NI-105.4E4 staining identifies NFTs and neuropil threads in AD brain (A), with no significant binding to tau in the brain of healthy control subject (B). In TauP301L transgenic mouse (E-I) NI-105.4E4 binds strongly to the pathological tau resembling NFT (E, F and H), neuropil threads (E and G) and dystrophic neurites (E and H). In addition, NI-105.4E4 also identifies tau aggregates at pre-tangle stage (I). NI-105.4E4 binds to NFT, dystrophic neurites and neuropil threads in transgenic mouse expressing human APP with the Swedish and the Arctic mutation and TauP301L; the arrow marks a beta-amyloid plaque, surrounded by dystrophic neurites recognized by NI-105.4E4 (J). Secondary antibody only does not give signal both in human AD (C) and healthy control (D).
- FIG. 3. Tissue amyloid plaque immunoreactivity (TAPIR) assay. Neurofibrillary tangles were stained with either the anti-phospho-tau antibody AT100 or sera isolated from healthy elderly subjects.
 - FIG. 4. Schematic representation of the NI-105.4E4 and NI-105.4A3 epitopes and epitopes of commonly used commercially available mouse monoclonal tau antibodies are shown. Human antibody NI-105.4E4 targets a unique epitope that comprises two linear polypeptides, one of which is located in the microtubule binding domain (R4) of tau which is masked in physiological microtubule-associated tau. Tau-12 (Covance, California, U.S.A.), HT7, AT8, AT180 (Thermo Scientific, U.S.A.); PHF1 (Lewis et al., Science 293 (2001), 1487-1491).
 - FIG. 5. Human IgG levels in the plasma of mice following intraperitoneal administration of 30 mg/kg NI-105.4E4 or NI-105.4A3 human anti-tau antibody.
 - FIG. 6. Human IgG levels in brain homogenate of mice following intraperitoneal administration of 30 mg/kg NI-105.4E4 or NI-105.4A3 human anti-tau antibody.
 - FIG. 7. Amino acid sequence of heavy chain and light chain variable regions of (A) NI-105.17C1, (B) NI-105.6C5, (C) NI-105.29G10, (D) NI-105.6L9, (E) NI-105.40E8, (F) NI-105.48E5, (G) NI-105.6E3, (H) NI-105.22E1, (I) NI-105.26B12, (J) NI-105.12E12, (K) NI-105.60E7, (L) NI-105.14E2, (M) NI-105.39E2, (N) NI-105.19C6, and (O) NI-105.9C4 human anti-tau antibodies. Complementarity determining regions (CDRs) are underlined.
- FIG. 8. (A) Binding of ch17C1, ch17C1(N31Q) mlgG2a and ch17C1(N31Q) mlgG1 Agly to recombinant Tau in an ELISA assay. (B) Comparison of recombinant Tau binding by ch17C1(N31Q) mlgG2a and ch17C1(N31Q, I48V) mlgG2a in an ELISA assay.
 - FIG. 9. Comparison of recombinant Tau binding by NI-105.40E8 hlgG1 and NI-105.40E8(R104W) hlgG1 in an ELISA assay.
- FIG. 10. Binding of NI-105.40E8, NI-105.48E5, NI-105.6C5 and NI-105.17C1(I48V) human anti-tau antibodies to pathologically aggregated tau in AD brain and in the brain of transgenic mouse model of tauopathy. Representative images of human anti-tau antibody binding to pathological tau aggregates in the brain of Alzheimer's disease (AD) and in the brain of transgenic mouse of tauopathy (Tg). Control tissue samples were obtained from mentally healthy subject (Ctr) or wild type mouse brain (Wt).
- FIG. 11. Brain penetration of NI-105.6C5 or NI-105.6E3 human anti-tau antibodies in TauP301L mice. "tg" indicates representative sections from transgenic animals either treated or untreated, and "wt" indicates an untreated non-transgenic animal. Scale bar: 50 μm.
 - FIG. 12. Effects of chronic treatment of TauP301L mice with ch4E4(N30Q) and ch17C1(N31Q). Total human tau (A), human pS199 tau (B), human pT231 tau (C) and human pT181 tau (D) levels in soluble, and insoluble fraction of brain protein extracts were quantified with commercial ELISA.
 - FIG. 13. Soluble and insoluble human tau in TauP301L mice treated with ch17C1(N31Q) and ch4E4(N30Q) detected by Western blots.
 - FIG. 14. Average plasma drug concentrations for ch17C1(N31Q) and ch4E4(N30Q) treated animals 24 h after the i.p. administration of the last dose. Average plasma drug concentrations for ch17C1(N31Q) and ch4E4(N30Q) were 145 and 200 μ g/ml, respectively.
 - FIG. 15. Spatial working memory in TauP301L mice treated with ch17C1(N31Q) and ch4E4(N30Q) was assessed by two-trial Y-maze.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

5

10

20

25

45

50

55

[0017] Neurodegenerative tauopathies are a diverse group of neurodegenerative disorders that share a common

pathologic lesion consisting of intracellular aggregates of abnormal filaments that are mainly composed of pathologically hyperphosphorylated tau in neurons and/or glial cells. Clinical features of the tauopathies are heterogeneous and characterized by dementia and/or motor syndromes. The progressive accumulation of filamentous tau inclusions may cause neuronal and glial degeneration in combination with other deposits as, e.g., beta-amyloid in Alzheimer's disease or as a sole pathogenic entity as illustrated by mutations in the tau gene that are associated with familial forms of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Because of the heterogeneity of their clinical manifestations a potentially non-exhaustive list of tauopathic diseases can be provided including Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex, argyrophilic grain dementia, British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration, Creutzfeldt-Jakob disease, dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17, frontotemporal lobar degeneration, Gerstmann-Sträussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C, non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease, postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy, subacute sclerosing panencephalitis, tangle only dementia, multi-infarct dementia and ischemic stroke; see for a review, e.g., Lee et al., Annu. Rev. Neurosci. 24 (2001), 1121-1159 in which Table 1 catalogs the unique members of tauopathies or Sergeant et al., Bioch. Biophy. Acta 1739 (2005), 179-97, with a list in Figure 2 therein.

[0018] In this specification, the terms "tau", is used interchangeable to specifically refer to the native monomer form of tau. The term "tau" is also used to generally identify other conformers of tau, for example, oligomers or aggregates of tau. The term "tau" is also used to refer collectively to all types and forms of tau. Due to alternative splicing 6 tau isoforms are present in the human brain. The protein sequences for these isoforms are:

Isoform Fetal-tau of 352aa

10

15

20

25

30

35

40

45

50

55

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKAEEAGIGD TPSLEDEAAGHVTQARMVSKSKDGTGSDDKKAKGADGKTKIATPRGAAPPGQK GQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPPTR

EPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKV QIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNIT HVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGS IDMVDSPQLATLADEVSASLAKQGL (SEQ ID NO:1)

Isoform Tau-B of 381aa

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPT EDGSEEPGSETSDAKSTPTAEAEEAGIGDTPSLEDEAAGHVTQARMVSKSKDGTG SDDKKAKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKS GDRSGYSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPV PMPDLKNVKSKIGSTENLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPG GGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKAKTD HGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQGL (SEQ ID NO:2)

Isoform Tau-C of 410aa

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPT EDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGI GDTPSLEDEAAGHVTQARMVSKSKDGTGSDDKKAKGADGKTKIATPRGAAPPG QKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTP PTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGG KVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLD NITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNVSS TGSIDMVDSPQLATLADEVSASLAKQGL (SEQ ID NO:3)

15

5

10

Isoform Tau-D of 383aa

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKAEEAGIGD

TPSLEDEAAGHVTQARMVSKSKDGTGSDDKKAKGADGKTKIATPRGAAPPGQK
GQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPPTR
EPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKV
QIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHH
KPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKA
KTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQ

30

Isoform Tau-E of 412aa

GL (SEQ ID NO:4)

35

40

45

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPT EDGSEEPGSETSDAKSTPTAEAEEAGIGDTPSLEDEAAGHVTQARMVSKSKDGTG SDDKKAKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKS GDRSGYSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPV PMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPG GGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSL DNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNVS STGSIDMVDSPQLATLADEVSASLAKQGL (SEQ ID NO:5)

50

Isoform Tau-F of 441aa

55

MAEPRQEFEVMEDHAGTYGLGDRKIDQGGYTMHQDQEGDTDAGLKESPLQTPT
EDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGI
GDTPSLEDEAAGHVTQARMVSKSKDGTGSDDKKAKGADGKTKIATPRGAAPPG
QKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTP
PTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGG
KVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNI
HHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENA
KAKTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLA
KQGL (SEQ ID NO:6)

5

10

15

20

25

30

35

50

55

[0019] The "wild type" tau amino acid sequence is represented by isoform Tau-F of 441aa (SEQ ID NO:6) further also referenced to as "hTau40", "TauF", "Tau-4" or "full-length tau". The amino acid sequence of tau can be retrieved from the literature and pertinent databases; see Goedert et al., Proc. Natl. Acad. Sci. USA 85 (1988), 4051-4055, Goedert et al., EMBO J. 8(1989), 393-399, Goedert et al., EMBO J. 9 (1990), 4225-4230 and GenBank UniProtKB/swissprot: locus TAU_HUMAN, accession numbers P10636-2 (Fetal-tau) and P10636-4 to -8 (Isoforms B to F).

[0020] Another striking feature of tau protein is phosphorylation, which occurs at about 30 of 79 potential serine (Ser) and threonine (Thr) phosphorylation sites. Tau is highly phosphorylated during the brain development. The degree of phosphorylation declines in adulthood. Some of the phosphorylation sites are located within the microtubule binding domains of tau, and it has been shown that an increase of tau phosphorylation negatively regulates the binding of microtubules. For example, Ser262 and Ser396, which lie within or adjacent to microtubule binding motifs, are hyperphosphorylated in the tau proteins of the abnormal paired helical filaments (PHFs), a major component of the neurofibrillary tangles (NFTs) in the brain of AD patients. PHFs are filamentous aggregates of tau proteins which are abnormally hyperphosphorylated and can be stained with specific anti-tau antibodies and detected by light microscopy. The same holds true for so called straight tau filaments. PHFs form twisted ribbons consisting of two filaments twisted around one another with a periodicity of about 80nm. These pathological features are commonly referred to as "tau-pathology", "tauopathology" or "tau-related pathology". For a more detailed description of neuropathological features of tauopathies refer to Lee et al., Annu. Rev. Neurosci. 24 (2001), 1121-1159 and Götz, Brain. Res. Rev. 35 (2001), 266-286, the disclosure content of which is incorporated herein by reference. Physiological tau protein stabilizes microtubules in neurons. Pathological phyosphorylation leads to abnormal tau localization and aggregation, which causes destabilization of microtubules and impaired cellular transport. Aggregated tau is neurotoxic in vitro (Khlistunova et al., J. Biol. Chem. 281 (2006), 1205-1214). The exact neurotoxic species remains unclear, however, as do the mechanism(s) by which they lead to neuronal death. Aggregates of tau can be observed as the main component of neurofibrillary tangles (NFT) in many tauopathies, such as Alzheimer's disease (AD), Frontotemporal dementias, supranuclear palsy, Pick's disease, Argyrophilic grain disease (AGD), corticobasal degeneration, FTDP-17, Parkinson's disease, Dementia pugilistica (Reviewed in Gendron and Petrucelli, Mol. Neurodegener. 4:13 (2009)). Besides these observations, evidence emerges that tau-mediated neuronal death can occur even in the absence of tangle formation. Soluble phospho-tau species are present in CSF (Aluise et al., Biochim. Biophys. Acta. 1782 (2008), 549-558). Tau aggregates can transmit a misfolded state from the outside to the inside of a cell and transfer between co-cultured cells (Frost et al., J. Biol. Chem. 284 (2009), 12845-12852).

[0021] In addition to the involvement in neurodegenerative tauopathies, observed alterations in tau phosphorylation during and after ischemia/reperfusion suggest tau playing a crucial role in neuronal damage and clinical pathophysiology of neurovascular disorders such as ischemic stroke (Zheng et al., J. Cell. Biochem. 109 (2010), 26-29).

[0022] The human anti-tau antibodies disclosed herein specifically bind tau and epitopes thereof and to various conformations of tau and epitopes thereof. For example, disclosed herein are antibodies that specifically bind tau, tau in its full-length, pathologically modified tau isoforms and tau aggregates. As used herein, reference to an antibody that "specifically binds", "selectively binds", or "preferentially binds" tau refers to an antibody that does not bind other unrelated proteins. In one example, a tau antibody disclosed herein can bind tau or an epitope thereof and show no binding above about 1.5 times background for other proteins. An antibody that "specifically binds" or "selectively binds" a tau conformer refers to an antibody that does not bind all conformations of tau, *i.e.*, does not bind at least one other tau conformer. For example, disclosed herein are antibodies that can preferentially bind to aggregated forms of tau in AD tissue. Since the human anti-tau antibodies of the present invention have been isolated from a pool of healthy human subjects exhibiting

an tau-specific immune response the tau antibodies of the present invention can also be called "human auto-antibodies" in order to emphasize that those antibodies were indeed expressed by the subjects and have not been isolated from, for example a human immunoglobulin expressing phage library, which hitherto represented one common method for trying to provide human-like antibodies.

[0023] It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, "an antibody," is understood to represent one or more antibodies. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0024] As used herein, the term "polypeptide" is intended to encompass a singular "polypeptide" as well as plural "polypeptides," and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, "protein," "amino acid chain," or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of "polypeptide," and the term "polypeptide" can be used instead of, or interchangeably with any of these terms.

10

30

35

40

45

50

55

[0025] The term "polypeptide" is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-naturally occurring amino acids. A polypeptide can be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It can be generated in any manner, including by chemical synthesis.

[0026] A polypeptide of the invention can be of a size of about 3 or more, 5 or more, 10 or more, 20 or more, 25 or more, 50 or more, 75 or more, 100 or more, 200 or more, 500 or more, 1,000 or more, or 2,000 or more amino acids. Polypeptides can have a defined three-dimensional structure, although they do not necessarily have such structure. Polypeptides with a defined three-dimensional structure are referred to as folded, and polypeptides which do not possess a defined three-dimensional structure, but rather can adopt a large number of different conformations, and are referred to as unfolded. As used herein, the term glycoprotein refers to a protein coupled to at least one carbohydrate moiety that is attached to the protein via an oxygen-containing or a nitrogen-containing side chain of an amino acid residue, e.g., a serine residue or an asparagine residue.

[0027] By an "isolated" polypeptide or a fragment, variant, or derivative thereof is intended a polypeptide that is not in its natural milieu. No particular level of purification is required. For example, an isolated polypeptide can be removed from its native or natural environment. Recombinantly produced polypeptides and proteins expressed in host cells are considered isolated for purposed of the invention, as are native or recombinant polypeptides which have been separated, fractionated, or partially or substantially purified by any suitable technique.

[0028] Also included as polypeptides of the present invention are fragments, derivatives, analogs or variants of the foregoing polypeptides, and any combination thereof. The terms "fragment," "variant," "derivative" and "analog" when referring to antibodies or antibody polypeptides of the present invention include any polypeptides which retain at least some of the antigen-binding properties of the corresponding native binding molecule, antibody, or polypeptide. Fragments of polypeptides of the present invention include proteolytic fragments, as well as deletion fragments, in addition to specific antibody fragments discussed elsewhere herein. Variants of antibodies and antibody polypeptides of the present invention include fragments as described above, and also polypeptides with altered amino acid sequences due to amino acid substitutions, deletions, or insertions. Variants can occur naturally or be non-naturally occurring. Non-naturally occurring variants can be produced using art-known mutagenesis techniques. Variant polypeptides can comprise conservative or non-conservative amino acid substitutions, deletions or additions. Derivatives of tau specific binding molecules, e.g., antibodies and antibody polypeptides of the present invention, are polypeptides which have been altered so as to exhibit additional features not found on the native polypeptide. Examples include fusion proteins. Variant polypeptides can also be referred to herein as "polypeptide analogs". As used herein a "derivative" of a binding molecule or fragment thereof, an antibody, or an antibody polypeptide refers to a subject polypeptide having one or more residues chemically derivatized by reaction of a functional side group. Also included as "derivatives" are those peptides which contain one or more naturally occurring amino acid derivatives of the twenty standard amino acids. For example, 4-hydroxyproline can be substituted for proline; 5-hydroxylysine can be substituted for lysine; 3-methylhistidine can be substituted for histidine; homoserine can be substituted for serine; and ornithine can be substituted for lysine.

[0029] The term "polynucleotide" is intended to encompass a singular nucleic acid as well as plural nucleic acids, and refers to an isolated nucleic acid molecule or construct, e.g., messenger RNA (mRNA) or plasmid DNA (pDNA). A polynucleotide can comprise a conventional phosphodiester bond or a non-conventional bond (e.g., an amide bond, such as found in peptide nucleic acids (PNA)). The term "nucleic acid" refers to any one or more nucleic acid segments, e.g., DNA or RNA fragments, present in a polynucleotide. By "isolated" nucleic acid or polynucleotide is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, a recombinant polynucleotide encoding an antibody contained in a vector is considered isolated for the purposes of the present invention. Further examples of an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution. Isolated RNA molecules include *in vivo* or *in vitro*

RNA transcripts of polynucleotides of the present invention. Isolated polynucleotides or nucleic acids according to the present invention further include such molecules produced synthetically. In addition, polynucleotide or a nucleic acid can be or can include a regulatory element such as a promoter, ribosome binding site, or a transcription terminator.

[0030] As used herein, a "coding region" is a portion of nucleic acid which consists of codons translated into amino acids. Although a "stop codon" (TAG, TGA, or TAA) is not translated into an amino acid, it can be considered to be part of a coding region, but any flanking sequences, for example promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of a coding region. Two or more coding regions of the present invention can be present in a single polynucleotide construct, *e.g.*, on a single vector, or in separate polynucleotide constructs, *e.g.*, on separate (different) vectors. Furthermore, any vector can contain a single coding region, or can comprise two or more coding regions, *e.g.*, a single vector can separately encode an immunoglobulin heavy chain variable region and an immunoglobulin light chain variable region. In addition, a vector, polynucleotide, or nucleic acid of the invention can encode heterologous coding regions, either fused or unfused to a nucleic acid encoding a binding molecule, an antibody, or fragment, variant, or derivative thereof. Heterologous coding regions include without limitation specialized elements or motifs, such as a secretory signal peptide or a heterologous functional domain.

10

20

30

35

40

45

50

55

[0031] In certain embodiments, the polynucleotide or nucleic acid is DNA. In the case of DNA, a polynucleotide comprising a nucleic acid which encodes a polypeptide normally can include a promoter and/or other transcription or translation control elements operably associated with one or more coding regions. An operable association is when a coding region for a gene product, e.g., a polypeptide, is associated with one or more regulatory sequences in such a way as to place expression of the gene product under the influence or control of the regulatory sequence(s). Two DNA fragments (such as a polypeptide coding region and a promoter associated therewith) are "operably associated" or "operably linked" if induction of promoter function results in the transcription of mRNA encoding the desired gene product and if the nature of the linkage between the two DNA fragments does not interfere with the ability of the expression regulatory sequences to direct the expression of the gene product or interfere with the ability of the DNA template to be transcribed. Thus, a promoter region would be operably associated with a nucleic acid encoding a polypeptide if the promoter was capable of effecting transcription of that nucleic acid. The promoter can be a cell-specific promoter that directs substantial transcription of the DNA only in predetermined cells. Other transcription control elements, besides a promoter, for example enhancers, operators, repressors, and transcription termination signals, can be operably associated with the polynucleotide to direct cell-specific transcription. Suitable promoters and other transcription control regions are disclosed herein. [0032] A variety of transcription control regions are known to those skilled in the art. These include, without limitation, transcription control regions which function in vertebrate cells, such as, but not limited to, promoter and enhancer segments from cytomegaloviruses (the immediate early promoter, in conjunction with intron-A), simian virus 40 (the early promoter), and retroviruses (such as Rous sarcoma virus). Other transcription control regions include those derived from vertebrate genes such as actin, heat shock protein, bovine growth hormone and rabbit β-globin, as well as other sequences capable of controlling gene expression in eukaryotic cells. Additional suitable transcription control regions include tissue-specific promoters and enhancers as well as lymphokine-inducible promoters (e.g., promoters inducible by interferons or interleukins).

[0033] Similarly, a variety of translation control elements are known to those of ordinary skill in the art. These include, but are not limited to ribosome binding sites, translation initiation and termination codons, and elements derived from picornaviruses (particularly an internal ribosome entry site, or IRES, also referred to as a CITE sequence).

[0034] In other embodiments, a polynucleotide of the present invention is RNA, for example, in the form of messenger RNA (mRNA).

[0035] Polynucleotide and nucleic acid coding regions of the present invention can be associated with additional coding regions which encode secretory or signal peptides, which direct the secretion of a polypeptide encoded by a polynucleotide of the present invention. According to the signal hypothesis, proteins secreted by mammalian cells have a signal peptide or secretory leader sequence which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Those of ordinary skill in the art are aware that polypeptides secreted by vertebrate cells generally have a signal peptide fused to the N-terminus of the polypeptide, which is cleaved from the complete or "full-length" polypeptide to produce a secreted or "mature" form of the polypeptide. In certain embodiments, the native signal peptide, e.g., an immunoglobulin heavy chain or light chain signal peptide is used, or a functional derivative of that sequence that retains the ability to direct the secretion of the polypeptide that is operably associated with it. Alternatively, a heterologous mammalian signal peptide, or a functional derivative thereof, can be used. For example, the wild-type leader sequence can be substituted with the leader sequence of human tissue plasminogen activator (TPA) or mouse β -glucuronidase.

[0036] Unless stated otherwise, the terms "disorder" and "disease" are used interchangeably herein.

[0037] A "binding molecule" as used in the context of the present invention relates primarily to antibodies, and fragments thereof, but can also refer to other non-antibody molecules that bind to tau including but not limited to hormones, receptors, ligands, major histocompatibility complex (MHC) molecules, chaperones such as heat shock proteins (HSPs) as well as cell-cell adhesion molecules such as members of the cadherin, intergrin, C-type lectin and immunoglobulin (Ig)

superfamilies. Thus, for the sake of clarity only and without restricting the scope of the present invention most of the following embodiments are discussed with respect to antibodies and antibody-like molecules which represent a specific embodiment of binding molecules for the development of therapeutic and diagnostic agents.

[0038] The terms "antibody" and "immunoglobulin" are used interchangeably herein. An antibody or immunoglobulin is a tau-binding molecule which comprises at least the variable domain of a heavy chain, and normally comprises at least the variable domains of a heavy chain and a light chain. Basic immunoglobulin structures in vertebrate systems are relatively well understood; see, *e.g.*, Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).

10

30

35

50

[0039] As will be discussed in more detail below, the term "immunoglobulin" comprises various broad classes of polypeptides that can be distinguished biochemically. Those skilled in the art will appreciate that heavy chains are classified as gamma, mu, alpha, delta, or epsilon, $(\gamma, \mu, \alpha, \delta, \epsilon)$ with some subclasses among them $(e.g., \gamma 1-\gamma 4)$. It is the nature of this chain that determines the "class" of the antibody as IgG, IgM, IgA IgG, or IgE, respectively. The immunoglobulin subclasses (isotypes) e.g., IgG1, IgG2, IgG3, IgG4, IgA1, etc. are well characterized and are known to confer functional specialization. Modified versions of each of these classes and isotypes are readily discernible to the skilled artisan in view of the instant disclosure and, accordingly, are within the scope of the instant invention. All immunoglobulin classes are clearly within the scope of the present invention, the following discussion will generally be directed to the IgG class of immunoglobulin molecules. With regard to IgG, a standard immunoglobulin molecule comprises two identical light chain polypeptides of molecular weight approximately 23,000 Daltons, and two identical heavy chain polypeptides of molecular weight 53,000-70,000. The four chains are typically joined by disulfide bonds in a "Y" configuration wherein the light chains bracket the heavy chains starting at the mouth of the "Y" and continuing through the variable region.

[0040] Light chains are classified as either kappa or lambda (κ, λ) . Each heavy chain class can be bound with either a kappa or lambda light chain. In general, the light and heavy chains are covalently bonded to each other, and the "tail" portions of the two heavy chains are bonded to each other by covalent disulfide linkages or non-covalent linkages when the immunoglobulins are generated either by hybridomas, B cells or genetically engineered host cells. In the heavy chain, the amino acid sequences run from an N-terminus at the forked ends of the Y configuration to the C-terminus at the bottom of each chain.

[0041] Both the light and heavy chains are divided into regions of structural and functional homology. The terms "constant" and "variable" are used functionally. In this regard, it will be appreciated that the variable domains of both the light (V_L) and heavy (V_H) chain portions determine antigen recognition and specificity. Conversely, the constant domains of the light chain (CL) and the heavy chain (CHI, CH2 or CH3) confer important biological properties such as secretion, transplacental mobility, Fc receptor binding, complement binding, and the like. By convention the numbering of the constant region domains increases as they become more distal from the antigen-binding site or amino-terminus of the antibody. The N-terminal portion is a variable region and at the C-terminal portion is a constant region; the CH3 and CL domains actually comprise the carboxy-terminus of the heavy and light chain, respectively.

[0042] As indicated above, the variable region allows the antibody to selectively recognize and specifically bind epitopes on antigens. That is, the V_L domain and V_H domain, or subset of the complementarity determining regions (CDRs), of an antibody combine to form the variable region that defines a three dimensional antigen-binding site. This quaternary antibody structure forms the antigen-binding site present at the end of each arm of the Y. More specifically, the antigen-binding site is defined by three CDRs on each of the V_H and V_L chains. Any antibody or immunoglobulin fragment which contains sufficient structure to specifically bind to tau is denoted herein interchangeably as a "binding fragment" or an "immunospecific fragment."

[0043] In naturally occurring antibodies, an antibody comprises six hypervariable regions, sometimes called "complementarity determining regions" or "CDRs" present in each antigen-binding domain, which are short, non-contiguous sequences of amino acids that are specifically positioned to form the antigen-binding domain as the antibody assumes its three dimensional configuration in an aqueous environment. The "CDRs" are flanked by four relatively conserved "framework" regions or "FRs" which show less inter-molecular variability. The framework regions largely adopt a β -sheet conformation and the CDRs form loops which connect, and in some cases form part of, the β -sheet structure. Thus, framework regions act to form a scaffold that provides for positioning the CDRs in correct orientation by inter-chain, non-covalent interactions. The antigen-binding domain formed by the positioned CDRs defines a surface complementary to the epitope on the immunoreactive antigen. This complementary surface promotes the non-covalent binding of the antibody to its cognate epitope. The amino acids comprising the CDRs and the framework regions, respectively, can be readily identified for any given heavy or light chain variable region by one of ordinary skill in the art, since they have been precisely defined; see, "Sequences of Proteins of Immunological Interest," Kabat, E., et al., U.S. Department of Health and Human Services, (1983); and Chothia and Lesk, J. Mol. Biol., 196 (1987), 901-917, which are incorporated herein by reference in their entireties.

[0044] In the case where there are two or more definitions of a term which is used and/or accepted within the art, the definition of the term as used herein is intended to include all such meanings unless explicitly stated to the contrary. A specific example is the use of the term "complementarity determining region" ("CDR") to describe the non-contiguous

antigen combining sites found within the variable region of both heavy and light chain polypeptides. This particular region has been described by Kabat et al., U.S. Dept. of Health and Human Services, "Sequences of Proteins of Immunological Interest" (1983) and by Chothia and Lesk, J. Mol. Biol., 196 (1987), 901-917, which are incorporated herein by reference, where the definitions include overlapping or subsets of amino acid residues when compared against each other. Nevertheless, application of either definition to refer to a CDR of an antibody or variants thereof is intended to be within the scope of the term as defined and used herein. The appropriate amino acid residues which encompass the CDRs as defined by each of the above cited references are set forth below in Table 1 as a comparison. The exact residue numbers which encompass a particular CDR will vary depending on the sequence and size of the CDR. Those skilled in the art can routinely determine which residues comprise a particular hypervariable region or CDR of the human IgG subtype of antibody given the variable region amino acid sequence of the antibody.

Table 1: CDR Definitions1

10

15

20

25

30

35

50

	Kabat	Chothia
VH CDR1	31-35	26-32
VH CDR2	50-65	52-58
VH CDR3	95-102	95-102
VL CDR1	24-34	26-32
VL CDR2	50-56	50-52
VL CDR3	89-97	91-96

¹Numbering of all CDR definitions in Table 1 is according to the numbering conventions set forth by Kabat *et al.* (see below).

[0045] Kabat *et al.* also defined a numbering system for variable domain sequences that is applicable to any antibody. One of ordinary skill in the art can unambiguously assign this system of "Kabat numbering" to any variable domain sequence, without reliance on any experimental data beyond the sequence itself. As used herein, "Kabat numbering" refers to the numbering system set forth by Kabat et al., U.S. Dept. of Health and Human Services, "Sequence of Proteins of Immunological Interest" (1983). Unless otherwise specified, references to the numbering of specific amino acid residue positions in an antibody or antigen-binding fragment, variant, or derivative thereof of the present invention are according to the Kabat numbering system, which however is theoretical and may not equally apply every antibody of the present invention. In one embodiment, depending on the position of the first CDR the following CDRs can be shifted in either direction.

[0046] Antibodies or antigen-binding fragments, immunospecific fragments, variants, or derivatives thereof of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized, primatized, murinized or chimeric antibodies, single chain antibodies, epitope-binding fragments, e.g., Fab, Fab' and F(ab')₂, Fd, Fvs, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv), fragments comprising either a V_L or V_H domain, fragments produced by a Fab expression library, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies disclosed herein). ScFv molecules are known in the art and are described, e.g., in US patent 5,892,019. Immunoglobulin or antibody molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.

[0047] In one embodiment, the antibody of the present invention is not IgM or a derivative thereof with a pentavalent structure. Particular, in specific applications of the present invention, especially therapeutic use, IgMs are less useful than IgG and other bivalent antibodies or corresponding binding molecules since IgMs due to their pentavalent structure and lack of affinity maturation often show unspecific cross-reactivities and very low affinity.

[0048] In a particular embodiment, the antibody of the present invention is not a polyclonal antibody, *i.e.* it substantially consists of one particular antibody species rather than being a mixture obtained from a plasma immunoglobulin sample. [0049] Antibody fragments, including single-chain antibodies, can comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CHI, CH2, and CH3 domains. Also included in the invention are tau-binding fragments comprising any combination of variable region(s) with a hinge region, CHI, CH2, and CH3 domains. Antibodies or immunospecific fragments thereof of the present invention can be from any animal origin including birds and mammals. In one embodiment, the antibodies are human, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken antibodies. In another embodiment, the variable region can be condricthoid in origin (e.g., from sharks).

[0050] In one aspect, the antibody of the present invention is a human monoclonal antibody isolated from a human. Optionally, the framework region of the human antibody is aligned and adopted in accordance with the pertinent human

germ line variable region sequences in the database; see, e.g., Vbase (http://vbase.mrc-cpe.cam.ac.uk/) hosted by the MRC Centre for Protein Engineering (Cambridge, UK). For example, amino acids considered to potentially deviate from the true germ line sequence could be due to the PCR primer sequences incorporated during the cloning process. Compared to artificially generated human-like antibodies such as single chain antibody fragments (scFvs) from a phage displayed antibody library or xenogeneic mice the human monoclonal antibody of the present invention is characterized by (i) being obtained using the human immune response rather than that of animal surrogates, i.e. the antibody has been generated in response to natural tau in its relevant conformation in the human body, (ii) having protected the individual or is at least significant for the presence of tau, and (iii) since the antibody is of human origin the risks of crossreactivity against self-antigens is minimized. Thus, in accordance with the present invention the terms "human monoclonal antibody", "human monoclonal autoantibody", "human antibody" and the like are used to denote a tau binding molecule which is of human origin, i.e. which has been isolated from a human cell such as a B cell or hybridoma thereof or the cDNA of which has been directly cloned from mRNA of a human cell, for example a human memory B cell. A human antibody is still "human" even if amino acid substitutions are made in the antibody, e.g., to improve binding characteristics. [0051] Antibodies derived from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described infra and, for example in, US patent no 5,939,598 by Kucherlapati et al, are denoted human-like antibodies in order distinguish them from truly human antibodies of the present invention.

10

20

30

35

40

50

[0052] For example, the paring of heavy and light chains of human-like antibodies such as synthetic and semi-synthetic antibodies typically isolated from phage display do not necessarily reflect the original paring as it occurred in the original human B cell. Accordingly Fab and scFv fragments obtained from recombinant expression libraries as commonly used in the prior art can be considered as being artificial with all possible associated effects on immunogenicity and stability. [0053] In contrast, the present invention provides isolated affinity-matured antibodies from selected human subjects, which are characterized by their therapeutic utility and their tolerance in man.

[0054] As used herein, the term "murinized antibody" or "murinized immunoglobulin" refers to an antibody comprising one or more CDRs from a human antibody of the present invention; and a human framework region that contains amino acid substitutions and/or deletions and/or insertions that are based on a mouse antibody sequence. The human immunoglobulin providing the CDRs is called the "parent" or "acceptor" and the mouse antibody providing the framework changes is called the "donor". Constant regions need not be present, but if they are, they are usually substantially identical to mouse antibody constant regions, *i.e.* at least about 85- 90%, about 95%, about 96%, about 97%, about 98%, about 99% or more identical. Hence, in some embodiments, a full-length murinized human heavy or light chain immunoglobulin contains a mouse constant region, human CDRs, and a substantially human framework that has a number of "murinizing" amino acid substitutions. Typically, a "murinized antibody" is an antibody comprising a murinized variable light chain and/or a murinized variable heavy chain. For example, a murinized antibody would not encompass a typical chimeric antibody, e.g., because the entire variable region of a chimeric antibody is non-mouse. A modified antibody that has been "murinized" by the process of "murinization" binds to the same antigen as the parent antibody that provides the CDRs and is usually less immunogenic in mice, as compared to the parent antibody.

[0055] As used herein, the term "heavy chain portion" includes amino acid sequences derived from an immunoglobulin heavy chain. A polypeptide comprising a heavy chain portion comprises at least one of: a CH1 domain, a hinge (e.g., upper, middle, and/or lower hinge region) domain, a CH2 domain, a CH3 domain, or a variant or fragment thereof. For example, a binding polypeptide for use in the invention can comprise a polypeptide chain comprising a CH1 domain; a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, and a CH2 domain; a polypeptide chain comprising a CH1 domain and a CH3 domain; a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, and a CH3 domain, or a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, and a CH3 domain. In another embodiment, a polypeptide of the invention comprises a polypeptide chain comprising a CH3 domain. Further, a binding polypeptide for use in the invention can lack at least a portion of a CH2 domain (e.g., all or part of a CH2 domain). As set forth above, it will be understood by one of ordinary skill in the art that these domains (e.g., the heavy chain portions) can be modified such that they vary in amino acid sequence from the naturally occurring immunoglobulin molecule.

[0056] In certain antibodies, or antigen-binding fragments, variants, or derivatives thereof disclosed herein, the heavy chain portions of one polypeptide chain of a multimer are identical to those on a second polypeptide chain of the multimer. Alternatively, heavy chain portion-containing monomers of the invention are not identical. For example, each monomer can comprise a different target binding site, forming, for example, a bispecific antibody or diabody.

[0057] In another embodiment, the antibodies, or antigen-binding fragments, variants, or derivatives thereof disclosed herein are composed of a single polypeptide chain such as scFvs and are to be expressed intracellularly (intrabodies) for potential *in vivo* therapeutic and diagnostic applications.

[0058] The heavy chain portions of a binding polypeptide for use in the diagnostic and treatment methods disclosed herein can be derived from different immunoglobulin molecules. For example, a heavy chain portion of a polypeptide can comprise a CH1 domain derived from an IgG1 molecule and a hinge region derived from an IgG3 molecule. In

another example, a heavy chain portion can comprise a hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule. In another example, a heavy chain portion can comprise a chimeric hinge derived, in part, from an IgG1 molecule and, in part, from an IgG4 molecule.

[0059] As used herein, the term "light chain portion" includes amino acid sequences derived from an immunoglobulin light chain. In one embodiment, the light chain portion comprises at least one of a V_L or CL domain.

[0060] The minimum size of a peptide or polypeptide epitope for an antibody is thought to be about four to five amino acids. Peptide or polypeptide epitopes can contain at least seven, at least nine or between at least about 15 to about 30 amino acids. Since a CDR can recognize an antigenic peptide or polypeptide in its tertiary form, the amino acids comprising an epitope need not be contiguous, and in some cases, may not even be on the same peptide chain. In the present invention, a peptide or polypeptide epitope recognized by antibodies of the present invention contains a sequence of at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, or between about 5 to about 30, about 10 to about 30 or about 15 to about 30 contiguous or non-contiguous amino acids of tau. [0061] By "specifically binding", or "specifically recognizing", used interchangeably herein, it is generally meant that a binding molecule, e.g., an antibody binds to an epitope via its antigen-binding domain, and that the binding entails some complementarity between the antigen-binding domain and the epitope. According to this definition, an antibody is said to "specifically bind" to an epitope when it binds to that epitope, via its antigen-binding domain more readily than it would bind to a random, unrelated epitope. A skilled artisan understands that an antibody can specifically bind to, or specifically recognize an isolated polypeptide comprising, or consisting of, amino acid residues corresponding to a linear portion of a non-contiguous epitope. The term "specificity" is used herein to qualify the relative affinity by which a certain antibody binds to a certain epitope. For example, antibody "A" can be deemed to have a higher specificity for a given epitope than antibody "B," or antibody "A" can be said to bind to epitope "C" with a higher specificity than it has for related epitope "D".

[0062] Where present, the term "immunological binding characteristics," or other binding characteristics of an antibody with an antigen, in all of its grammatical forms, refers to the specificity, affinity, cross-reactivity, and other binding characteristics of an antibody.

[0063] By "preferentially binding", it is meant that the binding molecule, e.g., antibody specifically binds to an epitope more readily than it would bind to a related, similar, homologous, or analogous epitope. Thus, an antibody which "preferentially binds" to a given epitope would more likely bind to that epitope than to a related epitope, even though such an antibody can cross-react with the related epitope.

30

35

50

[0064] By way of non-limiting example, a binding molecule, e.g., an antibody can be considered to bind a first epitope preferentially if it binds said first epitope with a dissociation constant (K_D) that is less than the antibody's K_D for the second epitope. In another non-limiting example, an antibody can be considered to bind a first antigen preferentially if it binds the first epitope with an affinity that is at least one order of magnitude less than the antibody's K_D for the second epitope. In another non-limiting example, an antibody can be considered to bind a first epitope preferentially if it binds the first epitope with an affinity that is at least two orders of magnitude less than the antibody's K_D for the second epitope. [0065] In another non-limiting example, a binding molecule, e.g., an antibody can be considered to bind a first epitope preferentially if it binds the first epitope with an off rate (k(off)) that is less than the antibody's k(off) for the second epitope. In another non-limiting example, an antibody can be considered to bind a first epitope preferentially if it binds the first epitope with an affinity that is at least one order of magnitude less than the antibody's k(off) for the second epitope. In another non-limiting example, an antibody can be considered to bind a first epitope preferentially if it binds the first epitope with an affinity that is at least two orders of magnitude less than the antibody's k(off) for the second epitope.

[0066] A binding molecule, e.g., an antibody or antigen-binding fragment, variant, or derivative disclosed herein can be said to bind a tau or a fragment or variant thereof with an off rate (k(off)) of less than or equal to $5 \times 10^{-2} \text{ sec}^{-1}$, 10^{-2} sec^{-1} , $5 \times 10^{-3} \text{ sec}^{-1}$ or 10^{-3} sec^{-1} . In one embodiment, an antibody of the invention can be said to bind tau or a fragment or variant thereof with an off rate (k(off)) less than or equal to $5 \times 10^{-4} \text{ sec}^{-1}$, 10^{-4} sec^{-1} , 10^{-5} sec^{-1} , or 10^{-5} sec^{-1} , $10^{-6} \text{ sec}^$

[0067] A binding molecule, e.g., an antibody or antigen-binding fragment, variant, or derivative disclosed herein can be said to bind tau or a fragment or variant thereof with an on rate (k(on)) of greater than or equal to 10^3 M⁻¹ sec⁻¹, 5×10^3 M⁻¹ sec⁻¹, 10^4 M⁻¹ sec⁻¹ or 5×10^4 M⁻¹ sec⁻¹. In one embodiment, an antibody of the invention can be said to bind tau or a fragment or variant thereof with an on rate (k(on)) greater than or equal to 10^5 M⁻¹ sec⁻¹, 5×10^5 M⁻¹ sec⁻¹, 10^6 M⁻¹ sec⁻¹ or 10^7 M⁻¹ sec⁻¹.

[0068] A binding molecule, e.g., an antibody is said to competitively inhibit binding of a reference antibody to a given epitope if it preferentially binds to that epitope to the extent that it blocks, to some degree, binding of the reference antibody to the epitope. Competitive inhibition can be determined by any method known in the art, for example, competition ELISA assays. An antibody can be said to competitively inhibit binding of the reference antibody to a given epitope by at least 90%, at least 80%, at least 70%, at least 60%, or at least 50%. A skilled artisan understands that the binding of an antibody to its epitope can also be competitively inhibited by a binding molecule that is not an antibody. For example, the specific binding of an antibody described herein to tau, e.g., hTau40, can be competitively inhibited by microtubules.

[0069] As used herein, the term "affinity" refers to a measure of the strength of the binding of an individual epitope with the CDR of a binding molecule, e.g., an immunoglobulin molecule; see, e.g., Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2nd ed. (1988) at pages 27-28. As used herein, the term "avidity" refers to the overall stability of the complex between a population of immunoglobulins and an antigen, that is, the functional combining strength of an immunoglobulin mixture with the antigen; see, e.g., Harlow at pages 29-34. Avidity is related to both the affinity of individual immunoglobulin molecules in the population with specific epitopes, and also the valencies of the immunoglobulins and the antigen. For example, the interaction between a bivalent monoclonal antibody and an antigen with a highly repeating epitope structure, such as a polymer, would be one of high avidity. The affinity or avidity of an antibody for an antigen can be determined experimentally using any suitable method; see, for example, Berzofsky et al., "Antibody-Antigen Interactions" In Fundamental Immunology, Paul, W. E., Ed., Raven Press New York, N Y (1984), Kuby, Janis Immunology, W. H. Freeman and Company New York, N Y (1992), and methods described herein. General techniques for measuring the affinity of an antibody for an antigen include ELISA, RIA, and surface plasmon resonance. The measured affinity of a particular antibody-antigen interaction can vary if measured under different conditions, e.g., salt concentration, pH. Thus, measurements of affinity and other antigen-binding parameters, e.g., K_D, IC₅₀, are preferably made with standardized solutions of antibody and antigen, and a standardized buffer.

10

30

35

50

[0070] Binding molecules, e.g., antibodies or antigen-binding fragments, variants or derivatives thereof of the invention can also be described or specified in terms of their cross-reactivity. As used herein, the term "cross-reactivity" refers to the ability of an antibody, specific for one antigen, to react with a second antigen; a measure of relatedness between two different antigenic substances. Thus, an antibody is cross reactive if it binds to an epitope other than the one that induced its formation. The cross reactive epitope generally contains many of the same complementary structural features as the inducing epitope, and in some cases, can actually fit better than the original.

[0071] For example, certain antibodies have some degree of cross-reactivity, in that they bind related, but non-identical epitopes, e.g., epitopes with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a reference epitope. An antibody can be said to have little or no cross-reactivity if it does not bind epitopes with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a reference epitope. An antibody can be deemed "highly specific" for a certain epitope, if it does not bind any other analog, ortholog, or homolog of that epitope.

[0072] Binding molecules, e.g., antibodies or antigen-binding fragments, variants or derivatives thereof of the invention can also be described or specified in terms of their binding affinity to tau. In one embodiment, binding affinities include those with a dissociation constant or Kd less than 5×10^{-2} M, 10^{-2} M, 5×10^{-3} M, 10^{-3} M, 5×10^{-4} M, 10^{-4} M, 5×10^{-5} M, 10^{-5} M, 5×10^{-6} M, 10^{-6} M, 5×10^{-7} M, 10^{-7} M, 5×10^{-8} M, 10^{-8} M, 5×10^{-9} M, 10^{-9} M, 5×10^{-10} M, 10^{-10} M, $10^$

[0073] As previously indicated, the subunit structures and three dimensional configuration of the constant regions of the various immunoglobulin classes are well known. As used herein, the term "V_H domain" includes the amino terminal variable domain of an immunoglobulin heavy chain and the term "CHI domain" includes the first (most amino terminal) constant region domain of an immunoglobulin heavy chain. The CH1 domain is adjacent to the V_H domain and is amino terminal to the hinge region of an immunoglobulin heavy chain molecule.

[0074] As used herein the term "CH2 domain" includes the portion of a heavy chain molecule that extends, e.g., from about residue 244 to residue 360 of an antibody using conventional numbering schemes (residues 244 to 360, Kabat numbering system; and residues 231-340, EU numbering system; see Kabat EA *et al. op. cit*). The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It is also well documented that the CH3 domain extends from the CH2 domain to the C-terminal of the IgG molecule and comprises approximately 108 residues.

[0075] As used herein, the term "hinge region" includes the portion of a heavy chain molecule that joins the CH1 domain to the CH2 domain. This hinge region comprises approximately 25 residues and is flexible, thus allowing the two N-terminal antigen-binding regions to move independently. Hinge regions can be subdivided into three distinct domains: upper, middle, and lower hinge domains; see Roux et al., J. Immunol. 161 (1998), 4083.

[0076] As used herein the term "disulfide bond" includes the covalent bond formed between two sulfur atoms. The amino acid cysteine comprises a thiol group that can form a disulfide bond or bridge with a second thiol group. In most naturally occurring IgG molecules, the CH1 and CL regions are linked by a disulfide bond and the two heavy chains are linked by two disulfide bonds at positions corresponding to 239 and 242 using the Kabat numbering system (position 226 or 229, EU numbering system).

[0077] As used herein, the terms "linked", "fused" or "fusion" are used interchangeably. These terms refer to the joining together of two more elements or components, by whatever means including chemical conjugation or recombinant means. An "in-frame fusion" refers to the joining of two or more polynucleotide open reading frames (ORFs) to form a continuous longer ORF, in a manner that maintains the correct translational reading frame of the original ORFs. Thus,

a recombinant fusion protein is a single protein containing two or more segments that correspond to polypeptides encoded by the original ORFs (which segments are not normally so joined in nature). Although the reading frame is thus made continuous throughout the fused segments, the segments can be physically or spatially separated by, for example, inframe linker sequence. For example, polynucleotides encoding the CDRs of an immunoglobulin variable region can be fused, in-frame, but be separated by a polynucleotide encoding at least one immunoglobulin framework region or additional CDR regions, as long as the "fused" CDRs are co-translated as part of a continuous polypeptide.

[0078] The term "expression" as used herein refers to a process by which a gene produces a biochemical, for example, an RNA or polypeptide. The process includes any manifestation of the functional presence of the gene within the cell including, without limitation, gene knockdown as well as both transient expression and stable expression. It includes without limitation transcription of the gene into messenger RNA (mRNA), transfer RNA (tRNA), small hairpin RNA (shRNA), small interfering RNA (siRNA) or any other RNA product, and the translation of such mRNA into polypeptide(s). If the final desired product is a biochemical, expression includes the creation of that biochemical and any precursors. Expression of a gene produces a "gene product." As used herein, a gene product can be either a nucleic acid, *e.g.*, a messenger RNA produced by transcription of a gene, or a polypeptide which is translated from a transcript. Gene products described herein further include nucleic acids with post transcriptional modifications, e.g., polyadenylation, or polypeptides with post translational modifications, e.g., methylation, glycosylation, the addition of lipids, association with other protein subunits, proteolytic cleavage, and the like.

[0079] As used herein, the term "sample" refers to any biological material obtained from a subject or patient. In one aspect, a sample can comprise blood, cerebrospinal fluid ("CSF"), or urine. In other aspects, a sample can comprise whole blood, plasma, B cells enriched from blood samples, and cultured cells (e.g., B cells from a subject). A sample can also include a biopsy or tissue sample including neural tissue. In still other aspects, a sample can comprise whole cells and/or a lysate of the cells. Blood samples can be collected by methods known in the art. In one aspect, the pellet can be resuspended by vortexing at 4°C in 200 μ l buffer (20 mM Tris, pH. 7.5, 0.5% Nonidet, 1 mM EDTA, 1 mM PMSF, 0.1M NaCl, IX Sigma Protease Inhibitor, and IX Sigma Phosphatase Inhibitors 1 and 2). The suspension can be kept on ice for 20 minutes with intermittent vortexing. After spinning at 15,000 x g for 5 minutes at about 4°C, aliquots of supernatant can be stored at about -70°C.

[0080] As used herein, the terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or prevent-ative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development of Parkinsonism. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (*i.e.*, not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the manifestation of the condition or disorder is to be prevented.

[0081] By "subject" or "individual" or "animal" or "patient" or "mammal," is meant any subject, particularly a mammalian subject, e.g., a human patient, for whom diagnosis, prognosis, prevention, or therapy is desired.

II. Antibodies

10

15

20

30

35

50

40 [0082] The present invention generally relates to human anti-tau antibodies and antigen-binding fragments thereof. In one embodiment, an antibody of the present invention demonstrates the immunological binding characteristics and/or biological properties as outlined for the antibodies illustrated in the Examples. In accordance with the present invention human monoclonal antibodies specific for tau were cloned from a pool of healthy human subjects.

[0083] In the course of the experiments performed in accordance with the present invention initial attempts failed to clone tau specific antibodies but almost always resulted in false-positive clones. In order to circumvent this problem, antibodies in conditioned media of human memory B cell cultures were screened in parallel for binding to recombinant tau protein, PHFTau extracted from AD brain, healthy control brain extracts and bovine serum albumin (BSA). Only B-cell cultures that were positive for recombinant tau and/or PHFTau but not control brain extract or BSA were subjected to antibody cloning.

[0084] Initial attempts to isolating to specific antibodies were focused at pools of healthy human subjects with high plasma binding activity to tau, suggestive of elevated levels of circulating tau antibodies plasma. Unexpectedly, these attempts failed to produce tau specific human memory B cells and the antibodies described in the current invention were isolated from pools of healthy human subjects that were not preselected for high tau plasma reactivity or had low plasma reactivity to tau.

[0085] Due to this measure, several antibodies could be isolated. Selected antibodies were further analyzed for class and light chain subclass determination. Selected relevant antibody messages from memory B cell cultures are then transcribed by RT-PCR, cloned and combined into expression vectors for recombinant production; see the appended Examples. Recombinant expression of the human antibodies in HEK293 or CHO cells and the subsequent characteri-

zation of their binding specificities towards full-length tau, pathologically modified forms thereof on Western Blot and their distinctive binding to pathologically aggregated tau confirmed that for the first time human antibodies have been cloned that are highly specific for tau and recognize distinctive the pathologically modified forms of tau protein.

[0086] Thus, the present invention generally relates to an isolated naturally occurring human monoclonal anti-tau antibody and binding fragments, derivatives and variants thereof. In one embodiment of the invention, the antibody is capable of specifically binding full-length recombinant tau and/or the pathologically aggregated and/or phosphorylated form (PHFTau) isolated from AD brain under denaturing conditions on Western Blot.

[0087] In one embodiment, the present invention is directed to an anti-tau antibody, or antigen-binding fragment, variant or derivatives thereof, where the antibody specifically binds to the same epitope of tau as a reference antibody selected from the group consisting of NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, or NI-105.9C4.

10

30

35

50

55

[0088] Additional human anti-tau antibodies are disclosed in U.S. Patent Application Publication No. 2012/0087861, the content of which is incorporated herein by reference in its entirety.

[0089] In one embodiment, an antibody described herein specifically binds to tau at an epitope comprising the amino acid residues selected from the group consisting of: residues corresponding to residues 125-131, 397-441, 226-244, 217-227, 37-55, 387-406, 421-427, 427-439, 1-158, 197-207, 57-67, 355-441, 313-319, 309-319, and 221-231 of hTau40 (SEQ ID NO:6). In a further embodiment, an antibody described herein specifically binds to tau at an epitope comprising the amino acid residues corresponding to residues 37-55 and 387-406 of hTau40 (SEQ ID NO:6). In a specific embodiment, tau is hTau40 (SEQ ID NO:6).

[0090] In one embodiment, an antibody described herein binds to tau at an epitope comprising the microtubule binding domain of tau. In a specific embodiment, an antibody described herein binds to tau at an epitope comprising amino acid residues from the R4 region of tau as depicted in Figure 4. In one embodiment, an antibody described herein competes with microtubules for specific binding to tau. In another embodiment, an antibody described herein has reduced binding affinity to microtubule associated tau compared to the antibodies binding affinity to tau no associated with microtubules. In a further embodiment, an antibody described herein does not bind, or substantially does not bind to tau associated with microtubules. In specific embodiments, the tau protein can be native tau protein or recombinant tau protein. In a specific embodiment, tau is hTau40.

[0091] In one embodiment, a human anti-tau antibody of the present invention can specifically bind pathologically aggregated tau and not substantially bind tau in the physiological form in brain tissue. In addition, a human anti-tau antibody of the present invention can be further characterized by its ability to recognize tau at the pre-tangle stage, in neurofibrillary tangles (NFT), neutropil threads and/or dystrophic neurites in the brain. Hence, the present invention provides a set of human tau antibodies with binding specificities, which are thus particularly useful for diagnostic and therapeutic purposes.

[0092] In addition, or alternatively, an anti-tau antibody of the present invention preferentially recognizes pathologically aggregated tau rather than physiological forms, in particular when analyzed according to Examples 4 and 18. In addition, or alternatively, an anti-tau antibody of the present invention binds to disease causing mutants of human tau, in particular those described in Example 4. In this context, the binding specificities can be in the range of having half maximal effective concentrations (EC50) of about 100 pM to 100 nM, or an EC50 of about 100 pM to 10nM for wild-type tau.

[0093] Hence, an anti-tau antibody of the present invention binds preferentially to pathological modified forms of tau in brain, e.g. pathological aggregates of tau as exemplified by immunohistochemical staining described in Examples 4 and 18. In another embodiment an anti-tau antibody of the present invention preferentially binds to both recombinant tau and pathologically modified forms of tau as exemplified in Example 2 by Western Blot.

[0094] The present invention is also drawn to an antibody, or antigen-binding fragment, variant or derivatives thereof, where the antibody comprises an antigen-binding domain identical to that of an antibody selected from the group consisting of NI-105.17C1, NI-105.17C1(N31Q), NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.

[0095] The present invention further exemplifies several such binding molecules, e.g. antibodies and binding fragments thereof, which can be characterized by comprising in their variable region, e.g. binding domain at least one complementarity determining region (CDR) of the V_H and/or V_L variable region comprising any one of the amino acid sequences depicted in Fig. 7. The corresponding nucleotide sequences encoding the above-identified variable regions are set forth in Table 4 below. An exemplary set of CDRs of the above amino acid sequences of the V_H and/or V_L region as depicted in Fig. 7. However, as discussed in the following the person skilled in the art is well aware of the fact that in addition or alternatively CDRs can be used, which differ in their amino acid sequence from those set forth in Fig. 7 by one, two, three or even more amino acids in case of CDR2 and CDR3.

Table 2. Amino acid sequences of the V_H region, V_H CDR1, V_H CDR2, V_H CDR2, V_L region, V_L CDR2, and V_L CDR3 of tau specific antibodies.

5	Antibody		V _H /N _L	CDR1	CDR2	CDR3
•	NI-105.17C1	V_{H}	SEQ ID NO:45	SEQ ID NO:79	SEQ ID NO:80	SEQ ID NO:81
		V_L	SEQ ID NO:46	SEQ ID NO:82	SEQ ID NO:83	SEQ ID NO:84
	NI-105.6C5	V_{H}	SEQ ID NO:48	SEQ ID NO:85	SEQ ID NO:86	SEQ ID NO:87
10		V_{L}	SEQ ID NO:49	SEQ ID NO:88	SEQ ID NO:89	SEQ ID NO:90
	NI-105.29G10	V_{H}	SEQ ID NO:50	SEQ ID NO:91	SEQ ID NO:92	SEQ ID NO:93
		V_{L}	SEQ ID NO:51	SEQ ID NO:94	SEQ ID NO:95	SEQ ID NO:96
15	NI-105.6L9	V_{H}	SEQ ID NO:52	SEQ ID NO:97	SEQ ID NO:98	SEQ ID NO:99
		V_{L}	SEQ ID NO:53	SEQ ID NO: 100	SEQ ID NO:101	SEQ ID NO:102
	NI-105.40E8	V_{H}	SEQ ID NO:54	SEQ ID NO:103	SEQ ID NO:104	SEQ ID NO:105
		V _L	SEQ ID NO:55	SEQ ID NO:106	SEQ ID NO:107	SEQ ID NO:108
20	NI-105.48E5	V_{H}	SEQ ID NO:56	SEQ ID NO:109	SEQ ID NO:110	SEQ ID NO:111
		V _L	SEQ ID NO:57	SEQ ID NO:112	SEQ ID NO:113	SEQ ID NO:114
	NI-105.6E3	V _H	SEQ ID NO:58	SEQ ID NO:115	SEQ ID NO:116	SEQ ID NO:117
25		V _L	SEQ ID NO:59	SEQ ID NO:118	SEQ ID NO:119	SEQ ID NO:120
	NI-105.22E1	V _H	SEQ ID NO:60	SEQ ID NO:121	SEQ ID NO:122	SEQ ID NO:123
		V_{L}	SEQ ID NO:61	SEQ ID NO:124	SEQ ID NO:125	SEQ ID NO:126
	NI-105.26B12	V _H	SEQ ID NO:62	SEQ ID NO:127	SEQ ID NO:128	SEQ ID NO:129
80		V_{L}	SEQ ID NO:64	SEQ ID NO:130	SEQ ID NO:131	SEQ ID NO:132
	NI-105.12E12	V _H	SEQ ID NO:65	SEQ ID NO:133	SEQ ID NO:134	SEQ ID NO:135
		V _L	SEQ ID NO:66	SEQ ID NO:136	SEQ ID NO:137	SEQ ID NO:138
35	NI-105.60E7	V _H	SEQ ID NO:67	SEQ ID NO:139	SEQ ID NO:140	SEQ ID NO:141
		V_{L}	SEQ ID NO:68	SEQ ID NO:142	SEQ ID NO:143	SEQ ID NO:144
	NI-105.14E2	V _H	SEQ ID NO:69	SEQ ID NO:145	SEQ ID NO:146	SEQ ID NO:147
		V _L	SEQ ID NO:70	SEQ ID NO:148	SEQ ID NO:149	SEQ ID NO:150
10	NI-105.39E2	V _H	SEQ ID NO:71	SEQ ID NO:151	SEQ ID NO:152	SEQ ID NO:153
		V_{L}	SEQ ID NO:72	SEQ ID NO:154	SEQ ID NO:155	SEQ ID NO:156
	NI-105.19C6	V _H	: SEQ ID NO:73	SEQ ID NO:157	SEQ ID NO:158	SEQ ID NO:159
15		V_{L}	SEQ ID NO:74	SEQ ID NO:160	SEQ ID NO:161	SEQ ID NO:162
	NI-105.9C4	V _H	SEQ ID NO:75	SEQ ID NO:163	SEQ ID NO:164	SEQ ID NO:165
		V_{L}	SEQ ID NO:76	SEQ ID NO:166	SEQ ID NO:167	SEQ ID NO:168
	NI-105.17C1 (N31Q)	V _H	SEQ ID NO:45	SEQ ID NO:79	SEQ ID NO:80	SEQ ID NO:81
50		V _L	SEQ ID NO:221	SEQ ID NO:224	SEQ ID NO:83	SEQ ID NO:84
			1	1	i	·

[0096] In one embodiment, an antibody of the present invention comprises at least one CDR comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 79-168 and 224.

