(12)

EP 3 792 379 A8 (11)

CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 2 (W2 A1) Corrections, see

Bibliography INID code(s) 84

(48) Corrigendum issued on: 25.08.2021 Bulletin 2021/34

(43) Date of publication: 17.03.2021 Bulletin 2021/11

(21) Application number: 19850783.2

(22) Date of filing: 11.09.2019

(51) Int CI.:

D01F 6/46 (2006.01) D01D 1/02 (2006.01) D01D 5/06 (2006.01) D01D 5/12 (2006.01) D02G 3/44 (2006.01) A41D 19/015 (2006.01) D03D 1/00 (2006.01) D04B 1/28 (2006.01) D03D 15/00 (2021.01)

(86) International application number:

PCT/CN2019/105436

(87) International publication number: WO 2021/007943 (21.01.2021 Gazette 2021/03)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 18.07.2019 CN 201910651423

(71) Applicant: Xingyu Safety Protection Technology Weifang City, Shandong 261512 (CN)

(72) Inventors:

· ZHOU, Xingyu Weifang, Shandong 261512 (CN)

· ZHOU. Haitao Weifang, Shandong 261512 (CN)

ZHOU, Hongbo Weifang, Shandong 261512 (CN)

ZHAO, Yong Weifang, Shandong 261512 (CN)

(74) Representative: Kayahan, Senem Yalciner Patent and Consulting Ltd.

Tunus Cad. No: 85/3-4 Kavaklidere Cankaya 06680 Ankara (TR)

(54)POLYETHYLENE FIBER HAVING ULTRAHIGH ANTI-CUTTING PERFORMANCE AND **ULTRAHIGH MOLECULAR WEIGHT AND PREPARATION METHOD THEREFOR**

The present invention relates to an ultra-high molecular weight polyethylene fiber with ultra-high cut resistance, including: an ultra-high molecular weight polvethylene matrix and carbon fiber powder particles dispersed therein. The content of the carbon fiber powder particles is 0.25-10 wt%. The present invention further relates to a method for preparing the ultra-high molecular weight polyethylene fiber with the ultra-high cut resistance and a cut-resistant glove woven therefrom. The test proves that the glove woven from the ultra-high molecular weight polyethylene fiber with the ultra-high cut resistance is soft and comfortable, and does not have prickling sensation. According to the test of the Standard EN388-2003, the level of the cut-resistant grade ranges from 4 to 5. Compared with the application of other existing inorganic high-hardness reinforcing materials, the production process of the ultra-high molecular weight polyethylene fiber with the ultra-high cut resistance of the present invention has relatively less abrasion on the equipment. Moreover, the knitted cut-resistant gloves have higher durability and the cut-resistant performance is maintained longer than other gloves.