
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
79

8
75

9
A

1
EP003798759A1

(11) EP 3 798 759 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
31.03.2021 Bulletin 2021/13

(21) Application number: 20166932.2

(22) Date of filing: 31.03.2020

(51) Int Cl.:
G05B 19/042 (2006.01) G05B 19/05 (2006.01)

G06F 8/34 (2018.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 27.09.2019 US 201916585985

(71) Applicant: Rockwell Automation Technologies,
Inc.
Mayfield Heights, OH 44124-6188 (US)

(72) Inventors:
• ERICSSON, Matthew R.

Mayfield Heights, OH 44124 (US)

• STUMP, Andrew R.
Mayfield Heights, OH 44124 (US)

• CARRARA, Anthony
Mayfield Heights, OH 44124 (US)

• SRINIVASAN, Eashwer
Mayfield Heights, OH 44124 (US)

• COMO, Christopher W.
Mayfield Heights, OH 44124 (US)

• BILLI-DURAN, Sharon M.
Mayfield Heights, OH 44124 (US)

(74) Representative: Grünecker Patent- und
Rechtsanwälte
PartG mbB
Leopoldstraße 4
80802 München (DE)

(54) PREFERENTIAL AUTOMATION VIEW CURATION

(57) An industrial integrated development environ-
ment (IDE) comprises a development interface that af-
fords a user a great deal of control over the editing tools,
workspace canvases, and project information rendered
at a given time. The industrial IDE system automatically
filters the tools, panels, and information available for se-
lection based on a current project development task,
such that a focused subset of editing tools relevant to a
current development task or context are made available

for selection while other tools are hidden. The develop-
ment interface also allows the user to selectively render
or hide selected tools or information from among the rel-
evant, filtered set of tools. This can reduce or eliminate
unnecessary clutter and aid in quickly and easily locating
and selecting a desired editing function. The IDE’s de-
velopment interface can also conform to a structured or-
ganization of workspace canvases and panels that facil-
itates intuitive workflow.

EP 3 798 759 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] The subject matter disclosed herein relates
generally to industrial automation systems, and, for ex-
ample, to industrial programming development plat-
forms.

BRIEF DESCRIPTION

[0002] The following presents a simplified summary in
order to provide a basic understanding of some aspects
described herein. This summary is not an extensive over-
view nor is intended to identify key/critical elements or to
delineate the scope of the various aspects described
herein. Its sole purpose is to present some concepts in
a simplified form as a prelude to the more detailed de-
scription that is presented later.
[0003] In one or more embodiments, a system for de-
veloping industrial applications is provided, comprising
a user interface component configured to render an in-
dustrial integrated development environment (IDE) de-
velopment interface and to receive, via interaction with
the development interface, industrial design input that
defines aspects of an industrial automation project,
wherein the development interface comprises one or
more workspace canvases configured to facilitate devel-
opment of a selected aspect of the industrial automation
project, and a global panel control bar comprising visibil-
ity icons corresponding to respective panels available to
be invoked on the development interface; and a project
generation component configured to generate system
project data based on the industrial design input, wherein
the interface display comprises a left global panel area,
a right global panel area, and a bottom global panel area,
the respective panels are designated to one of the left
global panel area, the right global panel area, or the bot-
tom global panel area, and the user interface component
is further configured to, in response to selection of a vis-
ibility icon, of the visibility icons, toggle a visibility of a
panel corresponding to the visibility icon in one of the left
global panel area, the right global panel area, or the bot-
tom global panel area.
[0004] Also, one or more embodiments provide a meth-
od for curating an industrial development workspace,
comprising displaying, by an industrial integrated devel-
opment environment (IDE) system comprising a proces-
sor, a development interface on a client device, wherein
the displaying comprises: displaying one or more work-
space canvases on which respective development tasks
are performed, and displaying a global panel control bar
comprising visibility icons corresponding to respective
panels available to be invoked on the development inter-
face; receiving, by the industrial IDE system, selection
of a visibility icon, of the visibility icons, via interaction
with the development interface; and in response to the
receiving, toggling, by the industrial IDE system, a visi-

bility of a panel corresponding to the visibility icon, where-
in the toggling comprises adding the panel to or removing
the panel from one of a left global panel area, a right
global panel area, or a bottom global panel area of the
development interface.
[0005] Also, according to one or more embodiments,
a non-transitory computer-readable medium is provided
having stored thereon instructions that, in response to
execution, cause an industrial integrated development
environment (IDE) system to perform operations, the op-
erations comprising displaying a development interface
for the industrial IDE system on a client device, wherein
the displaying comprises: displaying one or more work-
space canvases on which respective development tasks
are performed, and displaying a global panel control bar
comprising visibility icons corresponding to respective
panels available to be invoked on the development inter-
face; receiving selection of a visibility icon, of the visibility
icons, via interaction with the development interface; and
in response to the receiving, toggling a visibility of a panel
corresponding to the visibility icon, wherein the toggling
comprises adding the panel to or removing the panel from
one of a left global panel area, a right global panel area,
or a bottom global panel area of the development inter-
face.
[0006] To the accomplishment of the foregoing and re-
lated ends, certain illustrative aspects are described
herein in connection with the following description and
the annexed drawings. These aspects are indicative of
various ways which can be practiced, all of which are
intended to be covered herein. Other advantages and
novel features may become apparent from the following
detailed description when considered in conjunction with
the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007]

FIG. 1 is a block diagram of an example industrial
control environment.
FIG. 2 is a block diagram of an example integrated
development environment (IDE) system.
FIG. 3 is a diagram illustrating a generalized archi-
tecture of an industrial IDE system.
FIG. 4 is a diagram illustrating several example au-
tomation object properties that can be leveraged by
the IDE system in connection with building, deploy-
ing, and executing a system project.
FIG. 5 is a diagram illustrating example data flows
associated with creation of a system project for an
automation system being designed using an indus-
trial IDE system.
FIG. 6 is a diagram illustrating an example system
project that incorporates automation objects into a
project model.
FIG. 7 is a diagram illustrating commissioning of a
system project.

1 2

EP 3 798 759 A1

3

5

10

15

20

25

30

35

40

45

50

55

FIG. 8 is a diagram illustrating an example architec-
ture in which cloud-based IDE services are used to
develop and deploy industrial applications to a plant
environment.
FIG. 9 is an example development interface that can
be rendered by one or more embodiments of an in-
dustrial IDE system’s user interface component.
FIG. 10a is a close-up view of a global panel control
bar illustrating an example organization of panel vis-
ibility icons.
FIG. 10b is an example View menu that can be ren-
dered as a drop-down menu in response to selection
of a View option in a menu bar of an industrial IDE
system.
FIG. 11a is a view of a top right corner of a develop-
ment interface depicting a Properties panel pinned
in a right global panel area.
FIG. 11b is a view of the top right comer of the de-
velopment interface depicting selection of an Online
panel as an overlaid panel in the right global panel
area.
FIG. 11c is a view of the top right corner of the de-
velopment interface depicting two pinned panels that
are visible simultaneously.
FIG. 11d is a view of the top right corner of the de-
velopment interface in which a Toolbox panel is ren-
dered as an overlay above a Properties panel.
FIG. 11e is a view of the top right corner of the de-
velopment interface in which a Toolbox panel is
switched to be a pinned panel.
FIG. 12 is a view of the top right corner of the devel-
opment interface depicting a panel drop area for a
right global panel area.
FIG. 13a is a view of two horizontally stacked pinned
panels in a default non-collapsed state.
FIG. 13b is a view of the two horizontally stacked
pinned panels in which the lower panel is in a col-
lapsed state.
FIG. 13c is a view of the two horizontally stacked
pinned panels in which the upper panel is in a col-
lapsed state.
FIG. 14 is a view of an example canvas within a can-
vas area of an industrial IDE development interface.
FIG. 15 is a view of an industrial development inter-
face in which two canvases have been stacked hor-
izontally.
FIG. 16a is a view of two tabbed development inter-
faces in which one tab is selected, causing the cor-
responding ladder logic canvas to be rendered in the
canvas area.
FIG. 16b is a view of two tabbed development inter-
faces in which one tab is selected, causing the cor-
responding tag database canvas to be rendered in
the canvas area.
FIG. 17a is a view of a development interface in
which a single canvas is open and no left, right, or
bottom panels are invoked.
FIG. 17b is a view of the development interface in

which an Explorer panel has been rendered visible
in a left global panel area and a Properties panel has
been rendered in a right global panel area.
FIG. 17c is a view of the development interface in
which a Layers panel has been added to the previous
view.
FIG. 17d a view of the development interface in which
adds a second canvas stacked horizontally with a
pre-existing canvas.
FIG. 18 is a view of an Explorer panel, which resides
in a left global panel area of a development interface
when invoked.
FIG. 19a is a view of the Explorer panel with the
Logical System view currently selected.
FIG. 19b is a view of the Explorer panel with the
Execution System view currently selected.
FIG. 20 is an example Explorer panel depicting a
System navigation tree for an example automation
system project
FIG. 21a illustrates an example response of an in-
dustrial IDE development interface when a user se-
lects, but does not launch, a ladder logic node rep-
resenting a ladder logic program of the system
project.
FIG. 21b illustrates an example response of the in-
dustrial IDE development interface when a user
launches the ladder logic node 2002.
FIG. 21c illustrates an example response of the in-
dustrial IDE development interface when a user
right-clicks on the ladder logic node.
FIG. 22a is a view of the Explorer panel with the
Application view and the Controller tab currently se-
lected.
FIG. 22b is a view of the Explorer panel with the
Application view and the HMI tab currently selected.
FIG. 23 is a view of an industrial IDE workspace can-
vas on which a portion of an example structure text
program is rendered in response to selection of a
structured text application node.
FIG. 24 is a view of an industrial IDE workspace can-
vas on which a portion of an example function block
diagram program is rendered in response to selec-
tion of a function block diagram application node.
FIG. 25 is a view of an Explorer panel with the De-
vices view currently selected.
FIG. 26 is a view of an industrial IDE workspace can-
vas on which information for an example controller
is rendered in response to selection of a controller
node.
FIG. 27 is a view of an Explorer panel with the Library
view currently selected.
FIG. 28 is a view of an Explorer panel with the Ex-
tensions view currently selected.
FIG. 29a is a left-side instance of an industrial IDE
development interface that is distributed across two
display devices.
FIG. 29b is a right-side instance of the industrial IDE
development interface that is distributed across two

3 4

EP 3 798 759 A1

4

5

10

15

20

25

30

35

40

45

50

55

display devices.
FIG. 30 is an example Available Tabs menu.
FIG. 31a is an industrial IDE development interface
rendered in accordance with a first layout mode suit-
able for scenarios in which there are no width restric-
tions.
FIG. 31b is an industrial IDE development interface
rendered in accordance with a second layout mode
that is invoked when the available screen width is
below a first threshold width.
FIG. 31c is an industrial IDE development interface
rendered in accordance with a third layout mode that
may be initiated when the available screen width is
below a second threshold width that is smaller than
the first threshold width.
FIG. 32a is a flowchart of a first part of an example
methodology for customizing panel visibility and lay-
out on a development interface of an industrial IDE
system.
FIG. 32b is a flowchart of a second part of the ex-
ample methodology for customizing panel visibility
and layout on the development interface of the in-
dustrial IDE system.
FIG. 32c is a flowchart of a third part of the example
methodology for customizing panel visibility and lay-
out on the development interface of the industrial
IDE system.
FIG. 33a is a flowchart of a first part of an example
methodology for browsing and rendering aspects of
an industrial automation project via interaction with
an industrial IDE development interface.
FIG. 33b is a flowchart of a second part of the ex-
ample methodology for browsing and rendering as-
pects of the industrial automation project via inter-
action with the industrial IDE development interface.
FIG. 34a is a flowchart of a first part of an example
methodology for manipulating workspace canvases
within an industrial IDE development interface.
FIG. 34b is a flowchart of a second part of the ex-
ample methodology for manipulating workspace
canvases within the industrial IDE development in-
terface.
FIG. 34c is a flowchart of a third part of the example
methodology for manipulating workspace canvases
within the industrial IDE development interface.
FIG. 35a is a flowchart of a first part of an example
methodology for automatically curating a set of avail-
able project editing tools by an industrial IDE devel-
opment interface based on a current development
task being performed by a user.
FIG. 35b is a flowchart of a second part of the ex-
ample methodology for automatically curating the
set of available project editing tools by the industrial
IDE development interface based on the current de-
velopment task being performed by the user.
FIG. 36 is an example computing environment.
FIG. 37 is an example networking environment.

DETAILED DESCRIPTION

[0008] The subject disclosure is now described with
reference to the drawings, wherein like reference numer-
als are used to refer to like elements throughout. In the
following description, for purposes of explanation, nu-
merous specific details are set forth in order to provide
a thorough understanding thereof. It may be evident,
however, that the subject disclosure can be practiced
without these specific details. In other instances, well-
known structures and devices are shown in block dia-
gram form in order to facilitate a description thereof.
[0009] As used in this application, the terms "compo-
nent," "system," "platform," "layer," "controller," "termi-
nal," "station," "node," "interface" are intended to refer to
a computer-related entity or an entity related to, or that
is part of, an operational apparatus with one or more spe-
cific functionalities, wherein such entities can be either
hardware, a combination of hardware and software, soft-
ware, or software in execution. For example, a compo-
nent can be, but is not limited to being, a process running
on a processor, a processor, a hard disk drive, multiple
storage drives (of optical or magnetic storage medium)
including affixed (e.g., screwed or bolted) or removable
affixed solid-state storage drives; an object; an execut-
able; a thread of execution; a computer-executable pro-
gram, and/or a computer. By way of illustration, both an
application running on a server and the server can be a
component. One or more components can reside within
a process and/or thread of execution, and a component
can be localized on one computer and/or distributed be-
tween two or more computers. Also, components as de-
scribed herein can execute from various computer read-
able storage media having various data structures stored
thereon. The components may communicate via local
and/or remote processes such as in accordance with a
signal having one or more data packets (e.g., data from
one component interacting with another component in a
local system, distributed system, and/or across a network
such as the Internet with other systems via the signal).
As another example, a component can be an apparatus
with specific functionality provided by mechanical parts
operated by electric or electronic circuitry which is oper-
ated by a software or a firmware application executed by
a processor, wherein the processor can be internal or
external to the apparatus and executes at least a part of
the software or firmware application. As yet another ex-
ample, a component can be an apparatus that provides
specific functionality through electronic components
without mechanical parts, the electronic components can
include a processor therein to execute software or
firmware that provides at least in part the functionality of
the electronic components. As further yet another exam-
ple, interface(s) can include input/output (I/O) compo-
nents as well as associated processor, application, or
Application Programming Interface (API) components.
While the foregoing examples are directed to aspects of
a component, the exemplified aspects or features also

5 6

EP 3 798 759 A1

5

5

10

15

20

25

30

35

40

45

50

55

apply to a system, platform, interface, layer, controller,
terminal, and the like.
[0010] As used herein, the terms "to infer" and "infer-
ence" refer generally to the process of reasoning about
or inferring states of the system, environment, and/or us-
er from a set of observations as captured via events
and/or data. Inference can be employed to identify a spe-
cific context or action, or can generate a probability dis-
tribution over states, for example. The inference can be
probabilistic-that is, the computation of a probability dis-
tribution over states of interest based on a consideration
of data and events. Inference can also refer to techniques
employed for composing higher-level events from a set
of events and/or data. Such inference results in the con-
struction of new events or actions from a set of observed
events and/or stored event data, whether or not the
events are correlated in close temporal proximity, and
whether the events and data come from one or several
event and data sources.
[0011] In addition, the term "or" is intended to mean an
inclusive "or" rather than an exclusive "or." That is, unless
specified otherwise, or clear from the context, the phrase
"X employs A or B" is intended to mean any of the natural
inclusive permutations. That is, the phrase "X employs
A or B" is satisfied by any of the following instances: X
employs A; X employs B; or X employs both A and B. In
addition, the articles "a" and "an" as used in this applica-
tion and the appended claims should generally be con-
strued to mean "one or more" unless specified otherwise
or clear from the context to be directed to a singular form.
[0012] Furthermore, the term "set" as employed herein
excludes the empty set; e.g., the set with no elements
therein. Thus, a "set" in the subject disclosure includes
one or more elements or entities. As an illustration, a set
of controllers includes one or more controllers; a set of
data resources includes one or more data resources; etc.
Likewise, the term "group" as utilized herein refers to a
collection of one or more entities; e.g., a group of nodes
refers to one or more nodes.
[0013] Various aspects or features will be presented
in terms of systems that may include a number of devices,
components, modules, and the like. It is to be understood
and appreciated that the various systems may include
additional devices, components, modules, etc. and/or
may not include all of the devices, components, modules
etc. discussed in connection with the figures. A combi-
nation of these approaches also can be used.
[0014] FIG. 1 is a block diagram of an example indus-
trial control environment 100. In this example, a number
of industrial controllers 118 are deployed throughout an
industrial plant environment to monitor and control re-
spective industrial systems or processes relating to prod-
uct manufacture, machining, motion control, batch
processing, material handling, or other such industrial
functions. Industrial controllers 118 typically execute re-
spective control programs to facilitate monitoring and
control of industrial devices 120 making up the controlled
industrial assets or systems (e.g., industrial machines).