[0097] In one embodiment, an antibody of the present invention comprises one, two, three, four, five or six CDRs comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 79-168 and 224. [0098] In one embodiment, an antibody of the present invention comprises a VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3 comprising the amino acid sequences, respectively SEQ ID NO: 79-84, 85-90, 91-96,

55

97-102, 103-108, 109-114, 115-120, 121-126, 127-132, 133-138, 139-144, 145-150, 151-156, 157-162, or 163-168. In one embodiment, an antibody of the present invention comprises a VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3 comprising the amino acid sequences, respectively, SEQ ID NOs: 79, 80, 81, 224, 83, and 84.

[0099] In one embodiment, an antibody of the invention comprises one, two, or three VH CDRs comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 79-81, 85-87, 91-93, 97-99, 103-105, 109-111, 115-117, 121-123, 127-129, 133-135, 139-141, 145-147, 151-153, 157-159, and 163-165.

[0100] In one embodiment, an antibody of the invention comprises a VH CDR1, VH CDR2, and VH CDR3 comprising the amino acid sequences, respectively, SEQ ID NO: 79-81, 85-87, 91-93, 97-99, 103-105, 109-111, 115-117, 121-123, 127-129, 133-135, 139-141, 145-147, 151-153, 157-159, or 163-165.

[0101] In one embodiment, an antibody of the invention comprises one, two, or three VL CDRs comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 82-84, 88-90, 94-96, 100-102, 106-108, 112-114, 118-120, 124-126, 130-132, 136-138, 142-144, 148-150, 154-156, 160-162, 166-168, and 224.

[0102] In one embodiment, an antibody of the invention comprises a VL CDR1, VL CDR2, and VL CDR3 comprising the amino acid sequences, respectively, SEQ ID NO: 82-84, 88-90, 94-96, 100-102, 106-108, 112-114, 118-120, 124-126, 130-132, 136-138, 142-144, 148-150, 154-156, 160-162, or 166-168. In one embodiment, a VL CDR1, VL CDR2, and VL CDR3 comprising the amino acid sequences, respectively, SEQ ID NO: 83, 84, and 224.

[0103] According to one embodiment, an antibody of the invention comprises a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; a VH CDR2 of SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; or a VH CDR3 of SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165. According to another embodiment, an antibody comprises a light chain variable region comprising a VL CDR1 of SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166 or 224; a VL CDR2 of SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; or a VL CDR3 of SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168. In another embodiment, the antibody comprises a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; a VH CDR2 of SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; or a VH CDR3 of SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165, and further comprises a light chain variable region comprising a VL CDR1 of SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; a VL CDR2 of SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; or a VL CDR3 of SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

30

35

50

55

[0104] According to one embodiment, an antibody of the invention comprises a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; a VH CDR2 of SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and a VH CDR3 of SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165. According to another embodiment, an antibody comprises a light chain variable region comprising a VL CDR1 of SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; a VL CDR2 of SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and a VL CDR3 of SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168. In another embodiment, the antibody comprises a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; a VH CDR2 of SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and a VH CDR3 of SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165, and further comprises a light chain variable region comprising a VL CDR1 of SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; a VL CDR2 of SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and a VL CDR3 of SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0105] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, a VH CDR2 of SEQ ID NO: 80, and VH CDR3 of SEQ ID NO: 81, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 82, a VL CDR2 of SEQ ID NO: 83, and a VL CDR3 of SEQ ID NO: 84.

[0106] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 79, a VH CDR2 of SEQ ID NO: 80, and VH CDR3 of SEQ ID NO: 81, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 224, a VL CDR2 of SEQ ID NO: 83, and a VL CDR3 of SEQ ID NO: 84.

[0107] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 85, a VH CDR2 of SEQ ID NO: 86, and VH CDR3 of SEQ ID NO: 87, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 88, a VL CDR2 of SEQ ID NO: 89, and a VL CDR3 of SEQ ID NO: 90.

[0108] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 91, a VH CDR2 of SEQ ID NO: 92, and VH CDR3 of SEQ ID NO: 93, and can further comprise

a light chain variable region comprising a VL CDR1 of SEQ ID NO: 94, a VL CDR2 of SEQ ID NO: 95, and a VL CDR3 of SEQ ID NO: 96.

[0109] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 97, a VH CDR2 of SEQ ID NO: 98, and VH CDR3 of SEQ ID NO: 99, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 100, a VL CDR2 of SEQ ID NO: 101, and a VL CDR3 of SEQ ID NO: 102.

[0110] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 103, a VH CDR2 of SEQ ID NO: 104, and VH CDR3 of SEQ ID NO: 105, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 106, a VL CDR2 of SEQ ID NO: 107, and a VL CDR3 of SEQ ID NO: 108.

[0111] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 109, a VH CDR2 of SEQ ID NO: 110, and VH CDR3 of SEQ ID NO: 111, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 112, a VL CDR2 of SEQ ID NO: 113, and a VL CDR3 of SEQ ID NO: 114.

[0112] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 115, a VH CDR2 of SEQ ID NO: 116, and VH CDR3 of SEQ ID NO: 117, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 118, a VL CDR2 of SEQ ID NO: 119, and a VL CDR3 of SEQ ID NO: 120.

[0113] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 121, a VH CDR2 of SEQ ID NO: 122, and VH CDR3 of SEQ ID NO: 123, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 124, a VL CDR2 of SEQ ID NO: 125, and a VL CDR3 of SEQ ID NO: 126.

[0114] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 127, a VH CDR2 of SEQ ID NO: 128, and VH CDR3 of SEQ ID NO: 129, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 130, a VL CDR2 of SEQ ID NO: 131, and a VL CDR3 of SEQ ID NO: 132.

[0115] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 133, a VH CDR2 of SEQ ID NO: 134, and VH CDR3 of SEQ ID NO: 135, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 136, a VL CDR2 of SEQ ID NO: 137, and a VL CDR3 of SEQ ID NO: 138.

[0116] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 139, a VH CDR2 of SEQ ID NO: 140, and VH CDR3 of SEQ ID NO: 141, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 142, a VL CDR2 of SEQ ID NO: 143, and a VL CDR3 of SEQ ID NO: 144.

[0117] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 145, a VH CDR2 of SEQ ID NO: 146, and VH CDR3 of SEQ ID NO: 147, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 148, a VL CDR2 of SEQ ID NO: 149, and a VL CDR3 of SEQ ID NO: 150.

[0118] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 151, a VH CDR2 of SEQ ID NO: 152, and VH CDR3 of SEQ ID NO: 153, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 154, a VL CDR2 of SEQ ID NO: 155, and a VL CDR3 of SEQ ID NO: 156.

[0119] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 157, a VH CDR2 of SEQ ID NO: 158, and VH CDR3 of SEQ ID NO: 159, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 160, a VL CDR2 of SEQ ID NO: 161, and a VL CDR3 of SEQ ID NO: 162.

[0120] In one embodiment, an antibody of the invention can comprise a heavy chain variable region comprising a VH CDR1 of SEQ ID NO: 163, a VH CDR2 of SEQ ID NO: 164, and VH CDR3 of SEQ ID NO: 165, and can further comprise a light chain variable region comprising a VL CDR1 of SEQ ID NO: 166, a VL CDR2 of SEQ ID NO: 167, and a VL CDR3 of SEQ ID NO: 168.

[0121] In one embodiment, the antibody of the present invention is any one of the antibodies comprising an amino acid sequence of the V_H and/or V_L region as depicted in Fig. 7 and Table 3. In one embodiment, the antibody of the present invention is characterized by the preservation of the cognate pairing of the heavy and light chain as was present in the human B-cell.

55

50

10

30

35

 $\textbf{Table 3:} \ \, \text{Amino acid sequences of the V}_{\text{H}} \ \, \text{and V}_{\text{L}} \ \, \text{region of tau specific antibodies. BG - before germlining}$

	Antibody	Amino acid sequences of variable heavy (VH) and variable light (VL) chains		
		BG V _H	SEQ. ID. NO:44	
5		V _H	SEQ. ID. NO:45	
	NI-105.17C1	V _L	SEQ. ID. NO:46	
		N31Q V _L	SEQ. ID. NO:221	
10		N31Q, I48V V _L	SEQ. ID. NO:222	
		BG V _H	SEQ. ID. NO:47	
	NI-105.6C5	V _H	SEQ. ID. NO:48	
		V _L	SEQ. ID. NO:49	
5	NI-105.29G10	V _H	SEQ. ID. NO:50	
	NI-105.29G10	V _L	SEQ. ID. NO:51	
	NII 405 CL O	V _H	SEQ. ID. NO:52	
0	NI-105.6L9	V _L	SEQ. ID. NO:53	
		V _H	SEQ. ID. NO:54	
	NI-105.40E8	R104W V _H	SEQ. ID. NO:220	
		V _L	SEQ. ID. NO:55	
25	NII 405 4055	V _H	SEQ. ID. NO:56	
	NI-105.48E5	V _L	SEQ. ID. NO:57	
	NII 405 050	V _H	SEQ. ID. NO:58	
0	NI-105.6E3	V _L	SEQ. ID. NO:59	
	NII 405 0054	V _H	SEQ. ID. NO:60	
	NI-105.22E1	V _L	SEQ. ID. NO:61	
_		V _H	SEQ. ID. NO:62	
5	NI-105.26B12	BG V _L	SEQ. ID. NO:63	
		VL	SEQ. ID. NO:64	
	NII 405 40540	V _H	SEQ. ID. NO:65	
0	NI-105.12E12	V _L	SEQ. ID. NO:66	
	NII 405 0057	V _H	SEQ. ID. NO:67	
	NI-105.60E7	V _L	SEQ. ID. NO:68	
5	NII 405 4450	V _H	SEQ. ID. NO:69	
5	NI-105.14E2	V _L	SEQ. ID. NO:70	
	NII 405 0050	V _H	SEQ. ID. NO:71	
	NI-105.39E2	V _L	SEQ. ID. NO:72	
0	NII 405 4000	V _H	SEQ. ID. NO:73	
	NI-105.19C6	V _L	SEQ. ID. NO:74	
		BG V _H	SEQ. ID. NO:75	
5	NII 405 00 (V _H	SEQ. ID. NO:76	
5	NI-105.9C4	BG V _L	SEQ. ID. NO:77	
		V_{L}	SEQ. ID. NO:78	

[0122] In one embodiment, an antibody of the present invention comprises a heavy chain variable region (VH) comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, and 220. In one embodiment, an antibody of the present invention comprises a light chain variable region (VL) comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, and 222. In one embodiment, an antibody of the present invention comprises a heavy chain variable region (VH) comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, and 220, and further comprises a light chain variable region (VL) comprising, or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, and 222. In a specific embodiment, the antibody comprises a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 46; or a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 221; or a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 222; or a VH of SEQ ID NO: 48 and a VL of SEQ ID NO: 49; or a VH of SEQ ID NO: 50 and a VL of SEQ ID NO: 51; or a VH of SEQ ID NO: 52 and a VL of SEQ ID NO: 53; or a VH of SEQ ID NO: 54 and a VL of SEQ ID NO: 55; or a VH of SEQ ID NO: 220 and a VL of SEQ ID NO: 55; or a VH of SEQ ID NO: 56 and a VL of SEQ ID NO: 57; or a VH of SEQ ID NO: 58 and a VL of SEQ ID NO: 59; or a VH of SEQ ID NO: 60 and a VL of SEQ ID NO: 61; or a VH of SEQ ID NO: 62 and a VL of SEQ ID NO: 64; or a VH of SEQ ID NO: 65 and a VL of SEQ ID NO: 66; or a VH of SEQ ID NO: 67 and a VL of SEQ ID NO: 68; or a VH of SEQ ID NO: 69 and a VL of SEQ ID NO: 70; or a VH of SEQ ID NO: 71 and a VL of SEQ ID NO: 72; or a VH of SEQ ID NO: 73 and a VL of SEQ ID NO: 74; or a VH of SEQ ID NO: 76 and a VL of SEQ ID NO: 78; or a VH of SEQ ID NO: 44 and a VL of SEQ ID NO: 46; or a VH of SEQ ID NO: 47 and a VL of SEQ ID NO: 49; or a VH of SEQ ID NO: 62 and a VL of SEQ ID NO: 63; or a VH of SEQ ID NO: 75 and a VL of SEQ ID NO: 77. [0123] Alternatively, the antibody of the present invention is an antibody or antigen-binding fragment, derivative or variant thereof, which competes for binding to tau, such as, for example, hTau40, with at least one of the antibodies having the V_H and/or V_I region as depicted in Fig. 7 and Table 3. In one embodiment, an antibody of the present invention competes for specific binding to hTau40 with NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, or NI-105.9C4. Those antibodies can be human as well, in particular for therapeutic applications. Alternatively, the antibody is a murine, murinized and chimeric murine-human antibody, which are particularly useful for diagnostic methods and studies in animals.

10

30

35

45

50

[0124] In one embodiment the antibody of the present invention is provided by cultures of single or oligoclonal B-cells that are cultured and the supernatant of the culture, which contains antibodies produced by said B-cells is screened for presence and affinity of anti-tau antibodies therein. The screening process comprises the steps of a sensitive tissue amyloid plaque immunoreactivity (TAPIR) assay such as described in international application WO2004/095031, the disclosure content of which is incorporated herein by reference; screen on brain sections for binding to PHFTau; screening for binding of a peptide derived from tau of the amino acid sequence represented by SEQ ID NO:6 with phosphate groups on amino acids Ser-202 and Thr-205; on amino acid Thr-231; and/or on amino acids Ser-396 and Ser-404 of said sequence; a screen for binding of recombinant human tau of the amino acid sequence represented by SEQ ID NO:6 and isolating the antibody for which binding is detected or the cell producing said antibody.

[0125] As mentioned above, due to its generation upon a human immune response the human monoclonal antibody of the present invention will recognize epitopes which are of particular pathological relevance and which might not be accessible or less immunogenic in case of immunization processes for the generation of, for example, mouse monoclonal antibodies and *in vitro* screening of phage display libraries, respectively. Accordingly, it is prudent to stipulate that the epitope of the human anti-tau antibody of the present invention is unique and no other antibody which is capable of binding to the epitope recognized by the human monoclonal antibody of the present invention exists. Therefore, the present invention also extends generally to anti-tau antibodies and tau binding molecules which compete with the human monoclonal antibody of the present invention for specific binding to tau. The present invention is more specifically directed to an antibody, or antigen-binding fragment, variant or derivatives thereof, where the antibody specifically binds to the same epitope of tau as a reference antibody selected from the group consisting of NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.

[0126] Competition between antibodies is determined by an assay in which the immunoglobulin under test inhibits specific binding of a reference antibody to a common antigen, such as tau. Numerous types of competitive binding assays are known, for example: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay; see Stahli et al., Methods in Enzymology 9 (1983), 242-253; solid phase direct biotin-avidin EIA; see Kirkland et al., J. Immunol. 137 (1986), 3614-3619 and Cheung et al, Virology 176 (1990), 546-552; solid phase direct labeled assay, solid phase direct labeled sandwich assay; see Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press (1988); solid phase direct label RIA using I¹²⁵ label; see Morel et al, Molec. Immunol. 25 (1988), 7-15 and Moldenhauer et al., Scand. J. Immunol. 32 (1990), 77-82. Typically, such an assay involves the use of purified tau or aggregates thereof bound to a solid surface or cells bearing either of

these, an unlabelled test immunoglobulin and a labeled reference immunoglobulin, *i.e.* the human monoclonal antibody of the present invention. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test immunoglobulin. Usually the test immunoglobulin is present in excess. In one embodiment, the competitive binding assay is performed under conditions as described for the ELISA assay in the appended Examples. Antibodies identified by competition assay (competing antibodies) include antibodies binding to the same epitope as the reference antibody and antibodies binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antibody for steric hindrance to occur. Usually, when a competing antibody is present in excess, it will inhibit specific binding of a reference antibody to a common antigen by at least 50% or 75%. Hence, the present invention is further drawn to an antibody, or antigen-binding fragment, variant or derivatives thereof, where the antibody competitively inhibits a reference antibody selected from the group consisting of NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.39E2, NI-105.19C6, or NI-105.9C4 from binding to tau.

[0127] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin heavy chain variable region (V_H), where at least one of V_H -CDRs of the heavy chain variable region are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to reference heavy chain V_H -CDR1, V_H -CDR2 or V_H -CDR3 amino acid sequences from the antibodies disclosed herein. Alternatively, the V_H -CDR1, V_H -CDR2 and V_H -CDR3 regions of the V_H are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to reference heavy chain V_H -CDR1, V_H -CDR3 regions of the V_H -CDR3 amino acid sequences from the antibodies disclosed herein. Thus, according to this embodiment a heavy chain variable region of the invention has V_H -CDR1, V_H -CDR2 and V_H -CDR3 polypeptide sequences related to the groups shown in Fig. 7. While Fig. 7 shows V_H -CDRs defined by the Kabat system, other CDR definitions, e.g., V_H -CDRs defined by the Chothia system, are also included in the present invention, and can be easily identified by a person of ordinary skill in the art using the data presented in Fig. 7. In one embodiment, the amino acid sequence of the reference VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the reference VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the reference VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129,135, 141, 147, 153, 159, or 165.

[0128] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin heavy chain variable region (V_H) in which the V_H -CDR1, V_H -CDR2 and V_H -CDR3 regions have polypeptide sequences which are identical to the V_H -CDR1, V_H -CDR2 and V_H -CDR3 groups shown in Fig. 7. In one embodiment, the amino acid sequence of the VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165.

30

35

50

[0129] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin heavy chain variable region (V_H) in which the V_H -CDR1, V_H -CDR2 and V_H -CDR3 regions have polypeptide sequences which are identical to the V_H -CDR1, V_H -CDR2 and V_H -CDR3 groups shown in Fig. 7, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions in any one V_H -CDR. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165.

[0130] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin light chain variable region (V_L), where at least one of the V_L -CDRs of the light chain variable region are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to reference light chain V_L -CDR1, V_L -CDR2 or V_L -CDR3 amino acid sequences from antibodies disclosed herein. Alternatively, the V_L -CDR1, V_L -CDR2 and V_L -CDR3 regions of the V_L are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to reference light chain V_L -CDR1, V_L -CDR2 and V_L -CDR3 amino acid sequences from antibodies disclosed herein. Thus, according to this embodiment a light chain variable region of the invention has V_L -CDR1, V_L -CDR2 and V_L -CDR3 polypeptide sequences related to the polypeptides shown in Fig. 7. While Fig. 7 shows V_L -CDR3 defined by the Kabat system, other CDR definitions, e.g., V_L -CDR3 defined by the Chothia system, are also included in the present invention. In one embodiment, the amino acid sequence of the reference V_L CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the reference V_L CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the reference V_L CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0131] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essen-

tially of, or consisting of an immunoglobulin light chain variable region (V_L) in which the V_L -CDR1, V_L -CDR2 and V_L -CDR3 regions have polypeptide sequences which are identical to the V_L -CDR1, V_L -CDR2 and V_L -CDR3 groups shown in Fig. 7. In one embodiment, the amino acid sequence of the VL CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the VL CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the VL CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0132] In another embodiment, the present invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin light chain variable region (VL) in which the V_L -CDR1, V_L -CDR2 and V_L -CDR3 regions have polypeptide sequences which are identical to the V_L -CDR1, V_L -CDR2 and V_L -CDR3 groups shown in Fig. 7, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions in any one V_L -CDR. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the VL CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the VL CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the VL CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0133] In another embodiment, the invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin heavy chain variable region (V_H) which is identical to a reference heavy chain variable region shown in Fig. 7 and Table 3. In one embodiment, the amino acid sequence of the reference heavy chain variable region comprises SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, or 220.

[0134] In another embodiment, the invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin heavy chain variable region (V_H) having a polypeptide sequence which is identical to a reference heavy chain variable region (V_H) sequence shown in Fig. 7 and Table 3, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the reference heavy chain variable region sequence comprises SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, or 220.

[0135] According to one embodiment, the invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin light chain variable region (V_L) at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a reference light chain variable region (V_L) amino acid sequence from the antibodies disclosed herein. Thus, according to this embodiment a light chain variable region of the invention has a polypeptide sequence related to the light chain variable regions shown in Fig. 7 and Table 3. In one embodiment, the amino acid sequence of the reference light chain variable region (V_L) comprises SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, or 222.

30

35

50

[0136] In another embodiment, the invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin light chain variable region (V_L) which is identical to a reference light chain variable region shown in Fig. 7 and Table 3. In one embodiment, the amino acid sequence of the reference light chain variable region comprises SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, or 222.

[0137] In another embodiment, the invention provides an isolated polypeptide comprising, consisting essentially of, or consisting of an immunoglobulin light chain variable region (V_L) having a polypeptide sequence which is identical to a reference light chain variable region (V_L) sequence shown in Fig. 7 and Table 3, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the reference light chain variable region sequence comprises SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, or 222.

[0138] An immunoglobulin or its encoding cDNA can be further modified. Thus, in a further embodiment the method of the present invention comprises any one of the step(s) of producing a chimeric antibody, murinized antibody, singlechain antibody, Fab-fragment, bi-specific antibody, fusion antibody, labeled antibody or an analog of any one of those. Corresponding methods are known to the person skilled in the art and are described, e.g., in Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor (1988). When derivatives of said antibodies are obtained by the phage display technique, surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to the same epitope as that of any one of the antibodies described herein (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). The production of chimeric antibodies is described, for example, in international application WO89/09622. Methods for the production of humanized antibodies are described in, e.g., European application EP-A1 0 239 400 and international application WO90/07861. A further source of antibodies to be utilized in accordance with the present invention are socalled xenogeneic antibodies. The general principle for the production of xenogeneic antibodies such as human-like antibodies in mice is described in, e.g., international applications WO91/10741, WO94/02602, WO96/34096 and WO 96/33735. As discussed above, the antibody of the invention can exist in a variety of forms besides complete antibodies; including, for example, Fv, Fab and F(ab)2, as well as in single chains; see e.g. international application WO88/09344. [0139] The antibodies of the present invention or their corresponding immunoglobulin chain(s) can be further modified

using conventional techniques known in the art, for example, by using amino acid deletion(s), insertion(s), substitution(s), addition(s), and/or recombination(s) and/or any other modification(s) known in the art either alone or in combination. Methods for introducing such modifications in the DNA sequence underlying the amino acid sequence of an immunoglobulin chain are well known to the person skilled in the art; see, e.g., Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1994). Modifications of the antibody of the invention include chemical and/or enzymatic derivatizations at one or more constituent amino acids, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and the like. Likewise, the present invention encompasses the production of chimeric proteins which comprise the described antibody or some fragment thereof at the amino terminus fused to heterologous molecule such as an immunostimulatory ligand at the carboxyl terminus; see, e.g., international application WO00/30680 for corresponding technical details.

10

30

35

40

45

50

55

[0140] Additionally, the present invention encompasses peptides including those containing a binding molecule as described above, for example containing the CDR3 region of the variable region of any one of the mentioned antibodies, in particular CDR3 of the heavy chain since it has frequently been observed that heavy chain CDR3 (HCDR3) is the region having a greater degree of variability and a predominant participation in antigen-antibody interaction. Such peptides can easily be synthesized or produced by recombinant means to produce a binding agent useful according to the invention. Such methods are well known to those of ordinary skill in the art. Peptides can be synthesized for example, using automated peptide synthesizers which are commercially available. The peptides can also be produced by recombinant techniques by incorporating the DNA expressing the peptide into an expression vector and transforming cells with the expression vector to produce the peptide.

[0141] Hence, the present invention relates to any binding molecule, e.g., an antibody or binding fragment thereof which is oriented towards the human anti-tau antibodies of the present invention and display the mentioned properties, *i.e.* which specifically recognize tau. Such antibodies and binding molecules can be tested for their binding specificity and affinity by ELISA and Western Blot and immunohistochemisty as described herein, see, *e.g.*, the Examples. Furthermore, preliminary results of subsequent experiments performed in accordance with the present invention revealed that in one embodiment, the human ant-tau antibody of the present invention binds primarily to pathologically aggregated tau resembling neurofibrillary tangles (NFT), neuropil threads present on human brain sections of patients who suffered from Alzheimer's disease (AD) in addition. Thus, in a particular preferred embodiment of the present invention, the human antibody or binding fragment, derivative or variant thereof recognizes tau on human AD brain sections.

[0142] As an alternative to obtaining immunoglobulins directly from the culture of immortalized B cells or B memory cells, the immortalized cells can be used as a source of rearranged heavy chain and light chain loci for subsequent expression and/or genetic manipulation. Rearranged antibody genes can be reverse transcribed from appropriate mRNAs to produce cDNA. If desired, the heavy chain constant region can be exchanged for that of a different isotype or eliminated altogether. The variable regions can be linked to encode single chain Fv regions. Multiple Fv regions can be linked to confer binding ability to more than one target or chimeric heavy and light chain combinations can be employed. Once the genetic material is available, design of analogs as described above which retain both their ability to bind the desired target is straightforward. Methods for the cloning of antibody variable regions and generation of recombinant antibodies are known to the person skilled in the art and are described, for example, Gilliland et al., Tissue Antigens 47 (1996), 1-20; Doenecke et al., Leukemia 11 (1997), 1787-1792.

[0143] Once the appropriate genetic material is obtained and, if desired, modified to encode an analog, the coding sequences, including those that encode, at a minimum, the variable regions of the heavy and light chain, can be inserted into expression systems contained on vectors which can be transfected into standard recombinant host cells. A variety of such host cells can be used; for efficient processing, however, mammalian cells can be considered. Typical mammalian cell lines useful for this purpose include, but are not limited to, CHO cells, HEK 293 cells, or NSO cells.

[0144] The production of the antibody or analog is then undertaken by culturing the modified recombinant host under culture conditions appropriate for the growth of the host cells and the expression of the coding sequences. The antibodies are then recovered by isolating them from the culture. The expression systems are designed to include signal peptides so that the resulting antibodies are secreted into the medium; however, intracellular production is also possible.

[0145] In accordance with the above, the present invention also relates to a polynucleotide encoding the antibody or equivalent binding molecule of the present invention. In one embodiment, the polynucleotide encodes at least a variable region of an immunoglobulin chain of the antibody described above. Typically, said variable region encoded by the polynucleotide comprises at least one complementarity determining region (CDR) of the V_H and/or V_L of the variable region of the said antibody.

[0146] The person skilled in the art will readily appreciate that the variable domain of the antibody having the above-described variable domain can be used for the construction of other polypeptides or antibodies of desired specificity and biological function. Thus, the present invention also encompasses polypeptides and antibodies comprising at least one CDR of the above-described variable domain and which advantageously have substantially the same or similar binding

properties as the antibody described in the appended examples. The person skilled in the art knows that binding affinity can be enhanced by making amino acid substitutions within the CDRs or within the hypervariable loops (Chothia and Lesk, J. Mol. Biol. 196 (1987), 901-917) which partially overlap with the CDRs as defined by Kabat; see, e.g., Riechmann, et al, Nature 332 (1988), 323-327. Thus, the present invention also relates to antibodies wherein one or more of the mentioned CDRs comprise one or more, or not more than two amino acid substitutions. In one embodiment, the antibody of the invention comprises in one or both of its immunoglobulin chains two or all three CDRs of the variable regions as set forth in Fig. 1.

[0147] Binding molecules, e.g., antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention, as known by those of ordinary skill in the art, can comprise a constant region which mediates one or more effector functions. For example, binding of the C1 component of complement to an antibody constant region can activate the complement system. Activation of complement is important in the opsonization and lysis of cell pathogens. The activation of complement also stimulates the inflammatory response and can also be involved in autoimmune hypersensitivity. Further, antibodies bind to receptors on various cells via the Fc region, with a Fc receptor binding site on the antibody Fc region binding to a Fc receptor (FcR) on a cell. There are a number of Fc receptors which are specific for different classes of antibody, including IgG (gamma receptors), IgE (epsilon receptors), IgA (alpha receptors) and IgM (mu receptors). Binding of antibody to Fc receptors on cell surfaces triggers a number of important and diverse biological responses including engulfment and destruction of antibody-coated particles, clearance of immune complexes, lysis of antibody-coated target cells by killer cells (called antibody-dependent cell-mediated cytotoxicity, or ADCC), release of inflammatory mediators, placental transfer and control of immunoglobulin production.

10

15

20

30

35

40

45

50

[0148] Accordingly, certain embodiments of the present invention include an antibody, or antigen-binding fragment, variant, or derivative thereof, in which at least a fraction of one or more of the constant region domains has been deleted or otherwise altered so as to provide desired biochemical characteristics such as reduced effector functions, the ability to non-covalently dimerize, increased ability to localize at the site of tau aggregation and deposition, reduced serum half-life, or increased serum half-life when compared with a whole, unaltered antibody of approximately the same immunogenicity. For example, certain antibodies for use in the diagnostic and treatment methods described herein are domain deleted antibodies which comprise a polypeptide chain similar to an immunoglobulin heavy chain, but which lack at least a portion of one or more heavy chain domains. For instance, in certain antibodies, one entire domain of the constant region of the modified antibody will be deleted, for example, all or part of the CH2 domain will be deleted. In other embodiments, certain antibodies for use in the diagnostic and treatment methods described herein have a constant region, e.g., an IgG heavy chain constant region, which is altered to eliminate glycosylation, referred to elsewhere herein as aglycosylated or "agly" antibodies. Such "agly" antibodies can be prepared enzymatically as well as by engineering the consensus glycosylation site(s) in the constant region. While not being bound by theory, it is believed that "agly" antibodies can have an improved safety and stability profile in vivo. Methods of producing aglycosylated antibodies, having desired effector function are found for example in international application WO2005/018572, which is incorporated by reference in its entirety.

[0149] In certain antibodies, or antigen-binding fragments, variants, or derivatives thereof described herein, the Fc portion can be mutated to decrease effector function using techniques known in the art. For example, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating modified antibody thereby increasing tau localization. In other cases it can be that constant region modifications consistent with the instant invention moderate complement binding and thus reduce the serum half-life and nonspecific association of a conjugated cytotoxin. Yet other modifications of the constant region can be used to modify disulfide linkages or oligosaccharide moieties that allow for enhanced localization due to increased antigen specificity or antibody flexibility. The resulting physiological profile, bioavailability and other biochemical effects of the modifications, such as tau localization, biodistribution and serum half-life, can easily be measured and quantified using well know immunological techniques without undue experimentation.

[0150] In certain antibodies, or antigen-binding fragments, variants, or derivatives thereof described herein, the Fc portion can be mutated or exchanged for alternative protein sequences to increase the cellular uptake of antibodies by way of example by enhancing receptor-mediated endocytosis of antibodies via $Fc\gamma$ receptors, LRP, or Thy1 receptors or by 'SuperAntibody Technology', which is said to enable antibodies to be shuttled into living cells without harming them (Expert Opin. Biol. Ther. (2005), 237-241). For example, the generation of fusion proteins of the antibody binding region and the cognate protein ligands of cell surface receptors or bi- or multi-specific antibodies with a specific sequences biding to tau as well as a cell surface receptor can be engineered using techniques known in the art.

[0151] In certain antibodies, or antigen-binding fragments, variants, or derivatives thereof described herein, the Fc portion can be mutated or exchanged for alternative protein sequences or the antibody can be chemically modified to increase its blood brain barrier penetration.

[0152] Modified forms of antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be made from whole precursor or parent antibodies using techniques known in the art. Exemplary techniques are discussed in more detail herein. Antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention

can be made or manufactured using techniques that are known in the art. In certain embodiments, antibody molecules or fragments thereof are "recombinantly produced," *i.e.*, are produced using recombinant DNA technology. Exemplary techniques for making antibody molecules or fragments thereof are discussed in more detail elsewhere herein.

[0153] Antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention also include derivatives that are modified, *e.g.*, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from specifically binding to its cognate epitope. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, *e.g.*, by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications can be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative can contain one or more non-classical amino acids.

10

15

20

30

35

50

[0154] In particular embodiments, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention will not elicit a deleterious immune response in the animal to be treated, e.g., in a human. In certain embodiments, binding molecules, e.g., antibodies, or antigen-binding fragments thereof of the invention are derived from a patient, e.g., a human patient, and are subsequently used in the same species from which they are derived, e.g., human, alleviating or minimizing the occurrence of deleterious immune responses.

[0155] De-immunization can also be used to decrease the immunogenicity of an antibody. As used herein, the term "de-immunization" includes alteration of an antibody to modify T cell epitopes; see, e.g., international applications WO98/52976 and WO00/34317. For example, V_H and V_L sequences from the starting antibody are analyzed and a human T cell epitope "map" from each V region showing the location of epitopes in relation to complementarity determining regions (CDRs) and other key residues within the sequence. Individual T cell epitopes from the T cell epitope map are analyzed in order to identify alternative amino acid substitutions with a low risk of altering activity of the final antibody. A range of alternative V_H and V_L sequences are designed comprising combinations of amino acid substitutions and these sequences are subsequently incorporated into a range of binding polypeptides, e.g., tau-specific antibodies or immunospecific fragments thereof for use in the diagnostic and treatment methods disclosed herein, which are then tested for function. Typically, between 12 and 24 variant antibodies are generated and tested. Complete heavy and light chain genes comprising modified V and human C regions are then cloned into expression vectors and the subsequent plasmids introduced into cell lines for the production of whole antibody. The antibodies are then compared in appropriate biochemical and biological assays, and the optimal variant is identified.

[0156] Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2nd ed. (1988); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas Elsevier, N.Y., 563-681 (1981), said references incorporated by reference in their entireties. The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced. Thus, the term "monoclonal antibody" is not limited to antibodies produced through hybridoma technology. In certain embodiments, antibodies of the present invention are derived from human B cells which have been immortalized via transformation with Epstein-Barr virus, as described herein.

[0157] In the well-known hybridoma process (Kohler et al., Nature 256 (1975), 495) the relatively short-lived, or mortal, lymphocytes from a mammal, e.g., B cells derived from a human subject as described herein, are fused with an immortal tumor cell line (e.g., a myeloma cell line), thus, producing hybrid cells or "hybridomas" which are both immortal and capable of producing the genetically coded antibody of the B cell. The resulting hybrids are segregated into single genetic strains by selection, dilution, and regrowth with each individual strain comprising specific genes for the formation of a single antibody. They produce antibodies, which are homogeneous against a desired antigen and, in reference to their pure genetic parentage, are termed "monoclonal".

[0158] Hybridoma cells thus prepared are seeded and grown in a suitable culture medium that contain one or more substances that inhibit the growth or survival of the unfused. parental myeloma cells. Those skilled in the art will appreciate that reagents, cell lines and media for the formation, selection and growth of hybridomas are commercially available from a number of sources and standardized protocols are well established. Generally, culture medium in which the hybridoma cells are growing is assayed for production of monoclonal antibodies against the desired antigen. The binding specificity of the monoclonal antibodies produced by hybridoma cells is determined by *in vitro* assays such as immuno-precipitation, radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) as described herein. After hybridoma cells are identified that produce antibodies of the desired specificity, affinity and/or activity, the clones can be subcloned by limiting dilution procedures and grown by standard methods; see, e.g., Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, pp 59-103 (1986). It will further be appreciated that the monoclonal antibodies secreted by the subclones can be separated from culture medium, ascites fluid or serum by conventional purification

procedures such as, for example, protein-A, hydroxylapatite chromatography, gel electrophoresis, dialysis or affinity chromatography.

[0159] In another embodiment, lymphocytes can be selected by micromanipulation and the variable genes isolated. For example, peripheral blood mononuclear cells can be isolated from an immunized or naturally immune mammal, e.g., a human, and cultured for about 7 days *in vitro*. The cultures can be screened for specific IgGs that meet the screening criteria. Cells from positive wells can be isolated. Individual Ig-producing B cells can be isolated by FACS or by identifying them in a complement-mediated hemolytic plaque assay. Ig-producing B cells can be micromanipulated into a tube and the V_H and V_L genes can be amplified using, e.g., RT-PCR. The V_H and V_L genes can be cloned into an antibody expression vector and transfected into cells (e.g., eukaryotic or prokaryotic cells) for expression.

[0160] Alternatively, antibody-producing cell lines can be selected and cultured using techniques well known to the skilled artisan. Such techniques are described in a variety of laboratory manuals and primary publications. In this respect, techniques suitable for use in the invention as described below are described in Current Protocols in Immunology, Coligan et al., Eds., Green Publishing Associates and Wiley-Interscience, John Wiley and Sons, New York (1991) which is herein incorporated by reference in its entirety, including supplements.

15

30

35

50

[0161] Antibody fragments that recognize specific epitopes can be generated by known techniques. For example, Fab and F(ab')₂ fragments can be produced recombinantly or by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')₂ fragments). F(ab')₂ fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain. Such fragments are sufficient for use, for example, in immunodiagnostic procedures involving coupling the immunospecific portions of immunoglobulins to detecting reagents such as radioisotopes.

[0162] Human antibodies, such as described herein, are particularly desirable for therapeutic use in human patients. Human antibodies of the present invention are isolated, e.g., from healthy human subjects who because of their age may be suspected to be at risk of developing a tauopathic disorder, e.g., Alzheimer's disease, or a patient with the disorder but with an unusually stable disease course. However, though it is prudent to expect that elderly healthy and symptom-free subjects, respectively, more regularly will have developed protective anti-tau antibodies than younger subjects, the latter can be used as well as source for obtaining a human antibody of the present invention. This is particularly true for younger patients who are predisposed to develop a familial form of a tauopathic disease but remain symptom-free since their immune system functions more efficiently than that in older adults.

[0163] In one embodiment, an antibody of the invention comprises at least one heavy or light chain CDR of an antibody molecule. In another embodiment, an antibody of the invention comprises at least two CDRs from one or more antibody molecules. In another embodiment, an antibody of the invention comprises at least three CDRs from one or more antibody molecules. In another embodiment, an antibody of the invention comprises at least four CDRs from one or more antibody molecules. In another embodiment, an antibody of the invention comprises at least five CDRs from one or more antibody molecules. In another embodiment, an antibody of the invention comprises at least six CDRs from one or more antibody molecules. Exemplary antibody molecules comprising at least one CDR that can be included in the subject antibodies are described herein.

[0164] Antibodies of the present invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or by recombinant expression techniques as described herein.

[0165] In one embodiment, an antibody, or antigen-binding fragment, variant, or derivative thereof of the invention comprises a synthetic constant region wherein one or more domains are partially or entirely deleted ("domain-deleted antibodies"). In certain embodiments compatible modified antibodies will comprise domain deleted constructs or variants wherein the entire CH2 domain has been removed (Δ CH2 constructs). For other embodiments a short connecting peptide can be substituted for the deleted domain to provide flexibility and freedom of movement for the variable region. Those skilled in the art will appreciate that such constructs are particularly preferred due to the regulatory properties of the CH2 domain on the catabolic rate of the antibody. Domain deleted constructs can be derived using a vector encoding an IgG₁ human constant domain, *see*, *e.g.*, international applications WO02/060955 and WO02/096948A2. This vector is engineered to delete the CH2 domain and provide a synthetic vector expressing a domain deleted IgG₁ constant region.

[0166] In certain embodiments, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the present invention are minibodies. Minibodies can be made using methods described in the art, *see, e.g.,* US patent 5,837,821 or international application WO 94/09817.

[0167] In one embodiment, an antibody, or antigen-binding fragment, variant, or derivative thereof of the invention comprises an immunoglobulin heavy chain having deletion or substitution of a few or even a single amino acid as long as it permits association between the monomeric subunits. For example, the mutation of a single amino acid in selected areas of the CH2 domain can be enough to substantially reduce Fc binding and thereby increase tau localization. Similarly, it can be desirable to simply delete that part of one or more constant region domains that control the effector function (e.g. complement binding) to be modulated. Such partial deletions of the constant regions can improve selected characteristics of the antibody (serum half-life) while leaving other desirable functions associated with the subject constant region domain intact. Moreover, as alluded to above, the constant regions of the disclosed antibodies can be synthetic

through the mutation or substitution of one or more amino acids that enhances the profile of the resulting construct. In this respect, the activity provided by a conserved binding site (e.g. Fc binding) can be disrupted while substantially maintaining the configuration and immunogenic profile of the modified antibody. Yet other embodiments comprise the addition of one or more amino acids to the constant region to enhance desirable characteristics such as effector function or provide for more cytotoxin or carbohydrate attachment. In such embodiments it can be desirable to insert or replicate specific sequences derived from selected constant region domains.

[0168] The present invention also provides antibodies that comprise, consist essentially of, or consist of, variants (including derivatives) of antibody molecules (e.g., the V_H regions and/or V_I regions) described herein, which antibodies or fragments thereof immunospecifically bind to tau. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding an antibody, including, but not limited to, site-directed mutagenesis and PCR-mediated mutagenesis which result in amino acid substitutions. In one embodiment, the variants (including derivatives) encode less than 50 amino acid substitutions, less than 40 amino acid substitutions, less than 30 amino acid substitutions, less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the reference V_H region, V_H-CDR1, V_H-CDR2, V_H-CDR3, V_L region, V_L-CDR1, V_L-CDR2, or V_L-CDR3. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity (e.g., the ability to bind tau).

10

30

35

45

50

55

[0169] For example, it is possible to introduce mutations only in framework regions or only in CDR regions of an antibody molecule. Introduced mutations can be silent or neutral missense mutations, e.g., have no, or little, effect on an antibody's ability to bind antigen, indeed some such mutations do not alter the amino acid sequence whatsoever. These types of mutations can be useful to optimize codon usage, or improve a hybridoma's antibody production. Codon-optimized coding regions encoding antibodies of the present invention are disclosed elsewhere herein. Alternatively, non-neutral missense mutations can alter an antibody's ability to bind antigen. The location of most silent and neutral missense mutations is likely to be in the framework regions, while the location of most non-neutral missense mutations is likely to be in CDR, though this is not an absolute requirement. One of skill in the art would be able to design and test mutant molecules with desired properties such as no alteration in antigen-binding activity or alteration in binding activity (e.g., improvements in antigen-binding activity or change in antibody specificity). Following mutagenesis, the encoded protein can routinely be expressed and the functional and/or biological activity of the encoded protein, (e.g., ability to immunospecifically bind at least one epitope of tau) can be determined using techniques described herein or by routinely modifying techniques known in the art.

[0170] Tau binding agents, for example, but not limited to, tau binding antibodies of the present invention can be characterized using any in vivo or in vitro models of neurodegenerative tauopathies. A skilled artisan readily understands that a tau binding agent (e.g., an antibody) of the invention can be characterized in a mouse model for neurodegenerative tauopathies. for example, but not limited to, any one of the following three different animal models for tauopathies can be used to characterize and validate the tau antibodies (and molecules with the binding specificities thereof) of the present invention.

- 1. Transgenic TauP301L mice (line183): expressing human Tau40 with P301L mutation under the murine Thy1.2 promoter (Generation of these transgenic animals is described in Götz et al., J. Biol. Chem. 276 (2001), 529-534 and in international application WO 2003/017918, the disclosure content of which is incorporated herein by reference) 2. JNPL3 mice expressing the shortest 4R human tau isoform with P301L mutation under the murine PrP promoter (available from Taconic, Hudson, NY, U.S.A).
- 3. P301STau (line PS19) mice expressing human tau with P301S mutation under the murine PrP promoter (available from the Jackson Laboratory, Bar Harbor, Maine, U.S.A).

[0171] A skilled artisan understands that an experimental model of neurodegenerative tauopathies can be used in a preventative setting or it can be used in a therapeutic setting. In a preventative setting, the dosing of animals starts prior to the onset of the neurodegenerative tauopathies or symptoms thereof. In preventative settings, a tau binding agent (e.g., antibody) of the invention is evaluated for its ability to prevent, reduce or delay the onset of neurodegenerative tauopathies or symptoms thereof In a therapeutic setting, the dosing of animals start after the onset of neurodegenerative

tauopathies or a symptom thereof. In a therapeutic setting, a tau binding agent (e.g., antibody) of the invention is evaluated for its ability to treat, reduce or alleviate the neurodegenerative tauopathies or a symptom thereof. Symptoms of the neurodegenerative tauopathies include, but are not limited to, accumulation of pathological tau deposits, neurofibrillary tangles (NFT), hyperphosphorylated tau polypeptide, insoluble tau fractions in the neurons, brain, spinal cord, cerebrospinal fluid or serum of the experimental object. A skilled artisan understands that a positive preventative or therapeutic outcome in any animal model of neurodegenerative tauopathies indicates that the particular tau binding agent (e.g., antibody) can be used for preventative or therapeutic purposes in a subject other than the experimental model organism, for example, it can be used to treat neurodegenerative tauopathies in a human subject in need thereof.

10

30

35

40

45

50

55

[0172] In one embodiment, a tau binding agent (e.g., an antibody) of the invention can be administered to a tauopathy mouse model and corresponding control wild type mice. The antibody administered can be a murinized antibody of the present invention or a human-murine chimera of an antibody of the present invention. The tau binding agent (e.g., an antibody) can be administered by any means known in the art, for example, by intraperitoneal, intracranial, intramuscular, intravenous, subcutaneous, oral, and aerosol administration. Experimental animals can be given one, two, three, four, five or more doses of the tau binding agent (e.g., an antibody) or a control composition, such as PBS. In one embodiment, experimental animals will be administered one or two doses of a tau binding agent (e.g., an antibody). See, for example, Example 9. In another embodiment, the animals are chronically dosed with the tau binding agent (e.g., an antibody) over several weeks or months. See, for example, Example 10. A skilled artisan can readily design a dosing regimen that fits the experimental purpose, for example, dosing regimen for acute studies, dosing regimen for chronic studies, dosing regimen for toxicity studies, dosing regimen for preventative or therapeutic studies. The presence of the tau binding agent (e.g., antibody) in a particular tissue compartment of the experimental animals, for example, but not limited to, serum, blood, cerebrospinal fluid, brain tissue, can be established using well know methods of the art. See, for example, Example 9 and 10. In one embodiment, a tau binding agent (e.g., antibody) of the invention is capable to penetrate the blood brain barrier. A skilled artisan understands that by adjusting the tau binding agent (e.g., antibody) dose and the dosing frequency, a desired tau binding agent (e.g., antibody) concentration can be maintained in the experimental animals. Any effect of a tau binding agent (e.g., antibody) of the present invention in the tauopathy models can be assessed by comparing the level, biochemical characteristics or distribution of tau in the treated and control animals. In one example, the neurofibrillary tangles (NFT) are examined using the silver impregnation technique of Gallyas or by immunostaining with monoclonal mouse antibody AT100 and AT180, which recognize pathologically phosphorylated tau in NFT. The number or frequency of Gallyas-positive neurons and/or AT100, AT180 labeled neurons in the brain and spinal cord in antibody treated mice and control animals can be determined to evaluate the effect of antibody treatment. In one embodiment, an antibody of the present invention is capable of reducing the level, amount or concentration of neurofibrillary tangles in the brain or spinal cord in an animal model. The antibody can reduce the level, amount or concentration of neurofibrillary tangles by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. In another embodiment, an antibody of the present invention is capable of reducing the number or frequency of Gallyaspositive neurons in the brain or spinal cord in an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. In a further embodiment, an antibody of the present invention is capable of reducing the number or frequency of AT100 or AT180 antibody positive neurons in the brain or spinal cord in an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. The effect of an antibody of the present invention can also be assessed by examining the distribution and biochemical properties of tau following antibody administration. In one embodiment, an antibody of the present invention is capable of reducing the amount or concentration of tau protein in the brain or spinal cord of an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. In another embodiment, an antibody of the present invention is capable of reducing the amount or concentration of insoluble tau protein in the brain or spinal cord of an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. Insoluble tau fraction can be prepared as described, for example, in Example 10 or in Goedert M, Spillantini MG, Cairns NJ, Crowther RA. Neuron 8, 159 (1992). The amount of tau protein in a biological sample can be determined by any method known to one of skill, for example, as described in Example 10. In a further embodiment, an antibody of the present invention can reduce the amount or concentration of hyperphosphorylated tau protein in the brain or spinal cord in an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. Hyperphosphorylated tau can be detected using antibodies specific for pathologically hyperphosphorylated forms of tau, such as AT100 or AT180. An antibody of the present invention can also alter, for example, reduce or increase, tau concentration in the blood, serum or cerebrospinal fluid or an animal model, for example, by at least about 5%, 10%, 20%, 30%, 50%, 70%, 90% or more. In one embodiment, the % reduction or increase is relative compared to the level, number, frequency, amount or concentration that existed before treatment, or to the level, number, frequency, amount or concentration that exist in an untreated/control treated subject.

[0173] In one embodiment, an antibody of the present invention can prevent or delay the onset of at least one symptom of a neurodegenerative tauopathy in a subject. In one embodiment, an antibody of the present invention can reduce or eliminate at least one symptom of a neurodegenerative tauopathy in a subject. The symptom can be the formation of pathological tau deposits, hyperphosphorylated tau deposits, insoluble tau deposits, neurofibrillary fibers, neurofibrillary

fibers, pre-tangle phosphor tau aggregates, intraneuronal neurofibrillary tangles or extraneuronal neurofibrillary tangles in the brain or spinal cord of a subject. See, e.g., Augustinack et al, Acta Neuropathol 103:26-35 (2002). The symptom can also be the presence, or elevated concentration or amount, of tau in the serum, blood, urine or cerebrospinal fluid, wherein elevated concentration amount is compared to a healthy subject. The symptom can be a neurological symptom, for example, altered conditioned taste aversion, altered contextual fear conditioning, memory impairment, loss of motor function. In one embodiment, memory impairment is assessed using a two-trial Y-maze task. In a specific embodiment, the two-trial Y-maze task is performed substantially as described in Example 10. In one embodiment, the at least one symptom is reduced by at least about 5%, 10%, 15%, 20%, 30%, 50%, 70%, or 90%. In another embodiment, the twotrial Y-maze task ratio is significantly higher in an antibody treated subject than in a control subject. In a specific embodiment, the two-trial Y-maze task ratio is increased by at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%. In another embodiment, the two-trial Y-maze task ratio is at least about two times, three times, four times, five times, ten times, or twenty times higher. The present invention also provides a method of preventing or delaying the onset of at least one symptom of a neurodegenerative tauopathy in a subject in need thereof, comprising administering a therapeutically effective amount of a tau antibody described herein. The present invention further provides a method of reducing or eliminating least one symptom of a neurodegenerative tauopathy in a subject in need thereof, comprising administering a therapeutically effective amount of a tau antibody described herein. In one embodiment, the subject is an experimental organism, such as, but not limited to, transgenic mouse. In one embodiment, the subject is a human.

III. Polynucleotides Encoding Antibodies

20

30

35

45

50

55

[0174] A polynucleotide encoding an antibody, or antigen-binding fragment, variant, or derivative thereof can be composed of any polyribonucleotide or polydeoxribonucleotide, which can be unmodified RNA or DNA or modified RNA or DNA. For example, a polynucleotide encoding an antibody, or antigen-binding fragment, variant, or derivative thereof can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that can be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, a polynucleotide encoding an antibody, or antigen-binding fragment, variant, or derivative thereof can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide encoding an antibody, or antigen-binding fragment, variant, or derivative thereof can also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

[0175] An isolated polynucleotide encoding a non-natural variant of a polypeptide derived from an immunoglobulin (e.g., an immunoglobulin heavy chain portion or light chain portion) can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of the immunoglobulin such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. In one embodiment, conservative amino acid substitutions are made at one or more non-essential amino acid residues.

[0176] As is well known, RNA can be isolated from the original B cells, hybridoma cells or from other transformed cells by standard techniques, such as guanidinium isothiocyanate extraction and precipitation followed by centrifugation or chromatography. Where desirable, mRNA can be isolated from total RNA by standard techniques such as chromatography on oligo dT cellulose. Suitable techniques are familiar in the art. In one embodiment, cDNAs that encode the light and the heavy chains of the antibody can be made, either simultaneously or separately, using reverse transcriptase and DNA polymerase in accordance with well-known methods. PCR can be initiated by consensus constant region primers or by more specific primers based on the published heavy and light chain DNA and amino acid sequences. As discussed above, PCR also can be used to isolate DNA clones encoding the antibody light and heavy chains. In this case the libraries can be screened by consensus primers or larger homologous probes, such as human constant region probes. [0177] DNA, typically plasmid DNA, can be isolated from the cells using techniques known in the art, restriction mapped and sequenced in accordance with standard, well known techniques set forth in detail, e.g., in the foregoing references relating to recombinant DNA techniques. Of course, the DNA can be synthetic according to the present invention at any point during the isolation process or subsequent analysis.

[0178] In one embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin heavy chain variable region (V_H) , where at least one of the CDRs of the heavy chain variable region or at least two of the V_H -CDRs of the heavy chain variable region are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to reference heavy chain V_H -CDR1, V_H -CDR2, or V_H -CDR3 amino acid sequences from the antibodies disclosed herein. Alternatively, the V_H -CDR1, V_H -CDR2, or V_H -CDR3 regions of the V_H are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to reference heavy chain V_H -CDR1, V_H -CDR2, and V_H -CDR3 amino acid sequences from the antibodies disclosed herein. Thus, according to this embodiment

a heavy chain variable region of the invention has V_H -CDR1, V_H -CDR2, or V_H -CDR3 polypeptide sequences related to the polypeptide sequences shown in Fig. 7. In one embodiment, the amino acid sequence of the reference VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the reference VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the reference VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165.

[0179] In one embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin heavy chain variable region (V_H), in which the V_H -CDR1, V_H -CDR2 and V_H -CDR3 regions have polypeptide sequences which are identical to the V_H -CDR1, V_H -CDR2 and V_H -CDR3 groups shown in Fig. 7, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions in any one V_H -CDR. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165.

[0180] In another embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin light chain variable region (V_L), where at least one of the V_L -CDRs of the light chain variable region or at least two of the V_L -CDRs of the light chain variable region are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to reference light chain V_L -CDR1, V_L -CDR2, or V_L -CDR3 amino acid sequences from the antibodies disclosed herein. Alternatively, the V_L -CDR1, V_L -CDR2, or V_L -CDR3 regions of the V_L are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to reference light chain V_L -CDR1, V_L -CDR2, and V_L -CDR3 amino acid sequences from the antibodies disclosed herein. Thus, according to this embodiment a light chain variable region of the invention has V_L -CDR1, V_L -CDR2, or V_L -CDR3 polypeptide sequences related to the polypeptide sequences shown in Fig. 7. In one embodiment, the amino acid sequence of the reference V_L -CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the reference V_L -CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the reference V_L -CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0181] In another embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin light chain variable region (V_L) in which the V_L -CDR1, V_L -CDR2 and V_L -CDR3 regions have polypeptide sequences which are identical to the V_L -CDR1, V_L -CDR2 and V_L -CDR3 groups shown in Fig. 7, except for one, two, three, four, five, six, seven, eight, nine, or ten amino acid substitutions in any one V_L -CDR. In certain embodiments the amino acid substitutions are conservative. In one embodiment, the amino acid sequence of the VL CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the VL CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the VL CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

30

35

[0182] In another embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin heavy chain variable region (V_H) in which the V_H -CDR1, V_H -CDR2, and V_H -CDR3 regions have polypeptide sequences which are identical to the V_H -CDR1, V_H -CDR2, and V_H -CDR3 groups shown in Fig. 7. In one embodiment, the amino acid sequence of the VH CDR1 is SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, or 163; the amino acid sequence of the VH CDR2 is SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, or 164; and the amino acid sequence of the VH CDR3 is SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, or 165.

[0183] In another embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin light chain variable region (V_L) in which the V_L-CDR1, V_L-CDR2, and V_L-CDR3 regions have polypeptide sequences which are identical to the V_L-CDR1, V_L-CDR2, and V_L-CDR3 groups shown in Fig. 7. In one embodiment, the amino acid sequence of the VL CDR1 is SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, or 224; the amino acid sequence of the VL CDR2 is SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, or 167; and the amino acid sequence of the VL CDR3 is SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168.

[0184] As known in the art, "sequence identity" between two polypeptides or two polynucleotides is determined by comparing the amino acid or nucleic acid sequence of one polypeptide or polynucleotide to the sequence of a second polypeptide or polynucleotide. When discussed herein, whether any particular polypeptide is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% identical to another polypeptide can be determined using methods and computer programs/software known in the art such as, but not limited to, the BESTFIT program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). BESTFIT uses the local homology algorithm of Smith and Waterman, Advances in Applied

Mathematics 2 (1981), 482-489, to find the best segment of homology between two sequences. When using BESTFIT or any other sequence alignment program to determine whether a particular sequence is, for example, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference polypeptide sequence and that gaps in homology of up to 5% of the total number of amino acids in the reference sequence are allowed.

[0185] In one embodiment of the present invention, the polynucleotide comprises, consists essentially of, or consists of a nucleic acid having a polynucleotide sequence of the V_H or V_L region of an anti-tau antibody as depicted in Table 4. In this respect, the person skilled in the art will readily appreciate that the polynucleotides encoding at least the variable domain of the light and/or heavy chain can encode the variable domain of both immunoglobulin chains or only one.

Table 4: Nucleotide sequences of the V_H and V_L region of tau specific antibodies. BG - before germlining

Antibody	Nucleotide sequences	Nucleotide sequences of variable heavy (VH) and variable light (VL) chains	
NI-105.17C1	BG V _H	SEQ. ID. NO:169	
	V _H	SEQ. ID. NO:170	
	V_{L}	SEQ. ID. NO:171	
NI-105,6C5	BG V _H	SEQ. ID. NO:172	
	V _H	SEQ. ID. NO:173	
	V_{L}	SEQ. ID. NO:174	
NI-105.29G10	V _H	SEQ. ID. NO:175	
	V_{L}	SEQ. ID. NO:176	
NI-105.6L9	V _H	SEQ. ID. NO:177	
	V _L	SEQ. ID. NO:178	
NI-105.40E8	V _H	SEQ. ID. NO:179	
	V _L	SEQ. ID. NO:180	
NI-105.48E5	V _H	SEQ. ID. NO:181	
	V_{L}	SEQ. ID. NO:182	
NI-105.6E3	V _H	SEQ. ID. NO:183	
	V _L	SEQ. ID. NO: 184	
NI-105.22E1	V _H	SEQ. ID. NO:185	
	V _L	SEQ. ID. NO:186	
NI-105.26B12	V _H	SEQ. ID. NO:187	
	BG V _L	SEQ. ID. NO:188	
	V _L	SEQ. ID. NO:223	
NI-105.12E12	V _H	SEQ. ID. NO:189	
	V _L	SEQ. ID. NO:190	
NI 105 6057	V _H	SEQ. ID. NO:191	
NI-105.60E7	V_{L}	SEQ. ID. NO:192	
NI-105.14E2	V _H	SEQ. ID. NO:193	
	V_{L}	SEQ. ID. NO:194	
NI 105 2052	V _H	SEQ. ID. NO: 195	
NI-105.39E2	V_L	SEQ. ID. NO: 196	
NI-105.19C6	V _H	SEQ. ID. NO: 197	
	V_{L}	SEQ. ID. NO:198	

(continued)

Antibody	Nucleotide sequences of variable heavy (VH) and variable light (VL) chains	
	BG V _H	SEQ. ID. NO:199
NI-105.9C4	V _H	SEQ. ID. NO:200
NI-105.9C4	BG V _L	SEQ. ID. NO:201
	V _L	SEQ. ID. NO:202

10

20

30

35

40

45

50

55

5

[0186] In one embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin heavy chain variable region at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or 95% identical to reference heavy chain VH. In one embodiment, the amino acid sequence of the reference heavy chain variable region comprises SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, or 220.

[0187] In one embodiment, the present invention provides an isolated polynucleotide comprising, consisting essentially of, or consisting of a nucleic acid encoding an immunoglobulin light chain variable region at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or 95% identical to reference light chain VL. In one embodiment, the amino acid sequence of the reference light chain variable region comprises SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, or 222.

[0188] The present invention also includes fragments of the polynucleotides of the invention, as described elsewhere. Additionally polynucleotides which encode fusion polynucleotides, Fab fragments, and other derivatives, as described herein, are also contemplated by the invention.

[0189] The polynucleotides can be produced or manufactured by any method known in the art. For example, if the nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody can be assembled from chemically synthesized oligonucleotides, e.g., as described in Kutmeier et al., BioTechniques 17 (1994), 242, which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

[0190] Alternatively, a polynucleotide encoding an antibody, or antigen-binding fragment, variant, or derivative thereof can be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the antibody can be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably polyA⁺ RNA, isolated from, any tissue or cells expressing the tau-specific antibody, such as hybridoma cells selected to express an antibody) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, *e.g.*, a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR can then be cloned into replicable cloning vectors using any method well known in the art.

[0191] Once the nucleotide sequence and corresponding amino acid sequence of the antibody, or antigen-binding fragment, variant, or derivative thereof is determined, its nucleotide sequence can be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1990) and Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley & Sons, NY (1998), which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

IV. Expression of Antibody Polypeptides

[0192] Following manipulation of the isolated genetic material to provide antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention, the polynucleotides encoding the antibodies are typically inserted in an expression vector for introduction into host cells that can be used to produce the desired quantity of antibody. Recombinant expression of an antibody, or fragment, derivative or analog thereof, e.g., a heavy or light chain of an antibody which binds to a target molecule is described herein. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule can be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate

transcriptional and translational control signals. These methods include, for example, *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors can include the nucleotide sequence encoding the constant region of the antibody molecule (*see*, *e.g.*, international applications WO 86/05807 and WO 89/01036; and US patent no. 5,122,464) and the variable domain of the antibody can be cloned into such a vector for expression of the entire heavy or light chain.

[0193] The term "vector" or "expression vector" is used herein to mean vectors used in accordance with the present invention as a vehicle for introducing into and expressing a desired gene in a host cell. As known to those skilled in the art, such vectors can easily be selected from the group consisting of plasmids, phages, viruses and retroviruses. In general, vectors compatible with the instant invention will comprise a selection marker, appropriate restriction sites to facilitate cloning of the desired gene and the ability to enter and/or replicate in eukaryotic or prokaryotic cells. For the purposes of this invention, numerous expression vector systems can be employed. For example, one class of vector utilizes DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MOMLV) or SV40 virus. Others involve the use of polycistronic systems with internal ribosome binding sites. Additionally, cells which have integrated the DNA into their chromosomes can be selected by introducing one or more markers which allow selection of transfected host cells. The marker can provide for prototrophy to an auxotrophic host, biocide resistance (e.g., antibiotics) or resistance to heavy metals such as copper. The selectable marker gene can either be directly linked to the DNA sequences to be expressed, or introduced into the same cell by co-transformation. Additional elements can also be needed for optimal synthesis of mRNA. These elements can include signal sequences, splice signals, as well as transcriptional promoters, enhancers, and termination signals.

10

20

30

35

40

50

[0194] In particular embodiments the cloned variable region genes are inserted into an expression vector along with the heavy and light chain constant region genes (e.g., human heavy and light chain constant region genes) as discussed above. In one embodiment, this is effected using a proprietary expression vector of Biogen IDEC, Inc., referred to as NEOSPLA, disclosed in US patent no. 6,159,730. This vector contains the cytomegalovirus promoter/enhancer, the mouse beta globin major promoter, the SV40 origin of replication, the bovine growth hormone polyadenylation sequence, neomycin phosphotransferase exon 1 and exon 2, the dihydrofolate reductase gene and leader sequence. This vector has been found to result in very high level expression of antibodies upon incorporation of variable and constant region genes, transfection in CHO cells, followed by selection in G418 containing medium and methotrexate amplification. Of course, any expression vector which is capable of eliciting expression in eukaryotic cells can be used in the present invention. Examples of suitable vectors include, but are not limited to plasmids pcDNA3, pHCMV/Zeo, pCR3.1, pEF1/His, pIND/GS, pRc/HCMV2, pSV40/Zeo2, pTRACER-HCMV, pUB6/V5-His, pVAX1, and pZeoSV2 (available from Invitrogen, San Diego, CA), and plasmid pCI (available from Promega, Madison, WI). In general, screening large numbers of transformed cells for those which express suitably high levels if immunoglobulin heavy and light chains is routine experimentation which can be carried out, for example, by robotic systems. Vector systems are also taught in US patent nos. 5,736,137 and 5,658,570, each of which is incorporated by reference in its entirety herein. This system provides for high expression levels, e.g., > 30 pg/cell/day. Other exemplary vector systems are disclosed e.g., in US patent no. 6,413,777. [0195] In other embodiments the antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be expressed using polycistronic constructs such as those disclosed in US patent application publication no. 2003-0157641 A1 and incorporated herein in its entirety. In these expression systems, multiple gene products of interest such as heavy and light chains of antibodies can be produced from a single polycistronic construct. These systems advantageously use an internal ribosome entry site (IRES) to provide relatively high levels of antibodies. Compatible IRES sequences are disclosed in US patent no. 6,193,980 which is also incorporated herein. Those skilled in the art will appreciate that such expression systems can be used to effectively produce the full range of antibodies disclosed in the instant application.

[0196] More generally, once the vector or DNA sequence encoding a monomeric subunit of the antibody has been prepared, the expression vector can be introduced into an appropriate host cell. Introduction of the plasmid into the host cell can be accomplished by various techniques well known to those of skill in the art. These include, but are not limited to, transfection including lipotransfection using, e.g., Fugene® or lipofectamine, protoplast fusion, calcium phosphate precipitation, cell fusion with enveloped DNA, microinjection, and infection with intact virus. Typically, plasmid introduction into the host is via standard calcium phosphate co-precipitation method. The host cells harboring the expression construct are grown under conditions appropriate to the production of the light chains and heavy chains, and assayed for heavy and/or light chain protein synthesis. Exemplary assay techniques include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), or fluorescence-activated cell sorter analysis (FACS), immunohistochemistry and the like.

[0197] The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody for use in the methods described herein. Thus, the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain

thereof, operably linked to a heterologous promoter. In particular embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains can be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.

[0198] The host cell can be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors can contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector can be used which encodes both heavy and light chain polypeptides. In such situations, the light chain is advantageously placed before the heavy chain to avoid an excess of toxic free heavy chain; *see* Proudfoot, Nature 322 (1986), 52; Kohler, Proc. Natl. Acad. Sci. USA 77 (1980), 2197. The coding sequences for the heavy and light chains can comprise cDNA or genomic DNA.

10

30

35

40

45

50

55

[0199] As used herein, "host cells" refers to cells which harbor vectors constructed using recombinant DNA techniques and encoding at least one heterologous gene. In descriptions of processes for isolation of antibodies from recombinant hosts, the terms "cell" and "cell culture" are used interchangeably to denote the source of antibody unless it is clearly specified otherwise. In other words, recovery of polypeptide from the "cells" can mean either from spun down whole cells, or from the cell culture containing both the medium and the suspended cells.

[0200] A variety of host-expression vector systems can be utilized to express antibody molecules for use in the methods described herein. Such host-expression systems represent vehicles by which the coding sequences of interest can be produced and subsequently purified, but also represent cells which can, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, NSO, BLK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). In one embodiment, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese Hamster Ovary (CHO) cells, in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies; see, e.g., Foecking et al., Gene 45 (1986), 101; Cockett et al., Bio/Technology 8 (1990), 2.

[0201] The host cell line used for protein expression is often of mammalian origin; those skilled in the art are credited with ability to determine particular host cell lines which are best suited for the desired gene product to be expressed therein. Exemplary host cell lines include, but are not limited to, CHO (Chinese Hamster Ovary), DG44 and DUXB11 (Chinese Hamster Ovary lines, DHFR minus), HELA (human cervical carcinoma), CVI (monkey kidney line), COS (a derivative of CVI with SV40 T antigen), VERY, BHK (baby hamster kidney), MDCK, WI38, R1610 (Chinese hamster fibroblast) BALBC/3T3 (mouse fibroblast), HAK (hamster kidney line), SP2/O (mouse myeloma), P3x63-Ag3.653 (mouse myeloma), BFA-1c1BPT (bovine endothelial cells), RAJI (human lymphocyte) and 293 (human kidney). In a specific embodiment, host cell lines are CHO or 293 cells. Host cell lines are typically available from commercial services, the American Tissue Culture Collection or from published literature.

[0202] In addition, a host cell strain can be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products can be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product can be used.

[0203] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method can advantageously be used to engineer cell lines which stably express the antibody molecule.

[0204] A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11 (1977), 223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48 (1992), 202), and adenine phosphoribosyltransferase (Lowy et al., Cell 22 (1980), 817) genes can be employed in tk-, hgprt- or aprt-cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77 (1980), 357; O'Hare et al., Proc. Natl. Acad. Sci. USA 78 (1981), 1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78 (1981), 2072); neo, which confers resistance to the aminoglycoside G-418 Goldspiel et al., Clinical Pharmacy 12 (1993), 488-505; Wu and Wu, Biotherapy 3 (1991), 87-95; Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32 (1993), 573-596; Mulligan, Science 260 (1993), 926-932; and Morgan and Anderson, Ann. Rev. Biochem. 62 (1993), 191-217; TIB TECH 11 (1993), 155-215; and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30 (1984), 147. Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds.), Current Protocols in Human Genetics, John Wiley & Sons, NY (1994); Colberre-Garapin et al., J. Mol. Biol. 150:1 (1981), which are incorporated by reference herein in their entireties.

10

30

35

45

50

[0205] The expression levels of an antibody molecule can be increased by vector amplification, for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Academic Press, New York, Vol. 3. (1987). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase; see Crouse et al., Mol. Cell. Biol. 3 (1983), 257.

[0206] In vitro production allows scale-up to give large amounts of the desired polypeptides. Techniques for mammalian cell cultivation under tissue culture conditions are known in the art and include homogeneous suspension culture, e.g. in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g. in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges. If necessary and/or desired, the solutions of polypeptides can be purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, chromatography over DEAE-cellulose or (immuno-)affinity chromatography, e.g., after preferential biosynthesis of a synthetic hinge region polypeptide or prior to or subsequent to the HIC chromatography step described herein.

[0207] Genes encoding antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can also be expressed in non-mammalian cells such as bacteria or insect or yeast or plant cells. Bacteria which readily take up nucleic acids include members of the enterobacteriaceae, such as strains of *Escherichia coli* or *Salmonella*; Bacillaceae, such as *Bacillus subtilis*; *Pneumococcus*; *Streptococcus*, and *Haemophilus influenzae*. It will further be appreciated that, when expressed in bacteria, the heterologous polypeptides typically become part of inclusion bodies. The heterologous polypeptides must be isolated, purified and then assembled into functional molecules. Where tetravalent forms of antibodies are desired, the subunits will then self-assemble into tetravalent antibodies; *see*, *e.g.*, international application WO02/096948.

[0208] In bacterial systems, a number of expression vectors can be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified can be desirable. Such vectors include, but are not limited, to the *E. coli* expression vector pUR278 (Ruther et al., EMBO J. 2 (1983), 1791), in which the antibody coding sequence can be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13 (1985), 3101-3109; Van Heeke & Schuster, J. Biol. Chem. 24 (1989), 5503-5509); and the like. pGEX vectors can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to a matrix of glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

[0209] In addition to prokaryotes, eukaryotic microbes can also be used. *Saccharomyces cerevisiae*, or common baker's yeast, is the most commonly used among eukaryotic microorganisms although a number of other strains are commonly available, e.g., *Pichia pastoris*. For expression in *Saccharomyces*, the plasmid YRp7, for example, (Stinch-comb et al., Nature 282 (1979), 39; Kingsman et al., Gene 7 (1979), 141; Tschemper et al., Gene 10 (1980), 157) is commonly used. This plasmid already contains the TRP1 gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, Genetics 85 (1977), 12). The presence of the trpl lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

[0210] In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is typically used as a vector to express foreign genes. The virus grows in Spodoptera *frugiperda* cells. The antibody coding sequence can be cloned

individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).

[0211] Once an antibody molecule of the invention has been recombinantly expressed, the whole antibodies, their dimers, individual light and heavy chains, or other immunoglobulin forms of the present invention, can be purified according to standard procedures of the art, including for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, e.g. ammonium sulfate precipitation, or by any other standard technique for the purification of proteins; see, e.g., Scopes, "Protein Purification", Springer Verlag, N.Y. (1982). Alternatively, another method for increasing the affinity of antibodies of the invention is disclosed in US patent publication 2002-0123057 A1.

V. Fusion Proteins and Conjugates

10

30

35

45

50

55

(1992), 48-62).

[0212] In certain embodiments, the antibody polypeptide comprises an amino acid sequence or one or more moieties not normally associated with an antibody. Exemplary modifications are described in more detail below. For example, a single-chain Fv antibody fragment of the invention can comprise a flexible linker sequence, or can be modified to add a functional moiety (e.g., PEG, a drug, a toxin, or a label such as a fluorescent, radioactive, enzyme, nuclear magnetic, heavy metal and the like)

[0213] An antibody polypeptide of the invention can comprise, consist essentially of, or consist of a fusion protein. Fusion proteins are chimeric molecules which comprise, for example, an immunoglobulin tau-binding domain with at least one target binding site, and at least one heterologous portion, *i.e.*, a portion with which it is not naturally linked in nature. The amino acid sequences can normally exist in separate proteins that are brought together in the fusion polypeptide or they can normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide. Fusion proteins can be created, for example, by chemical synthesis, or by creating and translating a polynucleotide in which the peptide regions are encoded in the desired relationship.

[0214] The term "heterologous" as applied to a polynucleotide or a polypeptide, means that the polynucleotide or polypeptide is derived from a distinct entity from that of the rest of the entity to which it is being compared. For instance, as used herein, a "heterologous polypeptide" to be fused to an antibody, or an antigen-binding fragment, variant, or analog thereof is derived from a non-immunoglobulin polypeptide of the same species, or an immunoglobulin or non-immunoglobulin polypeptide of a different species.

[0215] As discussed in more detail elsewhere herein, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions. For example, antibodies can be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins; *see*, *e.g.*, international applications WO92/08495; WO91/14438; WO89/12624; US patent no. 5,314,995; and European patent application EP 0 396 387.

[0216] Antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and can contain amino acids other than the 20 gene-encoded amino acids. Antibodies can be modified by natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in the antibody, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini, or on moieties such as carbohydrates. It will be appreciated that the same type of modification can be present in the same or varying degrees at several sites in a given antibody. Also, a given antibody can contain many types of modifications. Antibodies can be branched, for example, as a result of ubiquitination, and they can be cyclic, with or without branching. Cyclic, branched, and branched cyclic antibodies can result from posttranslation natural processes or can be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, crosslinking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination; see, e.g., Proteins - Structure And Molecular Properties, T. E. Creighton, W. H. Freeman and Company, New York 2nd Ed., (1993); Posttranslational Covalent Modification Of Proteins, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol. 182 (1990), 626-646; Rattan et al., Ann. NY Acad. Sci. 663

[0217] The present invention also provides for fusion proteins comprising an antibody, or antigen-binding fragment, variant, or derivative thereof, and a heterologous polypeptide. In one embodiment, a fusion protein of the invention

comprises, consists essentially of, or consists of, a polypeptide having the amino acid sequence of any one or more of the V_H regions of an antibody of the invention or the amino acid sequence of any one or more of the V_I regions of an antibody of the invention or fragments or variants thereof, and a heterologous polypeptide sequence. In another embodiment, a fusion protein for use in the diagnostic and treatment methods disclosed herein comprises, consists essentially of, or consists of a polypeptide having the amino acid sequence of any one, two, three of the V_H-CDRs of an antibody, or fragments, variants, or derivatives thereof, or the amino acid sequence of any one, two, three of the V_I-CDRs of an antibody, or fragments, variants, or derivatives thereof, and a heterologous polypeptide sequence. In one embodiment, the fusion protein comprises a polypeptide having the amino acid sequence of a V_H-CDR3 of an antibody of the present invention, or fragment, derivative, or variant thereof, and a heterologous polypeptide sequence, which fusion protein specifically binds to tau. In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of at least one V_H region of an antibody of the invention and the amino acid sequence of at least one V_H region of an antibody of the invention or fragments, derivatives or variants thereof, and a heterologous polypeptide sequence. In one embodiment, the V_H and V_I regions of the fusion protein correspond to a single source antibody (or scFv or Fab fragment) which specifically binds tau. In yet another embodiment, a fusion protein for use in the diagnostic and treatment methods disclosed herein comprises a polypeptide having the amino acid sequence of any one, two, three or more of the V_H CDRs of an antibody and the amino acid sequence of any one, two, three or more of the V_L CDRs of an antibody, or fragments or variants thereof, and a heterologous polypeptide sequence. In one embodiment, two, three, four, five, six, or more of the V_H-CDR(s) or V_I-CDR(s) correspond to single source antibody (or scFv or Fab fragment) of the invention. Nucleic acid molecules encoding these fusion proteins are also encompassed by the invention.

10

30

35

40

45

50

[0218] Exemplary fusion proteins reported in the literature include fusions of the T cell receptor (Gascoigne et al., Proc. Natl. Acad. Sci. USA 84 (1987), 2936-2940; CD4 (Capon et al., Nature 337 (1989), 525-531; Traunecker et al., Nature 339 (1989), 68-70; Zettmeissl et al., DNA Cell Biol. USA 9 (1990), 347-353; and Byrn et al., Nature 344 (1990), 667-670); L-selectin (homing receptor) (Watson et al., J. Cell. Biol. 110 (1990), 2221-2229; and Watson et al., Nature 349 (1991), 164-167); CD44 (Aruffo et al., Cell 61 (1990), 1303-1313); CD28 and B7 (Linsley et al., J. Exp. Med. 173 (1991),721-730); CTLA-4 (Lisley et al., J. Exp. Med. 174 (1991), 561-569); CD22 (Stamenkovic et al., Cell 66 (1991), 1133-1144); TNF receptor (Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88 (1991), 10535-10539; Lesslauer et al., Eur. J. Immunol. 27 (1991), 2883-2886; and Peppel et al., J. Exp. Med. 174 (1991), 1483-1489 (1991); and IgE receptor a (Ridgway and Gorman, J. Cell. Biol. 115 (1991), Abstract No. 1448).

[0219] As discussed elsewhere herein, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be fused to heterologous polypeptides to increase the in vivo half-life of the polypeptides or for use in immunoassays using methods known in the art. For example, in one embodiment, PEG can be conjugated to the antibodies of the invention to increase their half-life in vivo; see, *e.g.*, Leong et al., Cytokine 16 (2001), 106-119; Adv. in Drug Deliv. Rev. 54 (2002), 531; or Weir et al., Biochem. Soc. Transactions 30 (2002), 512.

[0220] Moreover, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be fused to marker sequences, such as a peptide to facilitate their purification or detection. In particular embodiments, the marker amino acid sequence is a hexa-histidine peptide (HIS), such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86 (1989), 821-824, for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37 (1984), 767) and the "flag" tag.

[0221] Fusion proteins can be prepared using methods that are well known in the art; see for example US patent nos. 5,116,964 and 5,225,538. The precise site at which the fusion is made can be selected empirically to optimize the secretion or binding characteristics of the fusion protein. DNA encoding the fusion protein is then transfected into a host cell for expression.

[0222] Antibodies of the present invention can be used in non-conjugated form or can be conjugated to at least one of a variety of molecules, e.g., to improve the therapeutic properties of the molecule, to facilitate target detection, or for imaging or therapy of the patient. Antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be labeled or conjugated either before or after purification, when purification is performed. In particular, antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention can be conjugated to therapeutic agents, prodrugs, peptides, proteins, enzymes, viruses, lipids, biological response modifiers, pharmaceutical agents, or PEG. [0223] Conjugates that are immunotoxins including conventional antibodies have been widely described in the art. The toxins can be coupled to the antibodies by conventional coupling techniques or immunotoxins containing protein toxin portions can be produced as fusion proteins. The antibodies of the present invention can be used in a corresponding way to obtain such immunotoxins. Illustrative of such immunotoxins are those described by Byers, Seminars Cell. Biol. 2 (1991), 59-70 and by Fanger, Immunol. Today 12 (1991), 51-54.

[0224] Those skilled in the art will appreciate that conjugates can also be assembled using a variety of techniques depending on the selected agent to be conjugated. For example, conjugates with biotin are prepared e.g. by reacting a

tau binding polypeptide with an activated ester of biotin such as the biotin N-hydroxysuccinimide ester. Similarly, conjugates with a fluorescent marker can be prepared in the presence of a coupling agent, *e.g.* those listed herein, or by reaction with an isothiocyanate, or fluorescein-isothiocyanate. Conjugates of the antibodies, or antigen-binding fragments, variants or derivatives thereof of the invention are prepared in an analogous manner.

[0225] The present invention further encompasses antibodies, or antigen-binding fragments, variants, or derivatives thereof of the invention conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, demonstrate presence of a neurological disease, to indicate the risk of getting a neurological disease, to monitor the development or progression of a neurological disease, *i.e.* tauopathic disease as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment and/or prevention regimen. Detection can be facilitated by coupling the antibody, or antigen-binding fragment, variant, or derivative thereof to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions; see, e.g., US patent no. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125 I, 131 I, 131 In or 99 Tc.

10

30

35

45

50

[0226] An antibody, or antigen-binding fragment, variant, or derivative thereof also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

[0227] One of the ways in which an antibody, or antigen-binding fragment, variant, or derivative thereof can be detectably labeled is by linking the same to an enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)" Microbiological Associates Quarterly Publication, Walkersville, Md., Diagnostic Horizons 2 (1978), 1-7); Voller et al., J. Clin. Pathol. 31 (1978), 507-520; Butler, Meth. Enzymol. 73 (1981), 482-523; Maggio, E. (ed.), Enzyme Immunoassay, CRC Press, Boca Raton, Fla., (1980); Ishikawa, E. et al., (eds.), Enzyme Immunoassay, Kgaku Shoin, Tokyo (1981). The enzyme, which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

[0228] Detection can also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibody, or antigen-binding fragment, variant, or derivative thereof, it is possible to detect the antibody through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, (March, 1986)), which is incorporated by reference herein). The radioactive isotope can be detected by means including, but not limited to, a gamma counter, a scintillation counter, or autoradiography.

[0229] An antibody, or antigen-binding fragment, variant, or derivative thereof can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

[0230] Techniques for conjugating various moieties to an antibody, or antigen-binding fragment, variant, or derivative thereof are well known, *see*, *e.g.*, Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. (1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), Marcel Dekker, Inc., pp. 623-53 (1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), Academic Press pp. 303-16 (1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62 (1982), 119-158.

[0231] As mentioned, in certain embodiments, a moiety that enhances the stability or efficacy of a binding molecule, e.g., a binding polypeptide, e.g., an antibody or immunospecific fragment thereof can be conjugated. For example, in one embodiment, PEG can be conjugated to the binding molecules of the invention to increase their half-life *in vivo*. Leong et al., Cytokine 16 (2001), 106; Adv. in Drug Deliv. Rev. 54 (2002), 531; or Weir et al., Biochem. Soc. Transactions 30 (2002), 512.

VI. Compositions and Methods of Use

10

20

30

35

45

50

55

[0232] The present invention relates to compositions comprising the aforementioned tau binding molecule, e.g., antibody or antigen-binding fragment thereof of the present invention or derivative or variant thereof, or the polynucleotide, vector or cell of the invention. The composition of the present invention can further comprise a pharmaceutically acceptable carrier. Furthermore, the pharmaceutical composition of the present invention can comprise further agents such as interleukins or interferons depending on the intended use of the pharmaceutical composition. For use in the treatment of a tauopathic disease, e.g., of the Alzheimer's disease the additional agent can be selected from the group consisting of small organic molecules, anti-tau antibodies, and combinations thereof. Hence, in a particular embodiment the present invention relates to the use of the tau binding molecule, e.g., antibody or antigen-binding fragment thereof of the present invention or of a binding molecule having substantially the same binding specificities of any one thereof, the polynucleotide, the vector or the cell of the present invention for the preparation of a pharmaceutical or diagnostic composition for prophylactic and therapeutic treatment of a tauopathic disease, monitoring the progression of a tauopathic disease or a response to a tauopathic disease treatment in a subject or for determining a subject's risk for developing a tauopathic disease.

[0233] Hence, in one embodiment the present invention relates to a method of treating a neurological disorder characterized by abnormal accumulation and/or deposition of tau in the brain and the central nervous system, respectively, which method comprises administering to a subject in need thereof a therapeutically effective amount of any one of the afore-described tau binding molecules, antibodies, polynucleotides, vectors or cells of the instant invention. The term "neurological disorder" includes but is not limited to tauopathic diseases such as Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex, argyrophilic grain dementia, British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration, Creutzfeldt-Jakob disease, dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17, frontotemporal lobar degeneration, Gerstmann-Sträussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C, non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease, postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy, subacute sclerosing panencephalitis, tangle only dementia, multi-infarct dementia and ischemic stroke. Unless stated otherwise, the terms neurodegenerative, neurological or neuropsychiatric are used interchangeably herein.

[0234] A particular advantage of the therapeutic approach of the present invention lies in the fact that the antibodies of the present invention are derived from B cells or B memory cells from healthy human subjects with no signs of a tauopathic disease and thus are, with a certain probability, capable of preventing a clinically manifest tauopathic disease, or of diminishing the risk of the occurrence of the clinically manifest disease, or of delaying the onset or progression of the clinically manifest disease. Typically, the antibodies of the present invention also have already successfully gone through somatic maturation, *i.e.* the optimization with respect to selectivity and effectiveness in the high affinity binding to the target tau molecule by means of somatic variation of the variable regions of the antibody.

[0235] The knowledge that such cells *in vivo*, *e.g.* in a human, have not been activated by means of related or other physiological proteins or cell structures in the sense of an autoimmunological or allergic reaction is also of great medical importance since this signifies a considerably increased chance of successfully living through the clinical test phases. So to speak, efficiency, acceptability and tolerability have already been demonstrated before the preclinical and clinical development of the prophylactic or therapeutic antibody in at least one human subject. It can thus be expected that the human anti-tau antibodies of the present invention, both its target structure-specific efficiency as therapeutic agent and its decreased probability of side effects significantly increase its clinical probability of success.

[0236] The present invention also provides a pharmaceutical and diagnostic, respectively, pack or kit comprising one or more containers filled with one or more of the above described ingredients, e.g anti-tau antibody, binding fragment, derivative or variant thereof, polynucleotide, vector or cell of the present invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition or alternatively the kit comprises reagents and/or instructions for use in appropriate diagnostic assays. The composition, e.g. kit of the present invention is of course particularly suitable for the risk assessment, diagnosis, prevention and treatment of a disorder which is accompanied with the presence of tau, and in particular applicable for the treatment of Alzheimer's disease (AD), amyotrophic lateral sclerosis/parkinsonism-dementia complex

(ALS-PDC), argyrophilic grain dementia (AGD), British type amyloid angiopathy, cerebral amyloid angiopathy, cortico-basal degeneration (CBD), Creutzfeldt-Jakob disease (CJD), dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration, Gerstmann-Sträussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C (NP-C), non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease (PiD), postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy (PSP), subacute sclerosing panencephalitis, tangle only dementia, multi-infarct dementia and ischemic stroke.

[0237] The pharmaceutical compositions of the present invention can be formulated according to methods well known in the art; see for example Remington: The Science and Practice of Pharmacy (2000) by the University of Sciences in Philadelphia, ISBN 0-683-306472. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc. Compositions comprising such carriers can be formulated by well known conventional methods. These pharmaceutical compositions can be administered to the subject at a suitable dose. Administration of the suitable compositions can be effected by different ways, *e.g.*, by intravenous, intraperitoneal, subcutaneous, intramuscular, intranasal, topical or intradermal administration or spinal or brain delivery. Aerosol formulations such as nasal spray formulations include purified aqueous or other solutions of the active agent with preservative agents and isotonic agents. Such formulations are adjusted to a pH and isotonic state compatible with the nasal mucous membranes. Formulations for rectal or vaginal ad-ministration can be presented as a suppository with a suitable carrier.

10

30

35

40

45

50

55

[0238] Furthermore, whereas the present invention includes the now standard (though fortunately infrequent) procedure of drilling a small hole in the skull to administer a drug of the present invention, in one aspect, the binding molecule, especially antibody or antibody based drug of the present invention can cross the blood-brain barrier, which allows for intravenous or oral administration.

[0239] The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. A typical dose can be, for example, in the range of 0.001 to 1000 μ g (or of nucleic acid for expression or for inhibition of expression in this range); however, doses below or above this exemplary range are envisioned, especially considering the aforementioned factors. Generally, the dosage can range, e.g., from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg (e.g., 0.02 mg/kg, 0.25 mg/kg, 0.5 mg/kg, 0.75 mg/kg, 1 mg/kg, 2 mg/kg, etc.), of the host body weight. For example dosages can be 1 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg, or at least 1 mg/kg. Doses intermediate in the above ranges are also intended to be within the scope of the invention. Subjects can be administered such doses daily, on alternative days, weekly or according to any other schedule determined by empirical analysis. An exemplary treatment entails administration in multiple dosages over a prolonged period, for example, of at least six months. Additional exemplary treatment regimes entail administration once per every two weeks or once a month or once every 3 to 6 months. Exemplary dosage schedules include 1-10 mg/kg or 15 mg/kg on consecutive days, 30 mg/kg on alternate days or 60 mg/kg weekly. In some methods, two or more monoclonal antibodies with different binding specificities are administered simultaneously, in which case the dosage of each antibody administered falls within the ranges indicated. Progress can be monitored by periodic assessment. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives can also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Furthermore, the pharmaceutical composition of the invention can comprise further agents such as dopamine or psychopharmacologic drugs, depending on the intended use of the pharmaceutical composition.

[0240] Furthermore, in a particular embodiment of the present invention the pharmaceutical composition can be formulated as a vaccine, for example, if the pharmaceutical composition of the invention comprises an anti-tau antibody or binding fragment, derivative or variant thereof for passive immunization. As mentioned in the background section, phosphor-tau species have been reported extracellularly in plasma and CSF (Aluise et al., Biochim. Biophys. Acta. 1782 (2008), 549-558) and studies in transgenic mouse lines using active vaccination with phosphorylated tau peptides revealed reduced brain levels of tau aggregates in the brain and slowed progression of behavior impairments (Sigurdsson, J. Alzheimers Dis. 15 (2008), 157-168; Boimel et al., Exp Neurol. 224 (2010), 472-485). Accordingly, it is prudent to expect that passive immunization with human anti-tau antibodies and equivalent tau binding molecules of the present invention would help to circumvent several adverse effects of active immunization therapy concepts as already discussed in the background section. Therefore, the present anti-tau antibodies and their equivalents of the present invention will

be particularly useful as a vaccine for the prevention or amelioration of tauopathic diseases such as AD, ALS-PDC, AGD, CJD, FTD, FTDP-17, NP-C, PiD, PSP or other tauopathies as mentioned before.

[0241] In one embodiment, it can be beneficial to use recombinant bispecific or multispecific constructs of the antibody of the present invention. For a reference see Fischer and Léger, Pathobiology 74 (2007), 3-14. Such bispecific molecule might be designed to target tau with one binding arm and another pathologic entity such as $A\beta$ or alpha-synuclein or a different pathological conformation of tau with a second binding arm. Alternatively the second binding arm can be designed to target a protein present at the blood-brain-barrier to facilitate antibody penetration into the brain.

[0242] In one embodiment, it can be beneficial to use recombinant Fab (rFab) and single chain fragments (scFvs) of the antibody of the present invention, which might more readily penetrate a cell membrane. For example, Robert et al., Protein Eng. Des. Sel. (2008) Oct 16; S1741-0134, published online ahead, describe the use of chimeric recombinant Fab (rFab) and single chain fragments (scFvs) of monoclonal antibody WO-2 which recognizes an epitope in the N-terminal region of A β . The engineered fragments were able to (i) prevent amyloid fibrillization, (ii) disaggregate preformed A β 1-42 fibrils and (iii) inhibit A β 1-42 oligomer-mediated neurotoxicity *in vitro* as efficiently as the whole IgG molecule. The perceived advantages of using small Fab and scFv engineered antibody formats which lack the effector function include more efficient passage across the blood-brain barrier and minimizing the risk of triggering inflammatory side reactions. Furthermore, besides scFv and single-domain antibodies retain the binding specificity of full-length antibodies, they can be expressed as single genes and intracellularly in mammalian cells as intrabodies, with the potential for alteration of the folding, interactions, modifications, or subcellular localization of their targets; see for review, e.g., Miller and Messer, Molecular Therapy 12 (2005), 394-401.

10

30

35

50

55

[0243] In a different approach Muller et al., Expert Opin. Biol. Ther. (2005), 237-241, describe a technology platform, so-called 'SuperAntibody Technology', which is said to enable antibodies to be shuttled into living cells without harming them. Such cell-penetrating antibodies open new diagnostic and therapeutic windows. The term 'TransMabs' has been coined for these antibodies.

[0244] In a further embodiment, co-administration or sequential administration of other antibodies useful for treating a tauopathic disease can be desirable. In one embodiment, the additional antibody is comprised in the pharmaceutical composition of the present invention. Examples of antibodies which can be used to treat a subject include, but are not limited to, antibodies targeting beta-amyloid, alpha-synuclein, TDP-43 and SOD-1.

[0245] In a further embodiment, co-administration or sequential administration of other neuroprotective agents useful for treating a tauopathic disease can be desirable. In one embodiment, the additional agent is comprised in the pharmaceutical composition of the present invention. Examples of neuroprotective agents which can be used to treat a subject include, but are not limited to, an acetylcholinesterase inhibitor, a glutamatergic receptor antagonist, kinase inhibitors, HDAC inhibitors, anti-inflammatory agents, divalproex sodium, or any combination thereof. Examples of other neuroprotective agents that can be used concomitant with pharmaceutical composition of the present invention are described in the art; see, e.g. international application WO2007/011907. In one embodiment, the additional agent is dopamine or a dopamine receptor agonist.

[0246] A therapeutically effective dose or amount refers to that amount of the active ingredient sufficient to ameliorate the symptoms or condition. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED_{50} (the dose therapeutically effective in 50% of the population) and ED_{50} (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, ED_{50}/ED_{50} . In one embodiment, the therapeutic agent in the composition is present in an amount sufficient to restore or preserve normal behavior and/or cognitive properties in case of AD, ALS-PDC, AGD, CBD, CJD, FTD, FTDP-17, NP-C, PiD, PSP or other tauopathic diseases as mentioned before.

[0247] From the foregoing, it is evident that the present invention encompasses any use of a tau binding molecule comprising at least one CDR of the above described antibody, in particular for diagnosing and/or treatment of a tauopathic disease as mentioned above, particularly Alzheimer's disease. In one embodiment, said binding molecule is an antibody of the present invention or an immunoglobulin chain thereof. In addition, the present invention relates to anti-idiotypic antibodies of any one of the mentioned antibodies described hereinbefore. These are antibodies or other binding molecules which bind to the unique antigenic peptide sequence located on an antibody's variable region near the antigenbinding site and are useful, e.g., for the detection of anti-tau antibodies in sample of a subject.

[0248] In another embodiment the present invention relates to a diagnostic composition comprising any one of the above described tau binding molecules, antibodies, antigen-binding fragments, polynucleotides, vectors or cells of the invention and optionally suitable means for detection such as reagents conventionally used in immuno or nucleic acid based diagnostic methods. The antibodies of the invention are, for example, suited for use in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier. Examples of immunoassays which can utilize the antibody of the invention are competitive and non-competitive immunoassays in either a direct or indirect format. Examples of such immunoassays are the radioimmunoassay (RIA), the sandwich (immunometric assay), flow cytometry and the Western blot assay. The antigens and antibodies of the invention can be bound to many different carriers and used to

isolate cells specifically bound thereto. Examples of well known carriers include glass, polystyrene, polyvinyl chloride, polypropylene, polyethylene, polycarbonate, dextran, nylon, amyloses, natural and modified celluloses, polyacrylamides, agaroses, and magnetite. The nature of the carrier can be either soluble or insoluble for the purposes of the invention. There are many different labels and methods of labeling known to those of ordinary skill in the art. Examples of the types of labels which can be used in the present invention include enzymes, radioisotopes, colloidal metals, fluorescent compounds, chemiluminescent compounds, and bioluminescent compounds; see also the embodiments discussed hereinabove.

[0249] By a further embodiment, the tau binding molecules, in particular antibodies of the present invention can also be used in a method for the diagnosis of a disorder in an individual by obtaining a body fluid sample from the tested individual which can be a blood sample, a lymph sample or any other body fluid sample and contacting the body fluid sample with an antibody of the instant invention under conditions enabling the formation of antibody-antigen complexes. The level of such complexes is then determined by methods known in the art, a level significantly higher than that formed in a control sample indicating the disease in the tested individual. In the same manner, the specific antigen bound by the antibodies of the invention can also be used. Thus, the present invention relates to an *in vitro* immunoassay comprising the binding molecule, e.g., antibody or antigen-binding fragment thereof of the invention.

10

30

35

50

[0250] In this context, the present invention also relates to means specifically designed for this purpose. For example, an antibody-based array can be used, which is for example loaded with antibodies or equivalent antigen-binding molecules of the present invention which specifically recognize tau. Design of microarray immunoassays is summarized in Kusnezow et al., Mol. Cell Proteomics 5 (2006), 1681-1696. Accordingly, the present invention also relates to microarrays loaded with tau binding molecules identified in accordance with the present invention.

[0251] In one embodiment, the present invention relates to a method of diagnosing a tauopathic disease in a subject, the method comprising determining the presence of tau and/or pathologically modified and/or aggregated tau in a sample from the subject to be diagnosed with at least one antibody of the present invention, an tau binding fragment thereof or an tau-binding molecule having substantially the same binding specificities of any one thereof, wherein the presence of pathologically modified and/or aggregated tau is indicative of a neurodegenerative tauopathy and an increase of the level of the pathologically modified and/or aggregated tau in comparison to the level of the physiological tau forms is indicative for progression of a neurodegenerative tauopathy in said subject.

[0252] The subject to be diagnosed can be asymptomatic or preclinical for the disease. In one embodiment, the control subject has a tauopathic disease, for example, AD, ALS-PDC, AGD, CBD, CJD, FTD, FTDP-17, NP-C, PiD, PSP or other tauopathies as mentioned before, wherein a similarity between the level of pathologically modified and/or aggregated tau and the reference standard indicates that the subject to be diagnosed has a tauopathic disease. Alternatively, or in addition as a second control the control subject does not have a tauopathic disease, wherein a difference between the level tau and/or of pathologically modified and/or aggregated tau and the reference standard indicates that the subject to be diagnosed has a tauopathic disease. In one embodiment, the subject to be diagnosed and the control subject(s) are age-matched. The sample to be analyzed can be any body fluid suspected to contain pathologically modified and/or aggregated tau, for example a blood, CSF, or urine sample.

[0253] The level tau and/or of pathologically modified and/or aggregated tau can be assessed by any suitable method known in the art comprising, e.g., analyzing tau by one or more techniques chosen from Western blot, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescent activated cell sorting (FACS), two-dimensional gel electrophoresis, mass spectroscopy (MS), matrix-assisted laser desorption/ionization-time of flight-MS (MALDI-TOF), surface-enhanced laser desorption ionization-time of flight (SELDI-TOF), high performance liquid chromatography (HPLC), fast protein liquid chromatography (FPLC), multidimensional liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS), and laser densitometry. In one embodiment, said in vivo imaging of tau comprises positron emission tomography (PET), single photon emission tomography (SPECT), near infrared (NIR) optical imaging or magnetic resonance imaging (MRI).

[0254] Methods of diagnosing a tauopathic disease such as Alzheimer's disease, monitoring a tauopathic disease progression, and monitoring a tauopathic disease treatment using antibodies and related means which can be adapted in accordance with the present invention are also described in international applications WO93/08302, WO94/13795, WO95/17429, WO96/04309, WO2002/062851 and WO2004/016655. Similarly, antibody based detection methods for tau are described in international application WO2005/080986, the disclosure content of all being incorporated herein by reference. Those methods can be applied as described but with a tau specific antibody, binding fragment, derivative or variant of the present invention.

[0255] In a further aspect the present invention also relates to peptides having an epitope of tau specifically recognized by any antibody of the present invention. In one embodiment, such peptide comprises, consists of or consists essentially of an amino acid sequence selected from the group consisting of: residues 125-131, 397-441, 226-244, 217-227, 37-55, 387-406, 421-427, 427-439, 1-158, 197-207, 57-67, 355-441, 313-319, 309-319, 221-231 of SEQ ID NO:6, and any combination thereof, and a modified sequence thereof in which one, two, three, four, five, six, seven or more amino acids are substituted, deleted and/or added, wherein the peptide is recognized by any antibody of the present invention.

[0256] In one embodiment of this invention such a peptide can be used for diagnosing a neurodegenerative tauopathy in a subject, comprising a step of determining the presence of an antibody that binds to a peptide in a biological sample of said subject, and being used for diagnosis of a tauopathy in said subject by measuring the levels of antibodies which recognize the above described peptide of the present invention and comparing the measurements to the levels which are found in healthy subjects of comparable age and gender. An elevated level of measured antibodies specific for said peptide of the present invention would be indicative for diagnosing a tauopathy in said subject. The peptide of the present invention can be formulated in an array, a kit and composition, respectively, as described hereinbefore.

[0257] These and other embodiments are disclosed and encompassed by the description and examples of the present invention. Further literature concerning any one of the materials, methods, uses and compounds to be employed in accordance with the present invention can be retrieved from public libraries and databases, using for example electronic devices. For example the public database "Medline" can be utilized, which is hosted by the National Center for Biotechnology Information and/or the National Library of Medicine at the National Institutes of Health. Further databases and web addresses, such as those of the European Bioinformatics Institute (EBI), which is part of the European Molecular Biology Laboratory (EMBL) are known to the person skilled in the art and can also be obtained using internet search engines. An overview of patent information in biotechnology and a survey of relevant sources of patent information useful for retrospective searching and for current awareness is given in Berks, TIBTECH 12 (1994), 352-364.

[0258] The above disclosure generally describes the present invention. Unless otherwise stated, a term as used herein is given the definition as provided in the Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press, 1997, revised 2000 and reprinted 2003, ISBN 0 19 850673 2. Several documents are cited throughout the text of this specification. Full bibliographic citations can be found at the end of the specification immediately preceding the claims. The contents of all cited references (including literature references, issued patents, published patent applications as cited throughout this application and manufacturer's specifications, instructions, etc.) are hereby expressly incorporated by reference; however, there is no admission that any document cited is indeed prior art as to the present invention. **[0259]** A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLES

10

30

35

40

45

50

55

[0260] The examples which follow further illustrate the invention, but should not be construed to limit the scope of the invention in any way. The experiments in the following Examples are illustrated and described with respect to antibodies NI-105.4E4, NI-105.24B2 and NI-105.4A3 as cloned, *i.e.* the framework 1 (FR1) Ig-variable regions without being adjusted to the germ line (GL) sequences of human variable heavy and light chains; see Figure 1.

Material and methods

[0261] Detailed descriptions of conventional methods, such as those employed herein can be found in the cited literature; see also "The Merck Manual of Diagnosis and Therapy" Seventeenth Ed. edited by Beers and Berkow (Merck & Co., Inc. 2003) and U.S. Patent Application Publication No. 2012/0087861, the content of which is incorporated herein by reference in its entirety.

[0262] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. For further elaboration of general techniques useful in the practice of this invention, the practitioner can refer to standard textbooks and reviews in cell biology and tissue culture; see also the references cited in the examples. General methods in molecular and cellular biochemistry can be found in such standard textbooks as Molecular Cloning: A Laboratory Manual, 3rd Ed. (Sambrook et al., Harbor Laboratory Press 2001); Short Protocols in Molecular Biology, 4th Ed. (Ausubel et al. eds., John Wiley & Sons 1999); DNA Cloning, Volumes I and II (Glover ed., 1985); Oligonucleotide Synthesis (Gait ed., 1984); Nucleic Acid Hybridization (Hames and Higgins eds. 1984); Transcription And Translation (Hames and Higgins eds. 1984); Culture Of Animal Cells (Freshney and Alan, Liss, Inc., 1987); Gene Transfer Vectors for Mammalian Cells (Miller and Calos, eds.); Current Protocols in Molecular Biology and Short Protocols in Molecular Biology, 3rd Edition (Ausubel et al., eds.); and Recombinant DNA Methodology (Wu, ed., Academic Press). Gene Transfer Vectors For Mammalian Cells (Miller and Calos, eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al., eds.); Immobilized Cells And Enzymes (IRL Press, 1986); Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (Weir and Blackwell, eds., 1986). Protein Methods (Bollag et al., John Wiley & Sons 1996); Non-viral Vectors for Gene Therapy (Wagner et al. eds., Academic Press 1999); Viral Vectors (Kaplitt & Loewy eds., Academic Press 1995); Immunology Methods Manual (Lefkovits ed., Academic Press 1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle & Griffiths, John Wiley & Sons 1998). Reagents, cloning

vectors and kits for genetic manipulation referred to in this disclosure are available from commercial vendors such as BioRad, Stratagene, Invitrogen, Sigma-Aldrich, and ClonTech. General techniques in cell culture and media collection are outlined in Large Scale Mammalian Cell Culture (Hu et al., Curr. Opin. Biotechnol. 8 (1997), 148); Serum-free Media (Kitano, Biotechnology 17 (1991), 73); Large Scale Mammalian Cell Culture (Curr. Opin. Biotechnol. 2 (1991), 375); and Suspension Culture of Mammalian Cells (Birch et al., Bioprocess Technol. 19 (1990), 251); Extracting information from cDNA arrays, Herzel et al., CHAOS 11 (2001), 98-107.

Methods of identification of tau-specific B-cells and cloning of the respective antibodies

[0263] Unless indicated otherwise below, identification of tau-specific B cells and molecular cloning of anti-tau antibodies displaying specificity of interest as well as their recombinant expression and functional characterization has been or can be generally performed as described in the Examples and Supplementary Methods section of international application PCT/EP2008/000053 published as WO2008/081008, the disclosure content of which is incorporated herein by reference in its entirety. See also U.S. Patent Application Publication No. 2012/0087861, the content of which is incorporated herein by reference in its entirety. A new method for identification of tau-specific B cells and molecular cloning of tau antibodies displaying specificity of interest as well as their recombinant expression and functional characterization is provided within this application. As described above in one embodiment of the present invention cultures of single or oligoclonal B-cells are cultured and the supernatant of the culture, which contains antibodies produced by said B-cells is screened for presence and affinity of new anti-tau antibodies therein. The screening process comprises the steps of a sensitive tissue amyloid plaque immunoreactivity (TAPIR) assay such as described in international application WO 2004/095031, the disclosure content of which is incorporated herein by reference, and shown in Figure 3; screen on brain extracts for binding to PHFTau as described in Example 2; screening for binding of a peptide derived from tau of the amino acid sequence represented by SEQ ID NO:6 with phosphate groups on amino acids Ser-202 and Ser-205; on amino acid Thr-231; and/or on amino acids Ser-396 and Ser-404 of said sequence as analogously described in Example 3 with non-phosphorylated peptides due to the epitope confirmation experiments for antibody NI-105.4E4; a screen for binding of full-length tau of the amino acid sequence represented by SEQ ID NO:6 and isolating the antibody for which binding is detected or the cell producing said antibody as described in international patent WO2008/081008 and as described in Example 1.

30 Purification of antigen

20

35

40

45

50

[0264] Recombinant human Tau40 was purchased from rPeptide (Bogart, GA, USA). PHFTau was extracted from AD brain.

[0265] Isolation of paired helical filaments containing pathologically phosphorylated tau filaments (PHFTau) was performed following the method by Goedert *et al.* (Goedert et al., Neuron 8 (1992), 159-168) with modifications. One gram of AD brain tissue was cut into 5mm pieces with all visible blood vessels removed. The tissue was washed with 40 ml ice cold washing solution (100mM Tris pH 7.4, 6 mM EGTA, 1 mM Na₃VO₄ and 1 mM NaF) for three times followed by homogenization with 20 ml lysis buffer (10mM Tris pH 7.4, 0.8M NaCl, ImM EGTA, 1 x protease inhibitor cocktail, 1 mM Na₃VO₄, 1mM NaF, ImM AEBSF, 10% sucrose). The homogenate was centrifuged at 4°C at 20'000xg for 20 min. Supernatant was collected with addition of N-lauroyl sarcosinate (Sigma, Switzerland) to 1% (w/v). After two hours incubation at 37°C with shaking, the supernatant was then centrifuged at 4°C at 100'000xg for one hour. The pellet was collected and re-suspended in PBS. After clearing out possible contaminating immunoglobulins with protein A magnetic beads, the PHFTau suspension was stored at - 80°C before use. A control extract from healthy control human brain tissue was prepared accordingly.

Human tau antibody screening

ELISA:

[0266] 96 well half area microplates (Corning) were coated with recombinant Tau protein (rPeptide, Bogart, USA) at a standard concentration of 1 μg/ml in carbonate ELISA coating buffer (pH 9.6) overnight at 4°C. For PHFTau screening, 96 well Immobilizer Microplates (Nunc, Denmark) were coated with PHFTau extracted from human AD brain at 1:100 dilutions in carbonate ELISA coating buffer (pH9.6) overnight at 4°C. Plates were washed in PBS-T pH 7.6 and non-specific binding sites were blocked for 2 hrs at RT with PBS-T containing 2% BSA (Sigma, Buchs, Switzerland). B cell conditioned medium was transferred from memory B cell culture plates to ELISA plates and incubated for one hour at RT. ELISA plates were washed in PBS-T and then incubated with horse radish peroxidase (HRP)-conjugated donkey anti-human lgG (Fcγ fragment specific) polyclonal antibodies (Jackson ImmunoResearch, Newmarket, UK). After washing with PBS-T, binding of human antibodies was determined by measurement of HRP activity in a standard colorimetric

assay.

5

10

15

20

30

35

40

45

50

55

MULTI-ARRAY® micro plate screening

[0267] Standard 96 well 10-Spot MULTI-SPOT plates (Meso Scale Discovery, USA) were coated with 30 μg/ml rTau (rPeptide), PHFTau brain extract and healthy control brain extract in PBS. Non-specific binding sites were blocked for 1 hr at RT with PBS-T containing 3% BSA followed by incubation with B cell conditioned medium for 1 hr at RT. Plates were washed in PBS-T and then incubated with SULFO-Tag conjugated anti-human polyclonal antibody (Meso Scale Discovery, USA). After washing with PBS-T, bound of antibody was detected by electrochemiluminescence measurement using a SECTOR Imager 6000 (Meso Scale Discovery, USA).

Molecular cloning of tauantibodies

[0268] Samples containing memory B cells were obtained from healthy human subjects. Living B cells of selected memory B cell cultures are harvested and mRNA is prepared. Immunoglobulin heavy and light chain sequences are then obtained using a nested PCR approach.

[0269] A combination of primers representing all sequence families of the human immunoglobulin germline repertoire are used for the amplifications of leader peptides, V-segments and J-segments. The first round amplification is performed using leader peptide-specific primers in 5'-end and constant region-specific primers in 3'-end (Smith et al., Nat Protoc. 4 (2009), 372-384). For heavy chains and kappa light chains, the second round amplification is performed using V-segment-specific primers at the 3'end. For lambda light chains, the second round amplification is performed using V-segment-specific primers at the 5'-end and a C-region-specific primer at the 3'end (Marks et al., Mol. Biol. 222 (1991), 581-597; de Haard et al., J. Biol. Chem. 26 (1999), 18218-18230).

[0270] Identification of the antibody clone with the desired specificity is performed by re-screening on ELISA upon recombinant expression of complete antibodies. Recombinant expression of complete human IgG1 antibodies or chimeric IgG2a antibodies is achieved upon insertion of the variable heavy and light chain sequences "in the correct reading frame" into expression vectors that complement the variable region sequence with a sequence encoding a leader peptide at the 5'-end and at the 3'-end with a sequence encoding the appropriate constant domain(s). To that end the primers contained restriction sites designed to facilitate cloning of the variable heavy and light chain sequences into antibody expression vectors. Heavy chain immunoglobulins are expressed by inserting the immunoglobulin heavy chain RT-PCR product in frame into a heavy chain expression vector bearing a signal peptide and the constant domains of human immunoglobulin gamma 1 or mouse immunoglobulin gamma 2a. Kappa light chain immunoglobulins are expressed by inserting the kappa light chain RT-PCR-product in frame into a light chain expression vector providing a signal peptide and the constant domain of human kappa light chain immunoglobulin Lambda light chain immunoglobulins are expressed by inserting the lambda light chain RT-PCR-product in frame into a lambda light chain expression vector providing a signal peptide and the constant domain of human or mouse lambda light chain immunoglobulin.

[0271] Functional recombinant monoclonal antibodies are obtained upon co-transfection into HEK293 or CHO cells (or any other appropriate recipient cell line of human or mouse origin) of an Ig- heavy-chain expression vector and a kappa or lambda Ig-light-chain expression vector. Recombinant human monoclonal antibody is subsequently purified from the conditioned medium using a standard Protein A column purification. Recombinant human monoclonal antibody can produced in unlimited quantities using either transiently or stably transfected cells. Cell lined producing recombinant human monoclonal antibody can be established either by using the Ig-expression vectors directly or by re-cloning of Igvariable regions into different expression vectors. Derivatives such as F(ab), F(ab)₂ and scFv can also be generated from these Ig-variable regions.

Antibodies

[0272] Mouse monoclonal anti-human tau antibody Tau12 (Covance, California, U.S.A.) and mouse monoclonal tau antibody AT180 (Thermo Scientific, U.S.A.) were used according to manufacturer's protocol. Recombinant human tau antibodies NI-105.4E4, NI-105.24B2 and NI-105.4A3 are described in U.S. Patent Application Publication No. 2012/0087861, the content of which is incorporated herein by reference in its entirety. Recombinant human tau antibodies NI-105.17C1, NI-105.17C1(N31Q), NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4 are antibodies of this invention. They were expressed in HEK293 or CHO cells, purified from conditioned media and were directly used in subsequent applications unless otherwise stated.

Direct ELISA

10

20

[0273] 96 well microplates (Costar, Corning, USA) were coated with recombinant Tau protein (hTau40, rPeptide, Bogart, USA) diluted to a concentration of 1 μ g/ml in carbonate ELISA coating buffer (50mM, pH9.6) at 4°C overnight. Non-specific binding sites were blocked for 2 hr at RT with PBS containing 2% BSA (Sigma, Buchs, Switzerland) and 0.5% Tween20. Binding of human antibodies of the present invention was determined using HRP conjugated goat antihuman IgG Fc γ (Jackson immunoResearch, Newmarket, UK), followed by measurement of HRP activity in a standard colorimetric assay. EC₅₀ values were estimated by a non-linear regression using GraphPad Prism software (San Diego, USA).

Western Blotting protein staining

[0274] PHFTau and recombinant hTau40 were resolved by gradient SDS-PAGE (NuPAGE 4-12%; Invitrogen, Basel, Switzerland) followed by electroblotting on nitrocellulose membranes. After blocking the non-specific binding with 2% BSA at room temperature for one hour, blots were incubated overnight with primary human anti-tau antibodies or Tau12 (mouse monoclonal antibody, Covance, California, U.S.A.), followed by a HRP-conjugated goat anti-human IgGFcy (for human primary antibodies) or a HRP-conjugated goat anti-mouse IgG secondary antibody.

[0275] Blots were developed using ECL and ImageQuant 350 detection (GE Healthcare, Otelfingen, Switzerland).

PHFTau extraction from AD brain

[0276] Isolation of paired helical filaments containing pathologically phosphorylated tau filaments (PHFTau) was performed following the method by Goedert *et al.* (Goedert et al., Neuron 8 (1992), 159-168) with modifications. One gram of AD brain tissue was cut into 5mm pieces with all visible blood vessels removed. The tissue was washed with 40 ml ice cold washing solution (100mM Tris pH 7.4, 6 mM EGTA, 1 mM Na₃VO₄ and 1 mM NaF) for three times followed by homogenization with 20 ml lysis buffer (10mM Tris pH 7.4, 0.8M NaCl, ImM EGTA, 1 x protease inhibitor cocktail, 1 mM Na₃VO₄, 1mM NaF, 1mM AEBSF, 10% sucrose). The homogenate was centrifuged at 4°C at 20'000xg for 20 min. Supernatant was collected with addition of N-lauroyl sarcosinate (Sigma, Switzerland) to 1% (w/v). After two hours incubation at 37°C with shaking, the supernatant was then centrifuged at 4°C at 100'000xg for one hour. The pellet was collected and resuspended in PBS. After clearing out possible contaminating immunoglobulins with protein A magnetic beads, the PHFTau suspension was stored at - 80°C before use. A control extract from healthy control human brain tissue was prepared accordingly.

Tau peptides synthesis

[0277] A peptide corresponding to amino acids 333-346 of hTau40 ($_{333}$ GGGQVEVKSEKLDF $_{346}$) which includes the epitope of NI-105.4E4 identified by Pepspot mapping (amino acids 337-343) was synthesized by Schafer-N (Copenhagen, Denmark). An additional cysteine was added to the C-terminus to allow for covalent binding to Immobilizer Microplates (Nunc, Denmark). A second peptide corresponding to amino acids 226-239 of human tau ($_{226}$ VAVVRpTPPKSPSSA $_{239}$), the cognate epitope of the commercially available mouse monoclonal tau antibody AT180 (Thermo Scientific, USA) was synthesized accordingly and used as control.

Transgenic mice

- ⁴⁵ **[0278]** Three different animal models for tauopathies are used to validate the tau antibodies (and molecules with the binding specificities thereof) of the present invention.
 - 1. Transgenic TauP301L mice (line183): expressing human Tau40 with P301L mutation under the murine Thy1.2 promoter (Generation of these transgenic animals is described in Götz et al., J. Biol. Chem. 276 (2001), 529-534 and in international application WO 2003/017918, the disclosure content of which is incorporated herein by reference) 2. JNPL3 mice expressing the shortest 4R human tau isoform with P301L mutation under the murine PrP promoter (available from Taconic, Hudson, NY, U.S.A).
 - 3. P301STau (line PS19) mice expressing human tau with P301S mutation under the murine PrP promoter (available from the Jackson Laboratory, Bar Harbor, Maine, U.S.A).

[0279] Tauopathies mouse models and corresponding wild type mice are kept under standard housing conditions on a reversed 12h:12h light/dark cycle with free access to food and water. The treatment groups are balanced for age and gender.

40

35

30

55

Example 1

10

15

20

25

30

35

45

50

55

Validation of target and binding specificity of human tau-antibodies

[0280] To validate tau as a recognized target of isolated antibodies direct ELISA assays were performed as described above. For the exemplary recombinant human NI-105.4A3 antibody 96 well microplates (Costar, Corning, USA) were coated with recombinant human tau (hTau40, rPeptide, Bogart, USA) diluted to a concentration of 3 μg/ml or with BSA in carbonate ELISA coating buffer (pH 9.6) and binding efficiency of the antibody was tested. The exemplary NI-105.4A3 antibody specifically bound to human tau by ELISA. No binding was observed to BSA.

[0281] For a determination of the half maximal effective concentration (EC $_{50}$) of the exemplary antibodies NI-105.4E4 and NI-105.24B2 additional direct ELISA experiments with varying antibody concentrations were performed. 96 well microplates (Costar, Corning, USA) were coated with recombinant human tau (hTau40, rPeptide, Bogart, USA) diluted to a concentration of 1 μ g/ml (for the assay with NI-105.4E4Antibody), or of 3 μ g/ml (for the assay with NI-105.24B2 Antibody) in carbonate ELISA coating buffer and binding efficiency of the antibody was tested. The EC $_{50}$ values were estimated by a non-linear regression using GraphPad Prism software. Recombinant human-derived antibody NI-105.4E4 bound to hTau40 with high affinity in the low nanomolar range at 2.4 nM EC $_{50}$. NI-105.24B2 bound to hTau40 with high affinity in the low nanomolar range at 6.6 nM EC $_{50}$.

[0282] The half maximal effective concentration (EC_{50}) of the exemplary antibody NI-105.4A3 was also determined using direct ELISA experiments. ELISA plates were coated with recombinant human tau (hTau40, 1ug/ml), PHFTau (1:100) and control preparation (1:100), and incubated with varying antibody concentrations. NI-105.4A3 bound to rTau with high affinity in the low nanomolar range at 1.4 nM EC_{50} . NI-105.4A3 binds to PHFTau with high affinity in the low nanomolar range at 1.2 nM EC_{50} .