One or more industrial controllers 118 may also comprise
a soft controller executed on a personal computer or other
hardware platform, or on a cloud platform. Some hybrid
devices may also combine controller functionality with
other functions (e.g., visualization). The control programs
executed by industrial controllers 118 can comprise sub-
stantially any type of code capable of processing input
signals read from the industrial devices 120 and control-
ling output signals generated by the industrial controllers
118, including but not limited to ladder logic, sequential
function charts, function block diagrams, or structured
text.
[0015] Industrial devices 120 may include both input
devices that provide data relating to the controlled indus-
trial systems to the industrial controllers 118, and output
devices that respond to control signals generated by the
industrial controllers 118 to control aspects of the indus-
trial systems. Example input devices can include telem-
etry devices (e.g., temperature sensors, flow meters, lev-
el sensors, pressure sensors, etc.), manual operator con-
trol devices (e.g., push buttons, selector switches, etc.),
safety monitoring devices (e.g., safety mats, safety pull
cords, light curtains, etc.), and other such devices. Output
devices may include motor drives, pneumatic actuators,
signaling devices, robot control inputs, valves, pumps,
and the like.
[0016] Industrial controllers 118 may communicatively
interface with industrial devices 120 over hardwired or
networked connections. For example, industrial control-
lers 118 can be equipped with native hardwired inputs
and outputs that communicate with the industrial devices
120 to effect control of the devices. The native controller
I/O can include digital I/O that transmits and receives
discrete voltage signals to and from the field devices, or
analog I/O that transmits and receives analog voltage or
current signals to and from the devices. The controller
I/O can communicate with a controller’s processor over
a backplane such that the digital and analog signals can
be read into and controlled by the control programs. In-
dustrial controllers 118 can also communicate with in-
dustrial devices 120 over a network using, for example,
a communication module or an integrated networking
port. Exemplary networks can include the Internet, in-
tranets, Ethernet, DeviceNet, ControlNet, Data Highway
and Data Highway Plus (DH/DH+), Remote I/O, Fieldbus,
Modbus, Profibus, wireless networks, serial protocols,
and the like. The industrial controllers 118 can also store
persisted data values that can be referenced by their as-
sociated control programs and used for control decisions,
including but not limited to measured or calculated values
representing operational states of a controlled machine
or process (e.g., tank levels, positions, alarms, etc.) or
captured time series data that is collected during opera-
tion of the automation system (e.g., status information
for multiple points in time, diagnostic occurrences, etc.).
Similarly, some intelligent devices - including but not lim-
ited to motor drives, instruments, or condition monitoring
modules - may store data values that are used for control

7 8

EP 3 798 759 A1

6

5

10

15

20

25

30

35

40

45

50

55

and/or to visualize states of operation. Such devices may
also capture time-series data or events on a log for later
retrieval and viewing.
[0017] Industrial automation systems often include one
or more human-machine interfaces (HMIs) 114 that allow
plant personnel to view telemetry and status data asso-
ciated with the automation systems, and to control some
aspects of system operation. HMIs 114 may communi-
cate with one or more of the industrial controllers 118
over a plant network 116, and exchange data with the
industrial controllers to facilitate visualization of informa-
tion relating to the controlled industrial processes on one
or more pre-developed operator interface screens. HMIs
114 can also be configured to allow operators to submit
data to specified data tags or memory addresses of the
industrial controllers 118, thereby providing a means for
operators to issue commands to the controlled systems
(e.g., cycle start commands, device actuation com-
mands, etc.), to modify setpoint values, etc. HMIs 114
can generate one or more display screens through which
the operator interacts with the industrial controllers 118,
and thereby with the controlled processes and/or sys-
tems. Example display screens can visualize present
states of industrial systems or their associated devices
using graphical representations of the processes that dis-
play metered or calculated values, employ color or posi-
tion animations based on state, render alarm notifica-
tions, or employ other such techniques for presenting
relevant data to the operator. Data presented in this man-
ner is read from industrial controllers 118 by HMIs 114
and presented on one or more of the display screens
according to display formats chosen by the HMI devel-
oper. HMIs may comprise fixed location or mobile devic-
es with either user-installed or pre-installed operating
systems, and either user-installed or pre-installed graph-
ical application software.
[0018] Some industrial environments may also include
other systems or devices relating to specific aspects of
the controlled industrial systems. These may include, for
example, a data historian 110 that aggregates and stores
production information collected from the industrial con-
trollers 118 or other data sources, device documentation
stores containing electronic documentation for the vari-
ous industrial devices making up the controlled industrial
systems, inventory tracking systems, work order man-
agement systems, repositories for machine or process
drawings and documentation, vendor product documen-
tation storage, vendor knowledgebases, internal knowl-
edgebases, work scheduling applications, or other such
systems, some or all of which may reside on an office
network 108 of the industrial environment.
[0019] Higher-level systems 126 may carry out func-
tions that are less directly related to control of the indus-
trial automation systems on the plant floor, and instead
are directed to long term planning, high-level supervisory
control, analytics, reporting, or other such high-level func-
tions. These systems 126 may reside on the office net-
work 108 at an external location relative to the plant fa-

cility, or on a cloud platform with access to the office
and/or plant networks. Higher-level systems 126 may in-
clude, but are not limited to, cloud storage and analysis
systems, big data analysis systems, manufacturing ex-
ecution systems, data lakes, reporting systems, etc. In
some scenarios, applications running at these higher lev-
els of the enterprise may be configured to analyze control
system operational data, and the results of this analysis
may be fed back to an operator at the control system or
directly to a controller 118 or device 120 in the control
system.
[0020] The various control, monitoring, and analytical
devices that make up an industrial environment must be
programmed or configured using respective configura-
tion applications specific to each device. For example,
industrial controllers 118 are typically configured and pro-
grammed using a control programming development ap-
plication such as a ladder logic editor (e.g., executing on
a client device 124). Using such development platforms,
a designer can write control programming (e.g., ladder
logic, structured text, function block diagrams, etc.) for
carrying out a desired industrial sequence or process and
download the resulting program files to the controller 118.
Separately, developers design visualization screens and
associated navigation structures for HMIs 114 using an
HMI development platform (e.g., executing on client de-
vice 122) and download the resulting visualization files
to the HMI 114. Some industrial devices 120 - such as
motor drives, telemetry devices, safety input devices, etc.
- may also require configuration using separate device
configuration tools (e.g., executing on client device 128)
that are specific to the device being configured. Such
device configuration tools may be used to set device pa-
rameters or operating modes (e.g., high/low limits, output
signal formats, scale factors, energy consumption
modes, etc.).
[0021] The necessity of using separate configuration
tools to program and configure disparate aspects of an
industrial automation system results in a piecemeal de-
sign approach whereby different but related or overlap-
ping aspects of an automation system are designed, con-
figured, and programmed separately on different devel-
opment environments. For example, a motion control
system may require an industrial controller to be pro-
grammed and a control loop to be tuned using a control
logic programming platform, a motor drive to be config-
ured using another configuration platform, and an asso-
ciated HMI to be programmed using a visualization de-
velopment platform. Related peripheral systems - such
as vision systems, safety systems, etc. - may also require
configuration using separate programming or develop-
ment applications.
[0022] This segregated development approach can al-
so necessitate considerable testing and debugging ef-
forts to ensure proper integration of the separately con-
figured system aspects. In this regard, intended data in-
terfacing or coordinated actions between the different
system aspects may require significant debugging due

9 10

EP 3 798 759 A1

7

5

10

15

20

25

30

35

40

45

50

55

to a failure to properly coordinate disparate programming
efforts.
[0023] Industrial development platforms are also limit-
ed in terms of the development interfaces offered to the
user to facilitate programming and configuration. These
interfaces typically offer a fixed user experience that re-
quires the user to develop control code, visualizations,
or other control system aspects using a relatively fixed
set of development interfaces. In many development sce-
narios, the number of editing options - e.g., function but-
tons or other selectable editing controls, configuration
fields, etc. - that are displayed on the development plat-
form’s interface exceed the number required by the de-
veloper for a current project development task, resulting
in an unnecessarily cluttered development workspace
and rendering it difficult to locate a desired editing option.
[0024] To address at least some of these or other is-
sues, one or more embodiments described herein pro-
vide an integrated development environment (IDE) for
designing, programming, and configuring multiple as-
pects of an industrial automation system using a common
design environment and data model. Embodiments of
the industrial IDE can be used to configure and manage
automation system devices in a common way, facilitating
integrated, multi-discipline programming of control, vis-
ualization, and other aspects of the control system.
[0025] In some embodiments, the development inter-
face rendered by the IDE system can afford the user a
great deal of control over the editing tools, workspace
canvases, and project information rendered at a given
time. The IDE system also automatically filters the tools,
panels, and information available for selection based on
a determination of the current project development task
being carried out by the user, such that a focused subset
of editing tools relevant to a current development task
are made available for selection while other tools are
hidden. The development interface also allows the user
to selectively render or hide selected tools or information
from among the relevant, filtered set of tools. This ap-
proach can reduce or eliminate unnecessary clutter and
assist the developer in quickly and easily locating and
selecting a desired editing function. The IDE’s develop-
ment interface can also conform to a structured organi-
zation of workspace canvases and panels that facilitates
intuitive workflow.
[0026] FIG. 2 is a block diagram of an example inte-
grated development environment (IDE) system 202 ac-
cording to one or more embodiments of this disclosure.
Aspects of the systems, apparatuses, or processes ex-
plained in this disclosure can constitute machine-execut-
able components embodied within machine(s), e.g., em-
bodied in one or more computer-readable mediums (or
media) associated with one or more machines. Such
components, when executed by one or more machines,
e.g., computer(s), computing device(s), automation de-
vice(s), virtual machine(s), etc., can cause the ma-
chine(s) to perform the operations described.
[0027] IDE system 202 can include a user interface

component 204 including an IDE editor 224, a project
generation component 206, a project deployment com-
ponent 208, one or more processors 218, and memory
220. In various embodiments, one or more of the user
interface component 204, project generation component
206, project deployment component 208, the one or more
processors 218, and memory 220 can be electrically
and/or communicatively coupled to one another to per-
form one or more of the functions of the IDE system 202.
In some embodiments, components 204, 206, and 208
can comprise software instructions stored on memory
220 and executed by processor(s) 218. IDE system 202
may also interact with other hardware and/or software
components not depicted in FIG. 2. For example, proc-
essor(s) 218 may interact with one or more external user
interface devices, such as a keyboard, a mouse, a display
monitor, a touchscreen, or other such interface devices.
[0028] User interface component 204 can be config-
ured to receive user input and to render output to the
user in any suitable format (e.g., visual, audio, tactile,
etc.). In some embodiments, user interface component
204 can be configured to communicatively interface with
an IDE client that executes on a client device (e.g., a
laptop computer, tablet computer, smart phone, etc.) that
is communicatively connected to the IDE system 202
(e.g., via a hardwired or wireless connection). The user
interface component 204 can then receive user input data
and render output data via the IDE client. In other em-
bodiments, user interface component 314 can be config-
ured to generate and serve development interface
screens to a client device (e.g., program development
screens), and exchange data via these interface screens.
As will be described in more detail herein, the develop-
ment interfaces rendered by the user interface compo-
nent 204 support a number of user experience features
that simplify project development workflow, reduce
stress associated with an overcluttered development
workspace, and assist developers to locate desired ed-
iting functions more quickly and easily. Input data that
can be received via various embodiments of user inter-
face component 204 can include, but is not limited to,
programming code, industrial design specifications or
goals, engineering drawings, AR/VR input, DSL defini-
tions, video or image data, or other such input. Output
data rendered by various embodiments of user interface
component 204 can include program code, programming
feedback (e.g., error and highlighting, coding sugges-
tions, etc.), programming and visualization development
screens, etc.
[0029] Project generation component 206 can be con-
figured to create a system project comprising one or more
project files based on design input received via the user
interface component 204, as well as industrial knowl-
edge, predefined code modules and visualizations, and
automation objects 222 maintained by the IDE system
202. Project deployment component 208 can be config-
ured to commission the system project created by the
project generation component 206 to appropriate indus-

11 12

EP 3 798 759 A1

8

5

10

15

20

25

30

35

40

45

50

55

trial devices (e.g., controllers, HMI terminals, motor
drives, AR/VR systems, etc.) for execution. To this end,
project deployment component 208 can identify the ap-
propriate target devices to which respective portions of
the system project should be sent for execution, translate
these respective portions to formats understandable by
the target devices, and deploy the translated project com-
ponents to their corresponding devices.
[0030] The one or more processors 218 can perform
one or more of the functions described herein with refer-
ence to the systems and/or methods disclosed. Memory
220 can be a computer-readable storage medium storing
computer-executable instructions and/or information for
performing the functions described herein with reference
to the systems and/or methods disclosed.
[0031] FIG. 3 is a diagram illustrating a generalized
architecture of the industrial IDE system 202 according
to one or more embodiments. Industrial IDE system 202
can implement a common set of services and workflows
spanning not only design, but also commissioning, op-
eration, and maintenance. In terms of design, the IDE
system 202 can support not only industrial controller pro-
gramming and HMI development, but also sizing and se-
lection of system components, device/system configura-
tion, AR/VR visualizations, and other features. The IDE
system 202 can also include tools that simplify and au-
tomate commissioning of the resulting project and assist
with subsequent administration of the deployed system
during runtime.
[0032] Embodiments of the IDE system 202 that are
implemented on a cloud platform also facilitate collabo-
rative project development whereby multiple developers
304 contribute design and programming input to a com-
mon automation system project 302. Collaborative tools
supported by the IDE system can manage design con-
tributions from the multiple contributors and perform ver-
sion control of the aggregate system project 302 to en-
sure project consistency.
[0033] Based on design and programming input from
one or more developers 304, IDE system 202 generates
a system project 302 comprising one or more project files.
The system project 302 encodes one or more of control
programming; HMI, AR, and/or VR visualizations; device
or sub-system configuration data (e.g., drive parameters,
vision system configurations, telemetry device parame-
ters, safety zone definitions, etc.); or other such aspects
of an industrial automation system being designed. IDE
system 202 can identify the appropriate target devices
306 on which respective aspects of the system project
302 should be executed (e.g., industrial controllers, HMI
terminals, variable frequency drives, safety devices,
etc.), translate the system project 302 to executable files
that can be executed on the respective target devices,
and deploy the executable files to their corresponding
target devices 306 for execution, thereby commissioning
the system project 302 to the plant floor for implementa-
tion of the automation project.
[0034] To support enhanced development capabilities,