Example 2

Recombinant human antibodies binding analysis to recombinant tau and pathological tau extracted from AD brain

[0283] To determine the binding capacity of NI-105.4E4 and NI-105.24B2 to pathological tau species extracted from AD brain. SDS-PAGE and Western Blot analysis was performed as described in detail above. Blots were incubated overnight with primary antibodies NI-105.4E4 (human), NI-105.24B2 (human) or Tau12 (mouse monoclonal antibody, Covance, California, U.S.A.), followed by a HRP-conjugated goat anti-human IgGFcy (for human antibodies) or a HRP-conjugated goat anti-mouse IgG secondary antibody.

[0284] Recombinant antibodies NI-105.4E4 and NI-105.24B2 recognized recombinant hTau40 as well as pathologically modified PHFTau extracted from AD brain on Western blot. The control antibody Tau12 recognized both tau species as well.

[0285] Additionally, as discussed in Example 1 above, the half maximal effective concentration (EC $_{50}$) of the exemplary antibody NI-105.4A3 was determined in direct ELISA experiments using PHFTau. NI-105.4A3 bound to PHFTau with high affinity in the low nanomolar range at 1.2 nM EC $_{50}$.

40 Example 3

Mapping of the NI-105.4E4 and NI-105.4A3 binding epitope on hTau40

[0286] A peptide array of 118 peptide sequences covering the full-length hTau40 (amino acids 1-441) with an overlap of 11 amino acids between two adjacent peptides was spotted on a nitrocellulose membrane (JPT Peptide Technologies GmbH, Berlin, Germany). Immunolabeling of antibodies as well as membrane regeneration were carried out according to manufacturer's instructions. To rule out non-specific binding of the detection antibody, the membrane was first probed by HRP-conjugated goat anti-human IgG omitting the primary antibody. After regeneration the membrane was probed with 100 nM recombinant NI-105.4E4 antibody. Bound antibody was detected using ECL and ImageQuant 350 detection (GE Healthcare, Otelfingen, Switzerland).

[0287] Two groups of adjacent peptide spots (peptide 83, 84 and 85; peptide 96 and 97) were specifically identified by NI105.4E4, when compared to the detection antibody only. The sequences covered by these two groups of peptides correspond to amino acids 329-351 and 387-397 of hTau40. These data suggested that NI-105.4E4 recognized a discontinuous epitope comprising two linear sequences: one within the R4 microtubule binding domain and another in the C-terminal domain.

[0288] The sequence shared by peptides 83-85 comprises amino acid residues 337-343 of hTau40. The Pepspot (JPT) data suggested that NI-105.4E4 recognized an epitope in hTau that comprises amino acids 337-343 of human tau. This region is located within the microtubule binding domain of tau and is conserved among all neuronal human tau

isoforms as well as across other species including mouse and rat.

[0289] As this domain is bound to microtubules in physiological microtubule-associated tau, NI-105.4E4 is expected to preferentially target the pathologically relevant pool of tau that is detached from the microtubules.

[0290] To determine key residues within the NI-105.4E4 binding peptides, alanine scanning was performed to substitute each residue with alanine one at a time. The alanine residues in the original sequence (A384 and A390) were substituted to proline and glycine. Spots 35-50 and 51-68 are the original peptides (spot 35 and spot 51) and their alanine substituted variants,. Alanine scan suggested V339, E342, D387, E391 and K395 were necessary for NI-105.4E4 binding.

[0291] An additional experiment has been performed by testing the binding of NI-105.4E4 to tau peptides. Direct ELISA showed that NI-105.4E4 specifically recognized a peptide corresponding to amino acid 333-346 of hTau40, which contains the amino acid residues 337-343 identified by Pepspot mapping. No cross-reactivity of NI-105.4E4 was observed to the control peptide covering the AT180 epitope. Vice versa, AT180 recognized its cognate epitope containing peptide but failed to bind to the NI-105.4E4 specific peptide. Species-specific secondary antibodies did not bind to any of the peptides. Together, direct ELISA with coated peptides confirmed that NI-105.4E4 specifically recognized a peptide containing the amino acid residues 337-343 of human tau identified by Pepspot mapping.

[0292] To grossly map the NI-105.4A3 binding epitope on hTau40, four tau domain polypeptides (Tau domain II, domain III, domain III and domain IV) were produced. DNA fragments, synthesized using GeneArt® (Invitrogen), which encode each Tau domain with 6xHis tagged at the N-terminus were cloned into the pRSET-A expression vector (Invitrogen), were transfected into E. Coli BL21 (DE3) (New England Biolabs). The expressions of the His-tagged Tau domains were induced by 0.5mM IPTG for six hours before bacteria were lysed with lysozyme with sonication. The lysate was boiled for five minutes before being further purified with Ni-NTA Superflow Columns (Qiagen). The eluted His-tagged Tau domains were coated on ELISA plates or loaded on polyacrylamide gel for Western Blot. These sequentially overlapping tau domain polypeptides covered the full length of hTau40. Purified tau domains were coated on ELISA plate and the binding of NI-105.4A3 was tested. NI-105.4A3 binds only to tau domain I and the full length hTau40, indicating the epitope was within the N-terminal part of the hTau40 (aa1-136). Western blot confirmed the specific binding of NI-105.4A3 to tau domain I. NI-105.4A3 epitope mapping with PepSpot (JPT) technology identified amino acids Q35-Q49 of the human Tau40. To determine key residues within the epitope for NI-105.4A3 binding, alanine scanning was performed to substitute each residue with alanine one at a time. The alanine residue in the original sequence (A41) was substituted with glycine or proline. Alanine scan showed that D40, A41 and K44 are key residues for NI-105.4A3 binding.

30 Example 4

10

Assessment of the binding of NI-105.4E4 to physiological forms as well as pathological aggregates of tau AD brain tissues and in human tau transgenic mice

[0293] Neurofibrillary tangles (NFT) composed of hyperphosphorylated tau filaments are a neuropathological hallmarks of AD. Hyperphosphorylated tau filaments are also the major components of dystrophic neurites and neuropil threads, both of which are common neuropathological features in AD. Overexpression of human tau containing the familial P301L tau mutation in mice induces NFT formation at six months of age (Gotz et al., 2001a).

[0294] To assess the binding of recombinant human tau antibody to physiological forms as well as pathological aggregates of tau, immunohistological stainings were performed in AD brain tissues and in TauP301L transgenic mice with the exemplary NI-105.4E4 antibody of this invention.

[0295] Mice were perfused with 20 ml 100 mM TrisCl/6 mM EGTA (pH7.4) at room temperature under deep anesthesia. Brains were taken out and immersed in 4% PFA in PBS (pH 7.4) at 4°C overnight for fixation followed by embedding in paraffin. For human tissue, paraffin blocks of brain tissues from AD and healthy control subjects were used. DAB staining was carried out following standard protocols. As positive control, mouse monoclonal antibody Tau-12 (Covance, California, U.S.A.) was used. HRP-conjugated detection antibodies without primary antibodies were also included.

[0296] Recombinant human antibody NI-105.4E4 identified numerous NFTs and neuropil threads in AD brain (Figure 2A), which were absent in healthy control brain (Figure 2B). Secondary antibody alone did not give signals in both AD (Figure 2C) and control brain (Figure 2D). In P301L tau transgenic mouse brain, NI-105.4E4 bound strongly to the pathological tau resembling NFT (Figure 2E, F and H), neuropil threads (Figure 2E and G) and dystrophic neurites (Figure 2E and H). In addition, NI-105.4E4 also identified tau aggregates at pre-tangle stage (Figure 2I). In the brain of transgenic mice overexpressing both human P301L tau and human APP with Swedish and Arctic mutations, NI-105.4E4 bound specifically to dystrophic neurites surrounding beta-amyloid plaques (Figure 2J).

55

Example 5

10

15

In vivo tests of the antibodies of the present invention

[0297] As already described above studies in transgenic mouse lines using active vaccination with phosphorylated tau peptides revealed reduced brain levels of tau aggregates in the brain and slowed progression of behavior impairments (Sigurdsson, J. Alzheimers Dis. 15 (2008), 157-168; Boimel et al., Exp. Neurol. 224 (2010), 472-485). However, active vaccination may not be particularly useable in humans because a significant fraction of the elderly population is expected to be non-responders to vaccination. Furthermore, the potential side effects associated with a tau-directed immune response can be difficult to control. Tau binding molecules of the present invention can be reasonably expected to achieve similar reductions in brain levels of tau aggregates as described above for the mouse antibodies, because of their similar binding specificities against pathologically tau species. However, because of the evolutionarily optimization and affinity maturation within the human immune system antibodies of the present invention provide a valuable therapeutic tool due to being isolated from healthy human subjects with high probability for excellent safety profile and lack of immunogenicity. Confirmation of these expected therapeutic effects can be provided by test methods as described in the above mentioned experiments with mouse antibodies. In particular, the antibodies to be screened can be applied on diverse possible routes to the animals such as intraperitoneal antibody injection, intracranial injection, intraventricular brain infusion and tested for treatment effects. Either of the above mentioned application possibilities can be also used after prior brain injection of beta-amyloid preparations into the brain of tau transgenic mice to evaluate treatment effects on beta amyloid-induced tau pathology.

[0298] Evaluation of the treatment effects can be performed by histochemical methods comprising quantification of Gallyas positive cells counts, total human tau staining, brain burden of phosphorylated tau and/or a biochemical determination of brain soluble and insoluble tau and phosphor-tau levels upon sequential brain extraction. Further on, behavior testing of the treated mice can be performed, e.g., conditioned taste aversion or contextual fear conditioning for a confirmation of the therapeutic effects of the antibodies of the present invention (Pennanen, Genes Brain Behav. 5 (2006), 369-79, Pennanen Neurobiol Dis. 15 (2004), 500-9.)

Example 6

30 Chimerization of antibodies NI-105.4E4 and NI-105.4A3 with mouse IgG2a constant domains

[0299] In order to generate antibodies with reduced immunogenicity for use in chronic treatment studies, mouse chimeric versions of antibodies NI-105.4E4 and NI-105.4A3 were generated using recombinant DNA technology. A mouse IgG2a/lambda isotype was selected for these chimeric antibodies, in order to generate a molecule which bound with high affinity to mouse Fc-gamma receptors, and was therefore capable of inducing an immune effector response. The amino acid sequences of the chimeric NI-105.4E4 ("ch4E4") and chimeric NI-105.4A3 ("ch4A3") heavy and light chain constructs are shown below.

Table 5: Amino acid sequences of chimeric NI-105 4F4 (ch4F4) and chimeric NI-105 4A3 (ch4A3)

	Table 5. F	Tillio acid sequences of chimene Ni-105.4E4 (ch4E4) and chimene Ni-105.4A5 (ch4A5)
40	mature ch4E4 heavy chain	EVQLVESGGGLVQPGGSLKLSCAASGFNFNISAIHWVRQASGKGLEWVGR
	(mouse IgG2a)	IRSKSHNYATLYAASLKGRFTLSRDDSRNTAYLQMSSLQTEDMAVYYCTV
	SEQ ID NO: 20	LSANYDTFDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLV
45		KGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQS
		ITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPK
		IKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDY
		NSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKPKGSVRAP
		QVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEP
50		VLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPG
		K

55

(continued)

mature ch4E4
light chain
(mouse lambda)
SEQ ID NO: 21

SYELTQPPSVSVSPGQTARISCFGDTLPKQYTYWYQQKPGQAPVLVIYKD TERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCLSADNSATWVFGG GTKVTVLGQPKSSPSVTLFPPSSEELETNKATLVCTITDFYPGVVTVDWK VDGTPVTQGMETTQPSKQSNNKYMASSYLTLTARAWERHSSYSCQVTHEG HTVEKSLSRADCS

Example 7

5

10

15

20

Removal of consensus N-linked glycosylation site from ch4E4 heavy chain (mouse IgG2a)

[0300] A consensus N-linked glycosylation site was identified in the CDR1 region of the NI-105.4E4 heavy chain. Upon mammalian (CHO) cell expression, the predicted N-glycosylation site (Asn-30) was fully occupied by glycan, as demonstrated by mass spectrometry. In order to eliminate N-glycosylation in this region and reduce product heterogeneity, Asn-30 of the heavy chain of ch4E4 was changed to Gln (Table 4). When produced and purified from CHO cells, the modified antibody bound to recombinant tau with ~4-fold higher apparent binding affinity relative to the original, glycosylated antibody.

Table 6: Amino acid sequences of mature ch4E4(N30Q) heavy chain (mouse IgG2a). Substituted Gln residue is in bold, underlined.

25	mature ch4E4 (N30Q) heavy chain	EVQLVESGGGLVQPGGSLKLSCAASGFNFQISAIHWVRQASGKGLEWVGR IRSKSHNYATLYAASLKGRFTLSRDDSRNTAYLQMSSLQTEDMAVYYCTV LSANYDTFDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLV KGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQS ITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPK						
35	(mouse IgG2a) SEQ ID NO: 22	IKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDY NSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKPKGSVRAP QVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEP VLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPG K						

Example 8

40 Production of aglycosylated chimeric NI-105.4E4(N30Q) (ch4E4(N30Q) mlgG1 Agly)

[0301] A mouse chimeric aglycosylated variant of germlined NI-105.4E4 was produced ("ch4E4(N30Q) lgG1-Agly") in order to evaluate the relationship between antibody effector function and activity. For the heavy chain (SEQ ID 214), the variable domain of NI-105.4E4(N30Q) (SEQ ID NO: 43) was fused to a mouse lgG1 heavy chain constant region containing an Asn to Gln mutation to eliminate the consensus Fc glycosylation site. The heavy chain variable region contained the N30Q change in order to eliminate the consensus N-glycosylation site in CDR1 (Example 7). The light chain was the ch4E4 lambda light chain described above (SEQ ID 21).

Example 9

50

Acute brain penetration study of human 4E4 and 4A3

[0302] Human NI-105.4E4 and NI-105.4A3 germlined antibodies were produced by transient transfection of CHO cells and purified by affinity purification. The endotoxin levels were controlled and were all bellow 1 EU/mg. TauP301L mice were intraperitoneally injected with 30 mg/kg NI-105.4E4 (n=7), 4A3 (n=7) antibody or equal volume of PBS (n=7) at day 1 and day 4. At day 5, mice were perfused under anesthesia with PBS containing 1 Unit/ml heparin. Blood, brain and spinal cord were collected for analyses. Right hemisphere of the brain was frozen at -80°C, left hemisphere of the brain and the spinal cord were post fixed in 10% neutralized formalin at 4°C for two days before being embedded in

paraffin block and sectioned. Plasma was stored at -80°C in aliquots.

[0303] Brain protein extraction: frozen right hemisphere was weighed and homogenized in 5 volumes (5 mL/g of wet tissue) of a solution containing 50 mM NaCl, 0.2% diethylamine, protease inhibitors (Roche Diagnostics GmbH) and phosphatase inhibitor (Roche Diagnostics GmbH). Samples were then transferred to polycarbonate tubes and added another 5 volume of homogenization solution, and kept on ice for 30 min. Soluble fraction was then collected after centrifugation at 100,000 g, 4°C for 30 min. This soluble fraction was used in human IgG assay. The pellet was resuspended in 3 volumes of PBS with protease and phosphatase inhibitor. After centrifugation at 16,000 g, 4°C for 30min, supernatants and pellets were stored separately at -80°C for further insoluble tau extraction. Pellets further extracted with modified sarcosyl extraction (Goedert M, Spillantini MG, Cairns NJ, Crowther RA. Neuron 8, 159 (1992)).

[0304] Human IgG-specific sandwich ELISA: 2 μ g/ml of goat anti-human IgG Fab (Jackson) in 50 mM carbonate ELISA coating buffer (pH9.6) was used as capture antibody. Half-area 96-well microtiter plates was coated with 30 μ l/well with capture antibody at 4°C overnight. The plate was then washed 4 times with PBS containing 0.1% Tween 20 before incubating with 50 μ l/well PBS containing 2% BSA at room temperature for one hour. Soluble fractions of brain extracts, plasma samples and antibody standard (4A3) were diluted in PBS containing 2% BSA and 0.1% Tween 20. 30 μ l of the diluted samples were added into each well and incubated at room temperature for one hour. The plate was then washed with 200 μ l/well PBS containing 0.1% Tween 20 for four times before incubated with HRP-conjugated donkey anti-human Fc γ (Jackson, diluted at 1:10,000 in PBS containing 2% BSA and 0.1% Tween 20) at room temperature for one hour. The plate was then washed with 200 μ l/well PBS containing 0.1% Tween 20 for four times before adding 20 μ l/well TMB (1:20 in 10 mM citrate solution pH=4.1). The reaction was then stopped by adding 10 μ l 1M H2SO4 to each well. Antibody standard curve was obtained from serial dilutions of NI-105.4A3. Antibody concentrations in plasma and brain samples were calculated according to the standards. Brain human IgG level was then converted to μ g antibody/gram fresh brain tissue (assuming 1g/10 ml) as indicated in Figure 6.

[0305] High levels of human IgG were detected in the plasma of all NI-105.4E4 and NI-105.4A3 treated mice. In contrast, no human IgG was detected in the plasma of PBS treated mice (Figure 5). Significant amount of human IgG was detected in brain homogenates of 4E4 and 4A3 treated mice (Figure 6).

Example 10

10

30

35

45

50

55

Chronic study with chimeric NI-105.4E4 and NI-105.4A3

[0306] Chimeric NI-105.4E4 and NI-105.4A3 containing the variable domains of the original human antibody and the constant regions of mouse IgG2a can be produced by transient transfection of CHO cells and purified by affinity purification. The endotoxin levels in each batch of the antibodies will be controlled and kept below 1 Eu/mg. Gender balanced TauP301L mice at age of 7.5-8 months will be intraperitoneally injected with 10 mg/kg, 3 mg/kg of antibody solution, or equal volume of PBS control. Each treatment group will have 20-25 mice. The treatment will be carried out once a week for 26 weeks. Alternatively, the treatment will be carried out twice a week for 13 weeks. Body weight will be monitored every two weeks. Mice will be perfused under anesthesia at the end of the treatment period. Brain, spinal cord and blood will be collected. Half brain and spinal cord can be post-fixed in 10% formalin for three days before being embedded in paraffin block. 4-6 μm thick sections cut from these tissue blocks can be used for immunohistochemistry studies. The other half brain will be weighted and deep frozen at - 80°C for biochemical analyses.

[0307] Drug effects will be evaluated by comparing the level of neurofibrillary tangles (NFT) and the level of tau with different solubility characteristics in treated and control samples. NFT can be visualized by Gallyas silver impregnation (F Gallyas Acta Morphol. Acad. Sci. Hung 19.1 (1971)), or by immunostaining with monoclonal mouse antibody AT100 and AT180, which recognize pathologically phosphorylated tau in NFT. The number or frequency of Gallyas-positive neurons and/or AT100, AT180 labeled neurons in the brain and spinal cord in antibody treated mice and control animals can be determined to evaluate the effect of antibody treatment.

[0308] Soluble and insoluble tau can be extracted following the brain protein extraction protocol described herein. Alternatively, soluble and insoluble tau can be extracted with modified sarcosyl extraction (Goedert M, Spillantini MG, Cairns NJ, Crowther RA. Neuron 8, 159 (1992)). Briefly, frozen brain is homogenized in 10 volumes (wt/vol) of 10 % sucrose homogenate buffer consisting of 10 mM Tris+HCl (pH 7.4), 0.8 M NaCl, 1 mM EGTA, 1mM Na3VO4, 1 mM NaF, 1mM AEBSF, protease inhibitors (Roche Diagnostics GmbH) and phosphatase inhibitor (Roche Diagnostics GmbH). The homogenate is spun for 20 min at 20,000g, and the supernatant retained. The pellet is homogenized in 10 volumes of homogenization buffer and centrifuged for a second time. The supernatants can be pooled together, and N-lauryl-sarkosinate (Sigma) is added to 1% (wt/vol) final concentration, and incubated at 37°C with 300 rpm rotation for 1.5 hour, followed by centrifugation at 100,000 g for 1 h. The supernatant is collected as sarcosyl soluble fraction and the pellet of 1 g brain tissue is re-suspended in 0.2 ml 50 mM Tris+HCl (pH 7.4) as PHF fraction.

[0309] The levels of soluble and insoluble tau will be measured with commercially available Tau ELISA kits (Invitrogen). In addition, brain protein extracts will be separated with 4-12% Bis-Tris SDS-PAGE followed immunoblotting with Tau12

(human tau), AT8 (pS202/pT205), AT100 (pT212/pS214), AT180 (pT231) and E178 (pS396) antibodies. Semi-quantitative analysis will be performed with measuring the integrated density of each sample against standards of known quantities of tau.

[0310] Additionally, behavioral tests can be performed as indicated in Example 5, above. For example, improvement of working memory in antibody treated TauP301L mice can be tested using a two-trial Y-maze task (e.g., Pennanen, Genes Brain Behav. 5 (2006), 369-79, which is herein incorporated by reference in its entirety). The three arms of the maze are 22cm long, 5 cm wide and 15 cm deep. Black and white abstractive clues are placed on a black curtain surrounding the maze. Experiments are conducted with an ambient light level of 6 lux during the dark phase. Each experiment comprises a training session and an observation session. During the training session, a mouse is assigned to two of the three arms (the start arm and the second arm), which can be freely explored during 4 min, with no access to the third arm (the novel arm). The mouse is then removed from the maze and kept in a holding cage for 1.5-5 min, while the maze is thoroughly cleaned with 70% ethanol to remove any olfactory clues. The mouse is then put back again in the maze for observation with all three arms accessible for 4 min. The sequence of entries, the number of entry to each arm and the time spent in each arm is recorded. From that the ratio of time spent in the novel third arm over the average of time spent in the other two arms (start arm and second arm) is calculated and compared among different treatment groups in tauopathy mouse model and corresponding control wild type mice. Rodents typically prefer to investigate a new arm of the maze rather than returning to one that was previously visited. Effects of the antibodies can be monitored in regard of regaining this preference by treated tauopathy model mice in comparison to non-discriminative behavior of untreated mice due to their disorder-related working memory impairment. Therefore, a ratio close to 1 indicates impaired working memory. A higher ratio indicates better working memory. Impaired working memory in TauP301L mice is considered to be due to tau pathology resulting from the overexpression of human tau. Therefore a significantly higher ratio observed in anti-tau antibody treated TauP301L mice than in the control TauP301L mice will indicate that the anti-tau antibody has therapeutic effect on tau pathology.

25 Example 11

10

15

20

30

35

40

45

50

Identification of human anti-tau antibodies.

[0311] Recombinant human tau antibodies NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4 were isolated according to the methods described herein. The target and binding specificity of these human tau-antibodies were validated as described above. A summary of the findings is provided in Table 5. All antibodies used except NI-105.17C1 were germlined.

Table 7. In vitro characterization of human anti-tau antibodies

Antibody	EC ₅₀ [nM]/ rTau ELISA	EC ₅₀ [nM]/ PHFTau ELISA	Binding region (hTau40)*	Phosphorylation required**				
NI-105.6C5	0.033	0.04	125-131	No				
NI- 105.17C1	3.3	4.7	397-441	No Yes, pS235 Yes				
NI- 105.40E8	>100	0.133	226-244					
NI-105.6E3	>100	18.7	ND					
NI- 105.29G10	3.8	5.3	217-227	No				
NI- 105.48E5	>500	13.2	37-55; 387-406	pS396, pS46 unconfirmed				
NI- 105.26B12	2.9	>90	421-427	ND				
NI-105.6L9	2.5	>60	427-439	ND				
NI- 105.12E12 28.6		>150	1-158	ND				

(continued)

Antibody	EC ₅₀ [nM]/ rTau ELISA	EC ₅₀ [nM]/ PHFTau ELISA	Binding region (hTau40)*	Phosphorylation required**
NI- 105.60E7	0.18	-	197-207	Phosphorylation at either 198,199,202 or 205 disrupts binding
NI- 105.14E2	0.65	-	57-67	No
NI- 105.39E2	0.7	-	355-441	ND
NI- 105.19C6	4.0	-	313-319	No
NI- 105.22E1 1.1		>200	309-319	No
NI-105.9C4	5.2	-	221-231	pS231 disrupts binding

^{*:} binding region on hTau40 was identified by combined approaches of PepSPOTs, tau-fragments western blot and ELISA, tau-peptide ELISA and Alanine scanning.

25 Example 12

5

10

15

20

30

35

40

45

50

55

Chimerization of human antibodies with mouse IgG2a constant domains.

[0312] In order to generate antibodies with reduced immunogenicity for use in chronic treatment studies, mouse chimeric versions of antibodies NI-105.17C1 ("ch17C1"), NI-105.6C5 ("ch6C5"), NI-105.40E8 ("ch40E8"), and NI-105.6E3 ("ch6E3") were generated using recombinant DNA technology. A mouse IgG2a/lambda isotype was selected for these chimeric antibodies, in order to generate a molecule which bound with high affinity to mouse Fc-gamma receptors and was therefore capable of inducing an immune effector response. The amino acid sequences of ch17C1, ch6C5, ch40E8, ch40E8(R104W), and ch6E3 heavy and light chain constructs are shown below.

ch17C1 heavy chain (mouse IgG2a)	SEQ ID NO:203
ch17C1 light chain (mouse lambda)	SEQ ID NO:204
ch6C5 heavy chain (mouse IgG2a)	SEQ ID NO:205
ch6C5 light chain (mouse lambda)	SEQ ID NO:206
ch40E8 heavy chain (mouse IgG2a)	SEQ ID NO:207
ch40E8(R104W) heavy chain (mouse IgG2a	SEQ ID NO:208
ch40E8 light chain (lambda)	SEQ ID NO:209
ch6E3 heavy chain (mouse IgG2a)	SEQ ID NO:210
ch6E3 light chain (mouse kappa)	SEQ ID NO:211

Example 13

Elimination of CDR glycosylation site in NI-105.17C1 light chain.

[0313] A consensus N-linked glycosylation site was identified in the CDR1 region of the NI-105.17C1 light chain. Upon mammalian (CHO) cell expression, the predicted N-glycosylation site (Asn-31) was fully occupied by glycan, as demonstrated by mass spectrometry. In order to eliminate N-glycosylation in this region and improve product heterogeneity, Asn-31 of the light chain of ch17C1 was changed to Gln (see sequence below). When produced and purified from CHO

^{**:} whether antibody binding requires phosphorylation at certain amino acids on tau protein was verified by comparing the binding of antibody to rTau, PHFTau, PHFTau dephosphorylated by calf intestine phosphatase, rTau in vitro phosphorylated by GSK3 β or GSK3 β /CDK5/p35, and phosphorylated tau peptides on PepSPOTs and direct ELISA.

cells, the modified antibody (ch17C1(N31Q) mlgG2a) bound to recombinant tau with similar apparent binding affinity relative to the original, glycosylated antibody (see Figure 8A). The NI-105.17C1(N31Q) light chain variable region comprises the amino acid sequence of SEQ ID NO:221.

ch17C1(N31Q) light chain (mouse lambda)	SEQ ID NO:212			
human NI-105.17C1(N31Q) VL	SEQ ID NO:221			

Example 14

5

10

15

20

25

30

35

40

50

55

Production of antibodies with reduced effector function.

[0314] Antibody variants containing mutations within the consensus N-glycosylation site in the heavy chain Fc domain were generated. These variants, designated "Agly", were designed to generate anti-tau antibodies with reduced immune effector function. The amino acid sequences of Agly variants of the tau antibodies are provided below.

ch4A3-mlgG1-Agly heavy chain	SEQ ID NO:213
ch4E4(N30Q)-mlgG1-Agly heavy chain	SEQ ID NO:214
ch6C5-mlgG1-Agly heavy chain	SEQ ID NO:215
ch17C1-mlgG1-Agly heavy chain	SEQ ID NO:216

Example 15

Comparison of Binding Activity of ch17C1-mlgG2a and ch17C1-mlgG1-Agly.

[0315] The relationship between antibody effector function and activity was assessed for ch17C1 Agly (Figure 8A). The ch17C1 antibody comprised the ch17C1 heavy chain (SEQ ID NO:203), and the ch17C1 light chain (SEQ ID NO:204) The ch17C1(N31Q) mlgG2a antibody comprised the ch17C1 heavy chain (SEQ ID NO:203), and the ch17C1(N31Q) light chain (SEQ ID NO:212), which incorporates the N31Q mutation in CDR1 to eliminate the CDR glycosylation site. The ch17C1(N31Q) mlgG1 Agly antibody comprised the ch17C1-mlgG1-Agly heavy chain (SEQ ID NO:216), wherein the variable domains of 17C1 are fused to a mouse lgG1 heavy chain containing an Asn to Gln mutation at position 294 (Kabat residue 297) to eliminate the consensus Fcglycosylation site, and the ch17C1(N31Q) light chain (SEQ ID NO:212). When produced and purified from CHO cells, ch17C1(N31Q) mlgG1 Agly bound to recombinant tau with similar apparent binding affinity relative to the original, glycosylated antibody (see Figure 8A).

Example 16

Comparison of Valine vs. Isoleucine at position 48 of the 17C1 light chain.

[0316] In the process of generating the mouse chimeric lgG2a version of germlined antibody NI-105.17C1, residue 48 of the light chain was also changed from valine to isoleucine. To confirm that this substitution did not affect the binding affinity of NI-105.17C1, a mouse chimeric lgG2a version of NI-105.17C1 with valine at position 48 was prepared. When produced and purified from CHO cells, ch17C1(N31Q, I48V) mlgG2a antibody bound to recombinant tau with similar apparent binding affinity relative to the ch17C1(N31Q) mlgG2a (see Figure8B). The ch17C1(N31Q) mlgG2a antibody comprised the ch17C1 heavy chain (SEQ ID NO:203), and the ch17Cl(N31Q, I48V) light chain (SEQ ID NO:217).

ch17C1(N31Q, 148V) light chain (mouse lambda)	SEQ ID NO:217			
human NI-105.17C1(N31Q, I48V) VL	SEQ ID NO:222			

Example 17

Comparison of Arg vs. Trp at position 104 of NI-105.40E8.

[0317] Antibody NI-105.40E8, which is selective for the phosphorylated form of tau found in human paired helical

filaments (PHF), contains an unusual arginine residue at position 104 of the NI-105.40E8 VH. Typically this position within the human immunoglobulin repertoire is occupied by a tryptophan residue. A form of the NI-105.40E8 heavy chain, NI-105.40E8(R104W)-hlgG1, was generated in which residue Arg104 was replaced with tryptophan. When produced and purified from CHO cells, NI-105.40E8(R104W)-hlgG1 antibody bound to human PHF tau with similar apparent binding affinity relative to NI-105.40E8-hlgG1 (see Figure 9). The light chain of the two antibodies was identical.

human NI-105.40E8(R104W)-hlgG1, heavy chain	SEQ ID NO:218
human NI-105.40E8 light chain (human lambda)	SEQ ID NO:219
human NI-105.40E8(R104W) VH	SEQ ID NO:220

Example 18

5

10

20

25

50

55

Human anti-tau antibodies bind to pathologically aggregated tau in AD brain and in the brain of transgenic mouse model of tauopathy.

[0318] Brain tissue samples obtained from Alzheimer's disease and control patients, as well as from the brain of transgenic mouse of tauopathy and wild-type control were stained with the germlined human anti-tau antibodies provided herein. Representative images of germlined human NI-105.40E8, NI-105.48E5, NI-105.6C5 and NI-105.17C1 anti-tau antibodies binding to pathological tau aggregates in the brain of Alzheimer's disease (AD) and in the brain of transgenic mouse of tauopathy (Tg) are shown in Figure 10. None of these antibodies bind to normal tau in mentally healthy subject (Ctr) or wild type mouse brain (Wt). The different patterns among these antibodies reflected their differences in epitope specificity and binding affinity.

Example 19

Brain penetration of antibodies in TauP301L mice.

[0319] Animals and Antibody treatments: Human NI-105.6C5, NI-105.40E8 and NI-105.6E3 anti-tau antibodies were produced by transient transfection of CHO cells and purified using standard methods. A humanized antibody with no cross-reactivity to mouse antigens was used as an isotype control (hlgG1). In the first experiment, half of the injected NI-105.6C5, NI-105.6E3 and hlgG1 antibodies were labeled with Cy3 (GE Healthcare, PA13105) with an approximate antibody: Cy3 ratio of 1:3. Cy3-labeling did not change the antibody binding as confirmed by ELISA and immune-staining with TauP301L brain (data not shown). In the second experiment, unlabeled NI-105.6C5 and NI-105.40E8 anti-tau antibodies were used.

[0320] TauP301L mice between 18-22 months of age received two doses of 30 mg/kg NI-105.6C5, NI-105.6E3 or human IgG1 isotype control hlgG1 via i.p. injection within seven days. Tissue samples were collected from three mice of each treated group at time points of one day, eight days and 22 days post the second dosing. In the second experiment, TauP301L mice were ip injected with 30 mg/kg h40E8 and h6C5 twice within seven days and tissue samples were collected from those mice one day post the second injection.

[0321] For tissue sample collection, mice were deeply anaesthetized with ketamine/xylazine before blood was collected through the right atrium. CSF was then collected by cisterna magna puncture. Brain and spine were subsequently collected following perfusion for 2 min with ice cold PBS, containing 10 Ul/ml heparin and five minutes with 10% neutralized formalin through the left ventricle. The brain was fixed in 10% neutralized formalin for another 3 h at 4°C, following immersion in 30% sucrose for 48 h. The brain was then frozen in dry ice and subsequently sectioned into 30 μ m thick coronal section series. The section series were stored at -20°C in antifreeze solution containing 1M glucose, 37.5% ethylene glycol in 50 mM sodium phosphate buffer pH7.4 with 0.025% sodium azide before use. The spine was post fixed in 10% neutralized formalin for two days and embedded in paraffin blocks.

[0322] Immunohistochemistry: Coronal sections of 30 μ m thickness were probed with biotinylated donkey anti-human IgG (H+L) by free floating staining. Free-floating sections were washed in Tris-Triton pH7.4 (50mM Tris, 150 mM NaCl, 0.05% Triton X-100), incubated in 1% H_2O_2 PBS for 30 min, and incubated with a blocking solution containing 2% normal goat- and horse serum in Tris-Triton with additional 0.2% Triton X-100 for 1 h at room temperature. The sections were then incubated with biotinylated donkey anti-human IgG (H+L) (Jackson Immunoresearch Labs, 709-065-149) at 1:200 in blocking solution for 16 h at 4°C with agitation at 100 rpm to detect neuronal human IgG. The tissue-bound biotinylated antibody was visualized by peroxidase chromogenic reaction using the Vectastain Elite ABC kit (Vector Laboratories, PK6100, 1:100). The enzymatic reaction was stopped with ice cold PBS and the sections were washed in PBS 3 times. The sections were then mounted on glass slides and air dried over night before they were counterstained with hemalum

solution to visualize the nuclei (Carl Roth GmbH + Co., T865.1). After dehydration steps, the slides were covered with coverslips before being scanned with the Olympus dotSlide 2.1 virtual microscopy system.

[0323] Human antibodies were detected in the brains of TauP301L mice, which had received either human anti-tau antibodies or hlgG1 control antibody via i.p. injection, but not in TauP301L and wild type mice without antibody treatment (Fig. 11). However, neuronal staining was only observed in the hippocampi of NI-105.6C5, NI-105.6E3 and NI-105.40E8 anti-tau antibody treated mice, but not in hlgG1 treated mice. Neuronal staining with anti-tau antibodies was readily detectable one day post injection, less pronounced at eight days post injection, and was undetectable at 22 days post injection (data not shown). TauP301L mice produce high levels of transgenic human tau in the hippocampal formation, and the hippocampus is one of the earliest regions which develop neurofibrillary tangles. Thus, peripherally injected anti-tau antibodies not only entered the brain but also likely entered into neurons which contained high levels of tau.

Example 20

15

20

30

35

40

50

Effects of chronic treatment of TauP301L mice with ch4E4(N30Q) and ch17C1(N31Q).

[0324] Animals and Antibody treatments: Chimeric NI-105.4E4(N30Q) ("ch4E4(N30Q)") and chimeric NI-105.17C1(N31Q) ("ch17C1(N31Q)") containing the variable domains of the human antibody and the constant regions of mouse IgG2a were produced by transient transfection of CHO cells and purified using standard methods.

[0325] Gender balanced TauP301L mice at ages of 7.5-8 months were weekly given 10 mg/kg ch17C1(N31Q) (n=20), 10 mg/kg ch4E4(N30Q) (n=20) or an equal volume of PBS (n=20) through intraperitoneal injection. Body weight was monitored every two weeks. No significant weight loss was observed. Two mice from the PBS group and one mouse from the ch17C1(N31Q) treated group died prematurely. Mice were anaesthetized one day after the 25th treatment for tissue collection. Blood was collected through the orbital sinus. Brain and spine were subsequently collected following perfusion for 2 min with ice cold PBS, containing 10 UI/ml heparin, through the left ventricle. The left half brain was then weighed, deep-frozen in dry ice and stored at -80°C before use. The right half of the brain and the spine were post-fixed in neutralized 10% formalin at 4°C for two days followed by further storage in PBS before being processed to paraffin embedded brain and spinal cord blocks.

[0326] Brain protein extraction: Brain protein was sequentially extracted based on the solubility. The left half brain was first homogenized in 10 times w/v of 50 mM NaCl containing 0.2 % diethylamine, 1X protease inhibitor (Roche Diagnostics GmbH) and 1 X phosphatase inhibitor (Roche Diagnostics GmbH). After 30 min incubation on ice, the homogenate was centrifuged at 100,000 g at 4°C for 30 min. Subsequently, the supernatant was collected and defined as the soluble fraction. The remaining pellet was homogenized in 12 times w/v of 10 % sucrose lysis buffer containing 10 mM Tris 7.4, 0.8M NaCl, 1mM EGTA, 1X phosphatase inhibitor, 1X protease inhibitor, 1 mM Na₃VO₄, 1 mM NaF and 1 mM AEBSF. After 30 min incubation on ice, the homogenate was centrifuged at 20,500 g at 4°C for 20 min. 95% of the supernatant was carefully collected for sarcosyl extraction. The pellet was stored at -80°C. N-lauryl-sarcosinate was added to the supernatant (1% (w/v) final concentration). Following 1 h incubation at 37°C with agitation at 220 rpm, the solution was centrifuged at 100,000g at 4°C for one hour. The supernatant was collected and defined as the sarcosyl soluble fraction. The pellet was left to dry at room temperature for 30 min, then dissolved in 50 mM Tris pH 7.4 (20% v/w initial brain weight) and defined as the PHF insoluble fraction, which was stored at -80°C until use.

[0327] ELISA measurements Human total tau and phosphorylated tau in three brain protein fractions were quantified with commercial ELISA kits (Life Technologies) following the manufacturer's protocol. Total human tau, human tau phosphorylated at Threonine 231 (pT231 tau), human tau phosphorylated at Serine 199 (pS199 tau) and human tau phosphorylated at Threonine 181 (pT181) tau were detected. Samples of the soluble fraction were standardized to 1 mg/ml based on the total protein content measured with BCA protein assay (Pierce) with 50 mM Tris pH7.4. Aliquots of the standardized samples were prepared for ELISA measurements and Western blotting. To prepare solubilized PHF insoluble fraction for ELISA, 10 μ l PHFTau was incubated with 10 μ l 8M guanidine hydrochloride at room temperature for one hour followed by addition of 180 μ l 50 mM Tris 7.4. ELISA measurements were carried out following standard protocols. The tau levels in each sample measured by ELISA were normalized to initial brain weight for final analysis.

[0328] End point plasma drug levels were measured using a sandwich ELISA. Briefly, 3 μ g/ml rTau (rPeptide) (SEQ ID NO:6) in 100 nM carbonate ELISA coating buffer (pH9.6) was incubated in Costar half-area ELISA plates at 4°C overnight. The plates were blocked with 3% BSA in PBS at room temperature for one hour. Plasma samples were diluted in 3% BSA in PBS containing 0.1% Tween®20 to 1:200, 1:400 and 1:800. Serial dilutions of ch17C1(N31Q) and ch4E4(N30Q) were used to generate standard curves. After one hour incubation, the plates were washed 4 times with PBS containing 0.1% Tween®20 followed by a one hour incubation with donkey anti-mouse IgGFcy-HRP (1:10,000). After washing, the bound antibody was further determined by a standard colorimetric assay. Standard curves were

generated by sigmoidal curve fit with GraphPad Prism 5.

[0329] Western blot: Protein samples of the three fractions were heated at 70°C for 10 min in 4X NuPAGE® LDS sample buffer (Life Technologies) and an equal amount of total protein from each sample was electrophoresed on a

NuPAGE® 4-12% (w/v) gel. Following semi-dry transfer of protein to PVDF membrane, the membrane was blocked in 3% BSA containing 0.1% Tween-20 in TBS and subsequently probed with different anti-tau antibodies at 4°C overnight. Peroxidase-conjugated secondary antibodies were then incubated at room temperature for 1 h following 4 washes with TBST. Subsequently, the bound antibodies were detected by enhanced chemiluminescence (ECL) (Pierce). Densitometric analysis of immunoblots was performed with the National Institutes of Health ImageJ program.

[0330] Two-trial Y maze: Mice were tested for short-term spatial memory using a two-trial Y-maze test. The arms of the maze were 35 cm long, 5 cm wide and 10 cm deep. Abstractive cues were placed on the curtain surrounding the maze. Experiments were conducted with an ambient light level of 6 lux. During the exposure phase, mice were assigned to two arms (the start arm and one other arm), which can be freely explored during 4 min, without access to the third arm (new arm), blocked by a door made of the same material as the maze. Mice were then removed from the maze and kept in the holding cage for 2 min, when the maze was cleaned with 50% ethanol. During the test phase, mice were placed at the end of the start arm and allowed to freely explore all three arms during 4 min. The test phase was recorded with the TSE videoMot2 software for video tracking and analysis of animal behavior (TSE Systems, Bad Homburg, Germany). The number of arm entries and time spent in the new arm were recorded. The average of number of arm entries and time spent in the other two arms that were open during the training session was calculated. A ratio between the number of arm entries into (or time spent in) the new arm and the average of the other two arms were calculated. Wild type control animals which do not have a deficit in spatial working memory will typically have a ratio between 1.5 and 2 in this test. Pennanen et al., Genes Brain Behav 5(5):369-79 (2006).

10

30

35

40

45

50

55

[0331] Data analysis: ELISA data were log transformed to meet the normality assumption for the two-way analysis of variance. The difference was considered significant when p<0.05.

[0332] ch4E4(N30Q) significantly reduced soluble human tau in TauP301L mice: Human tau levels in the DEA-soluble, sarcosyl-soluble, and insoluble fractions of brain protein extracts were quantified by ELISA. The majority of the human tau was found in the DEA-soluble fraction (data not shown). Total human tau (hTau) was reduced in the DEA-soluble fraction from ch17C1(N31Q) and ch4E4(N30Q) treated mice compared with that of PBS treated mice (29% reduction on average in ch17C1(N31Q) and 37% in ch4E4(N30Q), Fig. 12A). Reductions were also seen in phosphorylated tau (pT231, pS199 and pT181) in the DEA-soluble fraction (Fig. 12B, C and D respectively). We have previously observed lower human tau expression in female TauP301L mice than their male counterparts. Therefore, to accurately analyze the data we used two-way ANOVA with gender and treatment as the two variables. A gender effect was confirmed with a p<0.01 in all soluble human tau measurements (total human tau, pS199, pT181 and pT231 human tau). There was no interaction between gender and treatment (0.49 <p< 0.91 in all soluble human tau measurements). Importantly, there was a significant treatment effect in DEA-soluble human tau (p<0.05 for hTau, pS199 and pT231, and p=0.06 for pT181). The treatment effect was predominantly driven by ch4E4(N30Q). When compared with PBS control, ch4E4(N30Q) significantly reduced hTau (p<0.05), pS199 (p<0.01), pT231 (p<0.01) and pT181 (p<0.05). ELISA measurements using the sarcosyl-insoluble fraction showed a high variability among animals, and no significant gender effect was observed. No significant treatment effect was observed in the sarcosyl-insoluble fraction. Similarly, no significant treatment effect was observed by ELISA in the sarcosyl-soluble fraction.

[0333] Western blots using human tau-specific monoclonal antibody Tau12 showed full length human tau, as a single band at 62 kDa, as the major tau immunoreactive component in the DEA-soluble fraction. A clear reduction of the full length human tau was observed in majority of the mice treated with ch4E4(N30Q) and ch17C1(N31Q). In the sarcosyl insoluble fraction, a 64 kDa band and several other higher molecular weight bands were observed, as well as smaller molecular weight bands presumably corresponding to human tau fragments. Densitometric analysis showed a high degree of variability among individual animals, which prevented any quantitative comparison. However, there was an overall qualitative reduction in all human tau proteins in the sarcosyl insoluble fraction detected by Tau12 in ch17C1(N31Q) and ch4E4(N30Q) treated mice (representative Western blot shown in Fig. 13).

[0334] Plasma drug levels: Mice were treated with ch17C1(N31Q) and ch4E4(N30Q) at 10 mg/kg weekly through i.p. injection. To assess the drug exposure, plasma samples were collected 24 h after the last treatment. Plasma drug levels were measured with ELISA using rTau as capture agent. The average plasma levels of ch17C1(N31Q) and ch4E4(N30Q) were 200 μ g/ml and 145 μ g/ml, respectively, suggesting both antibodies had good blood exposure (Fig. 14).

[0335] Antibody treatment and spatial memory: An earlier study suggested deficits in spatial reference memory, which is hippocampus-dependent, in TauP301L mice (Pennanen et al., Genes Brain Behav 5(5):369-79 (2006)). The two-trial Y maze was reported as a sensitive test to detect deficits in short-term spatial memory in tau transgenic mice (Troquier et al., Curr Alzheimer Res. 9(4):397-405 (2012)). During the exposure phase, all groups explored the maze equally, spending a similar amount of time in each available arm (data not shown). No differences were found comparing distance moved. During the test phase, PBS treated TauP301L mice made almost equal number of entries in the new arm as the average of the other two arms explored during the exposure phase, (ratio=1.18), suggesting a poor spatial working memory in PBS treated TauP301L mice. Both ch17C1(N31Q) and ch4E4(N30Q) treated mice showed a preference for the new arm relative to the other two arms, and they made more visits to the new arm than the average of the other two arms (ratio=1.50 for ch17C1(N31Q) and 1.30 for ch4E4(N30Q)). The ratio of new arm entry in ch17C1(N31Q) and

ch4E4(N30Q) treated TauP301L mice compared with that of the PBS treated group is shown in Fig. 15.

[0336] The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and any compositions or methods which are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

[0337] In view of the foregoing, it will be appreciated that the invention described herein inter alia relates to the following items:

- 1. A human monoclonal anti-tau antibody, or a tau binding fragment thereof, wherein the antibody binds to the same epitope of tau as an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-1G5.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12EI2, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
- 15 2. A monoclonal anti-tau antibody, or a tau binding fragment thereof which is characterized by one or more of:
 - (i) capable of binding recombinant human tau;
 - (ii) capable of binding pathologically modified tau;
 - (iii) binds to pathologically aggregated tau at the pre-tangle stage, in neurofibrillary tangles (NFT), neuropil threads and/or dystrophic neurites in the brain
 - (iv) does not substantially bind to physiological forms of tau in the brain;
 - (v) specifically binds any one of tau isoforms B to F or fetal tau represented by SEQ ID NOs: 1 to 6;
 - (vi) specifically binds a tau C-terminus;
 - (vii) specifically binds a tau N-terminus
 - (viii) specifically binds a tau epitope located in the microtubule binding domain which is masked in physiological microtubule-associated tau;
 - (ix) specifically binds pathologically aggregated tau at the pre-tangle stage, in neurofibrillary tangles (NFT), neuropil threads and/or dystrophic neurites in the brain; and
 - (x) specifically binds a tau epitope which comprises an amino acid sequence selected from the group consisting of residues 125-131, 397-441, 226-244, 217-227, 37-55, 387-406, 421-427, 427-439, 1-158, 197-207, 57-67, 355-441, 313-319, 309-319, and 221-231 of SEQ ID NO:6,

wherein the antibody binds to the same epitope of tau as an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.

- 3. The monoclonal anti-tau antibody of items 1 or 2 comprising a heavy chain variable region VH, wherein the heavy chain variable region comprises one, two or three VH CDRs of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
- 4. The monoclonal anti-tau antibody of item 3 comprising a VH CDR1, VH CDR2, and VH CDR3 of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
- 5. The monoclonal anti-tau antibody of item 3 comprising one or more of:
 - (a) a VH CDR1 selected from the group consisting of: SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133,

25

20

30

35

45

50

40

139, 145, 151, 157, and 163;

5

10

15

45

50

- (b) a VH CDR2 selected from the group consisting of: SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, and 164; and
- (c) a VH CDR3 selected from the group consisting of: SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, and 165.
- 6. The monoclonal anti-tau antibody of item 4 comprising:
 - (a) a VH CDR1 selected from the group consisting of: SEQ ID NO: 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, and 163;
 - (b) a VH CDR2 selected from the group consisting of: SEQ ID NO: 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, and 164; and
 - (c) a VH CDR3 selected from the group consisting of: SEQ ID NO: 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, and 165.
- 7. The monoclonal anti-tau antibody of item 6 comprising the VH CDR1, VH CDR2, and VH CDR3 of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4, wherein the VH CDR1, VH CDR2, and VH CDR3 are defined as listed in Table 2.
- 8. The monoclonal anti-tau antibody of any one of items 1 to 7 comprising a light chain variable region VL, wherein the light chain variable region comprises one, two or three VL CDRs of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
- 9. The monoclonal anti-tau antibody of item 8 comprising a VL CDR1, VL CDR2, and VL CDR3 of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
- 10. The monoclonal anti-tau antibody of item 8 comprising one or more of:
 - (a) a VL CDR1 selected from the group consisting of: SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166 and 224;
- 40 (b) a VL CDR2 selected from the group consisting of: SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, and 167; and
 - (c) a VL CDR3 selected from the group consisting of: SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, and 168.
 - 11. The monoclonal anti-tau antibody of item 9 comprising:
 - (a) a VL CDR1 selected from the group consisting of: SEQ ID NO: 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166 and 224;
 - (b) a VL CDR2 selected from the group consisting of: SEQ ID NO: 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, and 167; and
 - (c) a VL CDR3 selected from the group consisting of: SEQ ID NO: 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, and 168.
 - 12. The monoclonal anti-tau antibody of item 11 comprising the VL CDR1, VL CDR2, and VL CDR3 of an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-

105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4, wherein the VL CDR1, VL CDR2, and VL CDR3 are defined as listed in Table 2

- 13. The monoclonal anti-tau antibody of any one of items 1 to 12 comprising a heavy chain variable region VH at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of: SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, and 220.
 - 14. The monoclonal anti-tau antibody of item 13, wherein the heavy chain variable region comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 44, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 76, and 220.
 - 15. The monoclonal anti-tau antibody of any one of items 1 to 14 comprising a light chain variable region VL at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of: SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, and 222.
 - 16. The monoclonal anti-tau antibody of item 15, wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 46, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 77, 78, 221, and 222.
- 17. The monoclonal anti-tau antibody of any one of items 1 to 16 comprising a VH and VL pair selected from the group consisting of: a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 46; a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 221; a VH of SEQ ID NO: 45 and a VL of SEQ ID NO: 222; a VH of SEQ ID NO: 48 and a VL of SEQ ID NO: 49; a VH of SEQ ID NO: 50 and a VL of SEQ ID NO: 51; a VH of SEQ ID NO: 52 and a VL of SEQ ID NO: 53; a VH of SEQ ID NO: 54 and a VL of SEQ ID NO: 55; a VH of SEQ ID NO: 220 and a VL of SEQ ID NO: 55; a VH of SEQ ID NO: 56 and a VL of SEQ ID NO: 57; a VH of SEQ ID NO: 58 and a VL of SEQ ID NO: 59; a VH of SEQ ID NO: 60 and a VL of SEQ ID NO: 61; a VH of SEQ ID NO: 62 and a VL of SEQ ID NO: 64; a VH of SEQ ID NO: 65 and a VL of SEQ ID NO: 66; a VH of SEQ ID NO: 67 and a VL of SEQ ID NO: 68; a VH of SEQ ID NO: 69 and a VL of SEQ ID NO: 70; a VH of SEQ ID NO: 71 and a VL of SEQ ID NO: 72; a VH of SEQ ID NO: 73 and a VL of SEQ ID NO: 74; a VH of SEQ ID NO: 76 and a VL of SEQ ID NO: 78; a VH of SEQ ID NO: 44 and a VL of SEQ ID 30 NO: 46; a VH of SEQ ID NO: 47 and a VL of SEQ ID NO: 49; a VH of SEQ ID NO: 62 and a VL of SEQ ID NO: 63; and a VH of SEQ ID NO: 75 and a VL of SEQ ID NO: 77.
 - 18. A monoclonal antibody which binds to the same epitope of tau as an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-1G5.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
 - 19. A monoclonal antibody which competes for specific binding to tau with an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4.
 - 20. The antibody or tau binding fragment thereof of any one of items 2 to 19 which is a human antibody, humanized antibody, chimeric murine-human antibody or murinized antibody.
 - 21. The antibody or tau binding fragment thereof of any one of items 1 to 20, which is selected from the group consisting of a single chain Fv fragment (scFv), an F(ab') fragment, an F(ab) fragment, and an F(ab')₂ fragment.
 - 22. An isolated polypeptide comprising a VH and/or a VL of the antibody of any one of items 3 to 21.
 - 23. An isolated polynucleotide comprising a nucleotide sequence encoding the polypeptide of item 22.
 - 24. The polynucleotide of item 23 comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO: 169-202 and 223.
 - 25. A vector comprising the polynucleotide of items 23 or 24.
 - 26. A host cell comprising the polynucleotide of items 23 or 24 or the vector of item 25.
 - 27. A method for preparing an anti-tau antibody or tau binding fragment thereof, comprising

61

10

5

15

20

25

35

40

45

50

- (a) culturing the cell of item 26; and
- (b) isolating said antibody or tau binding fragment thereof from the culture.
- 5 28. An anti-tau antibody or tau binding fragment thereof obtained by the method of item 27.
 - 29. The anti-tau antibody or tau binding fragment thereof of any one of items 1 to 21 or 28, which is
 - (a) detectably labeled wherein the detectable label is selected from the group consisting of an enzyme, a radioisotope, a fluorophore and a heavy metal; or
 - (b) which is attached to a drug.

10

15

20

25

30

35

40

45

50

- 30. A composition comprising the anti-tau antibody or tau binding fragment thereof of any one of items 1 to 21 or 28.
- 31. The composition of item 30, which is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.
- 32. The composition of items 30 or 31 further comprising an additional agent useful for treating a neurodegenerative tauopathy.
- 33. The composition of item 30, which is a diagnostic composition, and optionally comprises reagents conventionally used in immuno or nucleic acid based diagnostic methods.
- 34. A method of treating a neurodegenerative tauopathy in a subject in need thereof, comprising administering a therapeutically effective amount of the antibody of any one of items 1 to 21 or 28.
 - 35. Use of an antibody of any one of items 1 to 21 or 28 for the preparation of a pharmaceutical or diagnostic composition for prophylactic and therapeutic treatment, monitoring the progression, or monitoring the response to a treatment of a neurodegenerative tauopathy in a subject.
 - 36. A method of diagnosing or monitoring the progression of a neurodegenerative tauopathy in a subject, the method comprising
 - (a) measuring the level of pathologically modified or aggregated tau in a sample from the subject to be diagnosed with the antibody or tau binding fragment thereof of any one of items 1 to 21 or 28 by IHC; and
 - (b) comparing the level of modified or aggregated tau to a reference standard that indicates the level of the pathologically modified or aggregated tau in one or more control subjects,

wherein a difference or similarity between the level of pathologically modified or aggregated tau and the reference standard indicates that the subject has a neurodegenerative tauopathy.

- 37. The use of item 35 or the method of items 34 or 36, wherein the neurodegenerative tauopathy is selected from the group consisting of Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex, argyrophilic grain dementia, British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration, Creutzfeldt-Jakob disease, dementia pugilistica, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17, frontotemporal lobar degeneration, Gerstmann-Sträussler-Scheinker disease, Hallervorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C, non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease, postencephalitic parkinsonism, prion protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy, subacute sclerosing panencephalitis, Tangle only dementia, multi-infarct dementia and ischemic stroke.
- 38. A method for *in vivo* detection of or targeting a therapeutic or diagnostic agent to tau in the human or animal body, comprising administering a composition comprising the antibody or tau binding fragment thereof of any one of items 1 to 21 or 28 attached to a therapeutic or diagnostic agent.

- 39. The method of item 38, wherein the *in vivo* detection comprises positron emission tomography (PET), single photon emission tomography (SPECT), near infrared (NIR) optical imaging or magnetic resonance imaging (MRI).
- 40. A peptide having an epitope of tau specifically recognized by an antibody selected from the group consisting of: NI-105.17C1, NI-105.6C5, NI-105.29G10, NI-105.6L9, NI-105.40E8, NI-105.48E5, NI-105.6E3, NI-105.22E1, NI-105.26B12, NI-105.12E12, NI-105.60E7, NI-105.14E2, NI-105.39E2, NI-105.19C6, and NI-105.9C4, wherein the peptide comprises an amino acid sequence selected from the group consisting of residues 125-131, 397-441, 226-244, 217-227, 37-55, 387-406, 421-427, 427-439, 1-158, 197-207, 57-67, 355-441, 313-319, 309-319, and 221-231 of SEQ ID NO:6 and combinations thereof.

41. A method for diagnosing a neurodegenerative tauopathy in a subject, comprising detecting the presence of an antibody that binds to the peptide of item 36 in a biological sample of said subject.

42. A kit useful in the diagnosis of a neurodegenerative tauopathy, said kit comprising the antibody or tau binding fragment thereof of any one of items 1 to 21 or 28, with reagents or instructions for use.

SEQUENCE LISTING

	<110>	Biogen MA Inc. Biogen International Neuroscience GmbH
5	<120>	HUMAN ANTI-TAU ANTIBODIES
	<130>	BIO22246PCTEPD1
10		Not yet assigned 2013-12-20
		EP 13 818 637.4 2013-12-20
15		PCT/US2013/076952 2013-12-20
		61/7 4 5, 4 10 2012–12–21
20	<160>	224
	<170>	PatentIn version 3.5
25	<210> <211> <212> <213>	352
30	<222>	PEPTIDE (1)(352) Isoform Fetal-Tau
35	<300> <301> <302>	Goedert M., Wischik C., Crowther R., Walker J., Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau.
40	<303> <304> <306> <307>	Proc. Natl. Acad. Sci. U.S.A.
45	<300> <308> <309> <313>	P10636-2 2010-10-05 (1) (353)
45	<400>	(1)(352)
	Met Al	a Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly
50	1	5 10 15
	Thr Ty	r Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30
55	Gln As	p Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Ala Glu Glu Ala 35 40 45

	Gly	Ile 50	Gly	Asp	Thr	Pro	Ser 55	Leu	Glu	Asp	Glu	Ala 60	Ala	Gly	His	Val
5	Thr 65	Gln	Ala	Arg	Met	Val 70	Ser	Lys	Ser	Lys	A sp 75	Gly	Thr	Gly	Ser	Asp 80
10	Asp	Lys	Lys	Ala	Lys 85	Gly	Ala	Asp	Gly	Lys 90	Thr	Lys	Ile	Ala	Thr 95	Pro
	Arg	Gly	Ala	Ala 100	Pro	Pro	Gly	Gln	Lys 105	Gly	Gln	Ala	Asn	Ala 110	Thr	Arg
15	Ile	Pro	Ala 115	Lys	Thr	Pro	Pro	Ala 120	Pro	Lys	Thr	Pro	Pro 125	Ser	Ser	Gly
20	Glu	Pro 130	Pro	Lys	Ser	Gly	Asp 135	Arg	Ser	Gly	Tyr	Ser 140	Ser	Pro	Gly	Ser
25	Pro 145	Gly	Thr	Pro	Gly	Ser 150	Arg	Ser	Arg	Thr	Pro 155	Ser	Leu	Pro	Thr	Pro 160
	Pro	Thr	Arg	Glu	Pro 165	Lys	Lys	Val	Ala	Val 170	Val	Arg	Thr	Pro	Pro 175	Lys
30	Ser	Pro	Ser	Ser 180	Ala	Lys	Ser	Arg	Le u 185	Gln	Thr	Ala	Pro	Val 190	Pro	Met
35	Pro	Asp	Leu 195	Lys	Asn	Val	Lys	Ser 200	Lys	Ile	Gly	Ser	Thr 205	Glu	Asn	Leu
40	Lys	His 210	Gln	Pro	Gly	Gly		Lys			Ile	Val 220	_	Lys	Pro	Val
	Asp 225	Leu	Ser	Lys	Val	Thr 230	Ser	Lys	Cys	Gly	Ser 235	Leu	Gly	Asn	Ile	His 2 4 0
45	His	Lys	Pro	Gly	Gly 245	Gly	Gln	Val	Glu	Val 250	Lys	Ser	Glu	Lys	Le u 255	Asp
50	Phe	Lys	Asp	Arg 260	Val	Gln	Ser	Lys	Ile 265	Gly	Ser	Leu	Asp	A sn 270	Ile	Thr
	His	Val	Pro 275	Gly	Gly	Gly	Asn	Lys 280	Lys	Ile	Glu	Thr	His 285	Lys	Leu	Thr
55	Phe	Arg	Glu	Asn	Ala	Lys	Ala	Lys	Thr	Asp	His	Gly	Ala	Glu	Ile	Val

5	Tyr Ly: 305	s Ser	Pro	Val	Val 310	Ser	Gly	Asp	Thr	Ser 315	Pro	Arg	His	Leu	Ser 320
	Asn Va	l Ser	Ser	Thr 325	Gly	Ser	Ile	Asp	Met 330	Val	Asp	Ser	Pro	Gln 335	Leu
10	Ala Th	r Leu	Ala 340	Asp	Glu	Val	Ser	Ala 3 4 5	Ser	Leu	Ala	Lys	Gln 350	Gly	Leu
15	<210><211><211><212><213>	381 PRT	sapi	iens											
20	<220> <221> <222> <223>	(1).	. (381		3										
25	<300> <301> <302>	R.A. Mult:	iple	isoi	forms	s of	huma	an mi	icrot	ubu]	Le-as	ssoci	lated	d pro	., Crowther
30	sequences and localization in neurofibrillary tangles of Alzheimer's disease. <303> Neuron <304> 3 <306> 519-526 <307> 1989-10-01														
35	<300> <308> <309> <313>	2010-	-10-0												
40	<400> Met Ala 1	2 a Glu	Pro	Arg 5	Gln	Glu	Phe	Glu	Val 10	Met	Glu	Asp	His	A la 15	Gly
45	Thr Ty	r Gly	Leu 20	Gly	Asp	Arg	Lys	Asp 25	Gln	Gly	Gly	Tyr	Thr 30	Met	His
50	Gln As	9 Gln 35	Glu	Gly	Asp	Thr	Asp 40	Ala	Gly	Leu	Lys	Glu 45	Ser	Pro	Leu
	Gln Th:	r Pro	Thr	Glu	Asp	Gly 55	Ser	Glu	Glu	Pro	Gly 60	Ser	Glu	Thr	Ser
55	Asp Ala	a Lys	Ser	Thr	Pro 70	Thr	Ala	Glu	Ala	Glu 75	Glu	Ala	Gly	Ile	Gly 80

	Asp	Thr	Pro	Ser	Leu 85	Glu	Asp	Glu	Ala	Ala 90	Gly	His	Val	Thr	G1n 95	Ala
5	Arg	Met	Val	Ser 100	Lys	Ser	Lys	Asp	Gly 105	Thr	Gly	Ser	Asp	Asp 110	Lys	Lys
10	Ala	Lys	Gly 115	Ala	Asp	Gly	Lys	Thr 120	Lys	Ile	Ala	Thr	Pro 125	Arg	Gly	Ala
	Ala	Pro 130	Pro	Gly	Gln	Lys	Gly 135	Gln	Ala	Asn	Ala	Thr 140	Arg	Ile	Pro	Ala
15	Lys 145	Thr	Pro	Pro	Ala	Pro 150	Lys	Thr	Pro	Pro	Ser 155	Ser	Gly	Glu	Pro	Pro 160
20	Lys	Ser	Gly	Asp	A rg 165	Ser	Gly	Tyr	Ser	Ser 170	Pro	Gly	Ser	Pro	Gly 175	Thr
25	Pro	Gly	Ser	Arg 180	Ser	Arg	Thr	Pro	Ser 185	Leu	Pro	Thr	Pro	Pro 190	Thr	Arg
	Glu	Pro	Lys 195	Lys	Val	Ala	Val	Val 200	Arg	Thr	Pro	Pro	Lys 205	Ser	Pro	Ser
30	Ser	Ala 210	Lys	Ser	Arg	Leu	Gln 215	Thr	Ala	Pro	Val	Pro 220	Met	Pro	Asp	Leu
35	Lys 225	Asn	Val	Lys	Ser	Lys 230	Ile	Gly	Ser	Thr	Glu 235	Asn	Leu	Lys	His	Gln 240
	Pro	Gly	Gly	Gly	Lys 245	Val	Gln	Ile	Val	Tyr 250	Lys	Pro	Val	Asp	Leu 255	Ser
40	Lys	Val	Thr	Ser 260	Lys	Cys	Gly	Ser	Leu 265	Gly	Asn	Ile	His	His 270	Lys	Pro
45	Gly	Gly	Gly 275	Gln	Val	Glu	Val	Lys 280	Ser	Glu	Lys	Leu	Asp 285	Phe	Lys	Asp
50	Arg	Val 290	Gln	Ser	Lys	Ile	Gly 295	Ser	Leu	Asp	Asn	Ile 300	Thr	His	Val	Pro
	Gly 305	Gly	Gly	Asn	Lys	Lys 310	Ile	Glu	Thr	His	Lys 315	Leu	Thr	Phe	Arg	Glu 320
55	Asn	Ala	Lys	Ala	Lys 325	Thr	Asp	His	Gly	Ala 330	Glu	Ile	Val	Tyr	Lys 335	Ser

	Pro Va	l Val	Ser 340	Gly	Asp	Thr	Ser	Pro 345	Arg	His	Leu	Ser	Asn 350	Val	Ser	
5	Ser Th	r Gly 355	Ser	Ile	Asp	Met	Val 360	Asp	Ser	Pro	Gln	Leu 365	Ala	Thr	Leu	
10	Ala As ₁	-	Val	Ser	Ala	Ser 375	Leu	Ala	Lys	Gln	Gly 380	Leu				
15	<212>	<pre>\$211> 410 \$212> PRT \$213> Homo sapiens</pre>														
20	<220> <221> <222> <223>	(1).	. (410		2											
25	<300> <301> <302>	R.A.	iple	isoi	forms	of	huma	an mi	icrot	ubul	Le-as	ssoci	iated	d pro	c, Crowther otein tau:	
30	<303> <304> <306> <307>	519-	on 526		lisea	se.										
35	<300> <308> <309> <313>	2010-	-10-0													
40	<400> Met Ala 1		Pro	Arg 5	Gln	Glu	Phe	Glu	Val 10	Met	Glu	Asp	His	Ala 15	Gly	
45	Thr Ty	r Gly	Leu 20	Gly	Asp	Arg	Lys	Asp 25	Gln	Gly	Gly	Tyr	Thr 30	Met	His	
50	Gln As	o Gln 35	Glu	Gly	Asp	Thr	Asp 40	Ala	Gly	Leu	Lys	Glu 4 5	Ser	Pro	Leu	
50	Gln Th	r Pro	Thr	Glu	Asp	Gly 55	Ser	Glu	Glu	Pro	Gly 60	Ser	Glu	Thr	Ser	
55	Asp Ala	a Lys	Ser	Thr	Pro 70	Thr	Ala	Glu	Asp	Val 75	Thr	Ala	Pro	Leu	Val 80	

	Asp	GLu	СТĀ	Ala	Pro 85	GTĀ	Lys	GIn	Ala	90	Ala	GIn	Pro	His	Thr 95	Glu
5	Ile	Pro	Glu	Gly 100	Thr	Thr	Ala	Glu	Glu 105	Ala	Gly	Ile	Gly	Asp 110	Thr	Pro
10	Ser	Leu	Glu 115	Asp	Glu	Ala	Ala	Gly 120	His	Val	Thr	Gln	Ala 125	Arg	Met	Val
	Ser	Lys 130	Ser	Lys	Asp	Gly	Thr 135	Gly	Ser	Asp	Asp	Lys 140	Lys	Ala	Lys	Gly
15	Ala 145	Asp	Gly	Lys	Thr	Lys 150	Ile	Ala	Thr	Pro	A rg 155	Gly	Ala	Ala	Pro	Pro 160
20	Gly	Gln	Lys	Gly	Gln 165	Ala	Asn	Ala	Thr	Ar g 170	Ile	Pro	Ala	Lys	Thr 175	Pro
25	Pro	Ala	Pro	Lys 180	Thr	Pro	Pro	Ser	Ser 185	Gly	Glu	Pro	Pro	Lys 190	Ser	Gly
	Asp	Arg	Ser 195	Gly	Tyr	Ser	Ser	Pro 200	Gly	Ser	Pro	Gly	Thr 205	Pro	Gly	Ser
30	Arg	Ser 210	Arg	Thr	Pro	Ser	Leu 215	Pro	Thr	Pro	Pro	Thr 220	Arg	Glu	Pro	Lys
35	Lys 225	Val	Ala	Val	Val	A rg 230	Thr	Pro	Pro	Lys	Ser 235	Pro	Ser	Ser	Ala	Lys 240
40	Ser	Arg	Leu	Gln	Thr 245	Ala	Pro	Val	Pro	Met 250	Pro	Asp	Leu	Lys	A sn 255	Val
40	Lys	Ser	Lys	Ile 260	Gly	Ser	Thr	Glu	As n 265	Leu	Lys	His	Gln	Pro 270	Gly	Gly
45	Gly	Lys	Val 275	Gln	Ile	Val	Tyr	Lys 280	Pro	Val	Asp	Leu	Ser 285	Lys	Val	Thr
50	Ser	Lys 290	Cys	Gly	Ser	Leu	Gly 295	Asn	Ile	His	His	Lys 300	Pro	Gly	Gly	Gly
	Gln 305	Val	Glu	Val	Lys	Ser 310	Glu	Lys	Leu	Asp	Phe 315	Lys	Asp	Arg	Val	Gln 320
55	Ser	Lys	Ile	Gly	Ser 325	Leu	Asp	Asn	Ile	Thr 330	His	Val	Pro	Gly	G1y 335	Gly

	Asn	Lys	Lys	11e 340	Glu	Thr	His	Lys	Leu 3 4 5	Thr	Phe	Arg	Glu	Asn 350	Ala	Lys
5	Ala	Lys	Thr 355	Asp	His	Gly	Ala	Glu 360	Ile	Val	Tyr	Lys	Ser 365	Pro	Val	Val
10	Ser	Gly 370	Asp	Thr	Ser	Pro	Arg 375	His	Leu	Ser	Asn	Val 380	Ser	Ser	Thr	Gly
	Ser 385	Ile	Asp	Met	Val	Asp 390	Ser	Pro	Gln	Leu	Ala 395	Thr	Leu	Ala	Asp	Glu 400
15	Val	Ser	Ala	Ser	Leu 405	Ala	Lys	Gln	Gly	Leu 410						
20	<210 <211 <212 <213	2>	4 383 PRT Homo	sapi	iens											
25		1> : 2>	PEPT: (1). Isofo	. (383		o										
30	<300 <300 <300	1> 2>	R.A. Cloni	ing a	and a	seque	enci	ng of	f the	e cDi	NA er	ncod:	ing a	an is	sofo	., Crowther rm of
35	<303 <304 <306	; 3> ; 4>	repea brai: EMBO 8 393-3	л. Ј.	dif	fere	ntia:	l exp	press	sion	of t	cau p	prote	ein r	nRNA:	s in human
40	<30° <30° <30° <30°	7> 0> 3> :	1989- P1063 2010-	-02-(36-6 -10-(05											
45	<313 <400		(1) 4	. (38:	3)											
50	Met 1	Ala	Glu	Pro	Arg 5	Gln	Glu	Phe	Glu	Val 10	Met	Glu	Asp	His	Ala 15	Gly
	Thr	Tyr	Gly	Leu 20	Gly	Asp	Arg	Lys	Asp 25	Gln	Gly	Gly	Tyr	Thr 30	Met	His
55	Gln	Asp	Gln 35	Glu	Gly	Asp	Thr	Asp 40	Ala	Gly	Leu	Lys	Ala 45	Glu	Glu	Ala

	Gly	Ile 50	Gly	Asp	Thr	Pro	Ser 55	Leu	Glu	Asp	Glu	Ala 60	Ala	Gly	His	Val
5	Thr 65	Gln	Ala	Arg	Met	Val 70	Ser	Lys	Ser	Lys	Asp 75	Gly	Thr	Gly	Ser	Asp 80
10	Asp	Lys	Lys	Ala	Lys 85	Gly	Ala	Asp	Gly	Lys 90	Thr	Lys	Ile	Ala	Thr 95	Pro
15	Arg	Gly	Ala	Ala 100	Pro	Pro	Gly	Gln	Lys 105	Gly	Gln	Ala	Asn	Ala 110	Thr	Arg
	Ile	Pro	Ala 115	Lys	Thr	Pro	Pro	Ala 120	Pro	Lys	Thr	Pro	Pro 125	Ser	Ser	Gly
20	Glu	Pro 130	Pro	Lys	Ser	Gly	Asp 135	Arg	Ser	Gly	Tyr	Ser 140	Ser	Pro	Gly	Ser
25	Pro 145	Gly	Thr	Pro	Gly	Ser 150	Arg	Ser	Arg	Thr	Pro 155	Ser	Leu	Pro	Thr	Pro 160
	Pro	Thr	Arg	Glu	Pro 165	Lys	Lys	Val	Ala	Val 170	Val	Arg	Thr	Pro	Pro 175	Lys
30	Ser	Pro	Ser	Ser 180	Ala	Lys	Ser	Arg	Leu 185	Gln	Thr	Ala	Pro	Val 190	Pro	Met
35	Pro	Asp	Leu 195	Lys	Asn	Val	Lys	Ser 200	Lys	Ile	Gly	Ser	Thr 205	Glu	Asn	Leu
40	Lys	His 210	Gln	Pro	_	_	_	Lys		Gln	Ile	Ile 220	Asn	Lys	Lys	Leu
	Asp 225	Leu	Ser	Asn	Val	Gln 230	Ser	Lys	Cys	Gly	Ser 235	Lys	Asp	Asn	Ile	Lys 240
45	His	Val	Pro	Gly	Gly 245	Gly	Ser	Val	Gln	11e 250	Val	Tyr	Lys	Pro	Val 255	Asp
50	Leu	Ser	Lys	Val 260	Thr	Ser	Lys	Cys	Gly 265	Ser	Leu	Gly	Asn	Ile 270	His	His
	Lys	Pro	Gly 275	Gly	Gly	Gln	Val	Glu 280	Val	Lys	Ser	Glu	Lys 285	Leu	Asp	Phe
55	Lys	Asp 290	Arg	Val	Gln	Ser	Lys 295	Ile	Gly	Ser	Leu	Asp 300	Asn	Ile	Thr	His

	Val 305	Pro	Gly	Gly	Gly	Asn 310	Lys	Lys	Ile	Glu	Thr 315	His	Lys	Leu	Thr	Phe 320
5	Arg	Glu	Asn	Ala	Lys 325	Ala	Lys	Thr	Asp	His 330	Gly	Ala	Glu	Ile	Val 335	Tyr
10	Lys	Ser	Pro	Val 340	Val	Ser	Gly	Asp	Thr 3 4 5	Ser	Pro	Arg	His	Leu 350	Ser	Asn
	Val	Ser	Ser 355	Thr	Gly	Ser	Ile	Asp 360	Met	Val	Asp	Ser	Pro 365	Gln	Leu	Ala
15	Thr	Leu 370	Ala	Asp	Glu	Val	Ser 375	Ala	Ser	Leu	Ala	Lys 380	Gln	Gly	Leu	
20	<210 <211 <212 <213	L> / 2>]	5 412 PRT Homo	sap	iens											
25	<222	L> 1 2>	PEPTI (1) Isofo	(412		<u>c</u>										
30	<300 <301 <302	L> (] 2>]	R.A. Multi seque	iple ences	ison	- forms i loc	s of	huma	an mi	icrot	tubul	le-as	ssoci	iated	d pro	., Crowther otein tau: s of
35		3> 1 1> : 5> :	Alzhe Neuro 3 519-5 1989-	on 526		disea	ase.									
40	<300 <308 <309 <313	3> : 9> :	P1063 2010- (1).	-10-0												
45	<400 Met 1		5 Glu	Pro	Arg 5	Gln	Glu	Phe	Glu	Val 10	Met	Glu	Asp	His	Ala 15	Gly
50	Thr	Tyr	Gly	Leu 20	Gly	Asp	Arg	Lys	Asp 25	Gln	Gly	Gly	Tyr	Thr 30	Met	His
55	Gln	Asp	Gln 35	Glu	Gly	Asp	Thr	Asp 40	Ala	Gly	Leu	Lys	Glu 4 5	Ser	Pro	Leu
	Gln	Thr	Pro	Thr	Glu	Asp	Glv	Ser	Glu	Glu	Pro	Glv	Ser	Glu	Thr	Ser

5	Asp 65	Ala	Lys	Ser	Thr	Pro 70	Thr	Ala	Glu	Ala	Gl u 75	Glu	Ala	Gly	Ile	Gly 80
	Asp	Thr	Pro	Ser	Leu 85	Glu	Asp	Glu	Ala	Ala 90	Gly	His	Val	Thr	Gln 95	Ala
10	Arg	Met	Val	Ser		Ser	Lys	Asp	Gly 105		Gly	Ser	Asp	Asp 110		Lys
15	Ala	Lys	Gly 115		Asp	Gly	Lys	Thr 120		Ile	Ala	Thr	Pro 125		Gly	Ala
	Ala	Pro		Gly	Gln	Lys			Ala	Asn	Ala			Ile	Pro	Ala
20	Lys	130 Thr	Pro	Pro	Ala	Pro	135 Lys	Thr	Pro	Pro	Ser	140 Ser	Gly	Glu	Pro	Pro
25	145 Lys	Ser	Gly	Asp	Arg	150 Ser	Gly	Tyr	Ser	Ser	155 Pro	Gly	Ser	Pro	Gly	160 Thr
	-	Gly	_	-	165		_	-		170		Ī			175	
30		_		180		_			185					190		_
35	Glu	Pro	Lys 195	Lys	Val	Ala	Val	Val 200	Arg	Thr	Pro	Pro	Lys 205	Ser	Pro	Ser
40	Ser	Ala 210	Lys	Ser	Arg	Leu	Gln 215	Thr	Ala	Pro	Val	Pro 220	Met	Pro	Asp	Leu
70	Lys 225	Asn	Val	Lys	Ser	Lys 230	Ile	Gly	Ser	Thr	Glu 235	Asn	Leu	Lys	His	Gln 240
45	Pro	Gly	Gly	Gly	Lys 245	Val	Gln	Ile	Ile	A sn 250	Lys	Lys	Leu	Asp	Leu 255	Ser
50	Asn	Val	Gln	Ser 260	Lys	Cys	Gly	Ser	Lys 265	Asp	Asn	Ile	Lys	His 270	Val	Pro
	Gly	Gly	Gly 275	Ser	Val	Gln	Ile	Val 280	туг	Lys	Pro	Val	Asp 285	Leu	Ser	Lys
55	Val	Thr 290	Ser	Lys	Cys	Gly	Ser 295	Leu	Gly	Asn	Ile	His 300	His	Lys	Pro	Gly

	Gly 305	Gly	Gln	Val	Glu	Val 310	Lys	Ser	Glu	Lys	Leu 315	Asp	Phe	Lys	Asp	Arg 320
5	Val	Gln	Ser	Lys	Ile 325	Gly	Ser	Leu	Asp	As n 330	Ile	Thr	His	Val	Pro 335	Gly
10	Gly	Gly	Asn	Lys 340	Lys	Ile	Glu	Thr	His 345	Lys	Leu	Thr	Phe	Arg 350	Glu	Asn
	Ala	Lys	Ala 355	Lys	Thr	Asp	His	Gly 360	Ala	Glu	Ile	Val	Tyr 365	Lys	Ser	Pro
15	Val	Val 370	Ser	Gly	Asp	Thr	Ser 375	Pro	Arg	His	Leu	Ser 380	Asn	Val	Ser	Ser
20	Thr 385	Gly	Ser	Ile	Asp	Met 390	Val	Asp	Ser	Pro	Gln 395	Leu	Ala	Thr	Leu	Ala 400
	Asp	Glu	Val	Ser	Ala 405	Ser	Leu	Ala	Lys	Gln 41 0	Gly	Leu				
25	<210 <211 <212 <213	.> 4 !> I	6 441 PRT	gani	ions											
30	\Z1 .	, ,	Omo	sab.	rens											
	<220 <221 <222 <223	.> I !>	PEPT:	. (441		r										
35	~22.		LSOIC) <u> </u>	.au-I	•										
	<300 <301		Goede	ert N	4., 5	Spill	Lant	ini 1	4.G.,	, Jal	kes I	R., I	Ruthe	erfo	rd D	., Crowther
	<302		R.A. Multi	iple	isoi	forms	s of	huma	an mi	icrot	tubu!	Le-as	ssoc	iate	d pro	otein tau:
40			seque Alzhe					zatio	on ir	n ne	ırof	ibri	llary	y tan	ngles	s of
	<303 <304 <306	3> 1 1> 3 5> 3	Neuro 3 519-5	on 526												
45	<307	'> .	1989-	-10-0)1											
	<300 <308		21063	36-8												
	<309		2010- (1)													
50	<400)> (6													
	Met 1	Ala	Glu	Pro	Arg 5	Gln	Glu	Phe	Glu	Val 10	Met	Glu	Asp	His	Ala 15	Gly
55	Thr	Tyr	Gly	Leu 20	Gly	Asp	Arg	Lys	Asp 25	Gln	Gly	Gly	Tyr	Thr	Met	His

	Gln	Asp	Gln 35	Glu	Gly	Asp	Thr	Asp 40	Ala	Gly	Leu	Lys	Glu 45	Ser	Pro	Leu
5	Gln	Thr 50	Pro	Thr	Glu	Asp	Gly 55	Ser	Glu	Glu	Pro	Gly 60	Ser	Glu	Thr	Ser
10	Asp 65	Ala	Lys	Ser	Thr	Pro 70	Thr	Ala	Glu	Asp	Val 75	Thr	Ala	Pro	Leu	Val 80
	Asp	Glu	Gly	Ala	Pro 85	Gly	Lys	Gln	Ala	Ala 90	Ala	Gln	Pro	His	Thr 95	Glu
15	Ile	Pro	Glu	Gly 100	Thr	Thr	Ala	Glu	Glu 105	Ala	Gly	Ile	Gly	Asp 110	Thr	Pro
20	Ser	Leu	Glu 115	Asp	Glu	Ala	Ala	Gly 120	His	Val	Thr	Gln	Ala 125	Arg	Met	Val
25	Ser	Lys 130	Ser	Lys	Asp	Gly	Thr 135	Gly	Ser	Asp	Asp	Lys 140	Lys	Ala	Lys	Gly
	Ala 145	Asp	Gly	Lys	Thr	Lys 150	Ile	Ala	Thr	Pro	Arg 155	Gly	Ala	Ala	Pro	Pro 160
30	Gly	Gln	Lys	Gly	Gln 165	Ala	Asn	Ala	Thr	Ar g 170	Ile	Pro	Ala	Lys	Thr 175	Pro
35	Pro	Ala	Pro	Lys 180	Thr	Pro	Pro	Ser	Ser 185	Gly	Glu	Pro	Pro	Lys 190	Ser	Gly
40	Asp	Arg	Ser 195	Gly	Tyr	Ser	Ser		_		Pro	_	Thr 205	Pro	Gly	Ser
	Arg	Ser 210	Arg	Thr	Pro	Ser	Leu 215	Pro	Thr	Pro	Pro	Thr 220	Arg	Glu	Pro	Lys
45	Lys 225	Val	Ala	Val	Val	Arg 230	Thr	Pro	Pro	Lys	Ser 235	Pro	Ser	Ser	Ala	Lys 240
50	Ser	Arg	Leu	Gln	Thr 245	Ala	Pro	Val	Pro	Met 250	Pro	Asp	Leu	Lys	As n 255	Val
55	Lys	Ser	Lys	Ile 260	Gly	Ser	Thr	Glu	A sn 265	Leu	Lys	His	Gln	Pro 270	Gly	Gly
	Gly	Lys	Val	Gln	Ile	Ile	Asn	Lys	Lys	Leu	Asp	Leu	Ser	Asn	Val	Gln

5	Ser Lys Cys Gly Ser Lys Asp Asn Ile Lys His Val Pro Gly Gly Gly 290 295 300
	Ser Val Gln Ile Val Tyr Lys Pro Val Asp Leu Ser Lys Val Thr Ser 305 310 315 320
10	Lys Cys Gly Ser Leu Gly Asn Ile His His Lys Pro Gly Gly Gln 325 330 335
15	Val Glu Val Lys Ser Glu Lys Leu Asp Phe Lys Asp Arg Val Gln Ser 340 345 350
20	Lys Ile Gly Ser Leu Asp Asn Ile Thr His Val Pro Gly Gly Gly Asn 355 360 365
05	Lys Lys Ile Glu Thr His Lys Leu Thr Phe Arg Glu Asn Ala Lys Ala 370 375 380
25	Lys Thr Asp His Gly Ala Glu Ile Val Tyr Lys Ser Pro Val Val Ser 385 390 395 400
30	Gly Asp Thr Ser Pro Arg His Leu Ser Asn Val Ser Ser Thr Gly Ser 405 410 415
35	Ile Asp Met Val Asp Ser Pro Gln Leu Ala Thr Leu Ala Asp Glu Val 420 425 430
	Ser Ala Ser Leu Ala Lys Gln Gly Leu 435 440
40	<210> 7 <211> 7 <212> PRT <213> artificial sequence
45	<220> <223> Epitope recognized by NI-105.4E4 antibody
50	<220> <221> PEPTIDE <222> (1)(7) <223> Epitope NI-105.4E4
55	< 4 00> 7
	Val Glu Val Lys Ser Glu Lys 1 5

```
<210> 8
        <211> 363
        <212> DNA
        <213> Homo sapiens
5
        <220>
        <221> CDS
        <222>
              (1) . . (363)
        <223> NI-105.4E4-VH variable heavy chain (VH) sequence
10
        <220>
        <221> V_region
        <222>
              (91) . . (105)
        <223> complementarity determining region (CDR) VH-CDR1
        <220>
        <221> V_region
        <222>
              (148) . . (204)
        <223> complementarity determining region (CDR) VH-CDR2
        <220>
20
        <221> V_region
        <222>
              (301) . . (330)
        <223> complementarity determining region (CDR) VH-CDR3
        <400> 8
                                                                                 48
        gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg gga
        Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                                             10
        tcc ctg aaa ctc tcc tgt gca gcc tct ggg ttc aat ttc aac atc tct
                                                                                 96
        Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Asn Phe Asn Ile Ser
30
        gct ata cac tgg gtc cgc cag gct tcc ggg aaa ggg ctg gag tgg gtt
                                                                                144
        Ala Ile His Trp Val Arg Gln Ala Ser Gly Lys Gly Leu Glu Trp Val
                                    40
35
        ggc cga ata aga agt aaa tct cac aat tac gcg act tta tat gct gcg
                                                                                192
        Gly Arg Ile Arg Ser Lys Ser His Asn Tyr Ala Thr Leu Tyr Ala Ala
                                55
                                                                                240
        tcc ctg aaa ggc cgg ttc acc ctc tcc aga gat gat tca agg aac acg
40
        Ser Leu Lys Gly Arg Phe Thr Leu Ser Arg Asp Asp Ser Arg Asn Thr
                            70
                                                 75
                                                                                288
        gcg tat ctg caa atg agc agc ctg caa acc gag gat atg gcc gtc tat
        Ala Tyr Leu Gln Met Ser Ser Leu Gln Thr Glu Asp Met Ala Val Tyr
                        85
45
        tac tgt act gtt ctg agt gcg aat tac gac acc ttt gac tac tgg ggc
                                                                                336
        Tyr Cys Thr Val Leu Ser Ala Asn Tyr Asp Thr Phe Asp Tyr Trp Gly
                    100
                                         105
                                                             110
50
        cag gga acc ctg gtc acc gtc tcc tcg
                                                                                363
        Gln Gly Thr Leu Val Thr Val Ser Ser
                115
                                    120
        <210>
               9
55
        <211> 121
        <212> PRT
```

	<213>	Homo	sapi	lens												
	<400>	9														
5	Glu Val	l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
10	Ser Le	ı Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asn	Phe	Asn 30	Ile	Ser	
	Ala Ile	His	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
15	Gly Arg	J Ile	Arg	Ser	Lys	Ser 55	His	Asn	Tyr	Ala	Thr 60	Leu	Tyr	Ala	Ala	
20	Ser Let	ı Lys	Gly	Arg	Phe 70	Thr	Leu	Ser	Arg	Asp 75	Asp	Ser	Arg	Asn	Thr 80	
25	Ala Ty	r Leu	Gln	Met 85	Ser	Ser	Leu	Gln	Thr 90	Glu	Asp	Met	Ala	Val 95	Tyr	
25	Tyr Cys	5 Thr	Val 100	Leu	Ser	Ala	Asn	Туг 105	Asp	Thr	Phe	Asp	Туг 110	Trp	Gly	
30	Gln Gly	7 Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
35	<210> <211> <212> <213>	10 321 DNA Homo	sapi	lens												
40	<220> <221> <222> <223>	(1).	05 . 4E sequ	E4-VI												aminc
45	<220> <221> <222> <223>	(67)	(99	-	ity (dete	rmini	ing 1	regio	on (C	CDR)	VL-0	CDR1			
50	<220> <221> <222> <223>	(145)	(1		ity (dete	rmini	ing 1	regio	on (0	CDR)	VL-(CDR2			
55	<220> <221> <222> <223>	(262)	(2		ity (let e :	rmini	ing 1	regio	on ((CDR)	VL-0	CDR3			

	<400)> 1	LO															
_		tat Tyr																48
5	_	gcc Ala				-			_		_		_					96
10		tgg Trp		_	_	_			_	_							1	.44
15		gac Asp 50										_					1	.92
	_	tca Ser				_		_			_		_	_	_	_	2	40
20	_	gag Glu	_	_			_			_	_		_	-			2	88
25		ttc Phe					_			_							3	21
	<210	O> 1	L 1															
30	<21: <21: <21:	1> 1 2> I	L07 PRT	sapi	lens													
30	<21:	1> 1 2> I 3> I	LO7 PRT Homo	sapi	lens													
30	<213 <213 <213 <400	1> 1 2> I 3> I	LO7 PRT Homo	_		Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ser	Pro	Gly 15	Gln		
	<21: <21: <21: <400 Ser 1	1> 1 2> 1 3> 1 0> 1	LO7 PRT Homo L1 Glu	Leu	Thr 5					10					15			
35	<21: <21: <21: <400 Ser 1	1> 1 2> I 3> I 0> 1	LO7 PRT Homo L1 Glu Arg	Leu Ile 20	Thr 5 Ser	Cys	Phe	Gly	Asp 25	10 Thr	Leu	Pro	Lys	Gln 30	15 Tyr	Thr		
35	<21: <21: <21: <400 Ser 1 Thr	1> 1 2> 1 3> 1 0> 1 Tyr	LO7 PRT Homo L1 Glu Arg	Leu Ile 20	Thr 5 Ser Gln	Cys Lys	Phe Pro	Gly Gly 40	Asp 25 Gln	10 Thr	Leu Pro	Pro Val	Lys Leu 45	Gln 30 Val	15 Tyr Ile	Thr Tyr		
35 40	<21: <21: <21: <400 Ser 1 Thr Tyr	1 > 1	LO7 PRT Homo L1 Glu Arg Tyr 35	Leu Ile 20 Gln	Thr 5 Ser Gln Arg	Cys Lys Pro	Phe Pro Ser 55	Gly Gly 40	Asp 25 Gln Ile	Thr Ala	Leu Pro Glu	Pro Val Arg 60	Lys Leu 45 Phe	Gln 30 Val	Tyr Ile	Thr Tyr Ser		
35 40 45	<21: <21: <21: <400 Ser 1 Thr Tyr Lys Ser 65	1> 1 2> 1 3> 1 3> 1 7 Tyr Ala Trp 50	LO7 PRT Homo L1 Glu Arg Tyr 35 Thr	Leu Ile 20 Gln Glu	Thr 5 Ser Gln Arg	Cys Lys Pro Val 70	Phe Pro Ser 55	Gly 40 Gly Leu	Asp 25 Gln Ile	Thr Ala Pro	Leu Pro Glu Ser 75	Pro Val Arg 60	Lys Leu 45 Phe Val	Gln 30 Val Ser	Tyr Ile Gly	Thr Tyr Ser Glu 80		

100 105

5	<210> <211> <212> <213>	345 DNA	sapie	ens											
10	<220> <221> <222> <223>	(1) NI-1()5.24E				_				_	ience	e whe	erein	Gln at
15	<220> <221> <222> <223>	(91)	. (105	5) carity (deter	mini	ing 1	regio	on (0	CDR)	VH-C	CDR1			
20	<220> <221> <222> <223>	(148)	(19	98) carity (deter	mini	ing 1	regio	on (0	CDR)	VH-C	CDR2			
25	<220> <221> <222> <223>	(295)	(31	l2) carity (deter	mini	ing 1	regio	on (C	CDR)	VH-C	CDR3			
30				gtg cag Val Gln											48
35		_	_	cc tgt Ser Cys	_	_						_			96
				gtg cga Val A rg	_	_								_	144
40		e Ile		cct aat Pro Asn					_		_				192
45		_	_	acc ttg Thr Leu 70		_	_	_		_	-	_			240
50		_	Ser S	agc ctg Ser Leu 35				_	_	_	_			_	288
	-			cct tcg Pro Ser					_			_	_		336
55	gtc tc Val Se	_													345

	<210 <211 <212 <213	L> ?>	13 115 PRT Homo	sapi	iens												
5	<400)>	13	_													
	Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala	
10																	
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Val 30	Asn	Tyr	
15	Ile	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Le u 4 5	Glu	Trp	Met	
20	Gly	11e 50	lle	Asn	Pro	Asn	Gly 55	Gly	Asn	Thr	Ser	Tyr 60	Ala	Glu	Lys	Phe	
	Gln 65	Ala	Arg	Val	Thr	Le u 70	Thr	Ser	Asp	Thr	Ser 75	Thr	Ser	Thr	Val	Tyr 80	
25	Met	Asp	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
30	Ala	Val	Leu	Ser 100	Pro	Ser	Asn	Pro	Trp 105	Gly	Gln	Gly	Thr	Thr 110	Val	Thr	
	Val	Ser	Ser 115														
35																	
	<210 <211 <212 <213	L> 2>	14 324 DNA Homo	sapi	iens												
40		-		oup.													
45	<220 <221 <222 <223	L> ?> }>		05.24	4B2-V									ience	e who	erein	Glu at
	-000		posit	tion	3 i	n the	e sed	quen	ce ma	ay al	lso h	oe Va	al				
	<220 <221		V_re	rion													
			(67)		9)												
50	<223		comp	-		ity (dete	rmin	ing :	regio	on (0	CDR)	VL-0	CDR1			
55		L> 2>	V_rec	(1		ity (dete	rmini	ing :	regio	on (0	CDR)	VL-0	CDR2			
	<220)>															

	<221> <222> <223>	V_re(262)	(2		ity (dete	mini	ing 1	regio	on (0	CDR)	VL-(CDR3			
5	<400>	14														
	tcc tat Ser Ty: 1		_		_			_							_	48
10	acg gco				_			-	_	_		_			_	96
15	tat tgg Tyr Tr		_	_	_			_	_				_			144
	aaa gad Lys Asi 50						_				_					192
20	acc tca Thr Ser 65				_		_					_	_	_		240
25	gac gad Asp Glu		_			_			_	_	_	_		_		288
	tgg gtg	-					_	_		_						324
30	<210>	15														
	<211> <212>	108 PRT														
35	<213>		sap	Lens												
	<400>	15														
	Ser Tyr	r Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ser	Pro	Gly 15	Gln	
40																
	Thr Ala	a Gly	Ile 20	Thr	Cys	Ser	Gly	Asp 25	Ala	Leu	Pro	Lys	Gln 30	Phe	Val	
45	Tyr Tr	35	Gln	Lys	Lys	Pro	Gly 40	Gl n	Ala	Pro	Val	Leu 45	Leu	Ile	Tyr	
50	Lys Asp 50	Thr	Glu	Arg	Pro	Ser 55	Arg	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Thr Ser	r Gly	Thr	Thr	Val 70	Ala	Leu	Thr	Ile	Asn 75	Gly	Val	Gln	Ala	Glu 80	
55	Asp Glu	ı Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Ala 90	Asp	Arg	Ser	Gly	Ala 95	Leu	

Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105

5	<210> <211> <212> <213>	16 378 DNA Homo sap	piens						
10	<220> <221> <222> <223>	(1) (3° NI-105.4	4A3-VH va		_		_	erein Gln at t position 7	
15	1000	_	sequence	_	_	JO DC 014		e pooreren ,	
20		V_region (91)(3 compleme	105)	determin	ing regi	on (CDR) '	VH-CDR1		
	<220> <221> <222> <223>	(148)	(198)	determin	ing regi	on (CDR) V	VH-CDR2		
25	<220> <221>	V_region (295)	n.	accemin.	ing regr	on (obit)	VII ODINE		
30	<223> <400>	compleme	entarity			on (CDR) '			
35							cag cct gg Gln Pro Gl 15	y Gly	48
							ttc agt ga Phe Ser As 30		96
40						Lys Gly	ctg cag tg Leu Gln Tr 45		144
45		l Ile Se					gca gac to Ala Asp Se		192
50		_		_	_	_	aac acg ct Asn Thr Le	-	240
50	_						gtg tat tt Val Tyr Ph 95	e Cys	288
55			Ala Phe				acc tcc ac Thr Ser Th 110		336

	cct ga Pro As															378
5	<210> <211> <212> <213>	17 126 PRT Homo	sapi	iens												
10	<400>	17														
	Gln Va 1	l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Ala	Val	Gln	Pro	Gly 15	Gly	
15	Ser Le	u Ar g	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr	
20	Ala Me	t His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Gln	Trp	Val	
25	Ala Va 50		Ser	Tyr	Glu	Gly 55	Thr	Tyr	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val	
20	Lys Gl 65	y Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Asn 80	
30	Leu Gl	n Met	Ser	Ser 85	Leu	Arg	Val	Glu	Asp 90	Thr	Ala	Val	Tyr	Phe 95	Cys	
35	Val Ly	s Ala	Arg 100	Ala	Phe	Ala	Ser	Gly 105	Gln	Arg	Ser	Thr	Ser 110	Thr	Val	
	Pro As	р Туг 115	Trp	Gly	Gln	Gly	Thr 120	Leu	Val	Thr	Val	Ser 125	Ser			
40	<210> <211> <212> <213>	324 DNA	sapi	iens												
45	<220> <221> <222> <223>	(1).			L va:	riab:	l e 1 :	ight	cha	in ('	VL) :	seque	ence			
50	<220> <221> <222> <223>	(67)	(99		ity (dete	rmin:	ing :	regio	on ((CDR)	VL-	CDR1			
55	<220> <221> <222>	_	_	165)												

	<223> complementarity determining region (CDR) VL-CDR2	
5	<220> <221> V_region <222> (262)(294) <223> complementarity determining region (CDR) VL-CDR3	
10	<pre><400> 18 tcc tat gag ctg act cag cca ccc tcg gtg tca gtg tcc cca gga caa Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln 1 5 10 15</pre>	48
	acg gcc agg atc acc tgc tct gga gat gca ttg cca aaa aaa tat gct Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Lys Tyr Ala 20 25 30	96
15	tat tgg tac cag cag aag tca ggc cag gcc cct gtg ttg gtc atc tat 1 Tyr Trp Tyr Gln Gln Lys Ser Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45	44
20	gag gac aac aaa cga ccc tcc ggg atc cct gag aga ttc tct ggc tcc 1 Glu Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60	92
25	agc tca ggg aca gtg gcc acc ttg act atc agt ggg gcc cag gtg gac 2 Ser Ser Gly Thr Val Ala Thr Leu Thr Ile Ser Gly Ala Gln Val Asp 65 70 75 80	40
	gat gaa gct gac tac tac tgc tac tcg aca gac atc agt ggt gac ctt 2 Asp Glu Ala Asp Tyr Tyr Cys Tyr Ser Thr Asp Ile Ser Gly Asp Leu 85 90 95	88
30	cgg gtg ttc ggc gga ggg acc aag ctg acc gtc ctc Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu 100 105	24
35	<210> 19 <211> 108 <212> PRT <213> Homo sapiens	
40	<400> 19	
	Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln 1 5 10 15	
45	Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Lys Tyr Ala 20 25 30	
50	Tyr Trp Tyr Gln Gln Lys Ser Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45	
	Glu Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60	
55	Ser Ser Gly Thr Val Ala Thr Leu Thr Ile Ser Gly Ala Gln Val Asp 65 70 75 80	

	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Tyr	Ser	Thr 90	Asp	Ile	Ser	Gly	Asp 95	Leu
5	Arg	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu				
10	<210 <211 <212 <213	L> 4 2> I	20 451 PRT Arti	ficia	al se	equer	ıce									
15	<220 <223	3> r	natuı	re ch	14E4	heav	y ch	nain	(mou	ıse l	[gG2a	ı)				
20	<400 Glu 1		20 Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
20	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asn	Phe	Asn 30	Ile	Ser
25	Ala	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
30	Gly	Arg 50	Ile	Arg	Ser	Lys	Ser 55	His	Asn	Tyr	Ala	Thr 60	Leu	Tyr	Ala	Ala
35	Ser 65	Leu	Lys	Gly	Arg	Phe 70	Thr	Leu	Ser	Arg	Asp 75	Asp	Ser	Arg	Asn	Thr 80
	Ala	Tyr	Leu	Gln	Met 85	Ser	Ser	Leu	Gln	Thr 90	Glu	Asp	Met	Ala	Val 95	Tyr
40	Tyr	Cys	Thr	Val 100	Leu	Ser	Ala	Asn	Tyr 105	Asp	Thr	Phe	Asp	Туг 110	Trp	Gly
45	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Ala	Lys	Thr	Thr 125	Ala	Pro	Ser
50	Val	Tyr 130	Pro	Leu	Ala	Pro	Val 135	Cys	Gly	Asp	Thr	Thr 140	Gly	Ser	Ser	Val
	Thr 145	Leu	Gly	Cys	Leu	Val 150	Lys	Gly	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Leu 160
55	Thr	Trp	Asn	Ser	Gly 165	Ser	Leu	Ser	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala

	Val	Leu	Gln	Ser 180	Asp	Leu	Tyr	Thr	Leu 185	Ser	Ser	Ser	Val	Thr 190	Val	Thr
5	Ser	Ser	Thr 195	Trp	Pro	Ser	Gln	Ser 200	Ile	Thr	Cys	Asn	Val 205	Ala	His	Pro
10	Ala	Ser 210	Ser	Thr	Lys	Val	Asp 215	Lys	Lys	Ile	Glu	Pro 220	Arg	Gly	Pro	Thr
	Ile 225	Lys	Pro	Суѕ	Pro	Pro 230	Cys	Lys	Суѕ	Pro	Ala 235	Pro	Asn	Leu	Leu	Gly 240
15	Gly	Pro	Ser	Val	Phe 2 4 5	Ile	Phe	Pro	Pro	Lys 250	Ile	Lys	Asp	Val	Leu 255	Met
20	Ile	Ser	Leu	Ser 260	Pro	Ile	Val	Thr	Cys 265	Val	Val	Val	Asp	Val 270	Ser	Glu
25	Asp	Asp	Pro 275	Asp	Val	Gln	Ile	Ser 280	Trp	Phe	Val	Asn	Asn 285	Val	Glu	Val
	His	Thr 290	Ala	Gln	Thr	Gln	Thr 295	His	Arg	Glu	Asp	Tyr 300	Asn	Ser	Thr	Leu
30	A rg 305	Val	Val	Ser	Ala	Le u 310	Pro	Ile	Gln	His	Gln 315	Asp	Trp	Met	Ser	Gly 320
35	Lys	Glu	Phe	Lys	Cys 325	Lys	Val	Asn	Asn	Lys 330	Asp	Leu	Pro	Ala	Pro 335	Ile
	Glu	Arg	Thr	Ile 3 4 0	Ser	_		_	_	Ser		Arg	Ala	Pro 350		Val
40	Tyr	Val	Leu 355	Pro	Pro	Pro	Glu	Glu 360	Glu	Met	Thr	Lys	Lys 365	Gln	Val	Thr
45	Leu	Thr 370	Суѕ	Met	Val	Thr	Asp 375	Phe	Met	Pro	Glu	Asp 380	Ile	Tyr	Val	Glu
50	Trp 385	Thr	Asn	Asn	Gly	Lys 390	Thr	Glu	Leu	Asn	Tyr 395	Lys	Asn	Thr	Glu	Pro 400
	Val	Leu	Asp	Ser	Asp 405	Gly	Ser	Tyr	Phe	Met 410	Tyr	Ser	Lys	Leu	Arg 415	Val
55	Glu	Lys	Lys	Asn 420	Trp	Val	Glu	Arg	Asn 425	Ser	Tyr	Ser	Cys	Ser 430	Val	Val

5	Pro	Gly 450	Lys													
10	<210 <211 <212 <213	1> 2 2> 1	21 213 PRT Arti	ficia	al se	equei	nce									
15		3> 1	matuı	re cl	n4E4	ligl	nt el	nain	(moı	ıse İ	Lambo	da)				
	<400)> :	21													
20	Ser 1	Tyr	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ser	Pro	Gly 15	Gln
	Thr	Ala	Arg	Ile 20	Ser	Cys	Phe	Gly	Asp 25	Thr	Leu	Pro	Lys	Gln 30	Tyr	Thr
25	Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr
30	Lys	Asp 50	Thr	Glu	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
35	Ser 65	Ser	Gly	Thr	Thr	Val 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Val	Gln	Ala	Glu 80
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Leu	Ser	Ala 90	Asp	Asn	Ser	Ala	Thr 95	Trp
40	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Val	Thr 105	Val	Leu	Gly	Gln	Pro 110	Lys	Ser
45	Ser	Pro	Ser 115	Val	Thr	Leu	Phe	Pro 120	Pro	Ser	Ser	Glu	Glu 125	Leu	Glu	Thr
50	Asn	Lys 130	Ala	Thr	Leu	Val	Cys 135	Thr	Ile	Thr	Asp	Phe 140	Tyr	Pro	Gly	Val
	Val 145	Thr	Val	Asp	Trp	Lys 150	Val	Asp	Gly	Thr	Pro 155	Val	Thr	Gln	Gly	Met 160
55	Glu	Thr	Thr	Gln	Pro 165	Ser	Lys	Gln	Ser	As n 170	Asn	Lys	Tyr	Met	Ala 175	Ser

	Ser Tyr Le	u Thr Leu 180	Thr Ala	Arg Ala 185	Trp Glu A	rg His Ser Ser Tyr 190
5	Ser Cys Gl 19		His Glu	Gly His 200	Thr Val G	lu Lys Ser Leu Ser 205
10	Arg Ala As 210	p Cys Ser				
15	<210> 22 <211> 451 <212> PRT <213> Art	ificial s	equence			
		ure ch4E4	(N30Q) h	eavy chai	in (mouse	IgG2a)
20	<400> 22 Glu Val Gl 1	n Leu Val 5	Glu Ser	Gly Gly	Gly Leu V	al Gln Pro Gly Gly 15
25	Ser Leu Ly	s Leu Ser 20	Cys Ala	Ala Ser 25	Gly Phe A	sn Phe Gln Ile Ser 30
30	Ala Ile Hi 35	s Trp Val	Arg Gln	Ala Ser 40	Gly Lys G	ly Leu Glu Trp Val 45
	Gly Arg Il 50	e Arg Ser	Lys Ser 55	His Asn	Tyr Ala T	hr Leu Tyr Ala Ala O
35	Ser Leu Ly 65	s Gly Arg	Phe Thr 70	Leu Ser	Arg Asp A 75	sp Ser Arg Asn Thr 80
40	Ala Tyr Le	u Gln Met 85	Ser Ser	Leu Gln	Thr Glu A	sp Met Ala Val Tyr 95
	Tyr Cys Th	r Val Leu 100	Ser Ala	Asn Tyr 105	Asp Thr P	ne Asp Tyr Trp Gly 110
45	Gln Gly Th		Thr Val	Ser Ser 120	Ala Lys T	nr Thr Ala Pro Ser 125
50	Val Tyr Pr 130	o Leu Ala	Pro Val 135	Cys Gly	_	hr Gly Ser Ser Val 40
55	Thr Leu Gl 145	y Cys Leu	Val Lys 150	Gly Tyr	Phe Pro G	lu Pro Val Thr Leu 160
	Thr Trp As	n Ser Gly	Ser Leu	Ser Ser	Gly Val H	is Thr Phe Pro Ala

					165					170					175	
5	Val	Leu	Gln	Ser 180	Asp	Leu	Tyr	Thr	Leu 185	Ser	Ser	Ser	Val	Thr 190	Val	Thr
10	Ser	Ser	Thr 195	Trp	Pro	Ser	Gln	Ser 200	Ile	Thr	Cys	Asn	Val 205	Ala	His	Pro
	Ala	Ser 210	Ser	Thr	Lys	Val	Asp 215	Lys	Lys	Ile	Glu	Pro 220	Arg	Gly	Pro	Thr
15	Ile 225	Lys	Pro	Cys	Pro	Pro 230	Cys	Lys	Суз	Pro	Ala 235	Pro	Asn	Leu	Leu	Gly 240
20	Gly	Pro	Ser	Val	Phe 245	Ile	Phe	Pro	Pro	Lys 250	Ile	Lys	Asp	Val	Leu 255	Met
25	Ile	Ser	Leu	Ser 260	Pro	Ile	Val	Thr	Cys 265	Val	Val	Val	Asp	Val 270	Ser	Glu
25	Asp	Asp	Pro 275	Asp	Val	Gln	Ile	Ser 280	Trp	Phe	Val	Asn	As n 285	Val	Glu	Val
30	His	Thr 290	Ala	Gln	Thr	Gln	Thr 295	His	Arg	Glu	Asp	Tyr 300	Asn	Ser	Thr	Leu
35	Arg 305	Val	Val	Ser	Ala	Leu 310	Pro	Ile	Gln	His	Gln 315	Asp	Trp	Met	Ser	Gly 320
	Lys	Glu	Phe	Lys	Cys 325	_							Pro		Pro 335	
40	Glu	Arg	Thr	Ile 340	Ser	Lys	Pro	Lys	Gly 3 4 5	Ser	Val	Arg	Ala	Pro 350	Gln	Val
45	Tyr	Val	Leu 355	Pro	Pro	Pro	Glu	Glu 360	Glu	Met	Thr	Lys	Lys 365	Gln	Val	Thr
50	Leu	Thr 370	Cys	Met	Val	Thr	Asp 375	Phe	Met	Pro	Glu	Asp 380	Ile	Tyr	Val	Glu
	Trp 385	Thr	Asn	Asn	Gly	Lys 390	Thr	Glu	Leu	Asn	Tyr 395	Lys	Asn	Thr	Glu	Pro 400
55	Val	Leu	Asp	Ser	Asp 405	Gly	Ser	Tyr	Phe	Met 410	Tyr	Ser	Lys	Leu	Arg 415	Val

	Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val 420 425 430
5	His Glu Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr 435 440 445
10	Pro Gly Lys 450
15	<210> 23 <211> 5 <212> PRT <213> Artificial sequence <220> <223> NI-105.4E4-VH (variable heavy chain sequence VH) CDR1
20	<400> 23 Ile Ser Ala Ile His 1 5
25	<210> 24 <211> 19 <212> PRT <213> Artificial sequence
30	<220> <223> NI-105.4E4-VH (variable heavy chain sequence VH) CDR2
35	<pre><400> 24 Arg Ile Arg Ser Lys Ser His Asn Tyr Ala Thr Leu Tyr Ala Ala Ser 1</pre>
	Leu Lys Gly
40	<210> 25 <211> 10 <212> PRT <213> Artificial sequence
45	<220> <223> NI-105.4E4-VH (variable heavy chain sequence VH) CDR3
	<4 00> 25
50	Leu Ser Ala Asn Tyr Asp Thr Phe Asp Tyr 1 5 10
55	<210> 26 <211> 11 <212> PRT <213> Artificial sequence

```
<220>
             <223> NI-105.4E4-VL (variable light chain sequence VL) CDR1
             <400> 26
5
             Phe Gly Asp Thr Leu Pro Lys Gln Tyr Thr Tyr
                             5
             <210> 27
10
             <211>
                    7
             <212> PRT
<213> Artificial sequence
             <220>
             <223> NI-105.4E4-VL (variable light chain sequence VL) CDR2
15
             <400> 27
             Lys Asp Thr Glu Arg Pro Ser
20
             <210> 28
             <211> 10
             <212> PRT
             <213> Artificial sequence
25
             <220>
             <223> NI-105.4E4-VL (variable light chain sequence VL) CD3
             <400> 28
30
             Leu Ser Ala Asp Asn Ser Ala Thr Trp Val
                             5
             <210> 29
35
             <211> 5
             <212> PRT
             <213> Artificial sequence
             <220>
             <223> NI-105.24B2-VH (variable heavy chain sequence VH) CDR1
40
             <400> 29
             Asn Tyr Ile Ile His
45
             <210>
                    30
             <211>
                    17
             <212> PRT
             <213> Artificial sequence
50
             <220>
             <223> NI-105.24B2-VH (variable heavy chain sequence VH) CD2
             <400> 30
55
             Ile Ile Asn Pro Asn Gly Gly Asn Thr Ser Tyr Ala Glu Lys Phe Gln
                                                  10
```

Ala

```
<210> 31
5
            <211> 6
            <212> PRT
            <213> Artificial sequence
            <220>
10
            <223> NI-105.24B2-VH (variable heavy chain sequence VH) CDR3
            <400> 31
            Leu Ser Pro Ser Asn Pro
15
            <210> 32
            <211> 11
            <212> PRT
20
            <213> Artificial sequence
            <220>
            <223> NI-105.24B2-VL (variable light chain sequence VL) CDR1
25
            <400> 32
            Ser Gly Asp Ala Leu Pro Lys Gln Phe Val Tyr
30
            <210> 33
            <211>
                   7
            <212> PRT
            <213> Artificial sequence
35
            <220>
            <223> NI-105.24B2-VL (variable light chain sequence VL) CDR2
            <400> 33
            Lys Asp Thr Glu Arg Pro Ser
40
                             5
            <210> 34
            <211> 11
45
            <212> PRT
            <213> Artificial sequence
            <220>
            <223> NI-105.24B2-VL (variable light chain sequence VL) CDR3
50
            <400>
            Gln Ser Ala Asp Arg Ser Gly Ala Leu Trp Val
                             5
55
            <210> 35
```

```
<211> 5
            <212> PRT
            <213> Artificial sequence
           <220>
5
            <223> NI-105.4A3-VH (variable heavy chain sequence VH) CDR1
            <400> 35
           Asp Tyr Ala Met His
10
            <210> 36
            <211> 17
15
            <212> PRT
            <213> Artificial sequence
            <220>
            <223> NI-105.4A3-VH (variable heavy chain sequence VH) CDR2
20
            <400> 36
            Val Ile Ser Tyr Glu Gly Thr Tyr Lys Tyr Tyr Ala Asp Ser Val Lys
25
            Gly
           <210> 37
30
            <211> 17
            <212> PRT
            <213> Artificial sequence
           <220>
35
            <223> NI-105.4A3-VH (variable heavy chain sequence VH) CDR3
            <400> 37
            Ala Arg Ala Phe Ala Ser Gly Gln Arg Ser Thr Ser Thr Val Pro Asp
40
                                                10
            Tyr
45
            <210> 38
            <211> 11
            <212> PRT
            <213> Artificial sequence
50
            <220>
            <223> NI-105.4A3-VL (variable light chain sequence VL) CDR1
            <400> 38
55
            Ser Gly Asp Ala Leu Pro Lys Lys Tyr Ala Tyr
```

```
<210> 39
               <211> 7
               <212> PRT
               <213> Artificial sequence
5
               <220>
               <223> NI-105.4A3-VL (variable light chain sequence VL) CDR2
               <400> 39
10
               Glu Asp Asn Lys Arg Pro Ser
               <210> 40
               <211> 11
15
               <212> PRT
               <213> Artificial sequence
               <220>
               <223> NI-105.4A3-VL (variable light chain sequence VL) CDR3
20
               <400> 40
               Tyr Ser Thr Asp Ile Ser Gly Asp Leu Arg Val
                               5
25
               <210> 41
               <211> 11
               <212> PRT
               <213> Artificial sequence
30
               <220>
               <223> Peptide
               <400> 41
35
               Asp His Gly Ala Glu Ile Val Tyr Lys Ser Pro
               <210> 42
               <211> 15
40
               <212> PRT
               <213> Artificial sequence
               <220>
               <223> Peptide
45
               <400> 42
               Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Glu Ser Pro Leu Gln
                               5
                                                    10
50
               <210> 43
<211> 121
<212> PRT
               <213> Artificial sequence
55
               <220>
               <223> VH antibody
```

	<400)> 4	43													
5	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gl
	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asn	Phe	Gln 30	Ile	Ser
10	Ala	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Gly	Arg 50	Ile	Arg	Ser	Lys	Ser 55	His	Asn	Tyr	Ala	Thr 60	Leu	Tyr	Ala	Ala
	Ser 65	Leu	Lys	Gly	Arg	Phe 70	Thr	Leu	Ser	Arg	Asp 75	Asp	Ser	Arg	Asn	Thr 80
20	Ala	Tyr	Leu	Gln	Met 85	Ser	Ser	Leu	Gln	Thr 90	Glu	Asp	Met	Ala	Val 95	Туг
25	Tyr	Cys	Thr	Val 100	Leu	Ser	Ala	Asn	Туг 105	Asp	Thr	Phe	Asp	Туг 110	Trp	Gly
30	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
35	<210 <211 <212 <213	l> : 2> 1	44 120 PRT Homo	sapi	iens											
	<400)> 4	44													
40	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Ala	Phe 25	Gly	Tyr	Ser	Phe	Thr 30	Asn	Phe
45	Trp	Ile	Gly 35	Trp	Val	Arg	Gln	Val 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
50	Gly	Ile 50	Ile	Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
55	Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Asp	Thr	Ala	Ту1 80
	Leu	Gln	Trp	Gly	His	Leu	Lys	Ala	Ser	Asp	Ser	Ala	Met	Tyr	Phe	Cys

				85					90					95	
5	Ala Are	g Arg	Gly 100	Phe	Trp	Thr	Gly	Ser 105	Gln	Ile	Glu	Tyr	Trp 110	Gly	Gln
10	Gly Th	r Leu 115	Val	Thr	Val	Ser	Ser 120								
10	-210-	45													
15	<210> <211> <212> <213>	45 120 PRT Homo	sapi	iens											
	<400>	45													
20	Glu Vai	l Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
	Ser Le	ı Lys	Ile 20	Ser	Cys	Lys	Ala	Phe 25	Gly	Tyr	Ser	Phe	Thr 30	Asn	Phe
25	Trp Ile	e Gly 35	Trp	Val	Arg	Gln	Val 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
30	Gly Ile 50	e Ile	Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
	Gln Gly 65	y Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Asp	Thr	Ala	Tyr 80
35	Leu Gli	n Trp	Gly	His 85	Leu	Lys	Ala	Ser	Asp 90	Ser	Ala	Met	Tyr	Phe 95	Cys
40	Ala Ar	g Arg	Gly 100	Phe	Trp	Thr	Gly	Ser 105	Gln	Ile	Glu	Tyr	Trp 110	Gly	Gln
45	Gly Th	r Gln 115	Val	Thr	Val	Ser	Ser 120								
40	<210>	46													
	<211> <212>	111 PRT													
50	<213>	Homo	sapi	iens											
•	<400>	46													
	Gln Se	r Ala	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Ser	Pro	Gly 15	His
55	Ser Va	l Thr	Ile	Ser	Cys	Thr	Gly	Thr	Ser	Ser	Asp	Val	Gly	Asn	Tyr