some embodiments of IDE system 202 can be built on
an object-based data model rather than a tag-based ar-
chitecture. Automation objects 222 serve as the building
block for this object-based development architecture.
FIG. 4 is a diagram illustrating several example automa-
tion object properties that can be leveraged by the IDE
system 202 in connection with building, deploying, and
executing a system project 302. Automation objects 222
can be created and augmented during design, integrated
into larger data models, and consumed during runtime.
These automation objects 222 provide a common data
structure across the IDE system 202 and can be stored
in an object library (e.g., part of memory 220) for reuse.
The object library can store predefined automation ob-
jects 222 representing various classifications of real-
world industrial assets 402, including but not limited to
pumps, tanks, values, motors, motor drives (e.g., variable
frequency drives), industrial robots, actuators (e.g.,
pneumatic or hydraulic actuators), or other such assets.
Automation objects 222 can represent elements at sub-
stantially any level of an industrial enterprise, including
individual devices, machines made up of many industrial
devices and components (some of which may be asso-
ciated with their own automation objects 222), and entire
production lines or process control systems.
[0035] An automation object 222 for a given type of
industrial asset can encode such aspects as 2D or 3D
visualizations, alarms, control coding (e.g., logic or other
type of control programming), analytics, startup proce-
dures, testing protocols, validation reports, simulations,
schematics, security protocols, and other such properties
associated with the industrial asset 402 represented by
the object 222. Automation objects 222 can also be ge-
otagged with location information identifying the location
of the associated asset. During runtime of the system
project 302, the automation object 222 corresponding to
a given real-world asset 402 can also record status or
operational history data for the asset. In general, auto-
mation objects 222 serve as programmatic representa-
tions of their corresponding industrial assets 402, and
can be incorporated into a system project 302 as ele-
ments of control code, a 2D or 3D visualization, a knowl-
edgebase or maintenance guidance system for the in-
dustrial assets, or other such aspects.
[0036] FIG. 5 is a diagram illustrating example data
flows associated with creation of a system project 302
for an automation system being designed using IDE sys-
tem 202 according to one or more embodiments. A client
device 504 (e.g., a laptop computer, tablet computer,
desktop computer, mobile device, wearable AR/VR ap-
pliance, etc.) executing an IDE client application 514 can
access the IDE system’s project development tools and
leverage these tools to create a comprehensive system
project 302 for an automation system being developed.
Through interaction with the system’s user interface com-
ponent 204, developers can submit design input 512 to
the IDE system 202 in various supported formats, includ-
ing industry-specific control programming (e.g., control

13 14

EP 3 798 759 A1

9

5

10

15

20

25

30

35

40

45

50

55

logic, structured text, sequential function charts, etc.) and
HMI screen configuration input. Based on this design in-
put 512 and information stored in an industry knowledge-
base (predefined code modules 508 and visualizations
510, guardrail templates 506, physics-based rules 516,
etc.), user interface component 204 renders design feed-
back 518 designed to assist the developer in connection
with developing a system project 302 for configuration,
control, and visualization of an industrial automation sys-
tem.
[0037] In addition to control programming and visuali-
zation definitions, some embodiments of IDE system 202
can be configured to receive digital engineering drawings
(e.g., computer-aided design (CAD) files) as design input
512. In such embodiments, project generation compo-
nent 206 can generate portions of the system project 302
- e.g., by automatically generating control and/or visual-
ization code - based on analysis of existing design draw-
ings. Drawings that can be submitted as design input 512
can include, but are not limited to, P&ID drawings, me-
chanical drawings, flow diagrams, or other such docu-
ments. For example, a P&ID drawing can be imported
into the IDE system 202, and project generation compo-
nent 206 can identify elements (e.g., tanks, pumps, etc.)
and relationships therebetween conveyed by the draw-
ings. Project generation component 206 can associate
or map elements identified in the drawings with appro-
priate automation objects 222 corresponding to these el-
ements (e.g., tanks, pumps, etc.) and add these automa-
tion objects 222 to the system project 302. The device-
specific and asset-specific automation objects 222 in-
clude suitable code and visualizations to be associated
with the elements identified in the drawings. In general,
the IDE system 202 can examine one or more different
types of drawings (mechanical, electrical, piping, etc.) to
determine relationships between devices, machines,
and/or assets (including identifying common elements
across different drawings) and intelligently associate
these elements with appropriate automation objects 222,
code modules 508, and/or visualizations 510. The IDE
system 202 can leverage physics-based rules 516 as
well as pre-defined code modules 508 and visualizations
510 as necessary in connection with generating code or
project data for system project 302.
[0038] The IDE system 202 can also determine wheth-
er pre-defined visualization content is available for any
of the objects discovered in the drawings and generate
appropriate HMI screens or AR/VR content for the dis-
covered objects based on these pre-defined visualiza-
tions. To this end, the IDE system 202 can store industry-
specific, asset-specific, and/or application-specific visu-
alizations 510 that can be accessed by the project gen-
eration component 206 as needed. These visualizations
510 can be classified according to industry or industrial
vertical (e.g., automotive, food and drug, oil and gas,
pharmaceutical, etc.), type of industrial asset (e.g., a type
of machine or industrial device), a type of industrial ap-
plication (e.g., batch processing, flow control, web ten-

sion control, sheet metal stamping, water treatment,
etc.), or other such categories. Predefined visualizations
510 can comprise visualizations in a variety of formats,
including but not limited to HMI screens or windows,
mashups that aggregate data from multiple pre-specified
sources, AR overlays, VR objects representing 3D virtu-
alizations of the associated industrial asset, or other such
visualization formats. IDE system 202 can select a suit-
able visualization for a given object based on a prede-
fined association between the object type and the visu-
alization content.
[0039] In another example, markings applied to an en-
gineering drawing by a user can be understood by some
embodiments of the project generation component 206
to convey a specific design intention or parameter. For
example, a marking in red pen can be understood to in-
dicate a safety zone, two circles connected by a dashed
line can be interpreted as a gearing relationship, and a
bold line may indicate a camming relationship. In this
way, a designer can sketch out design goals on an ex-
isting drawing in a manner that can be understood and
leveraged by the IDE system 202 to generate code and
visualizations. In another example, the project genera-
tion component 206 can learn permissives and interlocks
(e.g., valves and their associated states) that serve as
necessary preconditions for starting a machine based on
analysis of the user’s CAD drawings. Project generation
component 206 can generate any suitable code (ladder
logic, function blocks, etc.), device configurations, and
visualizations based on analysis of these drawings and
markings for incorporation into system project 302. In
some embodiments, user interface component 204 can
include design tools for developing engineering drawings
within the IDE platform itself, and the project generation
component 206 can generate this code as a background
process as the user is creating the drawings for a new
project. In some embodiments, project generation com-
ponent 206 can also translate state machine drawings
to a corresponding programming sequence, yielding at
least skeletal code that can be enhanced by the devel-
oper with additional programming details as needed.
[0040] Also, or in addition, some embodiments of IDE
system 202 can support goal-based automated program-
ming. For example, the user interface component 204
can allow the user to specify production goals for an au-
tomation system being designed (e.g., specifying that a
bottling plant being designed must be capable of produc-
ing at least 5000 bottles per second during normal oper-
ation) and any other relevant design constraints applied
to the design project (e.g., budget limitations, available
floor space, available control cabinet space, etc.). Based
on this information, the project generation component
206 will generate portions of the system project 302 to
satisfy the specified design goals and constraints. Por-
tions of the system project 302 that can be generated in
this manner can include, but are not limited to, device
and equipment selections (e.g., definitions of how many
pumps, controllers, stations, conveyors, drives, or other

15 16

EP 3 798 759 A1

10

5

10

15

20

25

30

35

40

45

50

55

assets will be needed to satisfy the specified goal), as-
sociated device configurations (e.g., tuning parameters,
network settings, drive parameters, etc.), control coding,
or HMI screens suitable for visualizing the automation
system being designed.
[0041] Some embodiments of the project generation
component 206 can also generate at least some of the
project code for system project 302 based on knowledge
of parts that have been ordered for the project being de-
veloped. This can involve accessing the customer’s ac-
count information maintained by an equipment vendor to
identify devices that have been purchased for the project.
Based on this information the project generation compo-
nent 206 can add appropriate automation objects 222
and associated code modules 508 corresponding to the
purchased assets, thereby providing a starting point for
project development.
[0042] Some embodiments of project generation com-
ponent 206 can also monitor customer-specific design
approaches for commonly programmed functions (e.g.,
pumping applications, batch processes, palletizing oper-
ations, etc.) and generate recommendations for design
modules (e.g., code modules 508, visualizations 510,
etc.) that the user may wish to incorporate into a current
design project based on an inference of the designer’s
goals and learned approaches to achieving the goal. To
this end, some embodiments of project generation com-
ponent 206 can be configured to monitor design input
512 over time and, based on this monitoring, learn cor-
relations between certain design actions (e.g., addition
of certain code modules or snippets to design projects,
selection of certain visualizations, etc.) and types of in-
dustrial assets, industrial sequences, or industrial proc-
esses being designed. Project generation component
206 can record these learned correlations and generate
recommendations during subsequent project develop-
ment sessions based on these correlations. For example,
if project generation component 206 determines, based
on analysis of design input 512, that a designer is cur-
rently developing a control project involving a type of in-
dustrial equipment that has been programmed and/or vis-
ualized in the past in a repeated, predictable manner, the
project generation component 206 can instruct user in-
terface component 204 to render recommended devel-
opment steps or code modules 508 the designer may
wish to incorporate into the system project 302 based on
how this equipment was configured and/or programmed
in the past.
[0043] In some embodiments, IDE system 202 can al-
so store and implement guardrail templates 506 that de-
fine design guardrails intended to ensure the project’s
compliance with internal or external design standards.
Based on design parameters defined by one or more
selected guardrail templates 506, user interface compo-
nent 204 can provide, as a subset of design feedback
518, dynamic recommendations or other types of feed-
back designed to guide the developer in a manner that
ensures compliance of the system project 302 with inter-

nal or external requirements or standards (e.g., certifica-
tions such as TUV certification, in-house design stand-
ards, industry-specific or vertical-specific design stand-
ards, etc.). This feedback 518 can take the form of text-
based recommendations (e.g., recommendations to re-
write an indicated portion of control code to comply with
a defined programming standard), syntax highlighting,
error highlighting, auto-completion of code snippets, or
other such formats. In this way, IDE system 202 can cus-
tomize design feedback 518 - including programming
recommendations, recommendations of predefined
code modules 508 or visualizations 510, error and syntax
highlighting, etc. - in accordance with the type of industrial
system being developed and any applicable in-house de-
sign standards.
[0044] Guardrail templates 506 can also be designed
to maintain compliance with global best practices appli-
cable to control programming or other aspects of project
development. For example, user interface component
204 may generate and render an alert if a developer’s
control programing is deemed to be too complex as de-
fined by criteria specified by one or more guardrail tem-
plates 506. Since different verticals (e.g., automotive,
pharmaceutical, oil and gas, food and drug, marine, etc.)
must adhere to different standards and certifications, the
IDE system 202 can maintain a library of guardrail tem-
plates 506 for different internal and external standards
and certifications, including customized user-specific
guardrail templates 506. These guardrail templates 506
can be classified according to industrial vertical, type of
industrial application, plant facility (in the case of custom
in-house guardrail templates 506) or other such catego-
ries. During development, project generation component
206 can select and apply a subset of guardrail templates
506 determined to be relevant to the project currently
being developed, based on a determination of such as-
pects as the industrial vertical to which the project relates,
the type of industrial application being programmed (e.g.,
flow control, web tension control, a certain batch process,
etc.), or other such aspects. Project generation compo-
nent 206 can leverage guardrail templates 506 to imple-
ment rules-based programming, whereby programming
feedback (a subset of design feedback 518) such as dy-
namic intelligent autocorrection, type-aheads, or coding
suggestions are rendered based on encoded industry
expertise and best practices (e.g., identifying inefficien-
cies in code being developed and recommending appro-
priate corrections).
[0045] Users can also run their own internal guardrail
templates 506 against code provided by outside vendors
(e.g., OEMs) to ensure that this code complies with in-
house programming standards. In such scenarios, ven-
dor-provided code can be submitted to the IDE system
202, and project generation component 206 can analyze
this code in view of in-house coding standards specified
by one or more custom guardrail templates 506. Based
on results of this analysis, user interface component 204
can indicate portions of the vendor-provided code (e.g.,

17 18

EP 3 798 759 A1

11

5

10

15

20

25

30

35

40

45

50

55

using highlights, overlaid text, etc.) that do not conform
to the programming standards set forth by the guardrail
templates 506, and display suggestions for modifying the
code in order to bring the code into compliance. As an
alternative or in addition to recommending these modifi-
cations, some embodiments of project generation com-
ponent 206 can be configured to automatically modify
the code in accordance with the recommendations to
bring the code into conformance.
[0046] In making coding suggestions as part of design
feedback 518, project generation component 206 can
invoke selected code modules 508 stored in a code mod-
ule database (e.g., on memory 220). These code mod-
ules 508 comprise standardized coding segments for
controlling common industrial tasks or applications (e.g.,
palletizing, flow control, web tension control, pick-and-
place applications, conveyor control, etc.). In some em-
bodiments, code modules 508 can be categorized ac-
cording to one or more of an industrial vertical (e.g., au-
tomotive, food and drug, oil and gas, textiles, marine,
pharmaceutical, etc.), an industrial application, or a type
of machine or device to which the code module 508 is
applicable. In some embodiments, project generation
component 206 can infer a programmer’s current pro-
gramming task or design goal based on programmatic
input being provided by a the programmer (as a subset
of design input 512), and determine, based on this task
or goal, whether one of the pre-defined code modules
508 may be appropriately added to the control program
being developed to achieve the inferred task or goal. For
example, project generation component 206 may infer,
based on analysis of design input 512, that the program-
mer is currently developing control code for transferring
material from a first tank to another tank, and in response,
recommend inclusion of a predefined code module 508
comprising standardized or frequently utilized code for
controlling the valves, pumps, or other assets necessary
to achieve the material transfer.
[0047] Customized guardrail templates 506 can also
be defined to capture nuances of a customer site that
should be taken into consideration in the project design.
For example, a guardrail template 506 could record the
fact that the automation system being designed will be
installed in a region where power outages are common,
and will factor this consideration when generating design
feedback 518; e.g., by recommending implementation of
backup uninterruptable power supplies and suggesting
how these should be incorporated, as well as recom-
mending associated programming or control strategies
that take these outages into account.
[0048] IDE system 202 can also use guardrail tem-
plates 506 to guide user selection of equipment or de-
vices for a given design goal; e.g., based on the industrial
vertical, type of control application (e.g., sheet metal
stamping, die casting, palletization, conveyor control,
web tension control, batch processing, etc.), budgetary
constraints for the project, physical constraints at the in-
stallation site (e.g., available floor, wall or cabinet space;

dimensions of the installation space; etc.), equipment al-
ready existing at the site, etc. Some or all of these pa-
rameters and constraints can be provided as design input
512, and user interface component 204 can render the
equipment recommendations as a subset of design feed-
back 518. In some embodiments, project generation
component 206 can also determine whether some or all
existing equipment can be repurposed for the new control
system being designed. For example, if a new bottling
line is to be added to a production area, there may be an
opportunity to leverage existing equipment since some
bottling lines already exist. The decision as to which de-
vices and equipment can be reused will affect the design
of the new control system. Accordingly, some of the de-
sign input 512 provided to the IDE system 202 can include
specifics of the customer’s existing systems within or
near the installation site. In some embodiments, project
generation component 206 can apply artificial intelli-
gence (AI) or traditional analytic approaches to this in-
formation to determine whether existing equipment spec-
ified in design in put 512 can be repurposed or leveraged.
Based on results of this analysis, project generation com-
ponent 206 can generate, as design feedback 518, a list
of any new equipment that may need to be purchased
based on these decisions.
[0049] In some embodiments, IDE system 202 can of-
fer design recommendations based on an understanding
of the physical environment within which the automation
system being designed will be installed. To this end, in-
formation regarding the physical environment can be
submitted to the IDE system 202 (as part of design input
512) in the form of 2D or 3D images or video of the plant
environment. This environmental information can also be
obtained from an existing digital twin of the plant, or by
analysis of scanned environmental data obtained by a
wearable AR appliance in some embodiments. Project
generation component 206 can analyze this image, vid-
eo, or digital twin data to identify physical elements within
the installation area (e.g., walls, girders, safety fences,
existing machines and devices, etc.) and physical rela-
tionships between these elements. This can include as-
certaining distances between machines, lengths of pip-
ing runs, locations and distances of wiring harnesses or
cable trays, etc. Based on results of this analysis, project
generation component 206 can add context to schemat-
ics generated as part of system project 302, generate
recommendations regarding optimal locations for devic-
es or machines (e.g., recommending a minimum sepa-
ration between power and data cables), or make other
refinements to the system project 302. At least some of
this design data can be generated based on physics-
based rules 516, which can be referenced by project gen-
eration component 206 to determine such physical de-
sign specifications as minimum safe distances from haz-
ardous equipment (which may also factor into determin-
ing suitable locations for installation of safety devices rel-
ative to this equipment, given expected human or vehicle
reaction times defined by the physics-based rules 516),

19 20

EP 3 798 759 A1

12

5

10

15

20

25

30

35

40

45

50

55

material selections capable of withstanding expected
loads, piping configurations and tuning for a specified
flow control application, wiring gauges suitable for an ex-
pected electrical load, minimum distances between sig-
nal wiring and electromagnetic field (EMF) sources to
ensure negligible electrical interference on data signals,
or other such design features that are dependent on
physical rules.
[0050] In an example use case, relative locations of
machines and devices specified by physical environment
information submitted to the IDE system 202 can be used
by the project generation component 206 to generate
design data for an industrial safety system. For example,
project generation component 206 can analyze distance
measurements between safety equipment and hazard-
ous machines and, based on these measurements, de-
termine suitable placements and configurations of safety
devices and associated safety controllers that ensure the
machine will shut down within a sufficient safety reaction
time to prevent injury (e.g., in the event that a person
runs through a light curtain).
[0051] In some embodiments, project generation com-
ponent 206 can also analyze photographic or video data
of an existing machine to determine inline mechanical
properties such as gearing or camming and factor this
information into one or more guardrail templates 506 or
design recommendations.
[0052] As noted above, the system project 302 gener-
ated by IDE system 202 for a given automaton system
being designed can be built upon an object-based archi-
tecture that uses automation objects 222 as building
blocks. FIG. 6 is a diagram illustrating an example system
project 302 that incorporates automation objects 222 into
the project model. In this example, various automation
objects 222 representing analogous industrial devices,
systems, or assets of an automation system (e.g., a proc-
ess, tanks, valves, pumps, etc.) have been incorporated
into system project 302 as elements of a larger project
data model 602. The project data model 602 also defines
hierarchical relationships between these automation ob-
jects 222. According to an example relationship, a proc-
ess automation object representing a batch process may
be defined as a parent object to a number of child objects
representing devices and equipment that carry out the
process, such as tanks, pumps, and valves. Each auto-
mation object 222 has associated therewith object prop-
erties or attributes specific to its corresponding industrial
asset (e.g., those discussed above in connection with
FIG. 4), including executable control programming for
controlling the asset (or for coordinating the actions of
the asset with other industrial assets) and visualizations
that can be used to render relevant information about the
asset during runtime.
[0053] At least some of the attributes of each automa-
tion object 222 are default properties defined by the IDE
system 202 based on encoded industry expertise per-
taining to the asset represented by the objects. Other
properties can be modified or added by the developer as

needed (via design input 512) to customize the object
222 for the particular asset and/or industrial application
for which the system projects 302 is being developed.
This can include, for example, associating customized
control code, HMI screens, AR presentations, or help files
associated with selected automation objects 222. In this
way, automation objects 222 can be created and aug-
mented as needed during design for consumption or ex-
ecution by target control devices during runtime.
[0054] Once development on a system project 302 has
been completed, commissioning tools supported by the
IDE system 202 can simplify the process of commission-
ing the project in the field. When the system project 302
for a given automation system has been completed, the
system project 302 can be deployed to one or more target
control devices for execution. FIG. 7 is a diagram illus-
trating commissioning of a system project 302. Project
deployment component 208 can compile or otherwise
translate a completed system project 302 into one or
more executable files or configuration files that can be
stored and executed on respective target industrial de-
vices of the automation system (e.g., industrial control-
lers 118, HMI terminals 114 or other types of visualization
systems, motor drives 710, telemetry devices, vision sys-
tems, safety relays, etc.).
[0055] Conventional control program development
platforms require the developer to specify the type of in-
dustrial controller (e.g., the controller’s model number)
on which the control program will run prior to develop-
ment, thereby binding the control programming to a spec-
ified controller. Controller-specific guardrails are then en-
forced during program development which limit how the
program is developed given the capabilities of the select-
ed controller. By contrast, some embodiments of the IDE
system 202 can abstract project development from the
specific controller type, allowing the designer to develop
the system project 302 as a logical representation of the
automation system in a manner that is agnostic to where
and how the various control aspects of system project
302 will run. Once project development is complete and
system project 302 is ready for commissioning, the user
can specify (via user interface component 204) target
devices on which respective aspects of the system
project 302 are to be executed. In response, an allocation
engine of the project deployment component 208 will
translate aspects of the system project 302 to respective
executable files formatted for storage and execution on
their respective target devices.
[0056] For example, system project 302 may include -
among other project aspects - control code, visualization
screen definitions, and motor drive parameter definitions.
Upon completion of project development, a user can
identify which target devices- including an industrial con-
troller 118, an HMI terminal 114, and a motor drive 710
- are to execute or receive these respective aspects of
the system project 302. Project deployment component
208 can then translate the controller code defined by the
system project 302 to a control program file 702 formatted

21 22

EP 3 798 759 A1

13

5

10

15

20

25

30

35

40

45

50

55

for execution on the specified industrial controller 118
and send this control program file 702 to the controller
118 (e.g., via plant network 116). Similarly, project de-
ployment component 208 can translate the visualization
definitions and motor drive parameter definitions to a vis-
ualization application 704 and a device configuration file
708, respectively, and deploy these files to their respec-
tive target devices for execution and/or device configu-
ration.
[0057] In general, project deployment component 208
performs any conversions necessary to allow aspects of
system project 302 to execute on the specified devices.
Any inherent relationships, handshakes, or data sharing
defined in the system project 302 are maintained regard-
less of how the various elements of the system project
302 are distributed. In this way, embodiments of the IDE
system 202 can decouple the project from how and where
the project is to be run. This also allows the same system
project 302 to be commissioned at different plant facilities
having different sets of control equipment. That is, some
embodiments of the IDE system 202 can allocate project
code to different target devices as a function of the par-
ticular devices found on-site. IDE system 202 can also
allow some portions of the project file to be commissioned
as an emulator or on a cloud-based controller.
[0058] As an alternative to having the user specify the
target control devices to which the system project 302 is
to be deployed, some embodiments of IDE system 202
can actively connect to the plant network 116 and dis-
cover available devices, ascertain the control hardware
architecture present on the plant floor, infer appropriate
target devices for respective executable aspects of sys-
tem project 302, and deploy the system project 302 to
these selected target devices. As part of this commis-
sioning process, IDE system 202 can also connect to
remote knowledgebases (e.g., web-based or cloud-
based knowledgebases) to determine which discovered
devices are out of date or require firmware upgrade to
properly execute the system project 302. In this way, the
IDE system 202 can serve as a link between device ven-
dors and a customer’s plant ecosystem via a trusted con-
nection in the cloud.
[0059] Copies of system project 302 can be propagat-
ed to multiple plant facilities having varying equipment
configurations using smart propagation, whereby the
project deployment component 208 intelligently associ-
ates project components with the correct industrial asset
or control device even if the equipment on-site does not
perfectly match the defined target (e.g., if different pump
types are found at different sites). For target devices that
do not perfectly match the expected asset, project de-
ployment component 208 can calculate the estimated
impact of running the system project 302 on non-optimal
target equipment and generate warnings or recommen-
dations for mitigating expected deviations from optimal
project execution.
[0060] As noted above, some embodiments of IDE sys-
tem 202 can be embodied on a cloud platform. FIG. 8 is

a diagram illustrating an example architecture in which
cloud-based IDE services 802 are used to develop and
deploy industrial applications to a plant environment. In
this example, the industrial environment includes one or
more industrial controllers 118, HMI terminals 114, motor
drives 710, servers 801 running higher level applications
(e.g., ERP, MES, etc.), and other such industrial assets.
These industrial assets are connected to a plant network
116 (e.g., a common industrial protocol network, an Eth-
ernet/IP network, etc.) that facilitates data exchange be-
tween industrial devices on the plant floor. Plant network
116 may be a wired or a wireless network. In the illus-
trated example, the high-level servers 810 reside on a
separate office network 108 that is connected to the plant
network 116 (e.g., through a router 808 or other network
infrastructure device).
[0061] In this example, IDE system 202 resides on a
cloud platform 806 and executes as a set of cloud-based
IDE service 802 that are accessible to authorized remote
client devices 504. Cloud platform 806 can be any infra-
structure that allows shared computing services (such
as IDE services 802) to be accessed and utilized by
cloud-capable devices. Cloud platform 806 can be a pub-
lic cloud accessible via the Internet by devices 504 having
Internet connectivity and appropriate authorizations to
utilize the IDE services 802. In some scenarios, cloud
platform 806 can be provided by a cloud provider as a
platform-as-a-service (PaaS), and the IDE services 802
can reside and execute on the cloud platform 806 as a
cloud-based service. In some such configurations, ac-
cess to the cloud platform 806 and associated IDE serv-
ices 802 can be provided to customers as a subscription
service by an owner of the IDE services 802. Alternative-
ly, cloud platform 806 can be a private cloud operated
internally by the industrial enterprise (the owner of the
plant facility). An example private cloud platform can
comprise a set of servers hosting the IDE services 802
and residing on a corporate network protected by a fire-
wall.
[0062] Cloud-based implementations of IDE system
202 can facilitate collaborative development by multiple
remote developers who are authorized to access the IDE
services 802. When a system project 302 is ready for
deployment, the project 302 can be commissioned to the
plant facility via a secure connection between the office
network 108 or the plant network 116 and the cloud plat-
form 806. As discussed above, the industrial IDE services
802 can translate system project 302 to one or more ap-
propriate executable files - control program files 702, vis-
ualization applications 704, device configuration files
708, system configuration files 812 - and deploy these
files to the appropriate devices in the plant facility to fa-
cilitate implementation of the automation project.
[0063] FIG. 9 is an example development interface 902
that can be rendered by one or more embodiments of
the industrial IDE system’s user interface component
204. Development interface 902 is organized into panels
and workspaces in a manner to be described in more

23 24

EP 3 798 759 A1

14

5

10

15

20

25

30

35

40

45

50

55

detail herein, and supports automated and manual cura-
tion features that declutter the development space and
bring a subset of project editing functions that are relevant
to a current development task into focus. These features
can improve the user’s development workflow experi-
ence by filtering out selectable options that are not rele-
vant to a current development task, allowing relevant ed-
iting tools and information to be located more easily.
[0064] The basic structure of development interface
902 comprises a canvas area 930 in which resides a
workspace canvas 940 (having an associated tab 932),
a global panel control bar 920 on the right-side edge of
the interface 902 (to the right of the canvas area 930), a
menu bar 904 along the top edge of the interface 902,
and a tool bar 906 below the menu bar 904. Other panels
can be selectively added or removed from the interface’s
workspace using visibility control icons on the global pan-
el control bar 920 or via selectable options under the
View option of the menu bar 904. These panels can be
added to or removed from three main panel area - a left
global panel area 922, a bottom global panel area 924,
and a right global panel area 928. In the example scenario
depicted in FIG. 9, a Properties panel 936 is visible in
the right global panel area 928, and an Explorer panel
910 and a Toolbox panel 912 have been rendered in a
vertically stacked arrangement in the left global panel
area 922. Development interface 902 can also include a
search bar 934 for searching the open project using text
string searches. The search bar 934 can also be used
for inserting text or initiating a shortcut in some embod-
iments.
[0065] FIG. 10a is a close-up view of the global panel
control bar 920 illustrating an example organization of
panel visibility icons. Visibility icons are organized verti-
cally into three groups along the global panel control bar
920, the respective groups residing in a global left panel
control area 914, a global right panel control area 916,
and a global bottom panel control area 918 of the control
bar 920. The three panel control areas are labeled with
respective header icons 1002, 1004, and 1006 illustrating
which global panel area (left, right, or bottom) are con-
trolled by the associated icons. In the illustrated example,
the left panel control area 914 comprises an Explorer
visibility icon 1008 that, in response to selection, toggles
the visibility of the Explorer panel 910 in the left global
panel area 922. The right panel control area 916 com-
prises three visibility icons 1010a-1010c, which control
visibility of a Properties panel (visibility icon 1010a), an
Online panel (visibility icon 1010b), and a Cross Refer-
ence panel (visibility icon 1010c), respectively, in the right
global panel area 928. The bottom panel control area
918 comprises two visibility icons 1012a and 1012b,
which control visibility of an Errors panel (visibility icon
1012a) and an Output panel (visibility icon 1012b), re-
spectively, in the bottom global panel area 924.
[0066] The visibility icons on global panel control bar
920 can act as toggle buttons that toggle the visibility of
their corresponding panels, such that selecting the icon

a first time causes the corresponding panel to be ren-
dered in its designated area, and selecting the icon a
second time removes its corresponding panel from its
designated area. The visibility icons can be color animat-
ed such that the color of the icon indicates the visible or
hidden state of the corresponding panel (e.g., black for
hidden and blue for visible).
[0067] FIG. 10b is an example View menu 1014 that
can be rendered as a drop-down menu in response to
selection of the View option in the menu bar 904. View
menu 1014 renders selectable visibility controls corre-
sponding to, and having the same functionality as, the
visibility icons rendered on the global panel control bar
920, allowing the user to selectively render and hide pan-
els using either this menu 1014 or the global panel control
bar 920. Similar to the global panel control bar 920, the
selectable visibility controls are organized according to
Left Panels, Right Panels, and Bottom Panels. Unlike the
global panel control bar 920, the selectable controls of
the View menu 1014 are rendered as selectable text rath-
er than icons, with checkmarks indicating panels that are
currently visible.
[0068] In some embodiments, any panels associated
with a global panel area (left, right, or bottom) that have
been set to be pinned (to be discussed below) can be
rendered visible or invisible with a single selection by
selecting either the header icon (icon 1002, 1004, or
1006) corresponding to that area in the global panel con-
trol bar 920 or the header text for that set of panels (e.g.,
the Right Panels header 1016) in the View menu 1014.
[0069] In some embodiments, the panels whose visi-
bility is controlled from the global panel control bar 920
can be global panels that are relevant to all development
tasks or contexts supported by the industrial IDE system
202 (content panels, which are relevant to specific de-
velopment tasks or contexts, will be described below). In
the example depicted in FIG. 10a and 10b, the global
panels include an Explorer panel through which a user
can browse and select aspects or elements of the auto-
mation project, a Properties panel that renders property
information for a selected element within canvas area
930, an Online panel that renders communication statis-
tics for the industrial IDE system, a Cross Reference pan-
el that renders cross reference information for a selected
element within canvas area 930 (e.g., by listing all usages
or instances of the selected element within the industrial
automation system project), an Output panel that renders
output states, and an Errors panel that lists active and/or
historical development or runtime errors. However, any
type of global panel can be supported by the development
interface 902 without departing from the scope of one or
more embodiments. For example, a Toolbox panel that
renders a set of global editing tools - or links to a specific
subset of editing tools of selected categories - may also
be supported as a global panel.
[0070] In some embodiments, a panel’s transition be-
tween visible and invisible states can be animated, such
that invoking a panel causes the panel to slide from a