5	Ser	Phe	Val 35	Ser	Trp	Tyr	Gln	Gln 40	Tyr	Pro	Gly	Lys	Ala 45	Pro	Lys	Val
	Ile	Ile 50	Tyr	Asp	Val	Ser	Lys 55	Arg	Ser	Ser	Gly	Val 60	Pro	Asp	Arg	Phe
10	Phe 65	Gly	Ser	Lys	Ser	Ala 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Val	Ser	Gly	Val 80
15	Gln	Glu	Glu	Asp	Glu 85	Ala	Asp	Tyr	Phe	С у в 90	Ser	Ser	Tyr	Gly	Gly 95	Ser
20	Lys	Tyr	Pro	Trp 100	Val	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Thr	Val 110	Leu	
25	<210 <211 <212 <213	l> : 2> I	47 L25 PRT Homo	sapi	iens											
	<400)> 4	1 7													
30	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
	Ser	Leu	Arg	Val 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
35	Asp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40	Ala	Val 50	Ile	Trp	Phe	Asp	Gly 55	Ser	Asn	Glu	Phe	Tyr 60	Ala	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Phe 80
45	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
50	Ala	Arg	Asp	Leu 100	Gly	Ala	Ser	Val	Thr 105	Thr	Ser	Asn	Ala	Glu 110	Asn	Phe
55	His	His	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			
	<210)> 4	18													

	<2113 <2123 <2133	> 1	125 PRT Homo	sapi	lens											
5	<400>	> 4	48													
	Gln V	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
10	Ser 1	Leu	Arg	Val 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
15	Asp M	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ala V	Val 50	Ile	Trp	Phe	Asp	Gly 55	Ser	Asn	Glu	Phe	Tyr 60	Ala	Asp	Ser	Val
20	Lys (Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Phe 80
25	Leu (Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala A	Arg	Asp	Leu 100	Gly	Ala	Ser	Val	Thr 105	Thr	Ser	Asn	Ala	Glu 110	Asn	Phe
30	His H	His	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			
35	<2102 <2112 <2122 <2132	> : > I	49 108 PRT Homo	sapi	lens											
40	<400	> 4	49													
	Ser ?	Tyr	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ser	Pro	Gly 15	Gln
45	Thr A	Ala	Arg	Ile 20	Thr	Cys	Ser	Gly	Asp 25	Ala	Leu	Pro	Lys	Arg 30	Tyr	Val
50	Tyr :	Irp	Tyr 35	Gln	Gl n	Lys	Ser	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr
	Glu A	Asp 50	Ser	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Thr 60	Phe	Ser	Gly	Ser
55	Ser S	Ser	Gly	Thr	Met	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Ala	Gln	Val	Glu 80

	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Tyr	Ser	Thr 90	Asp	Ser	Asn	Gly	His 95	His
5	Trp	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu				
10	<210 <211 <212 <213	> 1 > E	50 L21 PRT Homo	sapi	iens											
	<400	> 5	50													
15	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Asp 10	Leu	Val	Gln	Pro	Gly 15	Gly
20	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asp	Phe	Ser 30	Gly	Tyr
0.5	Ser	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
25	Ser	Tyr 50	Ile	Ser	Gly	Thr	Tyr 55	Val	Ser	Gly	Gly	Thr 60	Gly	Thr	Met	Tyr
30	Tyr 65	Leu	Asp	Ser	Val	Lys 70	Gly	Arg	Phe	Phe	Ile 75	Ser	Arg	Asp	Asp	Ala 80
35	Thr	Ser	Ser	Leu	Tyr 85	Leu	Gln	Met	Asp	Ser 90	Leu	Arg	Asp	Glu	Asp 95	Thr
	Ala	Val	Tyr	Tyr 100				Val						Asp 110		Gly
40	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
45	<210 <211 <212 <213	> 1 > E	51 113 PRT Homo	sapi	iens											
50	<400	> 5	51													
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
55	Glu .	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Arg	Ser	Val	Leu 30	Tyr	Ser

	Ser	Asn	Ser 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
5	Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
10	Pro 65	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Glu	Phe	Thr	Leu	Thr 80
	Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
15	Tyr	Tyr	Gly	Thr 100	Pro	Arg	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
20	Lys															
25	<210 <211 <212 <213	l> 1 2> E	52 L24 PRT Homo	sapi	Lens											
	<400)> 5	52													
30	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
35	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Gly	Thr 25	Arg	Phe	Thr	Phe	Ser 30	Thr	Tyr
	Ala	Met	Gly 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Arg	Gly	Leu 45	Glu	Trp	Val
40	Ser	Ala 50	Ile	Gly	Gly	Ser	Gly 55	Asp	Ser	Thr	Ser	Tyr 60	Ala	Asp	Ser	Val
45	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
50	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	A sp 90	Thr	Ala	Val	Tyr	Туг 95	Cys
	Ala	Lys	Gly	Val 100	Tyr	Asp	Tyr	Leu	Trp 105	Gly	Ser	Tyr	Arg	Leu 110	Phe	Asp
55	Tyr	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser				

	<210 <211 <212 <213	L> : 2> :	53 108 PRT Homo	sapi	lens											
5	<400)> !	53													
40	Ser 1	Tyr	Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln
10	Thr	Ala	Arg	Phe 20	Thr	Cys	Gly	Gly	Asn 25	Asn	Ile	Ala	Ser	Lys 30	Ser	Val
15	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 4 5	Val	Val	Tyr
20	Asp	Asp 50	Ser	Asp	Arg	Pro	Ser 55	Arg	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
25	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Arg	Val	Glu	Ala	Gly 80
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Val	Trp 90	Asp	Ser	Thr	Ser	Asp 95	His
30	Val	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu				
35	<210 <211 <212 <213	L> : 2> : 3> :	54 114 PRT Homo	sapi	lens											
40	<400 Glu 1		54 Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
45	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Pro 30	Asn	Tyr
50	Val	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ser	Gly 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Asp	Tyr 60	Ala	Asp	Ser	Val
55	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80

	Leu Gln	Met Asn	Ser 85	Leu	Arg	Val	Glu	Asp 90	Thr	Ala	Leu	Tyr	Туг 95	Cys
5	Ala Lys	Gly Ser 100		Gly	Ile	Arg	Gly 105	Gln	Gly	Thr	Met	Val 110	Thr	Val
10	Ser Ser													
15	<212> P: <213> H	10 RT omo sap	iens											
20	<400> 5 Gln Ser . 1		Thr 5	Gln	Pro	Arg	Ser	Val 10	Ser	Gly	Ser	Pro	Gly 15	Gln
	Ser Val	Thr Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Val	Gly 30	Gly	Tyr
25	Asn Tyr	Val Ser 35	Trp	His	Gln	Gln 40	His	Pro	Gly	Lys	Ala 45	Pro	Lys	Leu
30	Leu Ile 50	Tyr Asp	Val		Lys 55	Arg	Pro	Ser	Gly	Val 60	Pro	Asp	Arg	Phe
35	Ser Gly 65	Ser Lys	Ser	Gly 70	Asn	Thr	Ala	Ala	Leu 75	Thr	Ile	Ser	Gly	Leu 80
30	Gln Ala	Glu Asp	Glu 85	Ala	Asp	Tyr	Tyr	Cys 90	His	Ser	Tyr	Val	Gly 95	Ser
40	Tyr Thr	Leu Val 100		Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110		
45	<212> P: <213> H	18 RT omo sap	iens											
50	<400> 5 Glu Val		Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser Leu	Lys Leu 20		Cys	Ala	Ala	Ser 25		Phe	Thr	Phe	Ser 30		Ser
55	Ala Met	His Trp	Val	Arg	Gln	Ala	Ser	Gly	Lys	Gly	Leu	Glu	Trp	Val

5	Gly	Arg 50	Ile	Arg	Ser	Lys	Ala 55	Asn	Ser	Tyr	Ala	Thr 60	Ala	Tyr	Ala	Ala
	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
10	Ala	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
15	Tyr	Cys	Thr	Ser 100	Pro	Thr	Val	Thr	Thr 105	Glu	Val	Trp	Gly	Gln 110	Gly	Thr
20	Leu	Val	Thr 115	Val	Ser	Ser										
	<210 <211 <212	L> 1	57 L13 PRT													
25	<213	3> E		sapi	iens											
30				Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
	Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Ser	Val	Leu 30	Tyr	Ser
35	Ser	Asn	Asn 35	Lys	Asp	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
40	Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
	Ser 65	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
45	Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
50	туг	Tyr	Ser	Thr 100	Pro	Ile	Thr	Phe	Gly 105	Gln	Gly	Thr	Arg	Le u 110	Glu	Ile
	Lys															
55	<210)> 5	58													

	<211 <212 <213	2> 1	122 PRT Homo	sapi	iens											
5	<400)> !	58													
	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10	Ser	Leu	Arg	Leu 20	Ser	Суз	Ile	Gly	Ser 25	Ser	Gly	Met	Thr	Phe 30	Ser	Ser
15	туг	Ala	Phe 35	Asn	Trp	Val	Arg	Gln 40	Thr	Pro	Gly	Lys	Gly 4 5	Leu	Glu	Trp
	Val	Ser 50	Ser	Ile	Ser	Arg	Phe 55	Gly	Ser	Thr	Val	Asp 60	Tyr	Thr	Asp	Ser
20	Val 65	Arg	Gly	Arg	Phe	Thr 70	Ile	Ser	Arg	Asp	Asp 75	Gly	Gln	Arg	Ser	Leu 80
25	туг	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Val	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Cys	Val	Arg	Ser 100	Thr	Ala	Ser	Gly	Ser 105	Arg	Ser	Pro	Gly	Ile 110	Ile	Trp
50	Gly	Gln	Gly 115	Thr	Thr	Val	Thr	Val 120	Ser	Ser						
35	<210 <211 <212 <213	> : > :	59 107 PRT Homo	sapi	iens											
40	<400)> !	59													
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
45	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Gly	Ile	Val 30	Asn	Asn
50	Leu	Ala	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Ser	Leu	Ile
	Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Gly	Gly	Val	Pro	Ser 60	Lys	Phe	Ser	Gly
55	Ser 65	Ala	Ser	Gly	Thr	As p 70	Phe	Ser	Leu	Thr	Ile 75	Ser	Asn	Leu	Gln	Pro 80

	Glu	Asp	Phe	Ala	Thr 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	Trp
5	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
10	<210 <211 <212 <213	L> : 2> 1	60 126 PRT Homo	sapi	Lens											
	<400)>	60													
15	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
20	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Arg	Phe	Thr 30	Thr	Tyr
25	Trp	Ile	Gly 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
	Gly	Ile 50	Ile	Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Tyr
30	Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
35	Leu	Gln	Trp	Ser	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Gly	Met	Tyr	Tyr 95	Cys
40	Ala	Arg		Ala 100	_	_		Gly	_			_	туг		_	Gly
40	Met	Asp	Val 115	Trp	Gly	Gln	Gly	Thr 120	Thr	Val	Thr	Val	Ser 125	Ser		
45	<210 <211 <212 <213	L> : 2> 1	61 113 PRT Homo	sapi	ens											
50	<400)>	61													
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
55	Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Ser	Val	Leu 30	Tyr	Gly

	Ser	Asn	Asn 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Leu	Gly	Gln
5	Ser	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Ala	Arg 60	Glu	Ser	Gly	Val
10	Pro 65	Asp	Arg	Phe	Gly	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
	Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
15	Tyr	Tyr	Ser	Thr 100	Pro	Trp	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
20	Lys															
25	<210 <211 <212 <213	L> 1 2> E	52 L18 PRT Homo	sapi	iens											
	<400)> (52													
30	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
35	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Thr 30	Arg	Tyr
	Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40	Ala	Val 50	Ile	Trp	Tyr	Asp	Gly 55	Thr	Asn	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Leu
45	Gln 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Thr	Ser 75	Thr	Asn	Thr	Leu	Tyr 80
50	Leu	Gln	Met	Asn	Gly 85	Leu	Arg	Val	Glu	Asp 90	Arg	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Glu	Gly 100	Phe	Gln	Gly	Ala	Ile 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
55	Leu	Val	Thr 115	Val	Ser	Ser										

	<211> <212>	63 113 PRT Homo	sapi	ens											
5		63													
	Glu Ile 1	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
10	Glu Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Asn	Ile	Leu 30	Tyr	Ser
15	Ser Asp	Asn 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
20	Pro Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
25	Pro Asp 65	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
	Ile Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
30	Tyr Tyr	Ser	Ile 100	Pro	Arg	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
35	Lys														
40	<211> <212>	64 113 PRT Homo	sapi	iens											
		64 . v. 1	Wo+	Thr	Cln.	Sor	Dro	λαn	Sor	T 011	λla	Wa 1	Cor	Lou	C1
45	Asp Ile	Val	Mec	5	GIII	SET	PIO	Asp	10	цец	ATG	VAI	261	15	GIY
50	Glu Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Asn	Ile	Leu 30	Tyr	Ser
	Ser Asp	Asn 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
55	Pro Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val

	Pro Asp 65	Arg	Phe Se	r Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
5	Ile Ser	Ser	Leu Gl 85	n Ala	Glu	Asp	Val	Ala 90	Val	Tyr	туг	Cys	Gln 95	Gln
10	Tyr Tyr	Ser	Ile Pr 100	a Arg	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
	Lys													
15		65 120 PRT Homo	sapien	5										
20	<400>	65												
	Glu Val	. Gln	Leu Va 5	l Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
25	Ser Leu	Lys	Leu Se 20	r Cys	Ala	Ala	Ser 25	Gly	Phe	Ser	Phe	Ser 30	Asp	Ser
30	Ala Phe	His 35	Trp Al	a Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Gly Arg	, Ile	Arg Se	r Lys	Gly 55	Asn	Asn	Tyr	Ala	Thr 60	Ala	Tyr	Ala	Ala
35	Ser Val	. Lys	Gly Ar	g Phe 70	Thr	Val	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
40	Thr Tyr	Leu	Gln Me 85	t Asn	Ser	Leu	Lys	Thr 90	Asp	Asp	Thr	Ala	Ile 95	Tyr
45	Tyr Cys	Thr	Arg Gl 100	n Gly	Pro	Ser	Туг 105	Gly	Gly	Ile	Asn	Trp 110	Gly	Leu
	Gly Thr	Leu 115	Val Th	r Val	Ser	Ser 120								
50	<210> <211> <212> <213>	66 113 PRT Homo	sapien	5										
55	<400>	66												
	Asp Ile	val	Met Th	r Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly

	1		5					10					15	
5	Glu Ar	g Ala Th 20		Asn	Cys	Lys	Ser 25	Ser	Gln	Thr	Ile	Leu 30	Tyr	Ser
	Ser As	n Asn Ly 35	s A sn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
10	Pro Pro 50	o Lys Le	eu Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
15	Pro As;	p Arg Pl	ne Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
20	Ile Se	r Ser Le	eu Arg 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
	Туг Ту	r Ser Se		Gln	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
25	Lys													
30	<210> <211> <212> <213>	67 115 PRT Homo sa	piens											
35	<400> Glu Va. 1	67 l Gln Le	eu Val 5	Glu	Ser	Gly	Gly	Gly 10	Phe	Val	Arg	Pro	Gly 15	Gly
40	Ser Il	e Thr Le		Cys	Ala	Thr	Ser 25	Gly	Phe	Thr	Phe	Thr 30	Lys	Ala
	Trp Me	t Thr Ti 35	p Val	Arg	Gln	Ala 40	Pro	Val	Lys	Gly	Leu 45	Glu	Trp	Ile
45	Gly Hi 50	s Ile Ly	s Thr	Arg	Ile 55	Glu	Gly	Ala	Thr	Thr 60	Asp	Tyr	Ala	Ala
50	Pro Va.	l Glu G	y Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Met 80
55	Val Ty	r Leu G	n Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Ser	Gly	Ile 95	Tyr
-	Tyr Cy	s Ser Th	ır Asp	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr

		100	105	110
5	Val Ser Ser 115			
10	<210> 68 <211> 113 <212> PRT <213> Homo	sapiens		
	<400> 68			
15	Asp Val Val	Met Thr Gln S 5	er Pro Leu Ser Leu 10	Pro Val Thr Leu Gly 15
	Gln Pro Ala	Ser Ile Ser C	Cys Thr Ser Ser Gln 25	Ser Leu Leu Tyr Ser 30
20	Asp Gly Asn 35	Thr Tyr Leu A	asn Trp Phe Gln Gln 40	Arg Pro Gly Gln Ser 45
25	Pro Arg Arg 50	_		Asp Pro Gly Val Pro 60
30	Asp Arg Phe	Ser Gly Ser G 70	Sly Ser Gly Thr Asp 75	Phe Thr Leu Ser Ile 80
	Ser Arg Val	Glu Ala Glu A 85	sp Val Gly Val Tyr 90	Tyr Cys Met Gln Gly 95
35	Ser Leu Trp	Pro Arg Tyr T	Chr Phe Gly Gln Gly 105	Thr Lys Val Glu Ile 110
40	Lys			
45	<210> 69 <211> 121 <212> PRT <213> Homo	sapiens		
	<400> 69			
50	Glu Val Gln 1	Leu Val Gln S 5	Ger Gly Ala Glu Val 10	Lys Lys Pro Gly Asp 15
	Ser Leu Arg	Ile Ser Cys I 20	ys Ala Ser Gly Tyr 25	Asn Phe Pro Asn Tyr 30
55	Trp Ile Gly 35	Trp Val Arg G	In Met Pro Gly Lys 40	Gly Leu Glu Trp Met 45

	Gly I:	le Ile O	Tyr	Pro	Gly	Asp 55	Ser	Asp	Ile	Arg	Tyr 60	Ser	Pro	Ser	Phe
5	Gln G: 65	ly His	Val	Thr	Ile 70	Ser	Ser	Asp	Lys	Ser 75	Ile	Thr	Thr	Ala	Tyr 80
10	Leu G	ln Trp	Thr	Ser 85	Leu	Lys	Val	Ala	Asp 90	Ser	Ala	Met	Tyr	Tyr 95	Cys
	Ala A	rg Val	Glu 100	Arg	Pro	Asp	Lys	Gly 105	Gly	Trp	Phe	Gly	Pro 110	Trp	Gly
15	Gln G	ly Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
20	<210><211><212><212><213>	70 113 PRT Homo	sapi	iens											
25	<400>	70													
	Asp I	le Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
30	Glu A	rg Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Thr	Leu	Leu 30	Tyr	Thr
35	Ser A	sn Asn 35	Gln	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	His	Lys 45	Pro	Gly	Gln
	Pro P:	ro Lys 0	Val	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Tyr	Gly	Val
40	Pro A	sp Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
45	Ile S	er Ser	Leu	Gln 85	Pro	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Суз	Gln 95	Gln
50	туг т	yr Asn	Ser 100	Pro	Tyr	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Leu 110	Glu	Ile
	Lys														
55	<210> <211>	71 114													

	<212> <213>	PRT Homo	sapi	iens											
5	<400>	71 L Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
	1			5					10					15	
10	Ser Let	ı Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ala	Tyr
15	Gly Met	35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ala His	s Ile	Thr	Gly	Ser	Gly 55	Thr	Pro	Ile	Phe	Tyr 60	Ala	Asp	Ser	Val
20	Lys Gly 65	y Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Ser	Ser	Leu	Tyr 80
25	Leu Gl	n Met	Asn	Ser 85	Leu	Arg	Asn	Asp	Asp 90	Thr	Ala	Leu	Tyr	Phe 95	Cys
30	Val Aro	g Gly	Thr 100	Val	Asp	Tyr	Trp	Gly 105	Gln	Gly	Thr	Leu	Val 110	Thr	Val
	Ser Sei	r													
35	<210> <211> <212> <213>	72 110 PRT Homo	sapi	iens											
40	<400> Gln Ala	72 a Gly	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Lys	Asp	Leu	Arg 15	Gln
45	Thr Ala	a Thr	Leu 20	Thr	Cys	Ser	Gly	Asn 25	Ser	Asn	Asn	Val	Gly 30	Asn	Gln
50	Gly Ala	a Ala 35	Trp	Leu	Gln	Gln	Phe 40	Pro	Gly	His	Pro	Pro 45	Lys	Leu	Leu
	Phe Tyr	r Glu	Asn	Ile	Asn	Arg 55	Pro	Ser	Gly	Ile	Ser 60	Glu	Arg	Phe	Ser
55	Ala Sei 65	r Arg	Ser	Gly	Asn 70	Thr	Ala	Ser	Leu	Thr 75	Ile	Thr	Gly	Leu	Gln 80

	Pro	Glu	Asp	Glu	Ala 85	Asp	Tyr	Tyr	Cys	Ser 90	Ala	Trp	Asp	Gly	His 95	Leu
5	Asn	Ala	Trp	Val 100	Phe	Gly	Gly	Gly	Thr 105	Lys	Leu	Thr	Val	Leu 110		
10	<210 <211 <212 <213	.> : !> :	73 124 PRT Homo	sapi	iens											
	<400)>	73													
15	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
20	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ser	Phe	Ile 30	Ser	Tyr
25	Trp	Val	Gly 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
	Gly	Ile 50	Ile	Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
30	Glu 65	Gly	Gln	Val	Ser	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
35	Leu	Gln	Trp	Thr	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
40	Ala	Arg	His	Trp 100	_	Pro	Ala		Val 105		Asp	Ser		Trp 110		Gly
	Pro	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser				
45	<210 <211 <212 <213	.> : !> :	74 113 PRT Homo	sapi	iens											
50	<400)>	74													
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
55	Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Thr	Val	Leu 30	Tyr	Thr

	Ser	Asn	Asn 35	Lys	Asn	Tyr	Leu	A1a 40	Trp	Tyr	GIn	GIn	Lys 45	Pro	СТĀ	GIn
5	Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
10	Pro 65	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
	Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	His
15	Tyr	Tyr	Ser	Thr 100	Pro	Phe	Thr	Phe	Gly 105	Pro	Gly	Thr	Lys	Val 110	Asp	Ile
20	Lys															
25	<210 <211 <212 <213	.> 1 !> F	5 .17 PRT	sapi	iens											
	<400)> 7	5													
30	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
35	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ile	Phe	Thr 30	Ala	Phe
	Phe	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
40	Gly	Trp 50	Ile	Asn	Pro	Asp	Ser 55	Gly	Ala	Thr	Lys	Tyr 60	Ala	His	Asn	Phe
45	Gln 65	Gly	Arg	Val	Thr	Met 70	Thr	Arg	Asp	Thr	Ser 75	Ile	Ser	Thr	Ala	Phe 80
50	Met	Glu	Leu	Ser	Gly 85	Leu	Lys	Ser	Asp	As p 90	Thr	Gly	Val	Tyr	Tyr 95	Cys
	Ala	Thr	Gly	Met 100	Ala	Val	Thr	Gly	Asn 105	Phe	Trp	Gly	Gln	Gly 110	Thr	Leu
55	Val	Thr	Val 115	Ser	Ser											

	<210 <211 <212 <213	1> 2> :	76 117 PRT Homo	sapi	iens											
5	<400	0>	76													
	Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
10	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ile	Phe	Thr 30	Ala	Phe
15	Phe	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
20	Gly	Trp 50	Ile	Asn	Pro	Asp	Ser 55	Gly	Ala	Thr	Lys	Tyr 60	Ala	His	Asn	Phe
	Gln 65	Gly	Arg	Val	Thr	Met 70	Thr	Arg	Asp	Thr	Ser 75	Ile	Ser	Thr	Ala	Phe 80
25	Met	Glu	Leu	Ser	Gly 85	Leu	Lys	Ser	Asp	Asp 90	Thr	Gly	Val	Tyr	Tyr 95	Cys
30	Ala	Thr	Gly	Met 100	Ala	Val	Thr	Gly	Asn 105	Phe	Trp	Gly	Gln	Gly 110	Thr	Leu
	Val	Thr	Val 115	Ser	Ser											
35	<210 <211 <212 <213	1> 2> :	77 108 PRT Homo	sapi	iens											
40	<400	>	77													
	Leu 1	Pro	Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ser	Pro	Gly 15	Gln
45	Thr	Ala	Arg	Ile 20	Thr	Cys	Ser	Gly	Asp 25	Val	Leu	Ala	Glu	Thr 30	Tyr	Ala
50	Arg	Trp	Phe 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Le u 45	Val	Met	Tyr
55	Arg	Asp 50	Arg	Glu	Arg	Pro	Ala 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
	Ser	Ser	Gly	Asn	Thr	Val	Thr	Leu	Thr	Ile	Ser	Gly	Ala	Gln	Ala	Glu

	65	70		75	80
5	Asp Glu Ala	Val Tyr His 85	Cys His Ser Val 90	Ala Asp Asn Asn	Leu Asp 95
40	Trp Val Phe	Gly Gly Gly 100	Thr Lys Leu Thr 105	Val Leu	
10	<210> 78 <211> 108 <212> PRT <213> Homo	sapiens			
15	<400> 78				
	Ser Tyr Glu 1	Leu Thr Gln 5	Pro Pro Ser Val	Ser Val Ser Pro	Gly Gln 15
20	Thr Ala Arg	Ile Thr Cys 20	Ser Gly Asp Val 25	Leu Ala Glu Thr 30	Tyr Ala
25	Arg Trp Phe 35	Gln Gln Lys	Pro Gly Gln Ala 40	Pro Val Leu Val 45	Met Tyr
30	Arg Asp Arg 50	Glu Arg Pro	Ala Gly Ile Pro 55	Glu Arg Phe Ser 60	Gly Ser
	Ser Ser Gly 65	Asn Thr Val	Thr Leu Thr Ile	Ser Gly Ala Gln 75	Ala Glu 80
35	Asp Glu Ala	Val Tyr His 85	Cys His Ser Val 90	Ala Asp Asn Asn	Leu Asp 95
40	Trp Val Phe	Gly Gly Gly 100	Thr Lys Leu Thr 105	Val Leu	
45	<210> 79 <211> 10 <212> PRT <213> Homo	sapiens			
	<400> 79				
50	Gly Tyr Ser 1	Phe Thr Asn 5	Phe Trp Ile Gly		
55	<210> 80 <211> 9 <212> PRT <213> Homo <400> 80	sapiens			

	Ile Il 1	e Tyr	Pro	_	Asp	Ser	Asp	Thr					
	1			5									
5	<210>	81											
	<211>	11											
	<212>			_									
	<213>	Homo	sapi	iens									
10	<400>	81											
	Arg Gl	v Phe	Trp	Thr	Glv	Ser	Gln	Ile	Glu	Tvr			
	1	2	1	5	2				10	-1-			
15		82											
		14											
	<212> <213>	PRT Homo	anni	iona									
	\213/	HOMO	sap.	rems									
20	<400>	82											
	Thr Gl	y Thr	Ser	Ser	Asp	Val	Gly	Asn	Tyr	Ser	Phe	Val	Ser
	1	_		5	_		_		10				
25	<210>	83											
25	<211>	7											
		PRT											
	<213>	Homo	sapi	iens									
	<400>	83											
30													
	Asp Va	l Ser	Lys		Ser	Ser							
	1			5									
35	<210>												
	<211> <212>	11 PRT											
		Homo	sapi	iens									
			_										
40	<400>	84											
	Ser Se	r Tvr	Glv	Glv	Ser	Lvs	Tvr	Pro	Tro	Val			
	1	1_	1	5		-1-	-1-		10				
	<210>	85											
45	<211>	10											
	<212>	PRT											
	<213>	Homo	sapi	iens									
	<400>	85											
50													
	Gly Ph	e Thr	Phe		Ser	Tyr	Asp	Met					
	1			5					10				
55	<210>	86											
	<211>	17 РВТ											
		PKT.											

```
<213> Homo sapiens
               <400> 86
               Val Ile Trp Phe Asp Gly Ser Asn Glu Phe Tyr Ala Asp Ser Val Lys
5
               Gly
10
               <210> 87
               <211> 16
<212> PRT
<213> Homo sapiens
15
               <400> 87
               Asp Leu Gly Ala Ser Val Thr Thr Ser Asn Ala Glu Asn Phe His His
                                                           10
20
               <210> 88
               <211> 11
<212> PRT
<213> Homo sapiens
25
               <400> 88
               Ser Gly Asp Ala Leu Pro Lys Arg Tyr Val Tyr
                                  5
30
               <210> 89
               <211> 7
<212> PRT
<213> Homo sapiens
35
               <400> 89
               Glu Asp Ser Lys Arg Pro Ser
                                 5
40
               <210> 90
<211> 11
<212> PRT
<213> Homo sapiens
45
               <400> 90
               Tyr Ser Thr Asp Ser Asn Gly His His Trp Val
                                  5
50
               <210> 91
<211> 10
<212> PRT
<213> Homo sapiens
               <400> 91
```

	Gly Phe	e Asp	Phe	Ser 5	GTÀ	Tyr	Ser	Met	A1a 10						
5	<210> <211> <212> <213>	92 22 PRT Homo	sapi	iens											
10	<400>	92													
	Tyr Ile 1	e Ser	Gly	Thr 5	Tyr	Val	Ser	Gly	Gly 10	Thr	Gly	Thr	Met	Туг 15	Tyr
15	Leu Ası	e Ser	Val 20	Lys	Gly										
20	<210> <211> <212> <213>	93 7 PRT Homo	sapi	iens											
	<400>	93													
25	Val Tyr 1	r Asp	Tyr	Gly 5	Glu	Asp									
30	<210> <211> <212> <213>	94 17 PRT Homo	sapi	iens											
	<400>	94													
35	Lys Se	r Ser	Arg	Ser 5	Val	Leu	Tyr	Ser	Ser 10	Asn	Ser	Lys	Asn	Tyr 15	Leu
	Ala														
40															
	<210> <211> <212> <213>	7 PRT	sapi	iens											
45	<400>	95	•												
50	Trp Ala		Thr	Arg 5	Glu	Ser									
	<210> <211> <212>	9 PRT	_												
55	<213> <400>		sapi	lens											

```
Gln Gln Tyr Tyr Gly Thr Pro Arg Thr
             <210> 97
5
             <211> 10
<212> PRT
<213> Homo sapiens
             <400> 97
10
             Arg Phe Thr Phe Ser Thr Tyr Ala Met Gly
                           5
             <210> 98
15
             <211> 17
             <212> PRT
             <213> Homo sapiens
             <400> 98
20
             Ala Ile Gly Gly Ser Gly Asp Ser Thr Ser Tyr Ala Asp Ser Val Lys
             Gly
             <210> 99
             <211> 15
30
             <212> PRT
             <213> Homo sapiens
             <400> 99
35
             Gly Val Tyr Asp Tyr Leu Trp Gly Ser Tyr Arg Leu Phe Asp Tyr
             <210> 100
<211> 11
<212> PRT
<213> Homo sapiens
40
             <400> 100
45
             Gly Gly Asn Asn Ile Ala Ser Lys Ser Val His
                              5
             <210> 101
             <211> 7
<212> PRT
<213> Homo sapiens
50
             <400> 101
             Asp Asp Ser Asp Arg Pro Ser
```

```
<210> 102
                <211> 11
<212> PRT
<213> Homo sapiens
5
                <400> 102
                Gln Val Trp Asp Ser Thr Ser Asp His Val Val
                                   5
10
                <210> 103
<211> 10
<212> PRT
<213> Homo sapiens
15
                <400> 103
                Gly Phe Thr Phe Pro Asn Tyr Val Met Thr
                   5
20
                <210> 104
                <211> 18
<212> PRT
<213> Homo sapiens
25
                <400> 104
                Ser Gly Ile Ser Gly Ser Gly Ser Thr Asp Tyr Ala Asp Ser Val
30
                Lys Gly
                <210> 105
                <211> 5
<212> PRT
<213> Homo sapiens
35
                <400> 105
40
                Gly Ser Gly Gly Ile
                <210> 106
<211> 14
<212> PRT
<213> Homo sapiens
45
                <400> 106
50
                Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr Asn Tyr Val Ser
                <210> 107
                <211> 7
55
                <212> PRT
                <213> Homo sapiens
```

	<400> 10	07					
	Asp Val :	Thr Lys	Arg Pro	Ser			
5							
10	<210> 10 <211> 10 <212> PI <213> Ho	0 RT	iens				
	<400> 10	08					
15	His Ser !	Tyr Val	Gly Ser 5	Tyr Thr	Leu Val 10		
15							
	<210> 10 <211> 10 <212> PI <213> Ho	RT	iens				
20	<400> 10	09					
	\400> I						
	Gly Phe :	Thr Phe	Ser Gly	Ser Ala	Met His		
25	•		5		10		
	<210> 13	10					
	<211> 15						
	<212> PI		_				
30	<213> Ho	omo sap:	iens				
	<400> 13	10					
	Ard Tle A	Ara Ser	T.vs Ala	Asn Ser	Tur Ala	Thr Ala T	yr Ala Ala Ser
	1		5		10		15
35							
	Val Lys (Gly					
40		11					
	<211> 9 <212> PI						
	<213> Ho		iens				
	<400> 13	11					
45	14002 1.						
	Thr Ser I	Pro Thr		Thr Glu	Val		
	1		5				
50	4010- 41	10					
50	<210> 13 <211> 17	12 7					
	<212> PI	RT					
	<213> Ho	omo sap:	iens				
55	<400> 13	12					
55	T	cor Cla	Com Wol	T 011 Tree	Sor Sor	Asn Asn T	us Asp Tur Lou

	1			5					10					15	
5	Ala														
10	<210><211><211><212><213>	113 7 PRT Homo	sapi	.ens											
	<400>	113													
15	Trp Ala	a Ser	Thr	Arg 5	Glu	Ser									
20	<210> <211> <212> <213>	114 9 PRT Homo	sapi	.ens											
	<400>	114													
25	Gln Gli 1	n Tyr	Tyr	Ser 5	Thr	Pro	Ile	Thr							
30	<210> <211> <212> <213>	115 11 PRT Homo	sapi	.ens											
	<400>	115													
35	Ser Gly	y Met	Thr	Phe 5	Ser	Ser	Tyr	Ala	Phe 10	Asn					
40	<210> <211> <212> <213>		sapi	.ens											
40	<400>	116													
45	Ser Ile	e Ser	Arg	Phe 5	Gly	Ser	Thr	Val	Asp 10	Tyr	Thr	Asp	Ser	Val 15	Arg
	Gly														
50	<210> <211> <212> <213>	117 14 PRT Homo	sapi	.ens											
55	<400>	117	mb	7.1 -	C	C1	C	7	C	D	C1	T1-	т1 -		
	VAL AT	u ser	IDT	A LA	ser	GJ V	aer	ATO	aer	FIO	G-1 77	T.1 C	T 1 👄		

	1	5	10
5	<210> 118 <211> 11 <212> PRT <213> Homo	sapiens	
10	<400> 118 Arg Ala Ser 1	Gln Gly Ile Val 5	Asn Asn Leu Ala 10
15	<210> 119 <211> 7 <212> PRT <213> Homo	sapiens	
20	<400> 119 Ala Ala Ser 1	Ser Leu Gln Gly 5	
25	<210> 120 <211> 9 <212> PRT <213> Homo	sapiens	
30	<400> 120 Gln Gln Tyr 1	Asn Ser Tyr Pro 5	Trp Thr
35	<210> 121 <211> 10 <212> PRT <213> Homo	sapiens	
40	<400> 121 Gly Tyr Arg 1	Phe Thr Thr Tyr	Trp Ile Gly 10
45	<210> 122 <211> 9 <212> PRT <213> Homo	sapiens	
50	<400> 122 Ile Ile Tyr 1	Pro Gly Asp Ser 5	Asp Thr
55	<210> 123 <211> 17 <212> PRT <213> Homo	sapiens	

```
<400> 123
              Val Ala Gly Asp Ile Gly Tyr Glu Asn Tyr Tyr Tyr Tyr Gly Met Asp
5
              Val
10
              <210> 124
              <211> 17
<212> PRT
<213> Homo sapiens
              <400> 124
15
              Lys Ser Ser Gln Ser Val Leu Tyr Gly Ser Asn Asn Lys Asn Tyr Leu
                                                       10
20
              Ala
              <210> 125
<211> 7
<212> PRT
<213> Homo sapiens
              <400> 125
30
              Trp Ala Ser Ala Arg Glu Ser
                               5
              <210> 126
<211> 9
<212> PRT
35
              <213> Homo sapiens
              <400> 126
40
              Gln Gln Tyr Tyr Ser Thr Pro Trp Thr
                           5
              <210> 127
              <211> 10
<212> PRT
              <213> Homo sapiens
              <400> 127
              Gly Phe Thr Phe Thr Arg Tyr Gly Met His
50
                                5
              <210> 128
              <211> 17
              <212> PRT
              <213> Homo sapiens
```

```
<400> 128
              Val Ile Trp Tyr Asp Gly Thr Asn Lys Tyr Tyr Ala Asp Ser Leu Gln
5
             Gly
10
             <210> 129
             <211> 9
<212> PRT
<213> Homo sapiens
             <400> 129
15
             Glu Gly Phe Gln Gly Ala Ile Asp Tyr
20
             <210> 130
             <211> 17
<212> PRT
<213> Homo sapiens
             <400> 130
25
             Lys Ser Ser Gln Asn Ile Leu Tyr Ser Ser Asp Asn Lys Asn Tyr Leu
                           5
                                                                         15
30
             Ala
             <210> 131
<211> 7
<212> PRT
35
              <213> Homo sapiens
             <400> 131
40
             Trp Ala Ser Thr Arg Glu Ser
              1 5
              <210> 132
              <211> 9
45
              <212> PRT
             <213> Homo sapiens
             <400> 132
             Gln Gln Tyr Tyr Ser Ile Pro Arg Thr
50
                              5
             <210> 133
             <211> 11
55
              <212> PRT
              <213> Homo sapiens
```

	<400>	133													
	Ser Gly	y Phe	Ser	Phe 5	Ser	Asp	Ser	Ala	Phe 10	His					
5															
10	<210> <211> <212> <213>	19 PRT	sap	iens											
	<400>	134													
15	Arg Ile	e Arg	Ser	Lys 5	Gly	Asn	Asn	Tyr	Ala 10	Thr	Ala	Tyr	Ala	Ala 15	Ser
	Val Lys	s Gly													
20	<210> <211> <212> <213>	11 PRT	sap	iens											
25	<400>	135													
	Thr Arg	g Gln	Gly	Pro 5	Ser	туг	Gly	Gly	Ile 10	Asn					
30	<210> <211> <212> <213>	17 PRT	sap	iens											
35	<400>	136													
	Lys Ser 1	r Ser	Gln	Thr 5	Ile	Leu	Tyr	Ser	Ser 10	Asn	Asn	Lys	Asn	Туг 15	Leu
40	Ala														
45	<210> <211> <212> <213>	7 PRT	sap	iens											
	<400>	137													
50	Trp Ala	a Ser	Thr	Arg 5	Glu	Ser									
55	<210> <211> <212>	138 9 PRT													
	<213>		sap	iens											

```
<400> 138
               Gln Gln Tyr Tyr Ser Ser Pro Gln Thr
5
              <210> 139
              <211> 11
               <212> PRT
               <213> Homo sapiens
10
              <400> 139
               Ser Gly Phe Thr Phe Thr Lys Ala Trp Met Thr
15
               <210> 140
              <211> 19
<212> PRT
<213> Homo sapiens
20
              <400> 140
              His Ile Lys Thr Arg Ile Glu Gly Ala Thr Thr Asp Tyr Ala Ala Pro
                                5
                                                       10
25
              Val Glu Gly
              <210> 141
30
              <211> 6
<212> PRT
<213> Homo sapiens
              <400> 141
35
               Ser Thr Asp Phe Asp Tyr
                                5
              <210> 142
<211> 16
<212> PRT
<213> Homo sapiens
40
               <400> 142
45
               Thr Ser Ser Gln Ser Leu Leu Tyr Ser Asp Gly Asn Thr Tyr Leu Asn
                                5
              <210> 143
50
               <211> 7
               <212> PRT
              <213> Homo sapiens
               <400> 143
55
              Lys Val Ser Lys Arg Asp Pro
```

	<210	> 144	ļ												
	<211:	> 10													
	<212		•												
	<213		o sap	iene											
_	\Z1 3.	HOI	io sap	Tens											
5															
	<400	> 144	ļ												
	Met (Gln Gl	v Ser	Leu	Trp	Pro	Ara	Tvr	Thr						
	1		_	5	-		_	-	10						
	-			•					-0						
10															
	<210	> 145	,												
	<211:	> 10													
	<212	> PRI	!												
	<213		o sap	iene											
15	\Z	11011	.o sup	10115											
	<400	> 145)												
	Gly !	Tyr As	n Phe	Pro	Asn	Tyr	Trp	Ile	Gly						
	1	_		5		_	_		10						
20															
20															
			_												
	<210)												
	<211:	> 24													
	<212	> PRI	!												
	<213		o sap	iens											
25	·22.	11011	.o cup												
	-400														
	<400	> 146)												
	Ile :	Ile Ty	r Pro	Gly	Asp	Ser	Asp	Ile	Arg	Tyr	Ser	Pro	Ser	Phe	Gln
	1			5					10					15	
30															
	C1	T- T-	. 1 mb	T1-	a	o	3								
	GTA 1	His Va		тте	ser	ser	ASP								
			20												
35															
	<210	> 147	,												
	<211:														
	<212														
	<213	> Hom	o sap	iens											
40															
	<400	> 147	'												
	Ala	Arg Va	ıl Glu	Ara	Pro	Asp	Lvs	Glv	Glv	Trp	Phe	Glv	Pro		
	1			5					10						
	-			,					-0						
45															
40															
	<210	> 148	}												
	<211:	> 17													
	<212	> PRI	•												
	<213		o sap	iene											
50	\Z I J.	11011	.c sap	16113											
50															
	<400	> 148	}												
	Lys :	Ser Se	r Gln	Thr	Leu	Leu	Tyr	Thr	Ser	Asn	Asn	Gln	Asn	Tyr	Leu
	1			5			_		10					15	
55															
	Ala														
	ΑTα														

130

```
<210> 149
             <211> 7
             <212> PRT
             <213> Homo sapiens
5
             <400> 149
             Trp Ala Ser Thr Arg Glu Tyr
10
            <210> 150
             <211> 9
            <212> PRT
<213> Homo sapiens
15
            <400> 150
             Gln Gln Tyr Tyr Asn Ser Pro Tyr Thr
20
            <210> 151
<211> 10
<212> PRT
<213> Homo sapiens
25
            <400> 151
             Gly Phe Thr Phe Ser Ala Tyr Gly Met Asn
30
            <210> 152
            <211> 17
            <212> PRT
<213> Homo sapiens
35
             <400> 152
             His Ile Thr Gly Ser Gly Thr Pro Ile Phe Tyr Ala Asp Ser Val Lys
             1
                              5
                                                    10
40
            Gly
45
             <210> 153
             <211> 7
             <212> PRT
            <213> Homo sapiens
50
            <400> 153
            Val Arg Gly Thr Val Asp Tyr
55
             <210> 154
             <211> 13
```

```
<212> PRT
                <213> Homo sapiens
                <400> 154
5
                Ser Gly Asn Ser Asn Asn Val Gly Asn Gln Gly Ala Ala
                                   5
               <210> 155
               <211> 7
<212> PRT
<213> Homo sapiens
10
               <400> 155
15
               Glu Asn Ile Asn Arg Pro Ser
                              5
               <210> 156
<211> 11
<212> PRT
<213> Homo sapiens
20
               <400> 156
               Ser Ala Trp Asp Gly His Leu Asn Ala Trp Val
               <210> 157
               <211> 10
<212> PRT
<213> Homo sapiens
30
               <400> 157
35
               Gly Tyr Ser Phe Ile Ser Tyr Trp Val Gly
               <210> 158
<211> 24
<212> PRT
<213> Homo sapiens
40
               <400> 158
                Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Glu
45
               Gly Gln Val Ser Ile Ser Ala Asp
                              20
50
               <210> 159
               <211> 15
<212> PRT
<213> Homo sapiens
               <400> 159
```

```
His Trp Gly Pro Ala Ala Val Thr Asp Ser Pro Trp Phe Gly Pro
             <210> 160
5
             <211> 17
<212> PRT
<213> Homo sapiens
             <400> 160
10
             Lys Ser Ser Gln Thr Val Leu Tyr Thr Ser Asn Asn Lys Asn Tyr Leu
                                                       10
                                                                              15
15
             Ala
             <210> 161
             <211> 7
<212> PRT
<213> Homo sapiens
20
             <400> 161
             Trp Ala Ser Thr Arg Glu Ser
             <210> 162
             <211> 9
30
             <212> PRT
             <213> Homo sapiens
             <400> 162
35
             Gln His Tyr Tyr Ser Thr Pro Phe Thr
             <210> 163
             <211> 10
<211> 10
<212> PRT
<213> Homo sapiens
40
             <400> 163
45
             Gly Tyr Ile Phe Thr Ala Phe Phe Met His
                      5
             <210> 164
<211> 17
<212> PRT
<213> Homo sapiens
50
             <400> 164
55
             Trp Ile Asn Pro Asp Ser Gly Ala Thr Lys Tyr Ala His Asn Phe Gln
                                                       10
```

Gly

55

	<210> 165
_	<211> 8
5	<212> PRT
	<213> Homo sapiens
	< 4 00> 165
	\400 \int 165
10	Cl. Mot Alo Vol Mbr Cl. Agn Bho
	Gly Met Ala Val Thr Gly Asn Phe 1 5
	5
	<210> 166
	<211> 11
15	<212> PRT
	<213> Homo sapiens
	<400> 166
	\400> 100
20	Son Clu Agn Vol Tou Alo Clu Ebn Eur Alo Ang
	Ser Gly Asp Val Leu Ala Glu Thr Tyr Ala Arg 1 5 10
	1 5 10
	<210> 167
	<211> 7
25	<212> PRT
	<213> Homo sapiens
	1213/ HOMO Sapiens
	< 4 00> 167
	107
30	Arg Asp Arg Glu Arg Pro Ala
	1 5
	<210> 168
	<211> 11
35	<212> PRT
	<213> Homo sapiens
	< 4 00> 168
	7400 100
40	His Cor Val Ala Asp Asp Asp Tou Asp Tro Val
40	His Ser Val Ala Asp Asn Asn Leu Asp Trp Val 1 5 10
	1 5 10
	<210> 169
	<211> 360
45	
	<213> Homo sapiens
	<400> 169
50	gaggtgcagc tggtgcagtc tggagcagag gtgaagaagc ccggggagtc tctgaagatc 60
50	tectgeaagg catttggata cagttttace aacttetgga teggetgggt gegeeaggtg 120
	tcctgcaagg catttggata cagttttacc aacttctgga tcggctgggt gcgccaggtg 120
	anagagaaaa anatagaata antagaata atatataata ataaatataa aasaasataa 100
	cccgggaaag gcctggagtg ggtgggaatc atctatcctg gtgactctga caccagatac 180
	agtccgtcct tccaaggcca ggtcaccatt tcagccgaca agtccattga caccgcctac 240
55	agtccgtcct tccaaggcca ggtcaccatt tcagccgaca agtccattga caccgcctac 240

ctacagtggg gccacctgaa ggcctcggac agcgccatgt atttctgtgc cagacggggt

300

	ttttggactg	gaagtcaaat	tgaatactgg	ggccagggca	ccctggtcac	cgtctcctcg	360
5	<210> 170 <211> 360 <212> DNA <213> Homo	o sapiens					
	<400> 170	taatacaata	tagaggagag	gtgaagaagc	ccaaaaaatc	tctgaagatc	60
10						gcgccaggtg	120
			ggtgggaatc				180
15							
			ggtcaccatt				240
			ggcctcggac				300
20	ttttggactg	gaagtcaaat	tgaatactgg	ggccagggca	cccaggtcac	cgtctcctcg	360
25	<210> 171 <211> 333 <212> DNA <213> Homo	o sapiens					
	<400> 171						
	cagtctgccc	tgactcagcc	teceteegeg	teegggtete	ctggacactc	agtcaccatc	60
30	tcctgcactg	gaactagtag	tgacgttggt	aattatagtt	ttgtctcctg	gtatcaacag	120
	tatcccggca	aagcccccaa	agtcatcatt	tatgacgtca	gtaagcggtc	ctcaggggtc	180
	cctgatcgct	tctttggctc	caagtctgcc	aacacggcct	ccctgaccgt	ctctggggtc	240
35	caggaagagg	atgaggctga	ctatttttgc	agctcatacg	gaggcagcaa	atatccgtgg	300
	gtgtttggcg	gagggaccaa	gctgaccgtc	ctt			333
40	<210> 172 <211> 375 <212> DNA <213> Homo	o sapiens					
45	<400> 172 gaggtgcagc	tggtggagtc	tgggggaggc	gtggtccagc	ctgggaggtc	cctgagagtc	60
	tcctgtgcag	cgtctggatt	caccttcagt	agttatgaca	tgcactgggt	ccgccaggct	120
	ccaggcaagg	ggctggagtg	ggtggcggtt	atatggtttg	atggaagtaa	tgaattctat	180
50	gcagactccg	tgaagggccg	attcaccatc	tccagagaca	attccaagaa	cacgctgttt	240
	ctgcaaatga	acagcctgag	agccgaggac	acggctgtgt	attactgtgc	gagagaccta	300
55	ggggcctcag	tgactacttc	caacgctgaa	aacttccacc	actggggcca	gggcaccctg	360
	gtcaccgtct	cctcq					375

	<210> 173	
	<211> 375	
	<212> DNA	
	<213> Homo sapiens	
5	.400. 400	
	<400> 173	60
	caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagagtc	60
	tectgtgeag egtetggatt cacetteagt agttatgaca tgeactgggt eegecagget	120
10	ccaggcaagg ggctggagtg ggtggcggtt atatggtttg atggaagtaa tgaattctat	180
	gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt	240
		300
	ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaccta	500
15	ggggcctcag tgactacttc caacgctgaa aacttccacc actggggcca gggcaccctg	360
	gtcaccgtct cctcg	375
00	<210> 174	
20	<210> 174 <211> 324	
	<212> DNA	
	<213> Homo sapiens	
	-	
25	<400> 174	
20	tectatgage tgaeteagee acceteggtg teagtgteee caggacaaac ggeeaggate	60
	acctgctctg gagatgcatt gccaaaaaga tatgtttatt ggtaccagca gaagtcaggc	120
	accegerous gagargeare gecaaaaaga targeerare ggraceagea gaageeagge	120
	caggeceetg tgetggteat etatgaggae ageaaaegae eeteegggat eeetgagaea	180
30		
	ttctctggct ccagctcagg gacaatggcc accttgacta tcagtggggc ccaggtagag	240
		200
	gatgaagctg actactactg ttactcaaca gacagcaatg gtcatcattg ggtgttcggc	300
	ggagggacca agctgaccgt ccta	324
35		
	<210> 175	
	<211> 363 <212> DNA	
	<212> DNA <213> Homo sapiens	
40	1210 Homo Supreme	
	<400> 175	
	gaggtgcagc tggtggagtc tgggggagac ttggtacagc ctggggggtc cctgagactc	60
	tectgtgcag cetetggatt egaetteage ggetatagea tggeetgggt eegeeagget	120
45	ccagggaagg ggctggagtg ggtttcgtat attagcggca cttatgttag tggtggtaca	180
	conggangs gyoogangs gyoonagens normally or according egyopenen	
	ggcacgatgt attatttaga ctctgtgaag ggccgattct tcatctccag agacgatgcc	240
50	accagttcac tgtatctgca aatggacagc ctgagggacg aggacacggc tgtgtattac	300
50		260
	tgtgcgagag tttatgacta cggtgaagac tggggccagg gaaccctggt caccgtctcc	360
	tcg	363
	-	
55		
	<210> 176	
	Z7118 KKU	

	<212> DNA <213> Homo sapiens	
5	<400> 176 gatattgtga tgactcaatc accagactcc ctggctgtgt ctctgggcga gagggccacc	60
	atcaactgca agtccagccg gagtgtctta tacagctcca acagtaagaa ctacttagct	120
	tggtatcage agaaacccgg acagcctcct aagttgctca tttactgggc atctacgcgg	180
10	gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagaatt cactctcacc	240
	atcagcagcc tgcaggctga agatgtggcg gtttattact gtcagcaata ttatggtact	300
15	cctcgcacgt tcggccaagg gaccaaggtg gaaatcaaa	339
15 20	<210> 177 <211> 372 <212> DNA <213> Homo sapiens	
	<400> 177 gaggtgcagc tggtggagtc tgggggggc ttggtacagc ctggggggtc cctgagactc	60
	tcctgtgcag gcactagatt cacctttagc acctatgcca tgggctgggt ccgccaggct	120
25	ccagggaggg ggctggagtg ggtctcggct attggtggta gtggtgatag cacatcctac	180
	gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat	240
	ctgcaaatga acagcctgag agccgaggac acggccgtat attattgtgc gaaaggggtt	300
30	tatgattacc tttgggggag ttatcggctc tttgactact ggggccaggg aaccctggtc	360
	accgtctcct cg	372
35	<210> 178 <211> 324 <212> DNA <213> Homo sapiens	
40	<400> 178 tectatgtge tgacteagee acceteggtg teagtggeee caggacagae ggeeagattt	60
	acctgtgggg gaaacaacat tgcaagtaaa agtgtgcact ggtaccagca gaagccaggc	120
	caggecectg tgetggtegt etatgatgat agegacegge ceteaeggat eeetgagega	180
45	ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg	240
	gatgaggccg actattactg tcaggtgtgg gatagtacta gtgatcatgt ggtattcggc	300
50	ggagggacca agctgaccgt ccta	324
55	<210> 179 <211> 342 <212> DNA <213> Homo sapiens <400> 179	

	gaggtgcagc	tggtggagtc	tgggggaggc	ttggtacagc	ctggggggtc	cctgagactc	60
	tcctgtgcag	cctctggatt	cacctttccc	aactatgtca	tgacgtgggt	ccgccaggct	120
5	ccagggaagg	ggctggagtg	ggtctcaggt	attagtggta	gtggtggtag	cacagactac	180
	gcagactccg	tgaagggccg	gttcaccatc	tccagagaca	attccaagaa	cacgttgtat	240
	ctgcaaatga	acagcctgag	agtcgaggac	acggccttgt	attactgtgc	gaagggctca	300
10	ggtggtatcc	ggggccaagg	gacaatggtc	accgtctctt	cg		342
15	<210> 180 <211> 330 <212> DNA <213> Home	o sapiens					
	<400> 180	tgactcagcc	teacteacte	tecagatete	ctagacagta	agtgaggatg	60
20							
20	tcctgcactg	gaaccagcag	tgatgttggt	ggttataact	atgtctcctg	gcaccagcag	120
	cacccaggca	aagcccccaa	actcctgatt	tatgatgtca	ctaagcggcc	ctcaggggtc	180
	cctgatcgct	tctctggctc	caagtctggc	aacacggccg	ccctgaccat	ctctgggctc	240
25	caggctgagg	atgaggctga	ttattactgc	cactcatatg	taggcagcta	cactttggta	300
	ttcggcggag	ggaccaagct	gaccgtcctc				330
30	<210> 181 <211> 354 <212> DNA						
	<213> Home	o sapiens					
35	<400> 181		taaaaaaaac	ttggtccagc	ctagagaatc	cctgaaactc	60
35	<400> 181 gaggtgcagc	tggtggagtc					60 120
35	<400> 181 gaggtgcagc tcctgtgcag	tggtggagtc	cacattcagt	ggctctgcta	tgcactgggt	ccgccaggct	
	<400> 181 gaggtgcagc tcctgtgcag tccgggaaag	tggtggagtc cctctgggtt ggctggagtg	cacattcagt	ggctctgcta	tgcactgggt aagctaatag	ccgccaggct	120
35 40	<400> 181 gaggtgcagc tcctgtgcag tccgggaaag gcatatgctg	tggtggagtc cctctgggtt ggctggagtg cgtcggtgaa	cacattcagt ggttggccgt aggcaggttc	ggctctgcta attagaagca accatctcca	tgcactgggt aagctaatag gagatgattc	ccgccaggct ttatgcgaca aaagaacacg	120 180
40	<400> 181 gaggtgcagc tcctgtgcag tccgggaaag gcatatgctg gcgtatctac	tggtggagtc cctctgggtt ggctggagtg	cacattcagt ggttggccgt aggcaggttc cctgaaaacc	ggctctgcta attagaagca accatctcca gaggacacgg	tgcactgggt aagctaatag gagatgattc ccgtgtatta	ccgccaggct ttatgcgaca aaagaacacg ctgtactagc	120 180 240
	<pre><400> 181 gaggtgcagc tcctgtgcag tccgggaaag gcatatgctg gcgtatctac cctacggtga <210> 182 <211> 339 <212> DNA <213> Home</pre>	tggtggagtc cctctgggtt ggctggagtg cgtcggtgaa aaatgaacag ctaccgaggt	cacattcagt ggttggccgt aggcaggttc cctgaaaacc	ggctctgcta attagaagca accatctcca gaggacacgg	tgcactgggt aagctaatag gagatgattc ccgtgtatta	ccgccaggct ttatgcgaca aaagaacacg ctgtactagc	120 180 240 300
40 45	<pre><400> 181 gaggtgcagc tcctgtgcag tcctgtgcag tccgggaaag gcatatgctg gcgtatctac cctacggtga <210> 182 <211> 339 <212> DNA <213> Homo <400> 182</pre>	tggtggagtc cctctgggtt ggctggagtg cgtcggtgaa aaatgaacag ctaccgaggt	cacattcagt ggttggccgt aggcaggttc cctgaaaacc ctggggccag	ggctctgcta attagaagca accatctcca gaggacacgg ggaaccctgg	tgcactgggt aagctaatag gagatgattc ccgtgtatta tcaccgtctc	ccgccaggct ttatgcgaca aaagaacacg ctgtactagc ctcg	120 180 240 300 354
40 45	<400> 181 gaggtgcagc tcctgtgcag tcctgtgcag tccgggaaag gcatatgctg gcgtatctac cctacggtga <210> 182 <211> 339 <212> DNA <213> Home <400> 182 gatattgtga	tggtggagtc cctctgggtt ggctggagtg cgtcggtgaa aaatgaacag ctaccgaggt	cacattcagt ggttggccgt aggcaggttc cctgaaaacc ctggggccag	ggctctgcta attagaagca accatctcca gaggacacgg ggaaccctgg	tgcactgggt aagctaatag gagatgattc ccgtgtatta tcaccgtctc ctctgggcga	ccgccaggct ttatgcgaca aaagaacacg ctgtactagc ctcg	120 180 240 300

	gaatccgggg t	ctctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
	atcagcagcc to	gcaggctga	agatgtggca	gtgtattact	gtcagcaata	ttatagtacc	300
5	ccgatcacct to	cggccaagg	gacacgactg	gagattaaa			339
10	<210> 183 <211> 366 <212> DNA <213> Homo	sapiens					
	<400> 183 gaggtgcagc to	ggtggagtc	tgggggaggc	ttggtacagc	cgggggggtc	cctgagactg	60
15	tcctgtatag g	ctcctctgg	aatgaccttc	agtagttatg	ccttcaactg	ggtccgccag	120
,,	actccaggga a						180
	tacacagact c						240
20	tatctgcaaa to						300
	acggcttctg g						360
	tecteg				-9999-00-0	9900000	366
25	ccccg						300
30	<210> 184 <211> 321 <212> DNA <213> Homo	sapiens					
50	<400> 184						
	gacatccaga to	gacccagtc	tccatcctca	ctgtctgctt	ctgtaggaga	cagagtcacc	60
35	atcacttgtc g	ggcgagtca	gggcattgtc	aataatttag	cctggtttca	gcagaagcca	120
	gggaaagccc c	taagtccct	gatctatgct	gcatccagtt	tgcaaggtgg	ggtcccatca	180
	aaattcagcg g	cagtgcgtc	tgggacagat	ttcagtctca	ccatcagcaa	cctgcagcct	240
40	gaagactttg c	aacttattt	ctgccaacag	tataatagtt	acccttggac	gttcggccaa	300
	gggaccaagg to	ggagatcaa	a				321
45		sapiens					
	<400> 185 gaggtgcagc to	ggtgcagtc	tggagcagag	gtgaaaaagc	ccggggagtc	tctgaagatc	60
50	tcctgtaagg g						120
	cccgggaaag g						180
<i></i>	agcccgtcct a						240
55	ctgcagtgga g						300

	ggggatattg	gctacgagaa	ctactactac	tacggtatgg	acgtctgggg	ccaagggacc	360
	acggtcaccg	teteeteg					378
5	<210> 186 <211> 339 <212> DNA <213> Home						
10	<400> 186						
	gatattgtga	tgactcaatc	accagactcc	ctggctgtgt	ctctgggcga	gagggccacc	60
	atcaactgca	agtccagcca	gagtgtttta	tatggctcca	acaataagaa	ctacttagct	120
15	tggtaccagc	agaaactagg	acagtctcct	aaactgctca	tttactgggc	atctgcccgg	180
	gaatccgggg	tccctgaccg	attcggtggc	agcgggtctg	ggacagattt	cactctcacc	240
	atcagcagcc	tgcaggctga	agatgtggca	gtctattact	gtcagcaata	ttacagtact	300
20	ccgtggacgt	tcggccaggg	gaccaaggtg	gaaatcaaa			339
25	<210> 187 <211> 354 <212> DNA <213> Home						
	<400> 187						
		tggtggagtc	tgggggaggc	gtggtccagc	ctgggaggtc	cctgagactc	60
30	tcctgtgcag	cgtctggatt	cacgttcact	agatatggca	tgcactgggt	ccgccaggct	120
	ccaggcaagg	ggctggagtg	ggtggcagtt	atatggtatg	atggaactaa	taaatattat	180
	gcagactcac	tgcagggccg	attcaccatc	tccagagaca	cttccacgaa	cacgctgtat	240
35	ctgcaaatga	acggcctgag	agtcgaggac	agggctgtat	attactgtgc	gagagaggg	300
	tttcagggag	cgatcgacta	ctggggccag	ggcaccctgg	tcaccgtctc	ctcg	354
40	<210> 188 <211> 339 <212> DNA <213> Home						
	<400> 188						
45	gaaattgtga	tgactcagtc	tccagactcc	ctggctgtgt	ctctgggcga	gagggccacc	60
	atcaactgca	agtcaagcca	gaatatttta	tacageteeg	acaataagaa	ctacttagct	120
	tggtaccagc	agaaaccagg	acagcctcct	aaactactca	tttactgggc	atctacccgg	180
50	gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
	atcagcagcc	tgcaggctga	agatgtggca	gtttattact	gtcagcaata	ttatagtatt	300
55	cctcggacgt	tcggccaagg	gaccaaggtg	gagatcaaa			339
	<210> 189						