25 26

EP 3 798 759 A1

15

5

10

15

20

25

30

35

40

45

50

55

designated edge of the development interface 902 (left,
right or bottom), toward the middle of the interface 902
until the panel is fully extended and visible. Similarly, in-
structing a visible panel to switch to the hidden state caus-
es the panel to retract toward the edge from which the
panel initially extended.
[0071] Panels supported by the IDE system 202 can
be generally classified into two types - global panels and
content panels. Global panels are globally applicable to
all development contexts, and can include, but are not
limited to, the global panels discussed above. The visi-
bility icons corresponding to global panels are always
fixed on the panel control bar 920.
[0072] In contrast to global panels, content panels are
not globally applicable, but rather are relevant or appli-
cable only to a specific development task or context (e.g.,
ladder logic control programming, function block diagram
control programming, sequential function chart control
programming, structured text control programming, HMI
screen development, device configuration, controller tag
definition, etc.). Content panels can include, but are not
limited to, a Layers panel that facilitates browsing through
layers of graphical content (e.g., engineering drawings,
HMI screens, etc.), an Alarms panel that renders config-
urable alarm definition data for selected alarm tags, a
Logic Editor panel that renders selectable program ele-
ments that can be added to a ladder logic program (e.g.,
output coils, contacts, function blocks, etc.), an HMI
screen development panel that renders selectable
graphical elements that can be added to an HMI screen,
or other such content panels. Visibility icons for content
panels are located on the canvas toolbar 938 (see, e.g.,
FIG. 9) along the top edge of the canvas 940, and the
set of content panel visibility icons available on the toolbar
938 is a function of the type of content (e.g., control pro-
gramming, HMI development screens, etc.) rendered in
the canvas 940. Thus, content panels will only be avail-
able for selection if the user is currently focused on the
development task or context to which the content panel
is relevant (based on which canvas 940 currently has
focus within the development interface 902, and the type
of project content rendered by the canvas 940). Example
types of project content that can be associated with a
dedicated set of content panels (and associated visibility
icons) can include, but are not limited to, a ladder logic
routine, a function block diagram routine, a structured
text routine, a sequential function chart routine, a tag da-
tabase, an HMI screen or application, a faceplate, various
types of device views (e.g., controllers, drives, I/O mod-
ules, etc.), an engineering drawing, or other such content
types.
[0073] In general, any of the panels associated with
the left global panel area 922, right global panel area
928, or bottom global panel area 924 can be selectively
set to be a pinned panel or an overlay panel. FIG. 11a is
a view of the top right corner of development interface
902 depicting a Properties panel 936 pinned in the right
global panel area 928. Visibility icon 1010a - correspond-

ing to the Properties panel 936 - is highlighted to indicate
that the Properties panel 936 is visible. Any of the panels
can be selectively set to be pinned or unpinned (i.e. over-
laid) by selecting a suitable control; e.g., a control select-
ed from a drop-down panel setting menu that can be in-
voked by selecting the panel menu icon 1102 in the top
right corner of the panel. In some embodiments, a panel
can also be selectively rendered as a pinned panel or as
an overlay panel by selecting an appropriate control from
a right-click menu associated with the corresponding vis-
ibility icon in the global panel control bar 920. Setting a
panel to be pinned simulates pinning the panel to the
background while visible, while setting a panel to be an
overlay (unpinned) causes the panel to be rendered as
an overlay over any pinned panels, or other interface
content (e.g., canvas content), that may already be in-
voked in that part of the display.
[0074] When a pinned panel is invoked, user interface
component 204 reduces the width of the canvas area
930 (or reduces the canvas area’s height in the case of
pinned panels in the bottom global panel area 924) to
accommodate the pinned panel. This also causes one
or more canvases 940 within the canvas area 930 to be
similarly reduced in size. This can be seen in FIG. 11a,
where the right edge 1112 of the canvas area 930 has
shifted toward the middle of the interface 902 to accom-
modate the width of the pinned panel 936, such that the
right edge 1112 of the canvas area 930 is abutted against
the left edge of the panel 936. When an overlay panel is
invoked, the size of the canvas area 930 is not adjusted,
and instead the panel is rendered as an overlay over a
portion of the canvas, obscuring a portion of the canvas
content behind the panel.
[0075] FIG. 11b is a view of the top right corner of the
development interface 902 depicting selection of an On-
line panel 1104 as an overlaid panel in the right global
panel area 928. As shown in this figure, selection of the
Online panel visibility icon 1010b while the pinned Prop-
erties panel 936 is visible causes the Online panel 1104
- which is currently set to be an overlay panel - to be
displayed over the Properties panel. A panel set to be an
overlay can be rendered with a shadow effect 1106 to
convey that the panel is an overlay rather than a pinned
panel (which is not rendered with a shadow effect). The
width of the overlaid panel (e.g., Online panel 1104 in
FIG. 11b) can be resized by clicking on or otherwise se-
lecting the outer edge of the panel and sliding the edge
inward or outward. Reducing the width of the overlay pan-
el causes portions of any pinned panels underneath the
overlay panel to be revealed. Although pinned and over-
lay panel effects are illustrated in FIGs. 11a and 11b with
reference to the right global panel area 928, these effects
are also applicable to the left global panel area 922 and
bottom global panel area 924.
[0076] FIG. 11c is a view of the top right corner of de-
velopment interface 902 depicting two pinned panels -
Properties panel 936 and Cross Reference Panel 1108
- that are visible simultaneously. In this example, the

27 28

EP 3 798 759 A1

16

5

10

15

20

25

30

35

40

45

50

55

Properties panel visibility icon 1010a and the Cross Ref-
erence panel visibility icon 1010b have been toggled on.
Since both of these panels are currently set to be pinned
panels, both panels 936 and 1108 are visible, stacked
vertically in the right global panel area. In an example
embodiment, if only one pinned panel is selected to be
visible in a given area, that panel can be sized vertically
to encompass the entire height of the panel area (e.g.,
right global panel area 928). If a second pinned panel is
invoked, the two panels will be sized vertically such that
both panels will fit within the panel area in a vertically
stacked arrangement. The horizontal sizes of the stacked
pinned panels can be changed by clicking and dragging
the horizontal interface 1110 between the two panels up-
ward or downward (where an upward drag decreases
the size of the upper panel and increases the size of the
lower panel, while a downward drag performs the reverse
resizing).
[0077] In some scenarios, an overlaid panel may be
sized or oriented to allow a portion of a pinned panel
behind the overlaid panel to remain visible. FIG. 11d is
a view of the top right corner of development interface
902 in which a Toolbox panel 1114 is rendered as an
overlay above Properties panel 936. However, the top of
Toolbox panel 1114 is below the top of Properties panel
936, allowing a portion of the Properties panel 936 to
remain visible. FIG. 11e depicts a scenario in which the
Toolbox panel 1114 of FIG. 11d is switched to be a pinned
panel, thereby causing panels 936 and 1114 to be
stacked vertically.
[0078] As noted above, a panel can be set to be pinned
by selecting a control associated with the panel. In some
embodiments, a panel can also be pinned to a global
panel area using a drag-and-drop action. FIG. 12 is a
view of the top right corner of development interface 902
depicting a panel drop area 1202 for the right global panel
area 928 according to such embodiments. According to
an example embodiment, if no panels associated with
the right global panel area 928 are set to be pinned (that
is, the three available panels for the right global panel
area 928 are currently set to be overlays, such that in-
voking the panel causes the panel to be rendered in the
right global panel area 928 as an overlay), selecting the
header icon 1004 for the right global panel area 928 caus-
es an empty panel drop area 1202 to be rendered in the
right global panel area 928. Any of the three panels avail-
able for the right global panel area 928 can be set to be
pinned panels by dragging the corresponding visibility
icon 1010 for the panel to the panel drop area 1202, as
indicated by the arrow in FIG. 12. Pinned panels can also
be unpinned (that is, set to be overlay panels) by dragging
the panels from the drop area 1202 back to the global
panel control bar 920. This drag-and-drop approach can
be used to pin panels to any of the three global panel
areas (left, right, and bottom).
[0079] In some embodiments, pinned visible panels
can also be selectively collapsed or expanded. FIG. 13a
depicts two horizontally stacked pinned panels (a Prop-

erties panel 936 and an Allocation panel 1302) in a default
non-collapsed state. In this state, the content windows
of both panels are visible below the respective header
bars 1304 and 1306. A panel can be collapsed by select-
ing the header bar 1304 or 1306 corresponding to that
panel. FIG. 13b depicts the Allocation panel 1302 in the
collapsed state as a result of clicking on or otherwise
selecting the header bar 1306 for that panel. When the
lower panel - the Allocation panel 1302 in this case - is
collapsed, the content window for that panel is rendered
invisible and the header bar 1306 moves to the bottom
of the panel area, while the content window for the upper
panel (the Properties panel 936 in this case) is length-
ened to fill the remaining panel area space, exposing
more of that window’s content. FIG. 13c depicts the Prop-
erties panel 936 collapsed as a result of clicking on or
otherwise selecting the header bar 1304 for that panel.
When the upper panel is collapsed, the content window
for that panel is rendered invisible, and the header bar
1306 for the lower panel moves upward to a location just
below the header bar 1304 of the upper panel. The con-
tent window of the lower panel fills the remaining panel
area space, revealing more of the content of that panel.
[0080] Returning briefly to FIG. 9, the canvas area 930
is the primary work area for the IDE system’s develop-
ment interface 902, and is bounded by the left global
panel area 922, the right global panel area 928, the bot-
tom global panel area 924, and the menu bar 904. In
general, the canvas area 930 contains the one or more
workspace canvases 940 on which the user interface
component 204 renders components of the system
project, such as ladder logic or other types of control
code, program routines, controller tag definitions, devel-
opment views of visualization screens, device configu-
rations, engineering drawings, or other project compo-
nents. The canvas area 930 is also the space with which
the user interacts with these components - leveraging
editing tools and information provided by the global and
content panels - to perform such development functions
as developing controller code (e.g., ladder logic, function
block diagrams, structured text, etc.), developing visual-
izations for the automation system (e.g., HMI screens,
AR/VR presentations, mashups, etc.), configuring device
parameter settings, defining controller tags, developing
engineering drawings, or other such project development
functions.
[0081] FIG. 14 is a closer view of an example canvas
940 within the canvas area 930. Each canvas 940 within
the canvas area 930 can be associated with at tab 932,
selection of which brings the corresponding canvas 940
into focus. Canvas 940 can also have an associated tool-
bar 938 comprising selectable icons and/or fields that
allows the user to set properties for the associated can-
vas 940, such as zoom levels, view formats, grid line
visibility, or other such properties. In the example depict-
ed in FIG. 14, the canvas’s toolbar 938 is located below
tab 932.
[0082] In some embodiments, the canvas’s toolbar 938

29 30

EP 3 798 759 A1

17

5

10

15

20

25

30

35

40

45

50

55

can also contain visibility icons for any content panels
associated with the type of content (e.g., ladder logic,
function block diagram, structured text, HMI screens in
development, device parameters, engineering drawings,
etc.) currently being rendered in the canvas 940. Similar
to the global panel visibility icons located on the global
panel control bar 920, selection of a content panel visi-
bility icon from a canvas’s toolbar 938 toggles the visibility
of the panel associated with the selected icon. In some
embodiments, when a content panel is made visible, the
content panel can be rendered at a predefined designat-
ed location either in one of the global panel areas or ad-
jacent to one of the global panel areas. Content panels
may also be moved to a selected location within the in-
terface workspace in some embodiments. Similar to glo-
bal panels, content panels can be selectively set to be
either pinned or overlaid.
[0083] Although the illustrated example depicts panel
visibility icons as being rendered in the canvas’s toolbar
938, panel visibility icons can also be rendered elsewhere
on the development interface 902 in some embodiments;
e.g., on the main tool bar 906 below the menu bar 904.
In such embodiments, the list of panel visibility icons ren-
dered in this space at a given time will be a function of
the type of project content that currently has focus (e.g.,
the content of the particular canvas 940 that currently
has focus). In other embodiments, user interface com-
ponent 204 may add available content panel visibility
icons to the global panel control bar 920 in their own
designated grouping, based on the type of project content
or development task currently being performed.
[0084] Canvas area 930 can comprise one or more
tabbed canvases 940, with each canvas 940 associated
with a tab 932. User interface component 204 allows the
user to establish as many tabbed canvases 940 within
the canvas area 930 as desired, with each tab 932 ren-
dering a different aspect of the automation system
project. Multiple tabbed canvases 940 can be stacked in
the canvas area 930 either horizontally or vertically. FIG.
15 is a view of development interface 902 in which two
canvases 940a and 940b have been stacked horizontal-
ly. Stacking tabs in this manner - either horizontally or
vertically - allows content of both canvases 940a and
940b to be rendered simultaneously.
[0085] Users may also select to render multiple can-
vases 940 as overlays on top of one another. FIGs. 16a
and 16b are views of two overlaid canvases 940a and
940b. In this example scenario, the first canvas 940a is
rendering a ladder logic routine being developed for an
industrial controller, and the second canvas 940b is ren-
dering a tag database for the controller. FIG. 16a depicts
a scenario in which tab 932a is selected, causing the
corresponding ladder logic canvas 940a to be rendered
in the canvas area 930. FIG. 16b depicts a scenario in
which tab 932b is selected, causing the corresponding
tag database canvas 940b to be rendered in the canvas
area 930.
[0086] In the aggregate, the basic layout of the devel-

opment interface 902 together with the panel control and
tab manipulation functionalities described above can of-
fer the user a fluid development workspace that affords
a great deal of control over the balance between usable
workspace and editing function availability. Moreover,
since the user interface component 204 dynamically fil-
ters the available editing tools according to the user’s
current development task or focus - by making only a
subset of content panels that are relevant to the current
task available for selection - the development interface
902 substantially declutters the development workspace
by removing panels and editing functions that are not
relevant the task at hand.
[0087] FIGs. 17a-17e are views of various example
layouts of the IDE system’s development interface 902,
illustrating increasing degrees of IDE content density that
can be supported by the interface 902. FIG. 17a is a view
of interface 902 in which a single canvas 940a is open
and no left, right, or bottom panels are invoked. This sub-
stantially maximizes the size of the canvas 940 since no
development workspace is being consumed by global or
content panels, thereby displaying a substantially maxi-
mized amount of canvas content (e.g., control program-
ming, tag database information, etc.). The panel control
bar 920 remains pinned to the right-side edge of the de-
velopment interface 902 to allow the user to invoke pan-
els as needed. As noted above, in addition to the global
panel visibility icons, the panel control bar 920 will render
a relevant subset of visibility icons corresponding to con-
tent panels that are relevant to the task being performed
in the active canvas 940a (e.g., ladder logic program-
ming, FBD programming, structured text programming,
HMI screen development, device configuration, network
configuration, etc.).
[0088] FIG. 17b is a view of interface 902 in which an
Explorer panel 910 has been rendered visible in the left
global panel area 922 and a Properties panel 936 has
been rendered in the right global panel area 928. These
panels can be rendered visible using any of the tech-
niques described above (e.g., selection from the panel
control bar 920 or from the View menu option). Both pan-
els 910 and 936 are set to be pinned, and so the canvas
940a has been reduced in width to accommodate the
panels 910 and 922 so that none of the canvas content
940a is obscured by the panels.
[0089] FIG. 17c is a view of development interface 902
in which a Layers panel 1702 (a content panel specific
to the particular task being performed in the canvas 940a)
has been added to the previous view. The Layers panel
1702 has been added as an overlay panel to the left of
the Properties panel 936, and so will obscure a portion
of the canvas content corresponding to that space. FIG.
17d adds further content to the previous view by adding
a second canvas 940b, which is stacked horizontally with
the original canvas 940a. The user can select which can-
vas 940 has the current focus by selecting the tab 932a
or 932b corresponding to the desired canvas 940. This
configuration allows the user to view content of both can-

31 32

EP 3 798 759 A1

18

5

10

15

20

25

30

35

40

45

50

55

vases 940 simultaneously (e.g., a control program and
a tag database, a control program and a device view,
etc.) while also affording the user access to the editing
tools, information, and navigation structures associated
with the Explorer panel 910, Properties panel 936, and
Layers panel 1702.
[0090] FIG. 17e is a view of development interface in
which a third canvas 940c is added to the previous view,
stacked vertically with the two previous canvases 940a
and 940b. As illustrated in this figure, canvases 940 can
be selectively stacked either horizontally or vertically, or
both horizontally and vertically, within the canvas area
930.
[0091] As illustrated by the examples depicted in FIGs
17a-17e, the development interface’s layout and custom-
ization features grant the user considerable flexibility with
regard to customizing or curating canvas layouts and be-
haviors, as well as selective rendering of project data and
editing tools. Moreover, editing tools and views available
to the user at a given time are intelligently curated by the
user interface component 204 as a function of the user’s
current development task or context, which may be de-
termined based on the identity of the canvas 940 that
currently has focus and the content of that canvas 940.
For example, if the user selects a canvas 940 in which a
structured text program is being developed, only a subset
of the interface’s total library of content panels that are
relevant to structured text program development will be
made available to the user (e.g., by adding visibility icons
corresponding to those panels to the panel control bar
920).
[0092] Some of the global and content panels support-
ed by some embodiments of the development interface
will now be discussed. FIG. 18 is a view of the Explorer
panel 910, which resides in the left global panel 922 area
when invoked. Explorer panel 910 serves as a means
for navigating and viewing content of a system project,
and supports numerous ways for performing this naviga-
tion. The Explorer panel 910 itself supports a number of
different viewing categories, which are represented by
selectable explorer icons 1806 rendered on an explorer
view control bar 908 pinned to the left-side edge of the
Explorer panel 910. Selection of an explorer icon 1806
determines one or both of the type of project content to
be browsed via the Explorer panel 910 or a format in
which the browsable project content is rendered on the
Explorer panel 910.
[0093] Explorer panel 910 also comprises a panel
header 1802, the text of which identifies the set of ex-
plorer tools that are currently visible (e.g., "System" in
FIG. 18). For explorer views that offer a choice of alter-
native presentation formats of the content represented
by the explorer icon 1806, horizontally stacked tabs
1804a and 1804b are located below the panel header
1802 for selecting from among the available views. Below
the tabs 1802a and 1804b (or below the header 1802 if
the current Explorer tool set has only one view) is the
Explorer panel content area 1808 in which the currently

selected explorer tools are rendered. As will be discussed
and illustrated below, the content rendered in the content
area 1808 is a function of the explorer icon 1806 currently
selected as well as the tab 1804 that currently has focus.
For example, the selected explorer icon 1806 can deter-
mine the browsable project content to be rendered in the
Explorer panel 910, and the selected tab 1804 deter-
mines a presentation format or organization of this brows-
able project content. For some views supported by Ex-
plorer panel 910, selection of an explorer icon 1806 may
set a category of content to be rendered in the content
area 1808, while selection of a tab can set the particular
sub-category of rendered content within the main cate-
gory.
[0094] FIGs. 19a-19b are view of the Explorer panel
910 in isolation, with the System view currently selected.
The Explorer panel’s System view can be invoked by
selecting the System icon 1904 in the explorer view con-
trol bar 908. The System view offers two tabbed views -
Logical (tab 1804a) and Execution (tab 1804b). FIG. 19a
depicts the Logical System view rendered in response
to selection of the Logical tab 1804a. The Logical System
view renders a Logical System navigation tree 1902 in
the content area 1808 comprising selectable nodes or-
ganized hierarchically. Selection of one of the nodes of
the navigation tree 1902 associated with viewable project
content causes content corresponding to the selected
node to be rendered in the canvas 940 that currently has
focus, or causes an appropriate panel to be rendered on
the development interface 902 for display of the content
(depending on the node selected and the corresponding
content).
[0095] Project aspects that can be selected via the
Logical System navigation tree 1902 can include, but are
not limited to, control programs or routines (e.g., the
RLL_01 and ST_01 nodes, which are listed in FIG. 19a
under the Prog1 and Prog2 parent nodes, respectively,
in FIG. 19), tags and/or parameters associated with a
program (e.g., Tags/Params nodes in FIG. 19a, which
are also listed under the parent nodes of their corre-
sponding control programs), visualizations, alarm con-
figurations, device configurations or parameter settings,
trends, security settings, test results, or other such
project aspects. In general, the nodes rendered in the
Logical System navigation tree 1902 reflect elements that
exist for the present automation system project.
[0096] In general, the Logical System view organizes
system elements according to processes, production ar-
eas, or plant facilities within an industrial enterprise. FIG.
20 is an example Explorer panel 910 depicting a Logical
System navigation tree 1902 for an example automation
system project. As shown in this example, the Logical
System navigation tree 1902 can organize aspects of the
project hierarchically. The user can define parent nodes
2002 representing different processes, production areas,
or plant facilities within the industrial enterprise (e.g., Ex-
traction, Fermentation, Distillation, etc.). Sub-nodes
2004 can also be defined as child nodes of the parent

33 34

EP 3 798 759 A1

19

5

10

15

20

25

30

35

40

45

50

55

nodes 2002 if the process, production area, or plant fa-
cility is to be further broken down into sections (e.g.,
LIC551, P561, PIC535, etc.).
[0097] Below one or more of these user-defined nodes
are selectable nodes representing aspects of the parent
node that can be viewed and configured by the user.
These can include logic nodes 2006 representing control
programming associated with the parent node, visuali-
zation nodes 2008 representing HMI applications or other
types of visualization applications associated with the
parent node, tags and parameter nodes 2010 represent-
ing tags and device parameters defined or configured for
the parent node, device nodes (not shown in FIG. 20)
representing devices associated with the parent node
(e.g., industrial controllers, motor drives, etc.) or other
such system project components. In general, the path
through tree 1902 to a node represents a logical path to
the corresponding project aspect, defined in terms of the
user’s plant layout or process layout.
[0098] FIG. 19b is a view of the Explorer panel 910, in
which the Execution System view rendered in response
to selection of the Execution tab 1804b. This view renders
similar content to that of the Logical System view de-
scribed above in connection with FIGs. 19a and 20, but
organized in a hierarchical Execution System navigation
tree 1906 according to the execution devices (e.g., in-
dustrial controllers) on which the various aspects of the
automation system reside and execute. This differs from
the plant-based organization offered by Logical system
navigation tree 1902. The path through tree 1906 to a
node represents an execution path to the corresponding
project aspect.
[0099] In some embodiments, the manner in which a
user interacts with a node of the System navigation tree
will determine how the content associated with the se-
lected node is presented. FIG. 21a illustrates an example
response of the user interface component 204 when a
user selects, but does not launch, a ladder logic node
2102 representing a ladder logic program of the system
project (RLL_01). The node 2102 can be selected, for
example, by performing a single mouse click on the node
2102 such that the node is highlighted. When the node
2102 is selected in this manner, information about the
selected ladder logic program will be rendered in the
Properties panel 936 (if the Properties panel 936 is cur-
rently visible).
[0100] FIG. 21b illustrates an example response of the
user interface component 204 when a user launches the
ladder logic node 2102; e.g., by double-clicking on the
node 2102. When a node in the System navigation tree
1902 or 1906 is double-clicked or otherwise instructed
to launch, content or workspace associated with the node
2102 is rendered on a tabbed canvas 940. Double-click-
ing on the node 2102 can cause a new canvas 940 to be
opened in the canvas area 930, or may cause a canvas
940 that currently has focus to render the content asso-
ciated with the node 2102.
[0101] FIG. 21c illustrates an example response of the

user interface component 204 when a user right-clicks
on the node 2102. Right-clicking on a node of the System
navigation tree 1902 can cause a context menu 2104 to
be rendered near the node 2102. Context menu 2104
renders a list of selectable options that are specific to the
type of node selected. For example, if the selected node
represents an industrial controller, context menu 2104
may list options to add an I/O module to the controller,
to add a device to the controller (e.g., a drive), or options
for other controller-specific configuration actions. The
context menu 2104 may also include options for config-
uring the System navigation tree 1902 itself, such as cop-
ying, pasting, and deleting nodes.
[0102] FIGs. 22a and 22b are views of the Explorer
panel 910 with the Application view currently selected.
The Application view is invoked by selecting the Appli-
cation icon 2202 in the explorer view control bar 908. The
Application view lists applications (e.g., controller pro-
grams, HMI applications) that make up the automation
system project in a browsable format. In this example,
the Application view allows users to view controller ap-
plication information by selecting the Controller tab
1804a, and to view HMI application information by se-
lecting an HMI tab 1804b.
[0103] Selecting the Controller tab 1804a renders a
Controller navigation tree 2204 in the Explorer panel con-
tent area 1808. The Controller navigation tree 2204 com-
prises nodes representing controller tags, controller pa-
rameters, control programming (e.g., ladder logic, struc-
tured text, function block diagram, etc.), handler routines
(e.g., fault handlers, power-up handlers, etc.), and other
such aspects of industrial controllers that make up the
automation system project. These nodes are organized
in the Controller navigation tree 2204 according to the
controller with which the nodes are associated. Selection
of a controller application node can render property in-
formation for the selected controller application in the
Properties panel 936 (e.g. via single-click interaction) or
can render the code for the selected application in a can-
vas 940 (e.g., via double-click interaction). FIG. 23 is a
view of a canvas 940 on which a portion of an example
structure text program is rendered in response to selec-
tion of a structured text application node from the Con-
troller navigation tree 2204 or the System navigation tree
1902. FIG. 24 is a view of a canvas 940 on which a portion
of an example function block diagram program is ren-
dered in response to selection of a function block diagram
application node from the Controller navigation tree 2204
or the System navigation tree 1902.
[0104] Similarly, selecting the HMI tab 1804b renders
an HMI navigation tree 2206 in the Explorer panel content
area 1808. This tree 2206 lists any HMI projects (or other
types of visualization projects) associated with the auto-
mation system project, organized according to HMI serv-
er. Selection of an HMI application node can cause prop-
erties for the selected application to be rendered in the
Properties panel 936, or can render the HMI application
in a canvas 940.

35 36

EP 3 798 759 A1

20

5

10

15

20

25

30

35

40

45

50

55

[0105] FIG. 25 is a view of the Explorer panel 910 with
the Devices view currently selected. The Device view is
invoked by selecting the Devices icon 2502 in the explor-
er view control bar 908. The Devices view renders a De-
vice navigation tree 2504 in the Explorer panel content
area 1808. This tree 2504 comprises nodes representing
devices (e.g., controllers, drives, motor control centers,
etc.) that make up the control system project. Similar to
the other Explorer views, information for a selected de-
vice can be rendered in the Properties panel 936 or on
a canvas 940 by appropriate interaction with the device’s
node. FIG. 26 is a view of a canvas 940 on which infor-
mation for an example controller is rendered in response
to selection of a controller node from the Device naviga-
tion tree 2504. As shown in this example, information that
can be rendered for a selected device can include, but
is not limited to, a name and model of the device, a net-
work address of the device, an overview description of
the device, a firmware version currently installed on the
device, a type of electronic keying, a connection type, or
other such device information.
[0106] FIG. 27 is a view of the Explorer panel 910 with
the Library view currently selected. The Library view is
invoked by selecting the Library icon 2702 in the explorer
view control bar 908. The Library view renders a Library
navigation tree 2704 in the Explorer panel content area
1808. Library navigation tree 2704 comprises nodes rep-
resenting software objects such as automation objects,
add-on instructions, user-defined data types, device con-
figurations, or other such objects. The Library view can
include two or more tabs 1804 that allow the user to select
sources of software objects to be viewed. In the illustrated
example, tab 1804a renders objects associated with the
current automation system project, tab 1804b renders
objects available in a vendor library, and tab 1804c
renders objects from an external source. Similar to the
other Explorer views, information regarding a selected
object can be rendered in the Properties panel 936 or on
a canvas 940 by appropriate interaction with the object’s
node.
[0107] FIG. 28 is a view of the Explorer panel 910 with
the Extensions view currently selected. The Extensions
view is invoked by selecting the Extensions icon 2802 in
the explorer view control bar 908. The Extensions view
renders a list of software extensions currently installed
on the IDE system 202, which may include, but are not
limited to, dashboards, system viewers and designers,
ladder logic editors, function block diagram editors, struc-
tured text editors, HMI screen editors, or other such ex-
tensions.
[0108] Some embodiments of IDE system’s user inter-
face component 204 can also support multi-instance
states of the project development environment, such that
the development environment can be distributed across
multiple display devices. Such embodiments can support
multi-instance workflows that help to orient the user with-
in the development environment and that allow the user
to easily locate relevant editors within the expanded and

distributed workspace, and to work fluidly across the mul-
tiple instances of the development interface 902.
[0109] FIGs. 29a and 29b depict an example distribut-
ed, multi-instance implementation of development inter-
face 902. In this example, the development environment
for an automation project currently being developed has
been distributed across two monitors or other display de-
vices, effectively expanding the development interface
902 across two separate but linked instances - develop-
ment interface 902a (FIG. 29a) rendered on a left-side
monitor and development interface 902b (FIG. 29b) ren-
dered on a right-side monitor. In the illustrated example,
the left-side interface 902a renders a first canvas 940a
(and associated tab 932a) on which is displayed a control
routine currently being developed. Interface 902a also
renders the Explorer panel 910 and its associated ex-
plorer view control bar 908 in the left global panel area
922, a first instance of the Properties panel 936a in the
right global panel area 928, and a first instance of an
overlaid Layers panel 2902a adjacent to the Properties
panel 936a. A first instance of the panel control bar 920a
is anchored on the right edge of the interface 902a.
[0110] The right-side interface 902b renders two hori-
zontally stacked canvases 940b and 940c (and their as-
sociated tabs 932a and 932b) containing two other as-
pects of the system project - a tag database and a pa-
rameter view, respectively. Second instances of the
Properties panel 936b and Layers panel 2902b are ren-
dered on the right-side of the interface 902b, and a sec-
ond instance of the panel control bar 920b is anchored
on the right edge of the interface 902b. In this example
scenario, the user has opted to omit the Explorer panel
910 from the right global panel area of the second inter-
face 902b.
[0111] Although only two instances of interface 902 are
depicted in the example illustrated in FIGs. 29a-29b, the
user interface component 204 can support expansion of
the development interface 902 across any number of in-
stances (e.g., if more than two display devices are avail-
able). Moreover, although the illustrated example depicts
three opened canvases 940a-940c distributed across the
two instances, any number of tabbed canvases 940 can
be rendered on each instance of the interface 902.
[0112] The two interfaces 902a and 902b are exten-
sions of one another, such that moving the cursor beyond
the right boundary of left-side interface 902a causes the
cursor to enter the right-side interface 902b via the left
boundary of the right-side interface 902b, and vice versa.
Thus, the user can fluidly traverse across the three can-
vases 940a-940c. In general, the user can configure pan-
el visibility and layouts independently for each extended
interface 902a and 902b. For example, the user may opt
to render copies of the same global panel on both inter-
face instances, or may choose to render a given panel
visible on one interface while omitting the panel from the
other interface.
[0113] To assist the user to easily navigate between
the interface instances, particularly in scenarios in which