	<212>	360 DNA Homo	sapiens					
5		189 agc	tggtggagtc	tgggggaggc	ttggtccagc	ctggggggtc	cctgaaactc	60
		_					ccgccaggct	120
10	tccggga	aag	ggctggagtg	ggttggccgt	attagaagta	aaggtaataa	ttacgcgaca	180
10	gcatatg	ctg	cgtcggtgaa	aggcaggttc	accgtctcca	gagatgattc	aaagaacacg	240
	acgtatc	tac	agatgaacag	cctgaaaacc	gacgacacgg	ccatatatta	ctgtactaga	300
15	cagggcc	cct	cctacggtgg	tattaattgg	ggcctgggca	ccctggtcac	cgtctcctcg	360
20	<211> <212>	190 339 DNA Homo	sapiens					
		190 tga	tgactcaatc	accagactcc	ctaactatat	ctctgggcga	gagggccacc	60
		-	_	-			ctacttagct	120
25		_	_	_	-	_	atctacccgg	180
						ggacagattt		240
30	atcagca	gcc	tgcgggctga	agatgtggca	gtttattact	gtcagcaata	ttatagttct	300
	cctcaaa	cgt	tcggccaggg	gaccaaggtg	gaaatcaaa			339
35	<211> <212>	191 345 DNA Homo	sapiens					
		191						6.0
40							cattacactg	60
							ccgccaggct	120
	ccagtga	agg	ggctggagtg	gattggccat	attaaaacca	gaattgaagg	tgcgacaaca	180
45	gactacg	ctg	cgcccgtgga	aggccgattc	accatttcaa	gagacgattc	aaaaaatatg	240
	gtatato	ttc	aaatgaacag	cctgaagacc	gaagactcag	gcatttatta	ctgttccaca	300
	gactttg	act	attggggcca	gggaaccctg	gtcaccgtct	cctcg		345
50	<211> <212>	192 339 DNA Homo	sapiens					
55	<400> gatgttg		tgactcagtc	tccactctcc	ctgcccgtca	cccttggaca	geeggeetee	60

	atctcctgca	cgtctagtca	aagcctccta	tacagtgatg	gaaacaccta	cttgaattgg	120
	tttcagcaga	ggccaggcca	atctccaagg	cgcctaatgt	ataaggtttc	taagcgggac	180
5	cctggggtcc	cagacagatt	cagcggcagt	gggtcaggca	ctgatttcac	actgagcatc	240
	agcagggtgg	aggctgagga	tgttggcgtt	tattactgca	tgcaaggttc	actctggcct	300
	cggtacactt	ttggccaggg	gaccaaggtg	gagatcaaa			339
10	<210> 193 <211> 363 <212> DNA <213> Homo	o sapiens					
15	<400> 193 gaggtgcagc	tggtgcagtc	tggagcagaa	gtgaaaaagc	ccggggactc	tctgaggatc	60
	tcctgtaagg	cttctggata	caactttccc	aactactgga	tcggctgggt	gcgccagatg	120
20	cccgggaaag	gcctggagtg	gatgggaatc	atctaccctg	gtgactctga	tatcagatac	180
	agcccgtcct	tccagggaca	cgtcaccatc	tccagtgaca	agtccatcac	caccgcctat	240
	ctccagtgga	ccagtctgaa	ggtcgcggac	agcgccatgt	attattgtgc	gagagtggaa	300
25	aggcctgaca	aggggggctg	gttcggcccc	tggggccagg	gaaccctggt	caccgtctcc	360
	tcg						363
30	<210> 194 <211> 339 <212> DNA <213> Homo	o sapiens					
35	<400> 194 gatattgtga	tgactcaatc	accagactcc	ctggctgtgt	ctctqqqcqa	gagggccacc	60
		agtccagcca					120
	tggtaccaac	acaaaccggg	acagcctcct	aaggtgctca	tatactgggc	atctacccgg	180
40	gaatatgggg	tccctgaccg	attcagtggc	agcgggtctg	gaacagattt	cactctcacc	240
	atcagcagcc	tgcagcctga	agatgtggct	gtttattact	gtcagcaata	ttataatagt	300
45	ccctacactt	ttggccaggg	gaccaagctg	gagatcaaa			339
50	<210> 195 <211> 342 <212> DNA <213> Homo	o sapiens					
	<400> 195 gaggtgcagc	tggtggagtc	tgggggaggc	ttggtacagc	ctggggggtc	cctgagactc	60
55		cctctggatt					120
55	ccaggaaagg	gactagaata	ggttgcacac	attactoota	gtgggagtgg	catcttctac	180

	gcagactctg	tgaagggccg	attcaccatt	tccagagaca	atgccaagag	ttccctatat	240
	ctgcaaatga	acagcctgag	aaacgatgac	acggctctat	atttctgtgt	gagaggtacc	300
5	gttgactact	ggggccaggg	caccctggtc	accgtctcct	cg		342
10	<210> 196 <211> 330 <212> DNA <213> Homo	o sapiens					
	<400> 196 caggctggtc	tgactcagcc	accctcggtg	tccaaggact	tgagacagac	cgccacactc	60
15	acctgcagtg	ggaacagcaa	caatgtcggc	aaccaaggag	cagcttggct	gcagcagttc	120
	ccgggccacc	ctcccaaact	cctcttctac	gaaaatatca	accggccctc	aggaatttca	180
	gagagattct	ctgcatccag	gtcaggaaac	acagcttccc	tgaccattac	tggactccag	240
20	cctgaggacg	aggctgacta	ttactgctca	gcgtgggacg	gccacctcaa	tgcttgggtg	300
	ttcggcggag	ggaccaagct	gaccgtccta				330
25	<210> 197 <211> 372 <212> DNA <213> Home	o sapiens					
30	<400> 197	t aat aas at a	+ ~~~ ~~~ ~~	at assessa	aaaaaaa at a	+	60
		tggtgcagtc				gcgccagatg	120
			_			caccagatac	180
35							240
		tcgaaggcca					300
		cagtgacgga				gagacattgg	360
40	accgtctcct		receeding	reggeeeer	ggggccaggg	aaccccggcc	372
45		o sapiens					
	<400> 198 gatattgtga	tgacccagag	tccagactcc	ctggctgtgt	ctctgggcga	gagggccacc	60
50	atcaactgca	agtccagcca	gactgtttta	tatacctcca	acaataagaa	ctacttagct	120
	tggtaccagc	agaagccagg	acagcctcct	aagttactca	tttactgggc	atctacccgg	180
55	gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
	atcagcagcc	tgcaggctga	agatgtggca	gtttattact	gtcagcacta	ttatagtact	300

	ccattcactt tcggccctgg gaccaaagtg gatatcaaa	339
5	<210> 199 <211> 351 <212> DNA <213> Homo sapiens	
10	<400> 199 gaggtgcagc tggtggagtc tggggctgag gtgaagaaac ctggggcctc agtgaaggtc	60
	tectgcaagg cttctggata catctttacc geettettta tgcactgggt gegacaggee	120
	cctggacaag gccttgagtg gatgggatgg atcaaccctg acagtggtgc cacaaagtat	180
15	gcacacaact ttcagggcag ggttaccatg accagggaca cgtccatcag cacagccttc	240
	atggagctga gtggactgaa gtctgacgac acgggcgtat attactgtgc gacgggtatg	300
	geagtgactg gtaacttetg gggeeaggga accetggtea eegteteete g	351
20	<210> 200 <211> 351 <212> DNA <213> Homo sapiens	
23	<400> 200 caggtgcage tggtgcaate tggggctgag gtgaagaaae etggggcete agtgaaggte	60
	teetgeaagg ettetggata catetttace geettettta tgeaetgggt gegaeaggee	120
30	cctggacaag gccttgagtg gatgggatgg atcaaccctg acagtggtgc cacaaagtat	180
	gcacacaact ttcagggcag ggttaccatg accagggaca cgtccatcag cacagccttc	240
	atggagetga gtggaetgaa gtetgaegae aegggegtat attaetgtge gaegggtatg	300
35	gcagtgactg gtaacttctg gggccagggc accctggtca ccgtctcctc g	351
40	<210> 201 <211> 324 <212> DNA <213> Homo sapiens	
	<400> 201	60
45	ctgcctgtgc tgactcagcc accctcagtg tcagtgtctc cgggacagac agccaggatc	60
	acctgctcag gagatgtact ggcagaaaca tatgctcggt ggttccagca gaagccaggc	120
	caggeceetg tgttggtgat gtatagagae egtgagegge eegeagggat eeetgagega	180
50	ttctccggct ccagctcagg gaacacagtc accttgacca tcagcggggc ccaggctgag	240
	gatgaggetg tetateattg teactetgtg getgacaaca atetagattg ggtgttegge	300
	ggagggacca aactgaccgt ccta	324
55	<210> 202 <211> 324	

	<212 <213		ONA Homo	sap	iens													
5	<400 tcct		202 agc t	gact	cago	cc a	ccct	cagto	g tca	agtgt	tctc	cgg	gacaç	gac :	agcca	aggat	c	60
	acct	gct	cag q	gagat	gtac	et g	gcaga	aaaca	a tat	gcto	eggt	ggtt	cca	gca (gaago	ccagg	c	120
	cag	gece	ctg t	gtt	ggtga	at gi	tataç	gagad	c cgt	gago	egge	ccg	cagg	gat (ccct	gagcg	a	180
10	ttct	ccg	gct (ccago	ctcaç	gg ga	aacao	cagto	c acc	ettga	acca	tcaç	geggg	gc (ccago	gctga	g	240
	gate	gagg	ctg t	ctat	catt	g to	cacto	etgte	g gct	gaca	aaca	atct	agat	tg (ggtgt	tegg	c	300
15	ggag	ggga	cca a	aacto	gacco	gt co	cta											324
20	<210 <211 <212 <213	L> 2 2> 1	203 450 PRT Arti:	ficia	al Se	equei	nce											
	<220 <223		Chima	aera														
25	<400)> :	203															
	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu		
30	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Ala	Phe 25	Gly	Tyr	Ser	Phe	Thr 30	Asn	Phe		
35	Trp	Ile	Gly 35	Trp	Val	Arg	Gln	Val 40	Pro	Gly	Lys	Gly	Le u 4 5	Glu	Trp	Val		
	Gly	Ile 50	Ile	Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	туг 60	Ser	Pro	Ser	Phe		
40	Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Asp	Thr	Ala	Tyr 80		
45	Leu	Gln	Trp	Gly	His 85	Leu	Lys	Ala	Ser	Asp 90	Ser	Ala	Met	Tyr	Phe 95	Cys		
50	Ala	Arg	Arg	Gly 100	Phe	Trp	Thr	Gly	Ser 105	Gln	Ile	Glu	Tyr	Trp 110	Gly	Gln		
	Gly	Thr	Gln 115	Val	Thr	Val	Ser	Ser 120	Ala	Lys	Thr	Thr	Ala 125	Pro	Ser	Val		
55	Tyr	Pro 130	Leu	Ala	Pro	Val	Cys 135	Gly	Asp	Thr	Thr	Gly 140	Ser	Ser	Val	Thr		

	Leu 145	Gly	Cys	Leu	Val	Lys 150	Gly	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Leu	Thr 160
5	Trp	Asn	Ser	Gly	Ser 165	Leu	Ser	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
10	Leu	Gln	Ser	Asp 180	Leu	Tyr	Thr	Leu	Ser 185	Ser	Ser	Val	Thr	Val 190	Thr	Ser
	Ser	Thr	Trp 195	Pro	Ser	Gln	Ser	Ile 200	Thr	Cys	Asn	Val	Ala 205	His	Pro	Ala
15	Ser	Ser 210	Thr	Lys	Val	Asp	Lys 215	Lys	Ile	Glu	Pro	Arg 220	Gly	Pro	Thr	Ile
20	Lys 225	Pro	Cys	Pro	Pro	Cys 230	Lys	Cys	Pro	Ala	Pro 235	Asn	Leu	Leu	Gly	Gly 240
25	Pro	Ser	Val	Phe	Ile 245	Phe	Pro	Pro	Lys	11e 250	Lys	Asp	Val	Leu	Met 255	Ile
	Ser	Leu	Ser	Pro 260	Ile	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Glu	Asp
30	Asp	Pro	As p 275	Val	Gln	Ile	Ser	Trp 280	Phe	Val	Asn	Asn	Val 285	Glu	Val	His
35	Thr	Ala 290	Gln	Thr	Gln	Thr	His 295	Arg	Glu	Asp	Tyr	Asn 300	Ser	Thr	Leu	Arg
40	Val 305	Val	Ser	Ala	Leu	Pro 310	Ile	Gln	His	Gln		Trp		Ser	Gly	Lys 320
40	Glu	Phe	Lys	Cys	Lys 325	Val	Asn	Asn	Lys	Asp 330	Leu	Pro	Ala	Pro	Ile 335	Glu
45	Arg	Thr	Ile	Ser 340	Lys	Pro	Lys	Gly	Ser 345	Val	Arg	Ala	Pro	Gln 350	Val	Tyr
50	Val	Leu	Pro 355	Pro	Pro	Glu	Glu	Glu 360	Met	Thr	Lys	Lys	Gln 365	Val	Thr	Leu
	Thr	Cys 370	Met	Val	Thr	Asp	Phe 375	Met	Pro	Glu	Asp	Ile 380	Tyr	Val	Glu	Trp
55	Thr 385	Asn	Asn	Gly	Lys	Thr 390	Glu	Leu	Asn	туг	Lys 395	Asn	Thr	Glu	Pro	Val 400

	Leu	Asp	Ser	Asp	Gly 405	Ser	Tyr	Phe	Met	Tyr 410	Ser	Lys	Leu	Arg	Val 415	Glu
5	Lys	Lys	Asn	Trp 420	Val	Glu	Arg	Asn	Ser 425	Tyr	Ser	Cys	Ser	Val 430	Val	His
10	Glu	Gly	Leu 435	His	Asn	His	His	Thr 440	Thr	Lys	Ser	Phe	Ser 445	Arg	Thr	Pro
	Gly	Lys 450														
15	<210 <211 <211	1> 2 2> 1	204 217 PRT	6 1 — 1 .	-1 C											
20	<21: <22: <22:	0>	Arti: Chima		ar Se	equer	ice									
25	<400 Gln 1	0> 2 Ser	204 Ala	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Ser	Pro	Gly 15	His
30	Ser	Val	Thr	Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Val	Gly 30	Asn	Tyr
35	Ser	Phe	Val 35	Ser	Trp	Tyr	Gln	Gln 40	Tyr	Pro	Gly	Lys	Ala 45	Pro	Lys	Ile
	Ile	Ile 50	Tyr	Asp	Val	Ser	Lys 55	Arg	Ser	Ser	Gly	Val 60	Pro	Asp	Arg	Phe
40	Phe 65	Gly	Ser	Lys	Ser	Al a 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Val	Ser	Gly	Val 80
45	Gln	Glu	Glu	Asp	Glu 85	Ala	Asp	Tyr	Phe	Cys 90	Ser	Ser	Tyr	Gly	Gly 95	Ser
50	Lys	Tyr	Pro	Trp 100	Val	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Thr	Val 110	Leu	Gly
	Gln	Pro	Lys 115	Ser	Ser	Pro	Ser	Val 120	Thr	Leu	Phe	Pro	Pro 125	Ser	Ser	Glu
55	Glu	Leu 130	Glu	Thr	Asn	Lys	Ala 135	Thr	Leu	Val	Cys	Thr 140	Ile	Thr	Asp	Phe

	Tyr Pr 145	o Gly	Val	Val	Thr 150	Val	Asp	Trp	Lys	Val 155	Asp	Gly	Thr	Pro	Val 160
5	Thr Gl	n Gly	Met	Glu 165	Thr	Thr	Gln	Pro	Ser 170	Lys	Gln	Ser	Asn	As n 175	Lys
10	Tyr Me	t Ala	Ser 180	Ser	Tyr	Leu	Thr	Leu 185	Thr	Ala	Arg	Ala	Trp 190	Glu	Arg
	His Se	r Ser 195	туг	Ser	Cys	Gln	Val 200	Thr	His	Glu	Gly	His 205	Thr	Val	Glu
15	Lys Se 21		Ser	Arg	Ala	Asp 215	Cys	Ser							
20	<210> <211> <212> <213>	205 455 PRT Arti	ficia	al Se	equei	nce									
25	<220> <223>	Chima	aera												
	<400>	205													
30	Gln Va 1	l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
	Ser Le	u A rg	Val 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
35	Asp Me	t His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 4 5	Glu	Trp	Val
40	Ala Va 50		Trp	Phe	Asp	Gly 55	Ser	Asn	Glu	Phe	Tyr 60	Ala	Asp	Ser	Val
	Lys Gl 65	y Arg	Phe	Thr	I le 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Phe 80
45	Leu Gl	n Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
50	Ala Ar	g As p	Leu 100	Gly	Ala	Ser	Val	Thr 105	Thr	Ser	Asn	Ala	Glu 110	Asn	Phe
55	His Hi	s Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Lys	Thr
	Thr Al	a Pro	Ser	Val	Tyr	Pro	Leu	Ala	Pro	Val	Cys	Gly	Asp	Thr	Thr

5	Gly 145	Ser	Ser	Val	Thr	Leu 150	Gly	Cys	Leu	Val	Lys 155	Gly	Tyr	Phe	Pro	Glu 160
10	Pro	Val	Thr	Leu	Thr 165	Trp	Asn	Ser	Gly	Ser 170	Leu	Ser	Ser	Gly	Val 175	His
10	Thr	Phe	Pro	A la 180	Val	Leu	Gln	Ser	Asp 185	Leu	Tyr	Thr	Leu	Ser 190	Ser	Ser
15	Val	Thr	Val 195	Thr	Ser	Ser	Thr	Trp 200	Pro	Ser	Gln	Ser	Ile 205	Thr	Cys	Asn
20	Val	Ala 210	His	Pro	Ala	Ser	Ser 215	Thr	Lys	Val	Asp	Lys 220	Lys	Ile	Glu	Pro
25	Arg 225	Gly	Pro	Thr	Ile	Lys 230	Pro	Cys	Pro	Pro	Cys 235	Lys	Cys	Pro	Ala	Pro 240
20	Asn	Leu	Leu	Gly	Gly 2 4 5	Pro	Ser	Val	Phe	Ile 250	Phe	Pro	Pro	Lys	Ile 255	Lys
30	Asp	Val	Leu	Met 260	Ile	Ser	Leu	Ser	Pro 265	Ile	Val	Thr	Cys	Val 270	Val	Val
35	Asp	Val	Ser 275	Glu	Asp	Asp	Pro	Asp 280	Val	Gln	Ile	Ser	Trp 285	Phe	Val	Asn
	Asn	Val 290	Glu	Val	His	Thr	Ala 295	Gln	Thr	Gln	Thr	His 300	Arg	Glu	Asp	Tyr
40	Asn 305	Ser	Thr	Leu	Arg	Val 310	Val	Ser	Ala	Leu	Pro 315	Ile	Gln	His	Gln	Asp 320
45	Trp	Met	Ser	Gly	Lys 325	Glu	Phe	Lys	Cys	Lys 330	Val	Asn	Asn	Lys	Asp 335	Leu
50	Pro	Ala	Pro	Ile 340	Glu	Arg	Thr	Ile	Ser 345	Lys	Pro	Lys	Gly	Ser 350	Val	Arg
	Ala	Pro	Gln 355	Val	Tyr	Val	Leu	Pro 360	Pro	Pro	Glu	Glu	Glu 365	Met	Thr	Lys
55	Lys	Gln 370	Val	Thr	Leu	Thr	Cys 375	Met	Val	Thr	Asp	Phe 380	Met	Pro	Glu	Asp

	Ile Ty 385	r Val	Glu	Trp	Thr 390	Asn	Asn	Gly	Lys	Thr 395	Glu	Leu	Asn	Tyr	Lys 400
5	Asn Th	r Glu	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Tyr	Phe	Met	Tyr 415	Ser
10	Lys Le	u Arg	Val 420	Glu	Lys	Lys	Asn	Trp 425	Val	Glu	Arg	Asn	Ser 430	Tyr	Ser
	Cys Se	r Val 435	Val	His	Glu	Gly	Leu 440	His	Asn	His	His	Thr 445	Thr	Lys	Ser
15	Phe Se	_	Thr	Pro	Gly	Lys 455									
20	<210> <211> <212> <213>	206 213 PRT Arti	ficia	al Se	equei	nce									
25	<220> <223>	Chim	aera												
	<400>	206													
30	Tyr Gl 1	u Leu	Thr	Gln 5	Pro	Pro	Ser	Val	Ser 10	Val	Ser	Pro	Gly	Gln 15	Thr
	Ala Ar	g Ile	Thr 20	Cys	Ser	Gly	Asp	Ala 25	Leu	Pro	Lys	Arg	Tyr 30	Val	Tyr
35	Trp Ty	r Gln 35	Gln	Lys	Ser	Gly	Gln 40	Ala	Pro	Val	Leu	Val 45	Ile	Tyr	Glu
40	Asp Se		Arg	Pro	Ser	Gly 55	Ile	Pro	Glu	Thr	Phe 60	Ser	Gly	Ser	Ser
	Ser Gl 65	y Thr	Met	Ala	Thr 70	Leu	Thr	Ile	Ser	Gly 75	Ala	Gln	Val	Glu	Asp 80
45	Glu Al	a Asp	Tyr	Tyr 85	Cys	Tyr	Ser	Thr	Asp 90	Ser	Asn	Gly	His	His 95	Trp
50	Val Ph	e Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln	Pro 110	Lys	Ser
55	Ser Pr	o Ser 115	Val	Thr	Leu	Phe	Pro 120	Pro	Ser	Ser	Glu	Glu 125	Leu	Glu	Thr
- -	Asn Ly	s Ala	Thr	Leu	Val	Cys	Thr	Ile	Thr	Asp	Phe	Tyr	Pro	Gly	Val

5	Val Thr V 145	al Asp !	Trp Lys 150	Val Asp	Gly Thr	Pro Val 155	Thr Gln	Gly Met 160
	Glu Thr I		Pro Ser 165	Lys Gln	Ser Asn 170	Asn Lys	Tyr Met	Ala Ser 175
10	Ser Tyr I	eu Thr 1	Leu Thr	Ala Arg	Ala Trp 185	Glu Arg	His Ser 190	Ser Tyr
15	Ser Cys G	ln Val '	Thr His	Glu Gly 200	His Thr	Val Glu	Lys Ser 205	Leu Ser
20	Arg Ala A	.sp Cys :	Ser					
	<210> 20 <211> 44 <212> PF	4						
25		tificia	1 Sequer	nce				
	<220> <223> Ch	imaera						
20	<400> 20	7						
30	Glu Val G		Val Glu 5	Ser Gly	Gly Gly 10	Leu Val	Gln Pro	Gly Gly 15
35	Ser Leu A	rg Leu S 20	Ser Cys	Ala Ala	Ser Gly 25	Phe Thr	Phe Pro 30	Asn Tyr
40	Val Met 1	hr Trp \ 5	Val Arg	Gln Ala 40	Pro Gly	Lys Gly	Leu Glu 45	Trp Val
40	Ser Gly I	le Ser (Gly Ser	Gly Gly 55	Ser Thr	Asp Tyr 60	Ala Asp	Ser Val
45	Lys Gly A	rg Phe !	Thr Ile 70	Ser Arg	Asp Asn	Ser Lys	Asn Thr	Leu Tyr 80
50	Leu Gln M		Ser Leu 85	Arg Val	Glu Asp 90	Thr Ala	Leu Tyr	Tyr Cys 95
	Ala Lys G	ly Ser (Gly Gly	Ile Arg	Gly Gln 105	Gly Thr	Met Val	Thr Val
55	Ser Ser A	la Lys : 15	Thr Thr	Ala Pro 120	Ser Val	Tyr Pro	Leu Ala 125	Pro Val

	Cys	Gly 130	Asp	Thr	Thr	Gly	Ser 135	Ser	Val	Thr	Leu	Gly 140	Cys	Leu	Val	Lys
5	Gly 145	Tyr	Phe	Pro	Glu	Pro 150	Val	Thr	Leu	Thr	Trp 155	Asn	Ser	Gly	Ser	Leu 160
10	Ser	Ser	Gly	Val	His 165	Thr	Phe	Pro	Ala	Val 170	Leu	Gln	Ser	Asp	Leu 175	Tyr
45	Thr	Leu	Ser	Ser 180	Ser	Val	Thr	Val	Thr 185	Ser	Ser	Thr	Trp	Pro 190	Ser	Gln
15	Ser	Ile	Thr 195	Cys	Asn	Val	Ala	His 200	Pro	Ala	Ser	Ser	Thr 205	Lys	Val	Asp
20	Lys	Lys 210	Ile	Glu	Pro	Arg	Gly 215	Pro	Thr	Ile	Lys	Pro 220	Cys	Pro	Pro	Cys
25	Lys 225	Cys	Pro	Ala	Pro	Asn 230	Leu	Leu	Gly	Gly	Pro 235	Ser	Val	Phe	Ile	Phe 240
	Pro	Pro	Lys	Ile	Lys 245	Asp	Val	Leu	Met	Ile 250	Ser	Leu	Ser	Pro	Ile 255	Val
30	Thr	Cys	Val	Val 260	Val	Asp	Val	Ser	Glu 265	Asp	Asp	Pro	Asp	Val 270	Gln	Ile
35	Ser	Trp	Phe 275	Val	Asn	Asn	Val	Glu 280	Val	His	Thr	Ala	Gln 285	Thr	Gln	Thr
40	His	Arg 290	Glu	Asp	Tyr	Asn	Ser 295	Thr	Leu	Arg	Val	Val 300	Ser	Ala	Leu	Pro
	Ile 305	Gln	His	Gln	Asp	Trp 310	Met	Ser	Gly	Lys	Glu 315	Phe	Lys	Cys	Lys	Val 320
45	Asn	Asn	Lys	Asp	Leu 325	Pro	Ala	Pro	Ile	Glu 330	Arg	Thr	Ile	Ser	Lys 335	Pro
50	Lys	Gly	Ser	Val 340	Arg	Ala	Pro	Gln	Val 345	Tyr	Val	Leu	Pro	Pro 350	Pro	Glu
55	Glu	Glu	Met 355	Thr	Lys	Lys	Gln	Val 360	Thr	Leu	Thr	Cys	Met 365	Val	Thr	Asp
55	Phe	Met	Pro	Glu	Asp	Ile	Tyr	Val	Glu	Trp	Thr	Asn	Asn	Gly	Lys	Thr

	•	<i>3</i> ,					3,3					500				
5	Glu 1 385	Leu	Asn	Tyr	Lys	Asn 390	Thr	Glu	Pro	Val	Leu 395	Asp	Ser	Asp	Gly	Ser 400
	Tyr 1	Phe	Met	Tyr	Ser 405	Lys	Leu	Arg	Val	Glu 410	Lys	Lys	Asn	Trp	Val 415	Glu
10	Arg i	Asn	Ser	Tyr 420	Ser	Суз	Ser	Val	Val 425	His	Glu	Gly	Leu	His 430	Asn	His
15	His '	Thr	Thr 435	Lys	Ser	Phe	Ser	Arg 440	Thr	Pro	Gly	Lys				
20	<210: <211: <212: <213:	> 4 > E	208 144 PRT Artif	icia	ıl Se	equer	nce									
	<220: <223:		Chima	ıera												
25	<400	> 2	208													
	Glu '	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
30	Ser 1	Leu	Arg	Le u 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Pro 30	Asn	Tyr
35	Val I	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40	Ser (Gly 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Asp	Tyr 60	Ala	Asp	Ser	Val
40	Lys (Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
45	Leu (Gln	Met	Asn	Ser 85	Leu	Arg	Val	Glu	Asp 90	Thr	Ala	Leu	Tyr	Tyr 95	Cys
50	Ala 1	Lys	Gly	Ser 100	Gly	Gly	Ile	Trp	Gly 105	Gln	Gly	Thr	Met	Val 110	Thr	Val
	Ser :	Ser	Ala 115	Lys	Thr	Thr	Ala	Pro 120	Ser	Val	Tyr	Pro	Leu 125	Ala	Pro	Val
55	Cys (Gly 130	Asp	Thr	Thr	Gly	Ser 135	Ser	Val	Thr	Leu	Gly 140	Cys	Leu	Val	Lys

	Gly 145	Tyr	Phe	Pro	Glu	Pro 150	Val	Thr	Leu	Thr	Trp 155	Asn	Ser	Gly	Ser	Leu 160
5	Ser	Ser	Gly	Val	His 165	Thr	Phe	Pro	Ala	Val 170	Leu	Gln	Ser	Asp	Leu 175	Tyr
10	Thr	Leu	Ser	Ser 180	Ser	Val	Thr	Val	Thr 185	Ser	Ser	Thr	Trp	Pro 190	Ser	Gln
45	Ser	Ile	Thr 195	Cys	Asn	Val	Ala	His 200	Pro	Ala	Ser	Ser	Thr 205	Lys	Val	Asp
15	Lys	Lys 210	Ile	Glu	Pro	Arg	Gly 215	Pro	Thr	Ile	Lys	Pro 220	Cys	Pro	Pro	Cys
20	Lys 225	Cys	Pro	Ala	Pro	Asn 230	Leu	Leu	Gly	Gly	Pro 235	Ser	Val	Phe	Ile	Phe 240
25	Pro	Pro	Lys	Ile	Lys 245	Asp	Val	Leu	Met	11e 250	Ser	Leu	Ser	Pro	Ile 255	Val
	Thr	Cys	Val	Val 260	Val	Asp	Val	Ser	Glu 265	Asp	Asp	Pro	Asp	Val 270	Gln	Ile
30	Ser	Trp	Phe 275	Val	Asn	Asn	Val	Glu 280	Val	His	Thr	Ala	Gln 285	Thr	Gln	Thr
35	His	Arg 290	Glu	Asp	Tyr	Asn	Ser 295	Thr	Leu	Arg	Val	Val 300	Ser	Ala	Leu	Pro
40	Ile 305	Gln	His	Gln	Asp	Trp 310	Met	Ser	Gly	Lys	Glu 315	Phe	Lys	Cys	Lys	Val 320
	Asn	Asn	Lys	Asp	Leu 325	Pro	Ala	Pro	Ile	Glu 330	Arg	Thr	Ile	Ser	Lys 335	Pro
45	Lys	Gly	Ser	Val 340	Arg	Ala	Pro	Gln	Val 345	Tyr	Val	Leu	Pro	Pro 350	Pro	Glu
50	Glu	Glu	Met 355	Thr	Lys	Lys	Gln	Val 360	Thr	Leu	Thr	Cys	Met 365	Val	Thr	Asp
55	Phe	Met 370	Pro	Glu	Asp	Ile	Туг 375	Val	Glu	Trp	Thr	As n 380	Asn	Gly	Lys	Thr
	Glu	Leu	Asn	Tyr	Lys	Asn	Thr	Glu	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser

	385	390	395 40	0
5	Tyr Phe Met Tyr Ser 405	Lys Leu Arg Val Glu 410	Lys Lys Asn Trp Val Gl 415	.u
10	Arg Asn Ser Tyr Ser 420	Cys Ser Val Val His 425	Glu Gly Leu His Asn Hi 430	. s
,,	His Thr Thr Lys Ser 435	Phe Ser Arg Thr Pro 440	Gly Lys	
15	<210> 209 <211> 216 <212> PRT <213> Artificial Se	quence		
20	<220> <223> Chimaera <400> 209			
25		Gln Pro Arg Ser Val 10	Ser Gly Ser Pro Gly Gl 15	.n
	Ser Val Thr Ile Ser 20	Cys Thr Gly Thr Ser 25	Ser Asp Val Gly Gly Ty 30	r
30	Asn Tyr Val Ser Trp 35	His Gln Gln His Pro 40	Gly Lys Ala Pro Lys Le 45	:u
35	Leu Ile Tyr Asp Val 50	Thr Lys Arg Pro Ser 55	Gly Val Pro Asp Arg Ph 60	ie
40		Gly Asn Thr Ala Ala 70	Leu Thr Ile Ser Gly Le 75 80	
	Gln Ala Glu Asp Glu 85	Ala Asp Tyr Tyr Cys 90	His Ser Tyr Val Gly Se 95	r
45	Tyr Thr Leu Val Phe 100	Gly Gly Gly Thr Lys 105	Leu Thr Val Leu Gly Gl 110	.n
50	Pro Lys Ser Ser Pro 115	Ser Val Thr Leu Phe 120	Pro Pro Ser Ser Glu Gl 125	.u
	Leu Glu Thr Asn Lys 130	Ala Thr Leu Val Cys 135	Thr Ile Thr Asp Phe Ty 140	r
55	-	Val Asp Trp Lys Val 150	Asp Gly Thr Pro Val Th 155 16	

	Gln	GIÀ	Met	Glu	165	Thr	Gln	Pro	Ser	Lys 170	Gln	Ser	Asn	Asn	Lys 175	Tyr
5	Met	Ala	Ser	Ser 180	Tyr	Leu	Thr	Leu	Thr 185	Ala	Arg	Ala	Trp	Glu 190	Arg	His
10	Ser	Ser	Tyr 195	Ser	Cys	Gln	Val	Thr 200	His	Glu	Gly	His	Thr 205	Val	Glu	Lys
45	Ser	Leu 210	Ser	Arg	Ala	Asp	Cys 215	Ser								
15	<210 <210 <210 <210	1> 4 2> I	210 452 PRT Artii	ficia	al Se	equer	nce									
20	<220 <220	3> (Chima 210	aera												
25	<400 Glu 1	Val		Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
30	Ser	Leu	Arg	Leu 20	Ser	Cys	Ile	Gly	Ser 25	Ser	Gly	Met	Thr	Phe 30	Ser	Ser
35	Tyr	Ala	Phe 35	Asn	Trp	Val	Arg	Gln 40	Thr	Pro	Gly	Lys	Gly 45	Leu	Glu	Trp
	Val	Ser 50	Ser	Ile	Ser	Arg	Phe 55	Gly	Ser	Thr	Val	Asp 60	Tyr	Thr	Asp	Ser
40	Val 65	Arg	Gly	Arg	Phe	Thr 70	Ile	Ser	Arg	Asp	Asp 75	Gly	Gln	Arg	Ser	Leu 80
45	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Val	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
50	Cys	Val	Arg	Ser 100	Thr	Ala	Ser	Gly	Ser 105	Arg	Ser	Pro	Gly	Ile 110	Ile	Trp
	Gly	Gln	Gly 115	Thr	Thr	Val	Thr	Val 120	Ser	Ser	Ala	Lys	Thr 125	Thr	Ala	Pro
55	Ser	Val 130	Tyr	Pro	Leu	Ala	Pro 135	Val	Cys	Gly	Asp	Thr 140	Thr	Gly	Ser	Ser

	Val 145	Thr	Leu	Gly	Cys	Leu 150	Val	Lys	Gly	Tyr	Phe 155	Pro	Glu	Pro	Val	Thr 160
5	Leu	Thr	Trp	Asn	Ser 165	Gly	Ser	Leu	Ser	Ser 170	Gly	Val	His	Thr	Phe 175	Pro
10	Ala	Val	Leu	Gln 180	Ser	Asp	Leu	Tyr	Thr 185	Leu	Ser	Ser	Ser	Val 190	Thr	Val
-	Thr	Ser	Ser 195	Thr	Trp	Pro	Ser	Gln 200	Ser	Ile	Thr	Cys	Asn 205	Val	Ala	His
15	Pro	Ala 210	Ser	Ser	Thr	Lys	Val 215	Asp	Lys	Lys	Ile	Glu 220	Pro	Arg	Gly	Pro
20	Thr 225	Ile	Lys	Pro	Cys	Pro 230	Pro	Cys	Lys	Cys	Pro 235	Ala	Pro	Asn	Leu	Leu 240
25	Gly	Gly	Pro	Ser	Val 2 4 5	Phe	Ile	Phe	Pro	Pro 250	Lys	Ile	Lys	Asp	Val 255	Leu
	Met	Ile	Ser	Leu 260	Ser	Pro	Ile	Val	Thr 265	Cys	Val	Val	Val	Asp 270	Val	Ser
30	Glu	Asp	Asp 275	Pro	Asp	Val	Gln	Ile 280	Ser	Trp	Phe	Val	As n 285	Asn	Val	Glu
35	Val	His 290	Thr	Ala	Gln	Thr	Gln 295	Thr	His	Arg	Glu	Asp 300	Tyr	Asn	Ser	Thr
40	Leu 305	Arg	Val	Val	Ser	Ala 310	Leu	Pro	Ile	Gln	His 315	Gln	Asp	Trp	Met	Ser 320
70	Gly	Lys	Glu	Phe	Lys 325	Cys	Lys	Val	Asn	Asn 330	Lys	Asp	Leu	Pro	Ala 335	Pro
45	Ile	Glu	Arg	Thr 340	Ile	Ser	Lys	Pro	Lys 3 4 5	Gly	Ser	Val	Arg	Ala 350	Pro	Gln
50	Val	Tyr	Val 355	Leu	Pro	Pro	Pro	Gl u 360	Glu	Glu	Met	Thr	Lys 365	Lys	Gln	Val
	Thr	Le u 370	Thr	Cys	Met	Val	Thr 375	Asp	Phe	Met	Pro	Glu 380	Asp	Ile	туг	Val
55	Glu 385	Trp	Thr	Asn	Asn	Gly 390	Lys	Thr	Glu	Leu	As n 395	туг	Lys	Asn	Thr	Glu 400

	Pro	Val	Leu	Asp	Ser 405	Asp	Gly	Ser	Tyr	Phe 410	Met	Tyr	Ser	Lys	Leu 41 5	Arg
5	Val	Glu	Lys	Lys 420	Asn	Trp	Val	Glu	Arg 425	Asn	Ser	Tyr	Ser	Cys 430	Ser	Val
10	Val	His	Glu 435	Gly	Leu	His	Asn	His 440	His	Thr	Thr	Lys	Ser 445	Phe	Ser	Arg
	Thr	Pro 450	Gly	Lys												
15	<210 <210 <210 <210	1> 2 2> I	211 214 PRT Artii	ficia	al Se	equer	nce									
20	<220 <220 <400	3> (Chima 211	aera												
25		Ile		Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
30	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Gly	Ile	Val 30	Asn	Asn
35	Leu	Ala	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Ser	Leu	Ile
	Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Gly	Gly	Val	Pro	Ser 60	Lys	Phe	Ser	Gly
40	Ser 65	Ala	Ser	Gly	Thr	Asp 70	Phe	Ser	Leu	Thr	Ile 75	Ser	Asn	Leu	Gln	Pro 80
45	Glu	Asp	Phe	Ala	Thr 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	Trp
50	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Ala	Asp 110	Ala	Ala
	Pro	Thr	Val 115	Ser	Ile	Phe	Pro	Pro 120	Ser	Ser	Glu	Gln	Leu 125	Thr	Ser	Gly
55	Gly	Ala 130	Ser	Val	Val	Cys	Phe 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Lys	Asp	Ile

	145	Val	Lys	Trp	Lys	11e 150	Asp	GIĀ	Ser	Glu	Arg 155	Gln	Asn	Gly	Val	160
5	Asn	Ser	Trp	Thr	Asp 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Met 175	Ser
10	Ser	Thr	Leu	Thr 180	Leu	Thr	Lys	Asp	Glu 185	Tyr	Glu	Arg	His	Asn 190	Ser	Tyr
15	Thr	Cys	Glu 195	Ala	Thr	His	Lys	Thr 200	Ser	Thr	Ser	Pro	Ile 205	Val	Lys	Ser
13	Phe	As n 210	Arg	Asn	Glu	Cys										
20	<210 <211 <212 <213	L> 2 2> E	212 217 PRT Artii	ficia	al Se	equer	nce									
25	<220 <223		Chima	aera												
	<400)> 2	212													
30	Gln 1	Ser	Ala	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Ser	Pro	Gly 15	His
35	Ser	Val	Thr	Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Val	Gly 30	Gln	Tyr
	Ser	Phe	Val 35	Ser	Trp	Tyr	Gln	Gln 40	Tyr	Pro	Gly	Lys	Ala 45	Pro	Lys	Ile
40	Ile	Ile 50	Tyr	Asp	Val	Ser	Lys 55	Arg	Ser	Ser	Gly	Val 60	Pro	Asp	Arg	Phe
45	Phe 65	Gly	Ser	Lys	Ser	Ala 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Val	Ser	Gly	Val 80
50	Gln	Glu	Glu	Asp	Glu 85	Ala	Asp	Tyr	Phe	Cys 90	Ser	Ser	Tyr	Gly	Gly 95	Ser
	Lys	Tyr	Pro	Trp 100	Val	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Thr	Val 110	Leu	Gly
55	Gln	Pro	Lys 115	Ser	Ser	Pro	Ser	Val 120	Thr	Leu	Phe	Pro	Pro 125	Ser	Ser	Glu

	Glu	Leu 130	Glu	Thr	Asn	Lys	Ala 135	Thr	Leu	Val	Cys	Thr 140	Ile	Thr	Asp	Phe
5	Tyr 145	Pro	Gly	Val	Val	Thr 150	Val	Asp	Trp	Lys	Val 155	Asp	Gly	Thr	Pro	Val 160
10	Thr	Gln	Gly	Met	Glu 165	Thr	Thr	Gln	Pro	Ser 170	Lys	Gln	Ser	Asn	A sn 175	Lys
	Tyr	Met	Ala	Ser 180	Ser	Tyr	Leu	Thr	Leu 185	Thr	Ala	Arg	Ala	Trp 190	Glu	Arg
15	His	Ser	Ser 195	Tyr	Ser	Cys	Gln	Val 200	Thr	His	Glu	Gly	His 205	Thr	Val	Glu
20	Lys	Ser 210	Leu	Ser	Arg	Ala	Asp 215	Cys	Ser							
25	<210 <210 <210 <210	1> / 2>]	213 450 PRT Artii	ficia	al Se	equei	nce									
	<22 <22		Chima	aera												
30	<400 Gln 1		213 Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Ala	Val	Gln	Pro	Gly 15	Gly
<i>30</i>	Gln 1	Val			5					10					15	
	Gln 1 Ser	Val	Gln	Le u 20	5 Ser	Cys	Ala	Ala	Ser 25	10	Phe	Thr	Phe	Ser 30	15 Asp	Tyr
35	Gln 1 Ser	Val Leu Met	Gln Arg	Leu 20 Trp	5 Ser Val	Cys Arg	Ala Gln	Ala Ala 40	Ser 25 Pro	Gly	Phe Lys	Thr Gly	Phe Leu 45	Ser 30 Gln	15 Asp Trp	Tyr Val
35	Gln 1 Ser Ala	Val Met Val 50	Gln Arg His	Leu 20 Trp Ser	5 Ser Val	Cys Arg Glu	Ala Gln Gly 55	Ala Ala 40	Ser 25 Pro	Gly Gly Lys	Phe Lys Tyr	Thr Gly Tyr 60	Phe Leu 45	Ser 30 Gln Asp	Asp Trp Ser	Tyr Val
35 40	Gln 1 Ser Ala Ala Lys 65	Val Met Val 50	Gln Arg His 35	Leu 20 Trp Ser	5 Ser Val Tyr	Cys Arg Glu Ile 70	Ala Gln Gly 55 Ser	Ala Ala 40 Thr	Ser 25 Pro Tyr	Gly Gly Lys	Phe Lys Tyr Ser 75	Thr Gly Tyr 60 Lys	Phe Leu 45 Ala Asn	Ser 30 Gln Asp	Asp Trp Ser	Tyr Val Val Asn 80
35 40 45	Gln 1 Ser Ala Ala Lys 65 Leu	Val Leu Met Val 50 Gly	Gln Arg His 35 Ile	Leu 20 Trp Ser Phe	Ser Val Tyr Thr Ser 85	Cys Arg Glu Ile 70	Ala Gln Gly 55 Ser	Ala 40 Thr Arg	Ser 25 Pro Tyr Asp	Gly Gly Lys Asn Asp	Phe Lys Tyr Ser 75	Thr Gly Tyr 60 Lys	Phe Leu 45 Ala Asn	Ser 30 Gln Asp Thr	Asp Trp Ser Leu Phe 95	Tyr Val Val Asn 80

5	Thr Thi	Pro Pro	Ser V	/al Tyr 135	Pro Le	eu Ala	Pro	Gly 140	Ser	Ala	Ala	Gln
10	Thr Asr 145	n Ser Met		Thr Leu 150	Gly Су	ys Leu	Val 155	Lys	Gly	Tyr	Phe	Pro 160
	Glu Pro	Val Thr	Val T 165	Thr Trp	Asn Se	er Gly 170	Ser	Leu	Ser	Ser	Gly 175	Val
15	His Th	Phe Pro 180		/al Leu	Gln Se	_	Leu	Tyr	Thr	Leu 190	Ser	Ser
20	Ser Val	Thr Val	Pro S	Ser Ser	Thr Tr 200	rp Pro	Ser	Glu	Thr 205	Val	Thr	Cys
25	Asn Val 210	Ala His	Pro A	Ala Ser 215	Ser Th	nr Lys		Asp 220	Lys	Lys	Ile	Val
	Pro Arg 225	J Asp Cys	_	Cys Lys 230	Pro Cy	ys Ile	Cys 235	Thr	Val	Pro	Glu	Val 240
30	Ser Sei	Val Phe	Ile P 2 4 5	Phe Pro	Pro Ly	ys Pro 250	Lys	Asp	Val	Leu	Thr 255	Ile
35	Thr Let	Thr Pro	_	al Thr	Cys Va		Val	Asp	Ile	Ser 270	Lys	Asp
40	Asp Pro	Glu Val 275	Gln P	Phe Ser	Trp Ph 280	ne Val	Asp	Asp	Val 285	Glu	Val	His
40	Thr Ala 290	Gln Thr	Gln P	Pro Arg 295	Glu Gl	lu Gln		Gln 300	Ser	Thr	Phe	Arg
45	Ser Val 305	. Ser Glu		Pro Ile B10	Met Hi	is Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
50	Glu Ph€	e Lys Cys	Arg V 325	/al Asn	Ser Al	la Ala 330	Phe	Pro	Ala	Pro	Ile 335	Glu
	Lys Thi	: Ile Ser 340	_	Thr Lys	Gly Ar	-	Lys	Ala	Pro	Gln 350	Val	Tyr
55	Thr Ile	Pro Pro 355	Pro L	Lys Glu	Gln Me 360	et Ala	Lys	Asp	Lys 365	Val	Ser	Leu

	Thr Cys Met Ile 370	Thr Asp Phe 375	_	Ile Thr Val Glu Trp 380
5	Gln Trp Asn Gly 385	Gln Pro Ala 390	Glu Asn Tyr Lys 395	Asn Thr Gln Pro Ile 400
10	Met Asp Thr Asp	Gly Ser Tyr 405	Phe Val Tyr Ser 410	Lys Leu Asn Val Gln 415
	Lys Ser Asn Trp 420	_	Asn Thr Phe Thr 425	Cys Ser Val Leu His 430
15	Glu Gly Leu His 435		Thr Glu Lys Ser 440	Leu Ser His Ser Pro 445
20	Gly Lys 450			
25	<210> 214 <211> 445 <212> PRT <213> Artifici	al Sequence		
	<220> <223> Chimaera	ı		
30	<400> 214 Glu Val Gln Leu 1	. Val Glu Ser 5	Gly Gly Leu 10	Val Gln Pro Gly Gly 15
35	Ser Leu Lys Leu 20	Ser Cys Ala	Ala Ser Gly Phe 25	Asn Phe Gln Ile Ser 30
40	Ala Ile His Trp 35		Ala Ser Gly Lys 40	Gly Leu Glu Trp Val 45
	Gly Arg Ile Arg	Ser Lys Ser 55		Thr Leu Tyr Ala Ala 60
45	Ser Leu Lys Gly 65	Arg Phe Thr	Leu Ser Arg Asp 75	Asp Ser Arg Asn Thr 80
50	Ala Tyr Leu Glr	Met Ser Ser 85	Leu Gln Thr Glu 90	Asp Met Ala Val Tyr 95
55	Tyr Cys Thr Val		Asn Tyr Asp Thr 105	Phe Asp Tyr Trp Gly 110
55				

5	Val	Tyr 130	Pro	Leu	Ala	Pro	Gly 135	Ser	Ala	Ala	Gln	Thr 140	Asn	Ser	Met	Val
J	Thr 145		Gly	Cys	Leu	Val 150		Gly	Tyr	Phe	Pro 155		Pro	Val	Thr	Val 160
10		Trp	Asn	Ser	Gly 165		Leu	Ser	Ser	Gly 170		His	Thr	Phe	Pro 175	
15	Val	Leu	Gln	Ser 180	Asp	Leu	Tyr	Thr	Leu 185		Ser	Ser	Val	Thr 190		Pro
	Ser	Ser	Thr 195		Pro	Ser	Glu	Thr 200		Thr	Cys	Asn	Val 205		His	Pro
20	Ala	Ser 210		Thr	Lys	Val	Asp 215		Lys	Ile	Val	Pro 220		Asp	Cys	Gly
25	_		Pro	Cys	Ile	_		Val	Pro	Glu	Val 235		Ser	Val	Phe	
30	225 Phe	Pro	Pro	Lys	Pro 245	230 Lys	Asp	Val	Leu	Thr 250		Thr	Leu	Thr	Pro 255	240 Lys
	Val	Thr	Cys	Val 260	Val	Val	Asp	Ile	Ser 265		Asp	Asp	Pro	Glu 270		Gln
35	Phe	Ser			Val	Asp	Asp			Val	His	Thr			Thr	Gln
40	Pro	_	275 Glu	Glu	Gln	Phe		280 Ser	Thr	Phe	Arg		285 Val	Ser	Glu	Leu
45		290 Ile	Met	His	Gln	_	295 Trp	Leu	Asn	Gly		300 Glu	Phe	Lys	Cys	_
	305 Val	Asn	Ser	Ala	Ala	310 Phe	Pro	Ala	Pro		315 Glu	Lys	Thr	Ile		320 Lys
50	Thr	Lys	Gly	_	325 Pro	Lys	Ala	Pro		330 Val	Tyr	Thr	Ile		335 Pro	Pro
55	Lys	Glu	Gln	340 Met	Ala	Lys	Asp	Lys	345 Val	Ser	Leu	Thr	Cys	350 Met	Ile	Thr
	-		355				_	360					365			

	Asp Ph		Pro	Glu	Asp	Ile 375	Thr	Val	Glu	Trp	Gln 380	Trp	Asn	Gly	Gln
5	Pro Al	a Glu	Asn	Tyr	Lys 390	Asn	Thr	Gln	Pro	Ile 395	Met	Asp	Thr	Asp	Gly 400
10	Ser Ty	r Phe	Val	Tyr 405	Ser	Lys	Leu	Asn	Val 410	Gln	Lys	Ser	Asn	Trp 415	Glu
	Ala Gl	y Asn	Thr 420	Phe	Thr	Суз	Ser	Val 425	Leu	His	Glu	Gly	Leu 430	His	Asn
15	His Hi	s Thr 435	Glu	Lys	Ser	Leu	Ser 440	His	Ser	Pro	Gly	Lys 44 5			
20	<210> <211> <212> <213>	215 449 PRT Artif	ficia	al Se	equer	nce									
25	<220> <223>	Chima	aera												
	<400> Gln Va	215 l Gln	Leu	Val	Glu	Ser	Glv	Glv	Glv	Val	Val	Gln	Pro	Glv	Ara
30	1			5			-	-	10					15	
	Ser Le	u Arg	Val 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
35	Asp Me	t His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 4 5	Glu	Trp	Val
40	Ala Va 50	l Ile	Trp	Phe	Asp	Gly 55	Ser	Asn	Glu	Phe	Tyr 60	Ala	Asp	Ser	Val
	Lys Gl	y Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Phe 80
45	Leu Gl	n Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
50	Ala Ar	g Asp	Leu 100	Gly	Ala	Ser	Val	Thr 105	Thr	Ser	Asn	Ala	Glu 110	Asn	Phe
55	His Hi	s Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Lys	Thr
	Thr Pr	o Pro	Ser	Val	Tyr	Pro	Leu	Ala	Pro	Gly	Ser	Ala	Ala	Gln	Thr

	Asn	Ser	Met	Val	Thr	Leu	Glv	Cvs	Leu	Val	Lvs	Glv	Tvr	Phe	Pro	Glu
5	145					150		•			155	. 4	•			160
	Pro	Val	Thr	Val	Thr 165	Trp	Asn	Ser	Gly	Ser 170	Leu	Ser	Ser	Gly	Val 175	His
10	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Asp 185	Leu	Tyr	Thr	Leu	Ser 190	Ser	Ser
15	Val	Thr	Val 195	Pro	Ser	Ser	Thr	Trp 200	Pro	Ser	Glu	Thr	Val 205	Thr	Cys	Asn
20	Val	Ala 210	His	Pro	Ala	Ser	Ser 215	Thr	Lys	Val	Asp	Lys 220	Lys	Ile	Val	Pro
	Arg 225	Asp	Cys	Gly	Cys	Lys 230	Pro	Cys	Ile	Cys	Thr 235	Val	Pro	Glu	Val	Ser 240
25	Ser	Val	Phe	Ile	Phe 2 4 5	Pro	Pro	Lys	Pro	Lys 250	Asp	Val	Leu	Thr	Ile 255	Thr
30	Leu	Thr	Pro	Lys 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Ile	Ser	Lys 270	Asp	Asp
35	Pro	Glu	Val 275	Gln	Phe	Ser	Trp	Phe 280	Val	Asp	Asp	Val	Glu 285	Val	His	Thr
	Ala	Gln 290	Thr	Gln	Pro	Arg	Glu 295	Glu	Gln	Phe	Gln	Ser 300	Thr	Phe	Arg	Ser
40	Val 305	Ser	Glu	Leu	Pro	Ile 310	Met	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
45	Phe	Lys	Cys	Arg	Val 325	Asn	Ser	Ala	Ala	Phe 330	Pro	Ala	Pro	Ile	Glu 335	Lys
50	Thr	Ile	Ser	Lys 340	Thr	Lys	Gly	Arg	Pro 345	Lys	Ala	Pro	Gln	Val 350	Tyr	Thr
	Ile	Pro	Pro 355	Pro	Lys	Glu	Gln	Met 360	Ala	Lys	Asp	Lys	Val 365	Ser	Leu	Thr
55	Cys	Met 370	Ile	Thr	Asp	Phe	Phe 375	Pro	Glu	Asp	Ile	Thr 380	Val	Glu	Trp	Gln

	Trp As	n Gly	Gln	Pro	A la 390	Glu	Asn	Tyr	Lys	Asn 395	Thr	Gln	Pro	Ile	Met 400
5	Asp Th	ır Asp	Gly	Ser 405	Tyr	Phe	Val	Tyr	Ser 410	Lys	Leu	Asn	Val	Gln 415	Lys
10	Ser As	n Trp	Glu 4 20	Ala	Gly	Asn	Thr	Phe 425	Thr	Cys	Ser	Val	Leu 430	His	Glu
	Gly Le	u His 435	Asn	His	His	Thr	Glu 440	Lys	Ser	Leu	Ser	His 445	Ser	Pro	Gly
15	Lys														
20	<210> <211> <212> <213>	216 444 PRT Arti	ficia	al Se	equei	nce									
25	<220> <223>	Chim	aera												
	<400>	216													
30	Glu Va 1	l Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
	Ser Le	u Lys	Ile 20	Ser	Cys	Lys	Ala	Phe 25	Gly	Tyr	Ser	Phe	Thr 30	Asn	Phe
35	Trp Il	e Gly 35	Trp	Val	Arg	Gln	Val 40	Pro	Gly	Lys	Gly	Leu 4 5	Glu	Trp	Val
40	Gly II 50		Tyr	Pro	Gly	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
	Gln Gl 65	y Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Asp	Thr	Ala	Tyr 80
45	Leu Gl	n Trp	Gly	His 85	Leu	Lys	Ala	Ser	Asp 90	Ser	Ala	Met	Tyr	Phe 95	Cys
50	Ala Ar	g Arg	Gly 100	Phe	Trp	Thr	Gly	Ser 105	Gl n	Ile	Glu	Tyr	Trp 110	Gly	Gln
55	Gly Th	r Gln 115	Val	Thr	Val	Ser	Ser 120	Ala	Lys	Thr	Thr	Pro 125	Pro	Ser	Val
	Tyr Pr	o Leu	Ala	Pro	Gly	Ser	Ala	Ala	Gln	Thr	Asn	Ser	Met	Val	Thr

5	Leu 145	Gly	Суз	Leu	Val	Lys 150	Gly	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Thr 160
	Trp	Asn	Ser	Gly	Ser 165	Leu	Ser	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
10	Leu	Gln	Ser	Asp 180	Leu	Tyr	Thr	Leu	Ser 185	Ser	Ser	Val	Thr	Val 190	Pro	Ser
15	Ser	Thr	Trp 195	Pro	Ser	Glu	Thr	Val 200	Thr	Cys	Asn	Val	Ala 205	His	Pro	Ala
20	Ser	Ser 210	Thr	Lys	Val	Asp	Lys 215	Lys	Ile	Val	Pro	Arg 220	Asp	Cys	Gly	Cys
25	Lys 225	Pro	Cys	Ile	Cys	Thr 230	Val	Pro	Glu	Val	Ser 235	Ser	Val	Phe	Ile	Phe 240
25	Pro	Pro	Lys	Pro	Lys 2 4 5	Asp	Val	Leu	Thr	Ile 250	Thr	Leu	Thr	Pro	Lys 255	Val
30	Thr	Суѕ	Val	Val 260	Val	Asp	Ile	Ser	Lys 265	Asp	Asp	Pro	Glu	Val 270	Gln	Phe
35	Ser	Trp	Phe 275	Val	Asp	Asp	Val	Glu 280	Val	His	Thr	Ala	Gln 285	Thr	Gln	Pro
	Arg	Glu 290	Glu	Gln	Phe	Gln	Ser 295	Thr	Phe	Arg	Ser	Val 300	Ser	Glu	Leu	Pro
40	Ile 305	Met	His	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Phe	Lys	Cys	Arg	Val 320
45	Asn	Ser	Ala	Ala	Phe 325	Pro	Ala	Pro	Ile	Glu 330	Lys	Thr	Ile	Ser	Lys 335	Thr
50	Lys	Gly	Arg	Pro 340	Lys	Ala	Pro	Gln	Val 345	Tyr	Thr	Ile	Pro	Pro 350	Pro	Lys
	Glu	Gln	Met 355	Ala	Lys	Asp	Lys	Val 360	Ser	Leu	Thr	Cys	Met 365	Ile	Thr	Asp
55	Phe	Phe 370	Pro	Glu	Asp	Ile	Thr 375	Val	Glu	Trp	Gln	Trp 380	Asn	Gly	Gln	Pro

	Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Set 385 390 395 406	
5	Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala 405 410 415	a.
10	Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His 420 425 430	s
	His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440	
15	<210> 217 <211> 217 <212> PRT <213> Artificial Sequence	
20	<220> <223> Chimaera	
25	<pre><400> 217 Gln Ser Ala Leu Thr Gln Pro Pro Ser Ala Ser Gly Ser Pro Gly His 1 5 10 15</pre>	s
30	Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gln Ty: 20 25 30	r
	Ser Phe Val Ser Trp Tyr Gln Gln Tyr Pro Gly Lys Ala Pro Lys Val 35 40 45	1
35	Ile Ile Tyr Asp Val Ser Lys Arg Ser Ser Gly Val Pro Asp Arg Pho 50 55 60	e
40	Phe Gly Ser Lys Ser Ala Asn Thr Ala Ser Leu Thr Val Ser Gly Val 65 70 75 80	1
	Gln Glu Glu Asp Glu Ala Asp Tyr Phe Cys Ser Ser Tyr Gly Gly Ser 85 90 95	r
45	Lys Tyr Pro Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105 110	У
50	Gln Pro Lys Ser Ser Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Gla 115 120 125	u
55	Glu Leu Glu Thr Asn Lys Ala Thr Leu Val Cys Thr Ile Thr Asp Pho 130 135 140	e
33	Tyr Pro Gly Val Val Thr Val Asp Trp Lys Val Asp Gly Thr Pro Va	1

	145	150	155	160
5	Thr Gln Gly Met	Glu Thr Thr Gln 165	Pro Ser Lys Gln Ser Asr 170	Asn Lys 175
10	Tyr Met Ala Ser 180	_	Leu Thr Ala Arg Ala Trp 185 190	_
	His Ser Ser Tyr 195	Ser Cys Gln Val 200	Thr His Glu Gly His Thr 205	Val Glu
15	Lys Ser Leu Ser 210	Arg Ala Asp Cys 215	Ser	
20	<210> 218 <211> 458 <212> PRT <213> Artifici	al Sequence		
	<220> <223> Chimaera			
25	<400> 218			
	1	val Glu Ser Gly 5	Gly Gly Leu Val Gln Pro 10	15
30	Ser Leu Arg Leu 20	Ser Cys Ala Ala	Ser Gly Phe Thr Phe Pro 25 30	Asn Tyr
35	Val Met Thr Trp 35	Val Arg Gln Ala 40	Pro Gly Lys Gly Leu Glu 45	Trp Val
40	Ser Gly Ile Ser 50	Gly Ser Gly Gly 55	Ser Thr Asp Tyr Ala Asp 60	Ser Val
	Lys Gly Arg Phe 65	Thr Ile Ser Arg 70	Asp Asn Ser Lys Asn Thr 75	Leu Tyr 80
45	Leu Gln Met Asn	Ser Leu Arg Val 85	Glu Asp Thr Ala Leu Tyr 90	Tyr Cys 95
50	Ala Lys Gly Ser 100		Gly Gln Gly Thr Met Val	
	Ser Ser Ala Ser 115	Thr Lys Gly Pro 120	Ser Val Phe Pro Leu Ala 125	Pro Ser
55	Ser Lys Ser Thr 130	Ser Gly Gly Thr 135	Ala Ala Leu Gly Cys Leu 140	ı Val Lys

	Asp 145	Tyr	Phe	Pro	Glu	Pro 150	Val	Thr	Val	Ser	Trp 155	Asn	Ser	Gly	Ala	Leu 160
5	Thr	Ser	Gly	Val	His 165	Thr	Phe	Pro	Ala	Val 170	Leu	Gln	Ser	Ser	Gly 175	Leu
10	Tyr	Ser	Leu	Ser 180	Ser	Val	Val	Thr	Val 185	Pro	Ser	Ser	Ser	Leu 190	Gly	Thr
	Gln	Thr	Туг 195	Ile	Cys	Asn	Val	Asn 200	His	Lys	Pro	Ser	Asn 205	Thr	Lys	Val
15	Asp	Lys 210	Arg	Val	Glu	Pro	Lys 215	Ser	Cys	Asp	Lys	Thr 220	His	Thr	Cys	Pro
20	Pro 225	Cys	Pro	Ala	Pro	Glu 230	Leu	Leu	Gly	Gly	Pro 235	Ser	Val	Phe	Leu	Phe 240
25	Pro	Pro	Lys	Pro	Lys 2 4 5	Asp	Thr	Leu	Met	Ile 250	Ser	Arg	Thr	Pro	Glu 255	Val
	Thr	Cys	Val	Val 260	Val	Asp	Val	Ser	His 265	Glu	Asp	Pro	Glu	Val 270	Lys	Phe
30	Asn	Trp	Tyr 275	Val	Asp	Gly	Val	Glu 280	Val	His	Asn	Ala	Lys 285	Thr	Lys	Pro
35	Arg	Glu 290	Glu	Gln	Tyr	Asn	Ser 295	Thr	Tyr	Arg	Val	Val 300	Ser	Val	Leu	Thr
40	Val 305	Leu	His	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Tyr	Lys	Cys	Lys	Val 320
40	Ser	Asn	Lys	Ala	Leu 325	Pro	Ala	Pro	Ile	Glu 330	Lys	Thr	Ile	Ser	Lys 335	Ala
45	Lys	Gly	Gln	Pro 340	Arg	Glu	Pro	Gln	Val 3 4 5	Tyr	Thr	Leu	Pro	Pro 350	Ser	Arg
50	Glu	Glu	Met 355	Thr	Lys	Asn	Gln	Val 360	Ser	Leu	Thr	Cys	Leu 365	Val	Lys	Gly
	Phe	Tyr 370	Pro	Ser	Asp	Ile	Al a 375	Val	Glu	Trp	Glu	Ser 380	Asn	Gly	Gln	Pro
55	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser

	385	390	395	400
5	_	Ser Lys Leu Thr Val 1 405	Asp Lys Ser Arg Trp 410	Gln Gln 415
10	Gly Asn Val Phe S 420	Ser Cys Ser Val Met B 425	His Glu Ala Leu His 430	
10	Tyr Thr Gln Lys S 435	Ser Leu Ser Leu Ser I 440	Pro Gly Gln Ser Ala 445	Leu Thr
15	Gln Pro Arg Ser V 450	Val Ser Gly Ser Pro (455	Gly	
20	<210> 219 <211> 216 <212> PRT <213> Artificial	l Sequence		
	<220> <223> Chimaera			
25	<400> 219			
		Thr Gln Pro Arg Ser \ 5	Val Ser Gly Ser Pro 10	Gly Gln 15
30	Ser Val Thr Ile S	Ser Cys Thr Gly Thr S 25	Ser Ser Asp Val Gly 30	Gly Tyr
35	Asn Tyr Val Ser 1 35	Frp His Gln Gln His F 40	Pro Gly Lys Ala Pro 4 5	Lys Leu
40	Leu Ile Tyr Asp V 50	Val Thr Lys Arg Pro S 55	Ser Gly Val Pro Asp 60	Arg Phe
	Ser Gly Ser Lys S 65	Ser Gly Asn Thr Ala A	Ala Leu Thr Ile Ser 75	Gly Leu 80
45	-	Glu Ala Asp Tyr Tyr (85	Cys His Ser Tyr Val 90	Gly Ser 95
50	Tyr Thr Leu Val E	Phe Gly Gly Gly Thr 1 105	Lys Leu Thr Val Leu 110	
	Pro Lys Ala Ala E 115	Pro Ser Val Thr Leu F 120	Phe Pro Pro Ser Ser 125	Glu Glu
55	Leu Gln Ala Asn I 130	Lys Ala Thr Leu Val (135	Cys Leu Ile Ser Asp 140	Phe Tyr

	Pro 145	Gly	Ala	Val	Thr	Val 150	Ala	Trp	Lys	Ala	Asp 155	Ser	Ser	Pro	Val	Lys 160
5	Ala	Gly	Val	Glu	Thr 165	Thr	Thr	Pro	Ser	Lys 170	Gln	Ser	Asn	Asn	Lys 175	Tyr
10	Ala	Ala	Ser	Ser 180	Tyr	Leu	Ser	Leu	Thr 185	Pro	Glu	Gln	Trp	Lys 190	Ser	His
15	Arg	Ser	Туг 195	Ser	Cys	Gln	Val	Thr 200	His	Glu	Gly	Ser	Thr 205	Val	Glu	Lys
	Thr	Val 210	Ala	Pro	Thr	Glu	Cys 215	Ser								
20	<210 <211 <212 <213	L> : 2> 1	220 114 PRT Arti	ficia	al Se	equer	nce									
25	<220 <223		Chima	aera												
	<400)> 2	220													
30	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
35	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Pro 30	Asn	Tyr
	Val	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40	Ser	Gly 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Asp	Tyr 60	Ala	Asp	Ser	Val
45	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
50	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Val	Glu	As p 90	Thr	Ala	Leu	Tyr	Tyr 95	Cys
	Ala	Lys	Gly	Ser 100	Gly	Gly	Ile	Trp	Gly 105	Gln	Gly	Thr	Met	Val 110	Thr	Val
55	Ser	Ser														

	<210><211><211><212><213>	1: Pl	21 11 RT rtif	icia	ıl Se	equer	nce									
5	<220> <223>		hima	era												
	<400>	22	21													
10	Gln S	er i	Ala	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Ser	Pro	Gly 15	His
15	Ser V	al !		Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Val	Gly 30	Gln	Tyr
	Ser P		Val 35	Ser	Trp	Tyr	Gln	Gln 40	Tyr	Pro	Gly	Lys	Ala 45	Pro	Lys	Ile
20	Ile I 5	le :	Tyr	Asp	Val	Ser	Lys 55	Arg	Ser	Ser	Gly	Val 60	Pro	Asp	Arg	Phe
25	Phe G 65	ly :	Ser	Lys	Ser	Ala 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Val	Ser	Gly	Val 80
30	Gln G	lu (Glu	Asp	Glu 85	Ala	Asp	Tyr	Phe	Cys 90	Ser	Ser	Tyr	Gly	Gly 95	Ser
	Lys T	'yr 1		Trp 100	Val	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Thr	Val 110	Leu	
35	<210><211><211><212><213>	1: Pl	22 11 RT rtif	icia	ıl Se	equer	nce									
40	<220> <223>		hima	era												
	<400>	22	22													
45	Gln S	er 1	Ala	Leu	Thr 5	Gln	Pro	Pro	Ser	Ala 10	Ser	Gly	Ser	Pro	Gly 15	His
50	Ser V	al '		Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Val	Gly 30	Gln	Tyr
	Ser P		Val 35	Ser	Trp	Tyr	Gln	Gln 40	Tyr	Pro	Gly	Lys	Ala 45	Pro	Lys	Val
55	Ile I	le '	Tyr	Asp	Val	Ser	Lys 55	Arg	Ser	Ser	Gly	Val 60	Pro	Asp	Arg	Phe

	Phe Gly Ser Lys Ser Ala Asn Thr Ala Ser Leu Thr Val Ser Gly Val 65 70 75 80	
5	Gln Glu Glu Asp Glu Ala Asp Tyr Phe Cys Ser Ser Tyr Gly Gly Ser 85 90 95	
10	Lys Tyr Pro Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 110	
15	<210> 223 <211> 339 <212> DNA <213> Homo sapiens	
	<400> 223 gatattgtta tgactcaatc accagactcc ctggctgtgt ctctgggcga gagggccacc	60
20	atcaactgca agtcaagcca gaatatttta tacagctccg acaataagaa ctacttagct	120
	tggtaccage agaaaccagg acagecteet aaactactea tttactggge atctaccegg	180
	gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc	240
25	atcagcagcc tgcaggctga agatgtggca gtttattact gtcagcaata ttatagtatt	300
	cctcggacgt tcggccaagg gaccaaggtg gagatcaaa	339
30	<210> 224 <211> 14 <212> PRT <213> Homo sapiens	
35	<400> 224	
	Thr Gly Thr Ser Ser Asp Val Gly Gln Tyr Ser Phe Val Ser 1 5 10	
40		

Claims

45

50

55

- 1. An anti-tau antibody or tau-binding fragment thereof that comprises a heavy chain variable region (VH) comprising VH complementarity determining regions (CDRs) 1, 2, and 3 and a light chain variable region (VL) comprising VL CDRs 1, 2, and 3, wherein:
 - (a) the VH CDRs 1, 2, and 3 comprises the amino acid sequences set forth in SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, respectively, and the VL CDRs 1, 2, and 3 comprises the amino acid sequences set forth in SEQ ID NO:88, SEQ ID NO:89, and SEQ ID NO:90, respectively; or
 - (b) the VH CDRs 1, 2, and 3 comprises the amino acid sequences set forth in SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, respectively, and the VL CDRs 1, 2, and 3 comprises the amino acid sequences set forth in SEQ ID NO:106, SEQ ID NO:107, and SEQ ID NO:108, respectively,

wherein the anti-tau antibody or tau-binding fragment thereof preferentially binds to aggregated forms of tau in Alzheimer's disease tissue.

2. The anti-tau antibody or tau-binding fragment thereof of claim 1, wherein:

- (a) the VH comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:48 and
- the VL comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:49;
- (b) the VH comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:47 and
- the VL comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:49;
- (c) the VH comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:54 and
- the VL comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:55; or
- (d) the VH comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:220 and
- the VL comprises an amino acid sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:55.
- 3. The anti-tau antibody or tau-binding fragment thereof of claim 1, wherein the anti-tau antibody or tau-binding fragment thereof comprises a heavy chain and a light chain, wherein the heavy chain comprises the amino acid sequence set forth in SEQ ID NO:218 and the light chain comprises the amino acid sequence set forth in SEQ ID NO:219.
- **4.** The anti-tau antibody or tau-binding fragment thereof of any one of claims 1-3, wherein the antibody is a whole antibody, preferably a whole IgG1/lambda antibody.
- 5. The anti-tau antibody or tau-binding fragment thereof of any one of claims 1-3, wherein the anti-tau antibody or tau-binding fragment is selected from the group consisting of an Fab, an Fab', an F(ab')2, an Fd, an Fv, a single-chain Fv (scFv), a single-chain antibody, and a disulfide-linked Fv (sdFv).
 - **6.** The anti-tau antibody or tau-binding fragment thereof of any one of claims 1-5, wherein the anti-tau antibody or tau-binding fragment thereof comprises polyethylene glycol or a detectable label selected from the group consisting of an enzyme, a radioisotope, a fluorescent compound, a chemiluminescent compound, a bioluminescent compound, and a heavy metal.
- 7. An anti-tau antibody or tau-binding fragment thereof, wherein the anti-tau antibody or tau-binding fragment thereof specifically binds a tau epitope consisting of residues 125-131 or 226-244 of SEQ ID NO: 6.
 - **8.** The anti-tau antibody or tau-binding fragment thereof, wherein the anti-tau antibody or tau-binding fragment thereof preferentially binds to aggregated forms of tau in Alzheimer's disease tissue.
- **9.** A pharmaceutical composition comprising the anti-tau antibody or tau-binding fragment thereof of any one of claims 1-8, and a pharmaceutically acceptable carrier.
 - **10.** An isolated polynucleotide or polynucleotides comprising a nucleotide sequence or nucleotide sequences encoding the anti-tau antibody or tau-binding fragment thereof of any one of claims 1-8.
 - 11. The polynucleotide or polynucleotides of claim 10, comprising
 - (a) the nucleic acid sequence set forth in SEQ ID NO:173 and SEQ ID NO:174; or
 - (b) the nucleic acid sequence set forth in SEQ ID NO:179 and SEQ ID NO:180.
 - 12. An expression vector or vectors comprising the polynucleotide or polynucleotides of claim 10 or 11.
 - **13.** An isolated host cell comprising the expression vector or vectors of claim 12 or the polynucleotide or polynucleotides of claim 10 or 11.
 - **14.** A method for preparing an anti-tau antibody or tau-binding fragment thereof, the method comprising:
 - culturing the host cell of claim 13 in a cell culture, and

55

45

50

5

10

15

20

isolating the anti-tau antibody or tau-binding fragment thereof from the cell culture.

5

10

20

25

35

40

45

50

55

- 15. The anti-tau antibody or tau-binding fragment of any one of claims 1-8 or the pharmaceutical composition of claim 9 for use in treating a neurodegenerative tauopathy in a human subject in need thereof, preferably wherein the neurodegenerative tauopathy is selected from the group consisting of Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex, argyrophilic grain dementia, British type amyloid angiopathy, cerebral amyloid angiopathy, corticobasal degeneration, Creutzfeldt-Jakob disease, dementia pugilistic, diffuse neurofibrillary tangles with calcification, Down's syndrome, frontotemporal dementia, frontotemporal dementia with parkinsonism linked to chromosome 17, frontotemporal lobar degeneration, GerstmannStréiussler-Scheinker disease, Haller-vorden-Spatz disease, inclusion body myositis, multiple system atrophy, myotonic dystrophy, Niemann-Pick disease type C, non-Guamanian motor neuron disease with neurofibrillary tangles, Pick's disease, postencephalitic parkinsonism, prior protein cerebral amyloid angiopathy, progressive subcortical gliosis, progressive supranuclear palsy, subacute sclerosing panencephalitis, Tangle only dementia, multi-infarct dementia and ischemic stroke.
- 16. The anti-tau antibody or tau-binding fragment of any one of claims 1-8 for use in *in vivo* diagnosis of a tauopathy in a human patient in need thereof.
 - **17.** An anti-tau antibody or tau-binding fragment thereof for use in the treatment of a neurodegenerative tauopathy, wherein the antibody preferentially binds to aggregated forms of tau in neurons and/or glial cells.
 - **18.** An *in vitro* method of diagnosing or monitoring the progression of a neurodegenerative tauopathy, the method comprising:
 - (a) measuring the level of pathologically modified or aggregated tau in a sample obtained from a human subject with the anti-tau antibody or tau-binding fragment thereof of any one of claims 1-8 by immunohistochemistry (IHC), and
 - (b) comparing the level of modified or aggregated tau to a reference standard that indicates the level of the pathologically modified or aggregated tau in one or more control subjects,
- wherein a difference or similarity between the level of pathologically modified or aggregated tau and the reference standard indicates that the human subject has a neurodegenerative tauopathy.

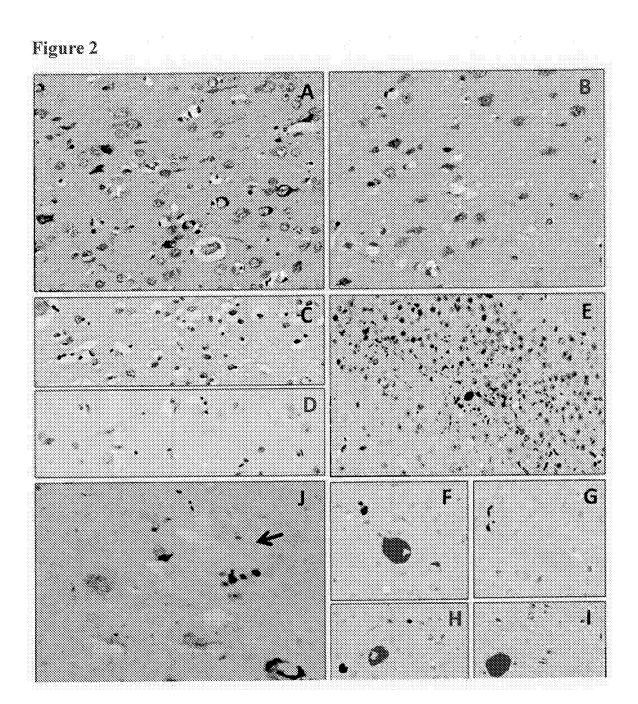


Figure 3

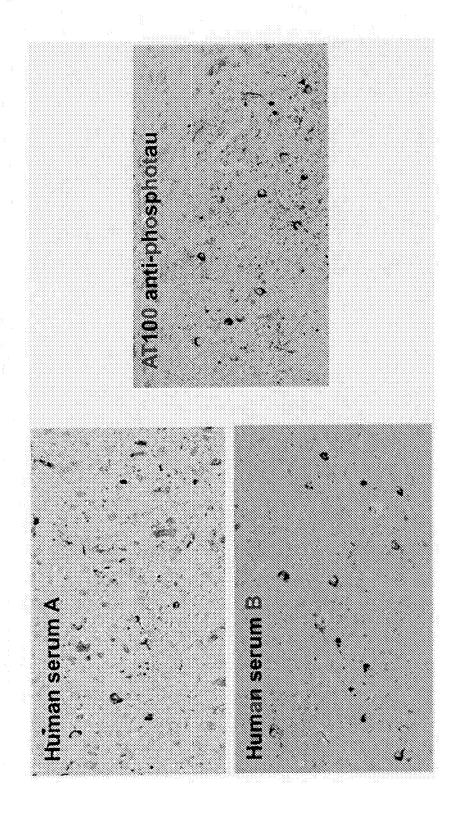


Figure 4

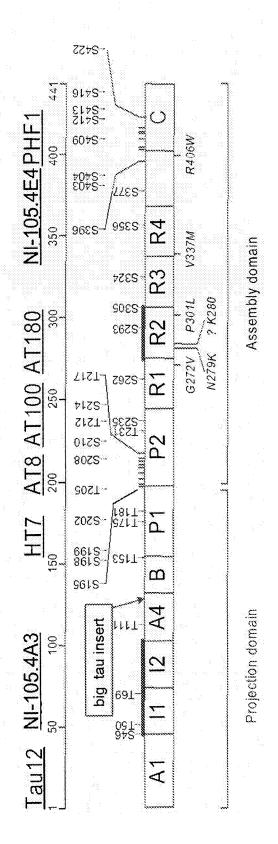


Figure 5

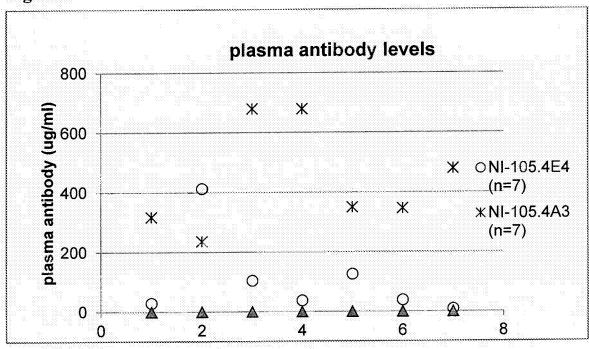
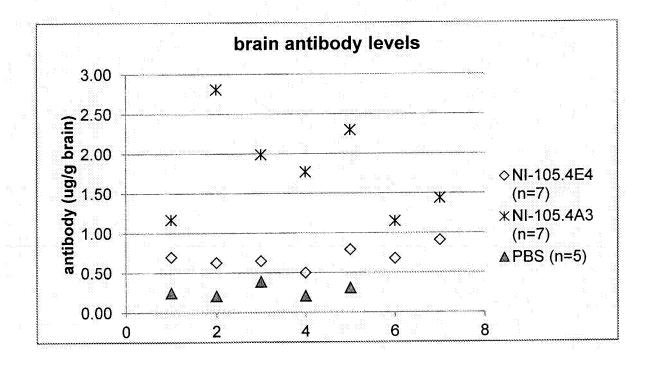



Figure 6

Figure 7A-C

Fig. 7A

NI-105.17C1 VH (SEQ ID NO:44)

EVQLVQSGAEVKKPGESLKISCKAFGYSFTNFWIGWVRQVPGKGLEWVGIIYPGDSD TRYSPSFQGQVTISADKSIDTAYLQWGHLKASDSAMYFCARRGFWTGSQIEYWGQG TQVTVSS

NI-105.17C1 VL (SEQ ID NO:46)

QSALTQPPSASGSPGHSVTISC<u>TGTSSDVGNYSFVS</u>WYQQYPGKAPKVIIY<u>DVSKRS</u> <u>S</u>GVPDRFFGSKSANTASLTVSGVQEEDEADYFC<u>SSYGGSKYPWV</u>FGGGTKLTVL

Fig. 7B

NI-105.6C5 VH (SEQ ID NO:48)

QVQLVESGGGVVQPGRSLRVSCAAS<u>GFTFSSYDMH</u>WVRQAPGKGLEWVA<u>VIWFD</u> <u>GSNEFYADSVKG</u>RFTISRDNSKNTLFLQMNSLRAEDTAVYYCAR<u>DLGASVTTSNAEN</u> FHHWGQGTLVTVSS

NI-105.6C5 VL (SEQ ID NO:49)

SYELTQPPSVSVSPGQTARITC<u>SGDALPKRYVY</u>WYQQKSGQAPVLVIY<u>EDSKRPS</u>GI PETFSGSSSGTMATLTISGAQVEDEADYYCYSTDSNGHHWVFGGGTKLTVL

Fig. 7C

NI-105.29G10 VH (SEQ ID NO:50)

EVQLVESGGDLVQPGGSLRLSCAASGFDFSGYSMAWVRQAPGKGLEWVSYISGTY <u>VSGGTGTMYYLDSVKG</u>RFFISRDDATSSLYLQMDSLRDEDTAVYYCAR<u>VYDYGED</u>W GQGTLVTVSS

NI-105.29G10 VK (SEQ ID NO:51)

DIVMTQSPDSLAVSLGERATINCKSSRSVLYSSNSKNYLAWYQQKPGQPPKLLIYWA STRESGVPDRFSGSGSGTEFTLTISSLQAEDVAVYYCQQYYGTPRTFGQGTKVEIK

Figure 7D-F

Fig. 7D

NI-105.6L9 VH (SEQ ID NO:52)

EVQLVESGGGLVQPGGSLRLSCAGT<u>RFTFSTYAMG</u>WVRQAPGRGLEWVS<u>AIGGSG</u> <u>DSTSYADSVKG</u>RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK<u>GVYDYLWGSYRLF</u> <u>DY</u>WGQGTLVTVSS

NI-105.6L9 VL (SEQ ID NO:53)

SYVLTQPPSVSVAPGQTARFTCGGNNIASKSVHWYQQKPGQAPVLVVYDDSDRPS RIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSTSDHVVFGGGTKLTVL

Fig. 7E

NI-105.40E8 VH (SEQ ID NO:54)

EVQLVESGGGLVQPGGSLRLSCAASGFTFPNYVMTWVRQAPGKGLEWVSGISGSGGSTDYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTALYYCAKGSGGIRGQGTMVTVSS

NI-105.40E8 VL (SEQ ID NO:55)

QSALTQPRSVSGSPGQSVTISC<u>TGTSSDVGGYNYVS</u>WHQQHPGKAPKLLIY<u>DVTKR</u> PSGVPDRFSGSKSGNTAALTISGLQAEDEADYYCHSYVGSYTLVFGGGTKLTVL

Fig. 7F

NI-105.48E5 VH (SEQ ID NO:56)

EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAMHWVRQASGKGLEWVGRIRSKA NSYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYC<u>TSPTVTTEV</u>WGQG TLVTVSS

NI-105.48E5 VK (SEQ ID NO:57)

DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKDYLAWYQQKPGQPPKLLIYWA STRESGVSDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPITFGQGTRLEIK

Figure 7G-1

Fig. 7G

NI-105.6E3 VH (SEQ ID NO:58)

EVQLVESGGGLVQPGGSLRLSCIGS<u>SGMTFSSYAFN</u>WVRQTPGKGLEWVS<u>SISRFG</u> <u>STVDYTDSVRG</u>RFTISRDDGQRSLYLQMNSLRVEDTAVYYC<u>VRSTASGSRSPGII</u>WG QGTTVTVSS

NI-105.6E3 VK (SEQ ID NO:59)

DIQMTQSPSSLSASVGDRVTITC<u>RASQGIVNNLA</u>WFQQKPGKAPKSLIY<u>AASSLQG</u>G VPSKFSGSASGTDFSLTISNLQPEDFATYFCQQYNSYPWTFGQGTKVEIK

Fig. 7H

NI-105.22E1 VH (SEQ ID NO:60)

EVQLVQSGAEVKKPGESLKISCKGS<u>GYRFTTYWIG</u>WVRQMPGKGLEWMG<u>IIYPGDS</u> <u>DT</u>RYSPSYQGQVTISADKSISTAYLQWSSLKASDTGMYYCAR<u>VAGDIGYENYYYYG</u> MDVWGQGTTVTVSS

NI-105.22E1 VK (SEQ ID NO:61)

DIVMTQSPDSLAVSLGERATINCKSSQSVLYGSNNKNYLAWYQQKLGQSPKLLIYWA SARESGVPDRFGGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPWTFGQGTKVEIK

Fig. 71

NI-105.26B12 VH (SEQ ID NO:62)

QVQLVESGGGVVQPGRSLRLSCAAS<u>GFTFTRYGMH</u>WVRQAPGKGLEWVA<u>VIWYD</u> <u>GTNKYYADSLQG</u>RFTISRDTSTNTLYLQMNGLRVEDRAVYYCAR<u>EGFQGAIDY</u>WGQ GTLVTVSS

NI-105.26B12 VK (SEQ ID NO:64)

DIVMTQSPDSLAVSLGERATINCKSSQNILYSSDNKNYLAWYQQKPGQPPKLLIYWA<u>STRES</u>GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSIPRTFGQGTKVEIK

Figure 7J-L

Fig. 7J

NI-105.12E12 VH (SEQ ID NO:65)

EVQLVESGGGLVQPGGSLKLSCAA<u>SGFSFSDSAFH</u>WARQASGKGLEWVG<u>RIRSKG</u> NNYATAYAASVKGRFTVSRDDSKNTTYLQMNSLKTDDTAIYYC<u>TRQGPSYGGIN</u>WG LGTLVTVSS

NI-105.12E12 VK (SEQ ID NO:66)

DIVMTQSPDSLAVSLGERATINCKSSQTILYSSNNKNYLAWYQQKPGQPPKLLIYWAS TRESGVPDRFSGSGSGTDFTLTISSLRAEDVAVYYCQQYYSSPQTFGQGTKVEIK

Fig. 7K

NI-105.60E7 VH (SEQ ID NO:67)

EVQLVESGGGFVRPGGSITLSCAT<u>SGFTFTKAWMT</u>WVRQAPVKGLEWIG<u>HIKTRIEG</u> <u>ATTDYAAPVEG</u>RFTISRDDSKNMVYLQMNSLKTEDSGIYYC<u>STDFDY</u>WGQGTLVTV SS

NI-105.60E7 VK (SEQ ID NO:68)

DVVMTQSPLSLPVTLGQPASISC<u>TSSQSLLYSDGNTYLN</u>WFQQRPGQSPRRLMY<u>KV</u> <u>SKRDP</u>GVPDRFSGSGSGTDFTLSISRVEAEDVGVYYC<u>MQGSLWPRYT</u>FGQGTKVEI K

Fig. 7L

NI-105.14E2 VH (SEQ ID NO:69)

EVQLVQSGAEVKKPGDSLRISCKAS<u>GYNFPNYWIG</u>WVRQMPGKGLEWMG<u>IIYPGDS</u> <u>DIRYSPSFQGHVTISSD</u>KSITTAYLQWTSLKVADSAMYYC<u>ARVERPDKGGWFGP</u>WG QGTLVTVSS

NI-105.14E2 VK (SEQ ID NO:70)

DIVMTQSPDSLAVSLGERATINCKSSQTLLYTSNNQNYLAWYQHKPGQPPKVLIYWA STREYGVPDRFSGSGSGTDFTLTISSLQPEDVAVYYCQQYYNSPYTFGQGTKLEIK

Figure 7M-O

Fig. 7M

NI-105.39E2 VH (SEQ ID NO:71)

EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGMNWVRQAPGKGLEWVA<u>HITGSG</u> TPIFYADSVKGRFTISRDNAKSSLYLQMNSLRNDDTALYFC<u>VRGTVDY</u>WGQGTLVTV SS

NI-105.39E2 VL (SEQ ID NO:72)

QAGLTQPPSVSKDLRQTATLTĆ<u>SGNSNNVGNQGAA</u>WLQQFPGHPPKLLFY<u>ENINRP</u> SGISERFSASRSGNTASLTITGLQPEDEADYYC<u>SAWDGHLNAWV</u>FGGGTKLTVL

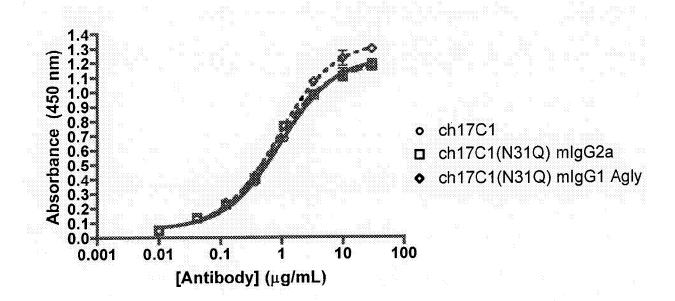
Fig. 7N

NI-105.19C6 VH (SEQ ID NO:73)

EVQLVQSGAEVKKPGESLKISCKASGYSFISYWVGWVRQMPGKGLEWMG<u>IIYPGDS</u> DTRYSPSFEGQVSISADKSISTAYLQWTSLKASDTAMYYCARHWGPAAVTDSPWFG PWGQGTLVTVSS

NI-105.19C6 VK (SEQ ID NO:74)

DIVMTQSPDSLAVSLGERATINCKSSQTVLYTSNNKNYLAWYQQKPGQPPKLLIYWA STRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQHYYSTPFTFGPGTKVDIK


Fig. 70

NI-105.9C4 VH (after primer-induced mutation corrections) (SEQ ID NO:76)
QVQLVQSGAEVKKPGASVKVSCKASGYIFTAFFMHWVRQAPGQGLEWMGWINPDS
GATKYAHNFQGRVTMTRDTSISTAFMELSGLKSDDTGVYYCATGMAVTGNFWGQG
TLVTVSS

NI-105.9C4 VL (after primer-induced mutation corrections) (SEQ ID NO:78)
SYELTQPPSVSVSPGQTARITCSGDVLAETYARWFQQKPGQAPVLVMYRDRERPAG
IPERFSGSSSGNTVTLTISGAQAEDEAVYHCHSVADNNLDWVFGGGTKLTVL

Figure 8A-B

A)

B)

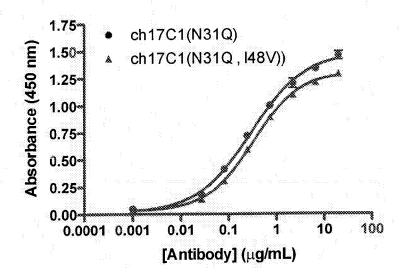


Figure 9

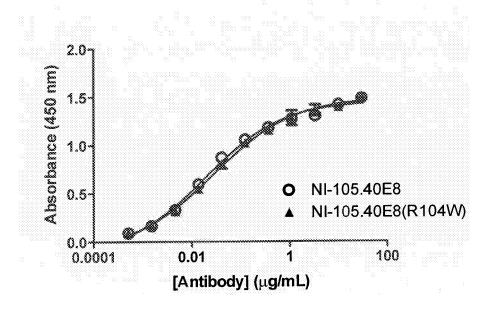


Figure 10

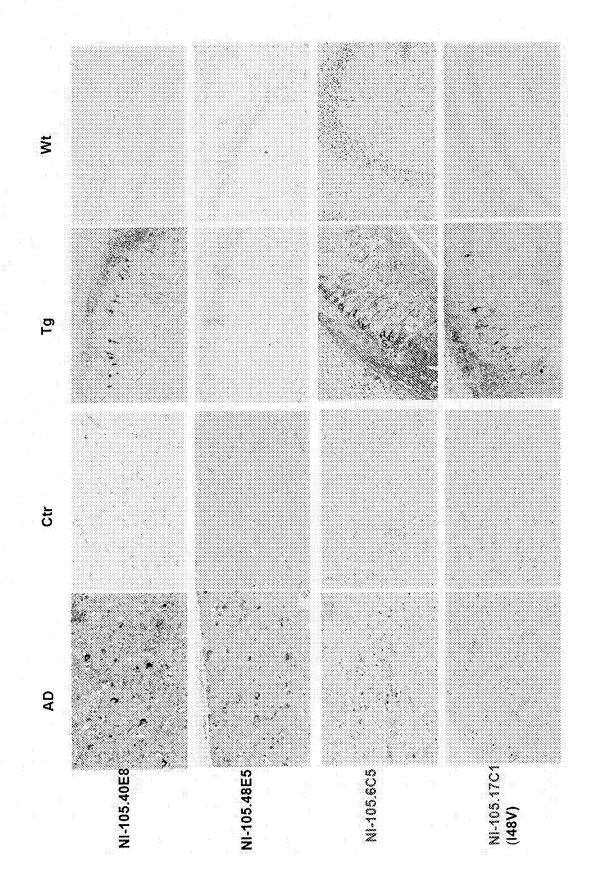


Figure 11

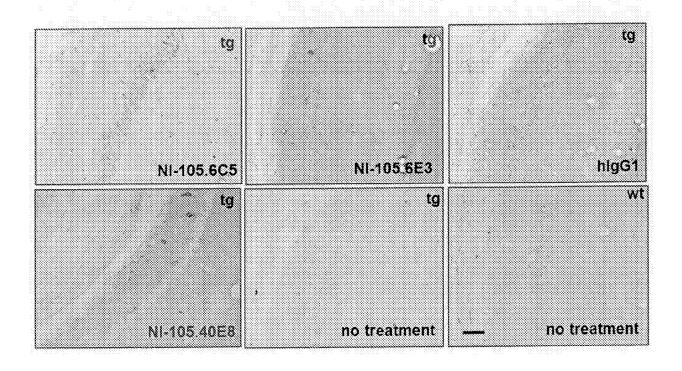
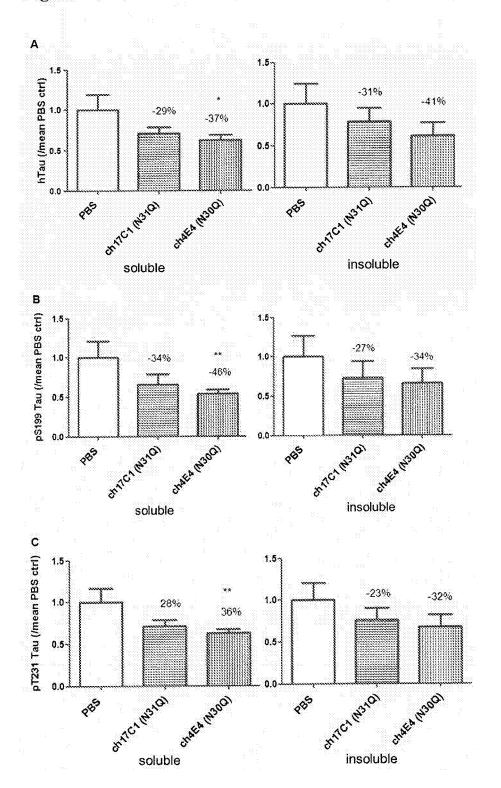



Figure 12A-C

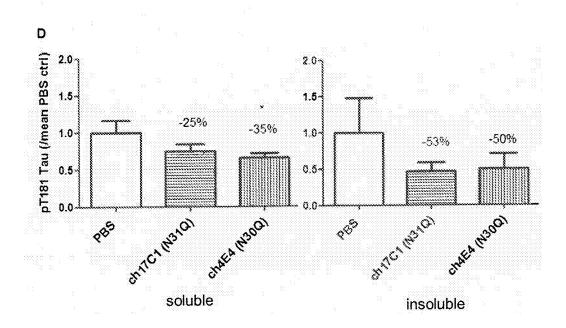


Figure 13

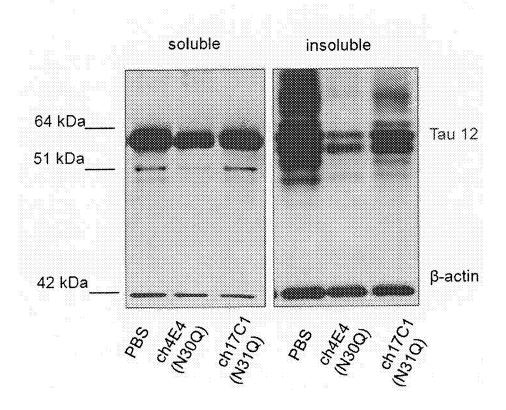


Figure 14

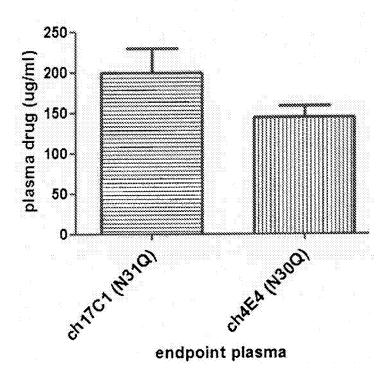
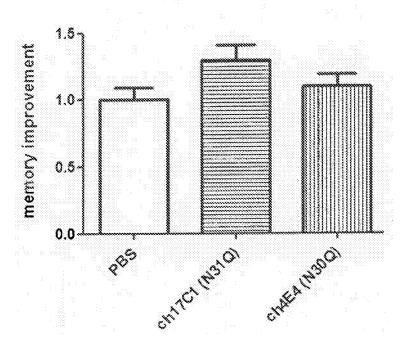



Figure 15

EP 3 792 278 A2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5892019 A [0046]
- US 5939598 A, Kucherlapati [0051]
- US 20120087861 [0088] [0261] [0263] [0272]
- WO 2004095031 A **[0124] [0263]**
- WO 8909622 A [0138]
- EP 0239400 A1 [0138]
- WO 9007861 A [0138]
- WO 9110741 A [0138]
- WO 9402602 A [0138]
- WO 9634096 A [0138]
- WO 9633735 A [0138]
- WO 8809344 A [0138] WO 0030680 A [0139]
- WO 2005018572 A [0148]
- WO 9852976 A [0155]
- WO 0034317 A [0155]
- WO 02060955 A [0165]
- WO 02096948 A2 [0165]
- US 5837821 A [0166]
- WO 9409817 A [0166]
- WO 2003017918 A [0170] [0278]
- WO 8605807 A [0192]
- WO 8901036 A [0192]
- US 5122464 A [0192]
- US 6159730 A [0194]

- US 5736137 A [0194]
- US 5658570 A [0194]
- US 6413777 B [0194]
- US 20030157641 A1 [0195]
- US 6193980 B [0195]
- WO 02096948 A [0207]
- US 20020123057 A1 [0211]
- WO 9208495 A [0215]
- WO 9114438 A [0215]
- WO 8912624 A [0215]
- US 5314995 A [0215]
- EP 0396387 A [0215]
- US 5116964 A [0221]
- US 5225538 A [0221]
- US 4741900 A [0225]
- WO 2007011907 A [0245]
- WO 9308302 A [0254]
- WO 9413795 A [0254]
- WO 9517429 A [0254] WO 9604309 A [0254]
- WO 2002062851 A [0254]
- WO 2004016655 A [0254]
- WO 2005080986 A [0254]
- EP 2008000053 W [0263]
- WO 2008081008 A [0263]

Non-patent literature cited in the description

- CAIRNS et al. Am. J. Pathol., 2007, vol. 171, 227-40 **[00031**
- GÖTZ et al. Science, 2001, vol. 293, 1491-1495
- VAN DE NES et al. Acta Neuropathol., 2006, vol. 111, 126-138 **[0003]**
- HOLMES et al. Lancet, 2008, vol. 372, 216-223 [0003]
- BOCHE et al. Acta Neuropathol., 2010, vol. 120, 13-20 [0003]
- ROSENMANN et al. Arch Neurol., 2006, vol. 63, 1459-1467 [0003]
- SIGURDSSON. J. Alzheimers. Dis., 2008, vol. 15, 157-168 **[0003]**
- BOIMEL et al. Exp. Neurol., 2010, vol. 224, 472-485 [0003] [0297]
- LEWIS et al. Science, 2001, vol. 293, 1487-1491 [0016]
- LEE et al. Annu. Rev. Neurosci., 2001, vol. 24, 1121-1159 [0017] [0020]

- SERGEANT et al. Bioch. Biophy. Acta, 2005, vol. 1739, 179-97 [0017]
- GOEDERT et al. Proc. Natl. Acad. Sci. USA, 1988, vol. 85, 4051-4055 [0019]
- GOEDERT et al. EMBO J., 1989, vol. 8, 393-399 [0019]
- GOEDERT et al. EMBO J., 1990, vol. 9, 4225-4230 [0019]
- GÖTZ. Brain. Res. Rev., 2001, vol. 35, 266-286 [0020]
- KHLISTUNOVA et al. J. Biol. Chem., 2006, vol. 281, 1205-1214 [0020]
- GENDRON; PETRUCELLI. Mol. Neurodegener., 2009, vol. 4, 13 [0020]
- ALUISE et al. Biochim. Biophys. Acta, 2008, vol. 1782, 549-558 **[0020] [0240]**
- FROST et al. J. Biol. Chem., 2009, vol. 284, 12845-12852 **[0020]**
- ZHENG et al. J. Cell. Biochem., 2010, vol. 109, 26-29 [0021]

- HARLOW et al. Antibodies: A Laboratory Manual.
 Cold Spring Harbor Laboratory Press, 1988 [0038]
 [0156]
- KABAT, E. et al. Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, 1983 [0043]
- CHOTHIA; LESK. J. Mol. Biol., 1987, vol. 196, 901-917 [0043] [0044] [0146]
- KABAT et al. Sequences of Proteins of Immunological Interest. U.S. Dept. of Health and Human Services, 1983 [0044]
- KABAT et al. Sequence of Proteins of Immunological Interest. U.S. Dept. of Health and Human Services, 1983 [0045]
- HARLOW et al. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1988, 27-28 [0069]
- Antibody-Antigen Interactions. BERZOFSKY et al. Fundamental Immunology. Raven Press, 1984 [0069]
- KUBY. Janis Immunology. W. H. Freeman and Company, 1992 [0069]
- ROUX et al. J. Immunol., 1998, vol. 161, 4083 [0075]
- STAHLI et al. Methods in Enzymology, 1983, vol. 9, 242-253 [0126]
- **KIRKLAND et al.** *J. Immunol.*, 1986, vol. 137, 3614-3619 **[0126]**
- CHEUNG et al. Virology, 1990, vol. 176, 546-552
 [0126]
- HARLOW; LANE. Antibodies, A Laboratory Manual.
 Cold Spring Harbor Press, 1988 [0126]
- MOREL et al. Molec. Immunol., 1988, vol. 25, 7-15
 [0126]
- MOLDENHAUER et al. Scand. J. Immunol., 1990, vol. 32, 77-82 [0126]
- HARLOW; LANE. Antibodies, A Laboratory Manual.
 CSH Press, Cold Spring Harbor, 1988 [0138]
- SCHIER. Human Antibodies Hybridomas, 1996, vol. 7, 97-105 [0138]
- MALMBORG. J. Immunol. Methods, 1995, vol. 183, 7-13 [0138]
- SAMBROOK. Molecular Cloning A Laboratory Manual. Cold Spring Harbor Laboratory, 1989 [0139]
- AUSUBEL. Current Protocols in Molecular Biology.
 Green Publishing Associates and Wiley Interscience,
 1994 [0139]
- **GILLILAND et al.** *Tissue Antigens*, 1996, vol. 47, 1-20 **[0142]**
- **DOENECKE et al.** *Leukemia,* 1997, vol. 11, 1787-1792 [0142]
- RIECHMANN et al. Nature, 1988, vol. 332, 323-327
 [0146]
- Expert Opin. Biol. Ther., 2005, 237-241 [0150]
- HAMMERLING et al. Monoclonal Antibodies and T-Cell Hybridomas. Elsevier, 1981, 563-681 [0156]
- KOHLER et al. Nature, 1975, vol. 256, 495 [0157]
- GODING. Monoclonal Antibodies: Principles and Practice. Academic Press, 1986, 59-103 [0158]

- Current Protocols in Immunology. Green Publishing Associates and Wiley-Interscience, John Wiley and Sons, 1991 [0160]
- **GÖTZ et al.** *J. Biol. Chem.*, 2001, vol. 276, 529-534 [0170] [0278]
- GOEDERT M; SPILLANTINI MG; CAIRNS NJ; CROWTHER RA. Neuron, 1992, vol. 8, 159 [0172] [0308]
- AUGUSTINACK et al. Acta Neuropathol, 2002, vol. 103, 26-35 [0173]
- SMITH; WATERMAN. Advances in Applied Mathematics, 1981, vol. 2, 482-489 [0184]
- KUTMEIER et al. BioTechniques, 1994, vol. 17, 242
 [0189]
- SAMBROOK et al. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, 1990 [0191]
- Current Protocols in Molecular Biology. John Wiley & Sons, 1998 [0191]
- PROUDFOOT. Nature, 1986, vol. 322, 52 [0198]
- KOHLER. Proc. Natl. Acad. Sci. USA, 1980, vol. 77, 2197 [0198]
- FOECKING et al. Gene, 1986, vol. 45, 101 [0200]
- COCKETT et al. Bio/Technology, 1990, vol. 8, 2 [0200]
- WIGLER et al. Cell, 1977, vol. 11, 223 [0204]
- SZYBALSKA; SZYBALSKI. Proc. Natl. Acad. Sci. USA, 1992, vol. 48, 202 [0204]
- LOWY et al. Cell, 1980, vol. 22, 817 [0204]
- WIGLER et al. Natl. Acad. Sci. USA, 1980, vol. 77, 357 [0204]
- O'HARE et al. Proc. Natl. Acad. Sci. USA, 1981, vol. 78, 1527 [0204]
- MULLIGAN; BERG. Proc. Natl. Acad. Sci. USA, 1981, vol. 78, 2072 [0204]
- GOLDSPIEL et al. Clinical Pharmacy, 1993, vol. 12, 488-505 [0204]
- WU; WU. Biotherapy, 1991, vol. 3, 87-95 [0204]
- TOLSTOSHEV. Ann. Rev. Pharmacol. Toxicol., 1993, vol. 32, 573-596 [0204]
- MULLIGAN. Science, 1993, vol. 260, 926-932 [0204]
- MORGAN; ANDERSON. Ann. Rev. Biochem., 1993, vol. 62, 191-217 [0204]
- TIB TECH, 1993, vol. 11, 155-215 [0204]
- SANTERRE et al. Gene, 1984, vol. 30, 147 [0204]
- Current Protocols in Molecular Biology. John Wiley & Sons, 1993 [0204]
- Gene Transfer and Expression. KRIEGLER. A Laboratory Manual. Stockton Press, 1990 [0204]
- Current Protocols in Human Genetics. John Wiley & Sons, 1994 [0204]
- COLBERRE-GARAPIN et al. J. Mol. Biol., 1981, vol. 150, 1 [0204]
- BEBBINGTON; HENTSCHEL. The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning. Academic Press, 1987, vol. 3 [0205]
- CROUSE et al. Cell. Biol., 1983, vol. 3, 257 [0205]
- RUTHER et al. EMBO J., 1983, vol. 2, 1791 [0208]

- **INOUYE**; **INOUYE**. *Nucleic Acids Res.*, 1985, vol. 13, 3101-3109 **[0208]**
- VAN HEEKE; SCHUSTER. J. Biol. Chem., 1989, vol. 24, 5503-5509 [0208]
- STINCHCOMB et al. Nature, 1979, vol. 282, 39 [0209]
- KINGSMAN et al. Gene, 1979, vol. 7, 141 [0209]
- TSCHEMPER et al. Gene, 1980, vol. 10, 157 [0209]
- JONES. Genetics, 1977, vol. 85, 12 [0209]
- SCOPES. Protein Purification. Springer Verlag, 1982
 [0211]
- Proteins Structure And Molecular Properties. T. E. Creighton, W. H. Freeman and Company, 1993 [0216]
- Posttranslational Covalent Modification Of Proteins.
 Academic Press, 1983, 1-12 [0216]
- SEIFTER et al. Meth. Enzymol., 1990, vol. 182, 626-646 [0216]
- RATTAN et al. Ann. NY Acad. Sci., 1992, vol. 663, 48-62 [0216]
- GASCOIGNE et al. Proc. Natl. Acad. Sci. USA, 1987, vol. 84, 2936-2940 [0218]
- CAPON et al. Nature, 1989, vol. 337, 525-531 [0218]
- TRAUNECKER et al. Nature, 1989, vol. 339, 68-70
 [0218]
- ZETTMEISSL et al. DNA Cell Biol. USA, 1990, vol. 9, 347-353 [0218]
- BYRN et al. Nature, 1990, vol. 344, 667-670 [0218]
- WATSON et al. J. Cell. Biol., 1990, vol. 110, 2221-2229 [0218]
- WATSON et al. *Nature*, 1991, vol. 349, 164-167 [0218]
- ARUFFO et al. Cell, 1990, vol. 61, 1303-1313 [0218]
- LINSLEY et al. J. Exp. Med., 1991, vol. 173, 721-730
 [0218]
- LISLEY et al. J. Exp. Med., 1991, vol. 174, 561-569
 [0218]
- STAMENKOVIC et al. Cell, 1991, vol. 66, 1133-1144
 [0218]
- ASHKENAZI et al. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, 10535-10539 [0218]
- LESSLAUER et al. Eur. J. Immunol., 1991, vol. 27, 2883-2886 [0218]
- **PEPPEL et al.** *J. Exp. Med.,* 1991, vol. 174, 1483-1489 [0218]
- RIDGWAY; GORMAN. J. Cell. Biol., 1991, vol. 115
 [0218]
- LEONG et al. Cytokine, 2001, vol. 16, 106-119 [0219]
- Adv. in Drug Deliv. Rev., 2002, vol. 54, 531 [0219]
 [0231]
- WEIR et al. Biochem. Soc. Transactions, 2002, vol. 30, 512 [0219] [0231]
- GENTZ et al. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 821-824 [0220]
- WILSON et al. Cell, 1984, vol. 37, 767 [0220]
- BYERS. Seminars Cell. Biol., 1991, vol. 2, 59-70
 [0223]

- FANGER. Immunol. Today, 1991, vol. 12, 51-54
 [0223]
- VOLLER, A. The Enzyme Linked Immunosorbent Assay (ELISA). Microbiological Associates Quarterly Publication, 1978, vol. 2, 1-7 [0227]
- VOLLER et al. J. Clin. Pathol., 1978, vol. 31, 507-520
 [0227]
- BUTLER. *Meth. Enzymol.*, 1981, vol. 73, 482-523 [0227]
- Enzyme Immunoassay. CRC Press, 1980 [0227]
- Enzyme Immunoassay. 1981 [0227]
- WEINTRAUB, B. Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques. The Endocrine Society, March 1986 [0228]
- Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy. ARNON et al. Monoclonal Antibodies And Cancer Therapy. Alan R. Liss, Inc, 1985, 243-56 [0230]
- Antibodies For Drug Delivery. HELLSTROM et al. Controlled Drug Delivery. Marcel Dekker, Inc, 1987, 623-53 [0230]
- Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review. THORPE et al. Monoclonal Antibodies '84: Biological And Clinical Applications. 1985, 475-506 [0230]
- Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy. Monoclonal Antibodies For Cancer Detection And Therapy. Academic Press, 1985, 303-16 [0230]
- THORPE et al. The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates. *Immunol. Rev.*, 1982, vol. 62, 119-158 [0230]
- LEONG et al. Cytokine, 2001, vol. 16, 106 [0231]
- Remington: The Science and Practice of Pharmacy.
 University of Sciences in Philadelphia, 2000 [0237]
- SIGURDSSON. J. Alzheimers Dis., 2008, vol. 15, 157-168 [0240] [0297]
- **BOIMEL et al.** *Exp Neurol.*, 2010, vol. 224, 472-485 **[0240]**
- FISCHER; LÉGER. Pathobiology, 2007, vol. 74, 3-14 [0241]
- ROBERT et al. Protein Eng. Des. Sel., 16 October 2008, 1741-0134 [0242]
- MILLER; MESSER. Molecular Therapy, 2005, vol.
 12, 394-401 [0242]
- MULLER et al. Expert Opin. Biol. Ther., 2005, 237-241 [0243]
- **KUSNEZOW et al.** *Mol. Cell Proteomics*, 2006, vol. 5, 1681-1696 **[0250]**
- BERKS. TIBTECH, 1994, vol. 12, 352-364 [0257]
- Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press, 1997 [0258]
- The Merck Manual of Diagnosis and Therapy. Merck & Co., Inc, 2003 [0261]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Harbor Laboratory Press, 2001 [0262]

EP 3 792 278 A2

- Protocols in Molecular Biology. John Wiley & Sons, 1999 [0262]
- DNA Cloning. 1985, vol. I-II [0262]
- Oligonucleotide Synthesis. 1984 [0262]
- Nucleic Acid Hybridization. 1984 [0262]
- Transcription And Translation. 1984 [0262]
- Culture Of Animal Cells. Freshney and Alan, Liss, Inc, 1987 [0262]
- Gene Transfer Vectors for Mammalian Cells [0262]
- Current Protocols in Molecular Biology and Short Protocols. Molecular Biology [0262]
- Recombinant DNA Methodology. Academic Press [0262]
- Gene Transfer Vectors For Mammalian Cells. Cold Spring Harbor Laboratory, 1987 [0262]
- Methods In Enzymology. vol. 154-155 [0262]
- Immobilized Cells And Enzymes. IRL Press, 1986
 [0262]
- Perbal, A Practical Guide To Molecular Cloning. 1984
 [0262]
- Methods In Enzymology. Academic Press, Inc, [0262]
- Immunochemical Methods In Cell And Molecular Biology. Academic Press, 1987 [0262]
- Handbook Of Experimental Immunology. 1986, vol. I-IV [0262]
- BOLLAG et al. Protein Methods. John Wiley & Sons, 1996 [0262]
- Non-viral Vectors for Gene Therapy. Academic Press, 1999 [0262]

- Viral Vectors. Academic Press, 1995 [0262]
- Immunology Methods Manual. Academic Press, 1997 [0262]
- DOYLE; GRIFFITHS. Cell and Tissue Culture: Laboratory Procedures in Biotechnology. John Wiley & Sons, 1998 [0262]
- HU et al. Curr. Opin. Biotechnol., 1997, vol. 8, 148
 [0262]
- KITANO. Biotechnology, 1991, vol. 17, 73 [0262]
- Curr. Opin. Biotechnol., 1991, vol. 2, 375 [0262]
- BIRCH et al. Bioprocess Technol., 1990, vol. 19, 251
 [0262]
- HERZEL et al. CHAOS, 2001, vol. 11, 98-107 [0262]
- GOEDERT et al. Neuron, 1992, vol. 8, 159-168 [0265] [0276]
- SMITH et al. Nat Protoc., 2009, vol. 4, 372-384 [0269]
- MARKS et al. Mol. Biol., 1991, vol. 222, 581-597
 [0269]
- DE HAARD et al. J. Biol. Chem., 1999, vol. 26, 18218-18230 [0269]
- **PENNANEN.** *Genes Brain Behav.*, 2006, vol. 5, 369-79 [0298] [0310]
- PENNANEN. Neurobiol Dis., 2004, vol. 15, 500-9
 102981
- F GALLYAS. Acta Morphol. Acad. Sci. Hung, 1971, vol. 19.1 [0307]
- PENNANEN et al. Genes Brain Behav, 2006, vol. 5
 (5), 369-79 [0330] [0335]
- TROQUIER et al. Curr Alzheimer Res., 2012, vol. 9 (4), 397-405 [0335]