37 38

EP 3 798 759 A1

21

5

10

15

20

25

30

35

40

45

50

55

several tabbed canvases 940 are open, some embodi-
ments of interface 902 can render an Available Tabs
menu in response to selection of a suitable control (e.g.,
a control in the menu bar 904), which lists the tabs 932
that are currently open and available for selective focus.
FIG. 30 is an example Available Tabs menu 3002 that
can be invoked in such embodiments. Example menu
3002 lists the currently active canvases 940 according
to name (e.g., Ladder 1, Tags, Parameters, etc.) and
segregates the list according to the instance of interface
902 on which the respective canvases n940 currently
reside. The list can be segregated vertically such that a
first section 3004 lists the tabs 932 visible on the first
instance of interface 902 and a second section 3006 lists
the tabs 932 visible on the second instance. Selecting
any of the tabs on the menu 3002 will cause the interface
902 to move the focus to the selected tab 936 (that is,
bring the selected tab to the front of the workspace). By
listing all active tabs in one menu 3002, a user can easily
select a desired tab that may be located on an interface
instance other than the one currently being viewed by
the user, or that may be hidden under other overlaid can-
vases 940 or panels. This can mitigate the need to search
through the distributed instances of interface 902 to lo-
cate a desired canvas 940.
[0114] Menu 3002 can also include other controls for
manipulating the tabs 932. For example, a Consolidate
menu option 3008 can cause all tab instances across the
multiple interface instances to be moved to the interface
instance currently being viewed (that is, the instance from
which the Consolidate command was triggered). In some
embodiments, performing this Consolidate function will
also cause all extended instances of interface 902 to be
closed, leaving only the currently viewed instance active.
[0115] A tab 932 and its associated canvas 940 can
be moved from one instance of interface 902 to another
by selecting and dragging the tab from its current instance
of interface 902 to the target instance (e.g., a target in-
stance on another display device). If a tab 932 is moved
to an instance of interface 902 that already contains one
or more visible canvases 940, the existing canvases will
be resized to accommodate the addition of the canvas
940 associated with the relocated tab 932. In such cases,
the canvases 940 can automatically determine a suitable
configuration of horizontal and/or vertical stacking of the
canvases 940 based on the current orientations of the
preexisting tabs and the drop location of the relocated
tab.
[0116] In some embodiments, layout and functionality
of the development interface 902 can also be responsive
to the size of the screen or display device on which the
interface is rendered. The dimensions of the boundaries
within which the interface 902 operates can be a function
of the dimensions of the device’s display screen, or may
be set by the user by resizing the IDE system’s develop-
ment environment window. In either case, user interface
component 204 can be configured to enable or disable
certain functions of the development interface 902 based

on the size or aspect ratio of the interface’s boundaries,
and to reorganize elements of the development interface
902 as needed to fill the available horizontal and vertical
viewport space as a function of available space.
[0117] In an example embodiment, development inter-
face 902 can support multiple layout modes correspond-
ing to respective ranges of screen or window widths.
FIGs. 31a-31d are example instances of development
interface 902 that accord to respective different layout
modes as a function of available screen width.
[0118] FIG. 31a depicts a first layout mode suitable for
scenarios in which there are no width restrictions. This
first layout mode offers full support for all primary inter-
face elements, as described above.
[0119] FIG. 31b depicts a second layout mode that may
be initiated by user interface component 204 when the
available screen width is below a first threshold width.
According to this second layout mode, global panel sec-
tions (e.g., Properties panel 936) are removed, and
pinned panels are prohibited (that is, all panels are ren-
dered as overlay panels). Left and bottom panel support
is disabled, and only global right overlay panels are per-
mitted to be rendered. Only one panel is permitted to be
rendered at a given time. Content panel visibility icons,
which are normally rendered on the canvas’s tool bar,
are moved to the global panel control bar 920 (e.g., Lay-
ers visibility icon 3102). Support for multiple stacked can-
vases is disabled. The Explorer panel 910, including its
associated explorer view control bar 908, is moved from
the left side to the right side of the interface 902 adjacent
to the global panel control bar 920.
[0120] FIG. 31c depicts a third layout mode that may
be initiated by user interface component 204 when the
available screen width is below a second threshold width
that is smaller than the first threshold width. This third
layout mode maintains all limitations and restrictions of
the second layout mode. In addition, header elements
are collapsed to reduce the number of selections visible
at the same time. This includes collapsing the visible se-
lection on menu bar 904 into a single selectable menu
icon 3104, which can be selected to render the menu bar
options as a drop-down list. Similarly, the selections on
the tool bar 908 are collapsed into a single Tools icon
3108, which can be selected to render the tool bar se-
lections in another drop-down list. Search bar 934 is also
reduced to a selectable Search icon 3110. As a result of
these consolidations, the total number of visible selec-
tions is reduced, thereby decluttering the limited devel-
opment space.
[0121] The industrial IDE development interface 902
described herein offers a highly adaptable workspace
layout that intelligently filters information and editing tools
available to the user at a given time as a function of the
user’s current development task or focus, which allows
desired information and editing tools relevant to the cur-
rent development context to be located easily. In addition,
the interface 902 affords the user a great deal of control
over customization of the workspace layout, while main-

39 40

EP 3 798 759 A1

22

5

10

15

20

25

30

35

40

45

50

55

taining a clean and uncluttered development space that
can be navigated easily. The IDE system 902 and its
associated development interfaces 902 are suitable for
developing multiple aspects of an industrial automation
system - e.g., control programming, device configuration,
alarm configuration, visualization screen development -
within the same multi-content workspace, and can be
used to develop projects ranging in scale from single con-
troller systems to systems encompassing scores of con-
trollers across different industrial facilities.
[0122] FIGs. 32a-35b illustrate various methodologies
in accordance with one or more embodiments of the sub-
ject application. While, for purposes of simplicity of ex-
planation, the one or more methodologies shown herein
are shown and described as a series of acts, it is to be
understood and appreciated that the subject innovation
is not limited by the order of acts, as some acts may, in
accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and de-
scribed herein. For example, those skilled in the art will
understand and appreciate that a methodology could al-
ternatively be represented as a series of interrelated
states or events, such as in a state diagram. Moreover,
not all illustrated acts may be required to implement a
methodology in accordance with the innovation. Further-
more, interaction diagram(s) may represent methodolo-
gies, or methods, in accordance with the subject disclo-
sure when disparate entities enact disparate portions of
the methodologies. Further yet, two or more of the dis-
closed example methods can be implemented in combi-
nation with each other, to accomplish one or more fea-
tures or advantages described herein.
[0123] FIG. 32a illustrates a first part of an example
methodology 3200a for customizing panel visibility and
layout on a development interface of an industrial IDE
system. Initially, at 3202, an industrial IDE interface is
rendered comprising a workspace canvas and a global
panel control bar pinned to an edge of the IDE develop-
ment interface. The global panel control bar can comprise
a set of visibility icons that control visibility of respective
global panels supported by the industrial IDE system. In
some embodiments, the development interface can com-
prise segregated global panel display areas - e.g., a left,
right, and bottom global panel area - and the visibility
icons can be organized on the global panel control bar
according to the panel display area to which the respec-
tive panels have been designated.
[0124] At 3204, a determination is made as to whether
a panel visibility icon has been selected from a left panel
area of the global panel control bar. The left panel area
is a section of the global panel control bar on which is
rendered visibility icons corresponding to a subset of the
global panels that have been designated to the left global
panel area of the development interface. If a visibility icon
has been selected from the left panel area of the global
panel control bar (YES at step 3204), the methodology
proceeds to step 3206, where a determination is made
as to whether the panel corresponding to the visibility

icon selected at step 3204 has been set to be a pinned
panel. For example, the panel may have been previously
set to be pinned by a user via an appropriate interaction
with a properties menu associated with the panel. If the
panel has been set to be pinned (YES at step 3206),
methodology proceeds to step 3208, where the panel
corresponding to the visibility icon is rendered in the left
global panel area of the development interface as a
pinned panel. Alternatively, if the panel has not been set
to be pinned (NO at step 3206), the methodology pro-
ceeds to step 3210, where the panel is rendered in the
left global panel area as an overlay panel.
[0125] Once the panel has been rendered, or if no pan-
el visibility icon has been selected from the left panel area
of the global panel control bar (NO at step 3204), the
methodology proceeds to the second part 3200b illus-
trated in FIG. 32b. At 3212, a determination is made as
to whether a panel visibility icon has been selected from
a bottom panel area of the global panel control bar. The
bottom panel area is a section of the global panel control
bar on which is rendered visibility icons corresponding
to a subset of the global panels that have been designat-
ed to the bottom global panel area of the development
interface. If a visibility icon has been selected from the
bottom panel area (YES at step 3212), the methodology
proceeds to step 3214, where a determination is made
as to whether a panel corresponding to the visibility icon
selected at step 3212 has been set to be a pinned panel.
If the panel has been set to be pinned (YES at step 3214),
the methodology proceeds to step 3216, where the panel
corresponding to the selected visibility icon is rendered
in the bottom global panel area of the development in-
terface as a pinned panel. Alternatively, if the panel has
not been set to be pinned (NO at step 3214), the meth-
odology proceeds to step 3218, where the panel is ren-
dered in the bottom global panel area as an overlay panel.
[0126] Once the panel has been rendered, or if no pan-
el visibility icon has been selected from the bottom panel
area of the global panel control bar (NO at step 3212),
the methodology proceeds to the third part 3200c illus-
trated in FIG. 32c. At 3220, a determination is made as
to whether a panel visibility icon has been selected from
a right panel area of the global panel control bar. The
right panel area is a section of the global panel control
bar on which is rendered visibility icons corresponding
to a subset of the global panels that have been designat-
ed to the right global panel area of the development in-
terface. If a visibility icon has been selected from the right
panel area (YES at step 3220), the methodology pro-
ceeds to step 3222, where a determination is made as
to whether a panel corresponding to the visibility icon
selected at step 3220 has been set to be a pinned panel.
If the panel has been set to be pinned (YES at step 3222),
the methodology proceeds to step 3224, where the panel
corresponding to the selected visibility icon is rendered
in the right global panel area of the development interface
as a pinned panel. Alternatively, if the panel has not been
set to be pinned (NO at step 3222), the methodology

41 42

EP 3 798 759 A1

23

5

10

15

20

25

30

35

40

45

50

55

proceeds to step 3226, where the panel is rendered in
the right global panel area as an overlay panel.
[0127] Once the panel has been rendered, or if no pan-
el visibility icon has been selected from the right panel
area of the global panel control bar (NO at step 3222),
the methodology returns to step 3202 and the method-
ology repeats.
[0128] FIG. 33a illustrates a first part of an example
methodology 3300a for browsing and rendering aspects
of an industrial automation project via interaction with an
industrial IDE development interface. Initially, at 3302,
an explorer panel is rendered on the development inter-
face, where the explorer panel is configured to facilitate
browsing and selecting of aspects of an industrial auto-
mation project (e.g., control programming or routines,
HMI development screens, controller tag databases, in-
dustrial device parameter configurations, alarm configu-
rations, etc.) to be rendered on the development inter-
face. The explorer panel can comprise a set of selectable
icons representing respective viewing categories sup-
ported by the explorer panel, where each viewing cate-
gory defines content and formatting of selections to be
presented in the explorer panel. In some embodiments,
the explorer panel can be selectively rendered or hidden
using the methodology described above in connection
with FIGs. 32a-32c.
[0129] At 3304, selection of an icon representing one
of the viewing categories from the set of supported view-
ing categories is received. Example viewing categories
that can be selected in this manner can include, but are
not limited to, a System view that lists components of the
automation system project (e.g., control routines, tags,
visualization applications or screens, alarms, etc.), an
Application view that lists applications that make up the
automation system project (e.g., control programming
applications, HMI applications, etc.), a Devices view that
lists devices that make up the automation system project,
a Library view that lists software objects that make up
the automation system project (e.g., automation objects,
add-on instructions, user-defined data types, device con-
figurations, etc.), and an Extensions view that lists soft-
ware add-ons or extensions that have been installed on
the industrial IDE system. Some or all of the content as-
sociated with these views can be rendered in a hierar-
chical format to allow users to more quickly and easily
browse and locate a desired selection.
[0130] At 3306, in response to selection of the icon at
step 3304, two or more tabs are rendered on the explorer
panel, the two or more tabs representing respective two
or more presentation formats for content within the view-
ing category corresponding to the selected icon. For ex-
ample, selection of an Application view icon may cause
the explorer panel to render two or more tabs represent-
ing respective different types of applications that can be
explored (e.g., controller applications, HMI applications,
etc.). In another example, selection of a Library view can
cause the explorer panel to render two or more tabs rep-
resenting respective sources of software objects that can

be explored.
[0131] At 3308, selectable icons are rendered on a
content window of the explorer panel, where the icons
correspond to the viewing category and a first presenta-
tion format corresponding to a first tab of the two or more
tabs rendered at step 3306. The selectable icons - which
may be graphical, text-based, or a combination of both -
represent aspects of the automation system project that
can be browsed and selected for presentation in the de-
velopment interfaces may workspace or canvas.
[0132] The methodology continues with the second
part 3300b illustrated in FIG. 33b. At 3310, a determina-
tion is made as to whether a second tab of the two or
more tabs rendered at step 3306 has been selected. If
the second tab has been selected (YES at step 3310),
the methodology proceeds to step 3312, where selecta-
ble icons - which may include some or all of the selectable
icons represented at step 3308 or a different set of icons
- are rendered in the content window of the explorer panel
in a second presentation format corresponding to the
second tab.
[0133] If the second tab is not selected (NO at step
3310) or after the icons have been rendered in the second
format at step 3312, the methodology proceeds to step
3314, where a determination is made as to whether an
icon is selected from the content window of the explorer
panel. If an icon has been selected (YES at step 3314),
the methodology proceeds to step 3316, where an aspect
of the automation system project corresponding to the
icon is rendered. The aspect may be, for example, a lad-
der logic routine, a structure text program, a function
block diagram, an HMI development screen, an alarm
configuration screen, a device parameter configuration
screen, an engineering drawing or schematic, or another
such aspect.
[0134] FIG. 34a illustrates a first part of an example
methodology 3400a for manipulating workspace canvas-
es within an industrial IDE development interface. Initial-
ly, at 3402, two different aspects of an automation system
project are rendered in respective two tabbed canvases
of an industrial IDE development interface. The two
tabbed canvases are initially rendered such that a first
of the two canvases is overlaid over a second of the two
canvases such that content of only one canvas is visible
at a given time, and the visible content can be selected
by selecting the appropriate tab. Project aspects that can
be rendered in these tabbed canvases can include, but
are not limited to, control programming, tag databases,
device configurations, HMI development screens, alarm
configurations, or other such content.
[0135] At 3404, a determination is made as to whether
a command to stack the canvases horizontally has been
received. If such a command is received (YES at step
3404), the methodology proceeds to step 3406, where
the two canvases are rendered such that content of the
two canvases is displayed simultaneously and the can-
vases are arranged horizontally. Alternatively, if the com-
mand to stack the canvases horizontally is not received

43 44

EP 3 798 759 A1

24

5

10

15

20

25

30

35

40

45

50

55

(NO at step 3404), the methodology proceeds to step
3408, where a determination is made as to whether a
command to stack the canvases vertically has been re-
ceived. If such a command is received (YES at step 3408)
the methodology proceeds to step 3410, where the two
canvases are rendered that content of the two canvases
is displayed simultaneously and the canvases are ar-
ranged horizontally.
[0136] The methodology than continues with the sec-
ond part 3400b illustrated in FIG. 34b. At 3412, a deter-
mination is made as to whether a command to distribute
the tabbed canvases across two display devices has
been received. This command may be received in imple-
mentations in which the interface display is extended
across two display devices to expand the usable work-
space. If the command to distribute the tabbed canvases
is received (YES at step 3412), the methodology pro-
ceeds step 3414, where the first canvas is rendered on
a first instance of the development interface on a first
display device and the second canvas is rendered on a
second instance of the development interface on a sec-
ond display device. While the canvases are distributed
in this manner, a determination is made at step 3416 as
to whether a command to consolidate the tabbed can-
vases is received. If such a command is received (YES
at step 3416), the methodology proceeds to step 3418,
where the two canvases are consolidated onto one of
the two instances of the development interface from
which the command to consolidate was received. The
methodology then returns to step 3402.
[0137] If the command to distribute the tabbed canvas-
es is not received at step 3412 (NO at step 3412) - that
is, the canvases are still consolidated on a single instance
of the interface display and are stacked horizontally or
vertically - the methodology proceeds to the third part
3400c illustrated in FIG. 34c. At 3420, a determination is
made as to whether a command to overlay the tabbed
canvases is received. If no such command is received
(NO at step 3420), the methodology returns to step 3404.
Alternatively, if the command to overlay the canvases is
received (YES at step 3420), the methodology returns to
step 3402, where the canvases are again rendered as
overlays.
[0138] In some embodiments, the canvas manipula-
tion methodology of FIGs. 34a-34c can be combined with
one or both of the methodologies described above in con-
nection with FIGs. 32a-32c and 33a-33b.
[0139] FIG. 35a illustrates a first part of an example
methodology 3500a for automatically curating a set of
available project editing tools by an industrial IDE devel-
opment interface based on a current development task
being performed by a user. Initially, at 3502, a global
panel control bar is rendered on an industrial IDE devel-
opment interface comprising one or more workspace
canvases. The global panel control bar can be pinned to
an edge of the development interface, and can comprise
a first set of visibility icons that correspond to a first set
of global panels supported by the industrial IDE that are

applicable to all design contexts of the industrial IDE.
[0140] At 3504, a current automation project develop-
ment task being performed via the one or more work-
space canvases is determined. The task can be deter-
mined, for example, based on content of the workspace
canvas that currently has focus within the development
interface. The task may be, for example, ladder logic con-
trol programming, structured text control programming,
function block diagram control programming, HMI screen
development, device configuration, controller tag editing,
alarm configuration, or other such tasks.
[0141] At 3506, a second set of visibility icons is ren-
dered on the development interface. The second set of
visibility icons correspond to one or more content panels
supported by the industrial IDE that are not globally ap-
plicable but are applicable to the current development
task determined at step 3504.
[0142] The methodology continues with the second
part 3500b illustrated in FIG. 35b. At 3508, selection of
a visibility icon from among the first or second set of vis-
ibility icons is received. At 3510, a determination as to
whether a panel corresponding to the icon selected at
step 3508 is set to be a pinned panel. If the selected
panel is set to be pinned (YES at step 3510), the meth-
odology proceeds to step 3512, where the panel corre-
sponding to the selected icon is rendered on the devel-
opment interface as a pinned panel. Alternatively, if the
selected panel is not set to be pinned (NO at step 3510),
the methodology proceeds to step 3514, where the panel
corresponding to the selected icon is rendered on the
development interface as an overlay panel.
[0143] In some embodiments, the methodology de-
scribed in connection with FIGs. 35a-35b can be com-
bined with one or more of the other methodologies de-
scribed herein.
[0144] Embodiments, systems, and components de-
scribed herein, as well as control systems and automa-
tion environments in which various aspects set forth in
the subject specification can be carried out, can include
computer or network components such as servers, cli-
ents, programmable logic controllers (PLCs), automation
controllers, communications modules, mobile comput-
ers, on-board computers for mobile vehicles, wireless
components, control components and so forth which are
capable of interacting across a network. Computers and
servers include one or more processors-electronic inte-
grated circuits that perform logic operations employing
electric signals-configured to execute instructions stored
in media such as random access memory (RAM), read
only memory (ROM), a hard drives, as well as removable
memory devices, which can include memory sticks,
memory cards, flash drives, external hard drives, and so
on.
[0145] Similarly, the term PLC or automation controller
as used herein can include functionality that can be
shared across multiple components, systems, and/or
networks. As an example, one or more PLCs or automa-
tion controllers can communicate and cooperate with var-

45 46

EP 3 798 759 A1

25

5

10

15

20

25

30

35

40

45

50

55

ious network devices across the network. This can in-
clude substantially any type of control, communications
module, computer, Input/Output (I/O) device, sensor, ac-
tuator, and human machine interface (HMI) that commu-
nicate via the network, which includes control, automa-
tion, and/or public networks. The PLC or automation con-
troller can also communicate to and control various other
devices such as standard or safety-rated I/O modules
including analog, digital, programmed/intelligent I/O
modules, other programmable controllers, communica-
tions modules, sensors, actuators, output devices, and
the like.
[0146] The network can include public networks such
as the internet, intranets, and automation networks such
as control and information protocol (CIP) networks in-
cluding DeviceNet, ControlNet, safety networks, and Eth-
ernet/IP. Other networks include Ethernet, DH/DH+, Re-
mote I/O, Fieldbus, Modbus, Profibus, CAN, wireless net-
works, serial protocols, and so forth. In addition, the net-
work devices can include various possibilities (hardware
and/or software components). These include compo-
nents such as switches with virtual local area network
(VLAN) capability, LANs, WANs, proxies, gateways,
routers, firewalls, virtual private network (VPN) devices,
servers, clients, computers, configuration tools, monitor-
ing tools, and/or other devices.
[0147] In order to provide a context for the various as-
pects of the disclosed subject matter, FIGs. 36 and 37
as well as the following discussion are intended to provide
a brief, general description of a suitable environment in
which the various aspects of the disclosed subject matter
may be implemented. While the embodiments have been
described above in the general context of computer-ex-
ecutable instructions that can run on one or more com-
puters, those skilled in the art will recognize that the em-
bodiments can be also implemented in combination with
other program modules and/or as a combination of hard-
ware and software.
[0148] Generally, program modules include routines,
programs, components, data structures, etc., that per-
form particular tasks or implement particular abstract da-
ta types. Moreover, those skilled in the art will appreciate
that the inventive methods can be practiced with other
computer system configurations, including single-proc-
essor or multiprocessor computer systems, minicomput-
ers, mainframe computers, Internet of Things (IoT) de-
vices, distributed computing systems, as well as personal
computers, hand-held computing devices, microproces-
sor-based or programmable consumer electronics, and
the like, each of which can be operatively coupled to one
or more associated devices.
[0149] The illustrated embodiments herein can be also
practiced in distributed computing environments where
certain tasks are performed by remote processing devic-
es that are linked through a communications network. In
a distributed computing environment, program modules
can be located in both local and remote memory storage
devices.

[0150] Computing devices typically include a variety of
media, which can include computer-readable storage
media, machine-readable storage media, and/or com-
munications media, which two terms are used herein dif-
ferently from one another as follows. Computer-readable
storage media or machine-readable storage media can
be any available storage media that can be accessed by
the computer and includes both volatile and nonvolatile
media, removable and non-removable media. By way of
example, and not limitation, computer-readable storage
media or machine-readable storage media can be imple-
mented in connection with any method or technology for
storage of information such as computer-readable or ma-
chine-readable instructions, program modules, struc-
tured data or unstructured data.
[0151] Computer-readable storage media can include,
but are not limited to, random access memory (RAM),
read only memory (ROM), electrically erasable program-
mable read only memory (EEPROM), flash memory or
other memory technology, compact disk read only mem-
ory (CD-ROM), digital versatile disk (DVD), Blu-ray disc
(BD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, solid state drives or other solid state
storage devices, or other tangible and/or non-transitory
media which can be used to store desired information.
In this regard, the terms "tangible" or "non-transitory"
herein as applied to storage, memory or computer-read-
able media, are to be understood to exclude only prop-
agating transitory signals per se as modifiers and do not
relinquish rights to all standard storage, memory or com-
puter-readable media that are not only propagating tran-
sitory signals per se.
[0152] Computer-readable storage media can be ac-
cessed by one or more local or remote computing devic-
es, e.g., via access requests, queries or other data re-
trieval protocols, for a variety of operations with respect
to the information stored by the medium.
[0153] Communications media typically embody com-
puter-readable instructions, data structures, program
modules or other structured or unstructured data in a
data signal such as a modulated data signal, e.g., a car-
rier wave or other transport mechanism, and includes
any information delivery or transport media. The term
"modulated data signal" or signals refers to a signal that
has one or more of its characteristics set or changed in
such a manner as to encode information in one or more
signals. By way of example, and not limitation, commu-
nication media include wired media, such as a wired net-
work or direct-wired connection, and wireless media such
as acoustic, RF, infrared and other wireless media.
[0154] With reference again to FIG. 36, the example
environment 3600 for implementing various embodi-
ments of the aspects described herein includes a com-
puter 3602, the computer 3602 including a processing
unit 3604, a system memory 3606 and a system bus
3608. The system bus 3608 couples system components
including, but not limited to, the system memory 3606 to

47 48

EP 3 798 759 A1

26

5

10

15

20

25

30

35

40

45

50

55

the processing unit 3604. The processing unit 3604 can
be any of various commercially available processors. Du-
al microprocessors and other multi-processor architec-
tures can also be employed as the processing unit 3604.
[0155] The system bus 3608 can be any of several
types of bus structure that can further interconnect to a
memory bus (with or without a memory controller), a pe-
ripheral bus, and a local bus using any of a variety of
commercially available bus architectures. The system
memory 3606 includes ROM 3610 and RAM 3612. A
basic input/output system (BIOS) can be stored in a non-
volatile memory such as ROM, erasable programmable
read only memory (EPROM), EEPROM, which BIOS
contains the basic routines that help to transfer informa-
tion between elements within the computer 3602, such
as during startup. The RAM 3612 can also include a high-
speed RAM such as static RAM for caching data.
[0156] The computer 3602 further includes an internal
hard disk drive (HDD) 3614 (e.g., EIDE, SATA), one or
more external storage devices 3616 (e.g., a magnetic
floppy disk drive (FDD) 3616, a memory stick or flash
drive reader, a memory card reader, etc.) and an optical
disk drive 3620 (e.g., which can read or write from a CD-
ROM disc, a DVD, a BD, etc.). While the internal HDD
3614 is illustrated as located within the computer 3602,
the internal HDD 3614 can also be configured for external
use in a suitable chassis (not shown). Additionally, while
not shown in environment 3600, a solid state drive (SSD)
could be used in addition to, or in place of, an HDD 3614.
The HDD 3614, external storage device(s) 3616 and op-
tical disk drive 3620 can be connected to the system bus
3608 by an HDD interface 3624, an external storage in-
terface 3626 and an optical drive interface 3628, respec-
tively. The interface 3624 for external drive implementa-
tions can include at least one or both of Universal Serial
Bus (USB) and Institute of Electrical and Electronics En-
gineers (IEEE) 1394 interface technologies. Other exter-
nal drive connection technologies are within contempla-
tion of the embodiments described herein.
[0157] The drives and their associated computer-read-
able storage media provide nonvolatile storage of data,
data structures, computer-executable instructions, and
so forth. For the computer 3602, the drives and storage
media accommodate the storage of any data in a suitable
digital format. Although the description of computer-read-
able storage media above refers to respective types of
storage devices, it should be appreciated by those skilled
in the art that other types of storage media which are
readable by a computer, whether presently existing or
developed in the future, could also be used in the exam-
ple operating environment, and further, that any such
storage media can contain computer-executable instruc-
tions for performing the methods described herein.
[0158] A number of program modules can be stored in
the drives and RAM 3612, including an operating system
3630, one or more application programs 3632, other pro-
gram modules 3634 and program data 3636. All or por-
tions of the operating system, applications, modules,

and/or data can also be cached in the RAM 3612. The
systems and methods described herein can be imple-
mented utilizing various commercially available operat-
ing systems or combinations of operating systems.
[0159] Computer 3602 can optionally comprise emu-
lation technologies. For example, a hypervisor (not
shown) or other intermediary can emulate a hardware
environment for operating system 3630, and the emulat-
ed hardware can optionally be different from the hard-
ware illustrated in FIG. 36. In such an embodiment, op-
erating system 3630 can comprise one virtual machine
(VM) of multiple VMs hosted at computer 3602. Further-
more, operating system 3630 can provide runtime envi-
ronments, such as the Java runtime environment or
the .NET framework, for application programs 3632.
Runtime environments are consistent execution environ-
ments that allow application programs 3632 to run on
any operating system that includes the runtime environ-
ment. Similarly, operating system 3630 can support con-
tainers, and application programs 3632 can be in the form
of containers, which are lightweight, standalone, execut-
able packages of software that include, e.g., code, runt-
ime, system tools, system libraries and settings for an
application.
[0160] Further, computer 3602 can be enable with a
security module, such as a trusted processing module
(TPM). For instance with a TPM, boot components hash
next in time boot components, and wait for a match of
results to secured values, before loading a next boot com-
ponent. This process can take place at any layer in the
code execution stack of computer 3602, e.g., applied at
the application execution level or at the operating system
(OS) kernel level, thereby enabling security at any level
of code execution.
[0161] A user can enter commands and information
into the computer 3602 through one or more wired/wire-
less input devices, e.g., a keyboard 3638, a touch screen
3640, and a pointing device, such as a mouse 3642. Oth-
er input devices (not shown) can include a microphone,
an infrared (IR) remote control, a radio frequency (RF)
remote control, or other remote control, a joystick, a vir-
tual reality controller and/or virtual reality headset, a
game pad, a stylus pen, an image input device, e.g., cam-
era(s), a gesture sensor input device, a vision movement
sensor input device, an emotion or facial detection de-
vice, a biometric input device, e.g., fingerprint or iris scan-
ner, or the like. These and other input devices are often
connected to the processing unit 3604 through an input
device interface 3644 that can be coupled to the system
bus 3608, but can be connected by other interfaces, such
as a parallel port, an IEEE 1394 serial port, a game port,
a USB port, an IR interface, a BLUETOOTH® interface,
etc.
[0162] A monitor 3644 or other type of display device
can be also connected to the system bus 3608 via an
interface, such as a video adapter 3648. In addition to
the monitor 3644, a computer typically includes other pe-
ripheral output devices (not shown), such as speakers,

49 50

EP 3 798 759 A1

27

5

10

15

20

25

30

35

40

45

50

55

printers, etc.
[0163] The computer 3602 can operate in a networked
environment using logical connections via wired and/or
wireless communications to one or more remote com-
puters, such as a remote computer(s) 3648. The remote
computer(s) 3648 can be a workstation, a server com-
puter, a router, a personal computer, portable computer,
microprocessor-based entertainment appliance, a peer
device or other common network node, and typically in-
cludes many or all of the elements described relative to
the computer 3602, although, for purposes of brevity, on-
ly a memory/storage device 3650 is illustrated. The log-
ical connections depicted include wired/wireless connec-
tivity to a local area network (LAN) 3652 and/or larger
networks, e.g., a wide area network (WAN) 3654. Such
LAN and WAN networking environments are common-
place in offices and companies, and facilitate enterprise-
wide computer networks, such as intranets, all of which
can connect to a global communications network, e.g.,
the Internet.
[0164] When used in a LAN networking environment,
the computer 3602 can be connected to the local network
3652 through a wired and/or wireless communication net-
work interface or adapter 3656. The adapter 3656 can
facilitate wired or wireless communication to the LAN
3652, which can also include a wireless access point
(AP) disposed thereon for communicating with the adapt-
er 3656 in a wireless mode.
[0165] When used in a WAN networking environment,
the computer 3602 can include a modem 3658 or can be
connected to a communications server on the WAN 3654
via other means for establishing communications over
the WAN 3654, such as by way of the Internet. The mo-
dem 3658, which can be internal or external and a wired
or wireless device, can be connected to the system bus
3608 via the input device interface 3642. In a networked
environment, program modules depicted relative to the
computer 3602 or portions thereof, can be stored in the
remote memory/storage device 3650. It will be appreci-
ated that the network connections shown are example
and other means of establishing a communications link
between the computers can be used.
[0166] When used in either a LAN or WAN networking
environment, the computer 3602 can access cloud stor-
age systems or other network-based storage systems in
addition to, or in place of, external storage devices 3616
as described above. Generally, a connection between
the computer 3602 and a cloud storage system can be
established over a LAN 3652 or WAN 3654 e.g., by the
adapter 3656 or modem 3658, respectively. Upon con-
necting the computer 3602 to an associated cloud stor-
age system, the external storage interface 3626 can, with
the aid of the adapter 3656 and/or modem 3658, manage
storage provided by the cloud storage system as it would
other types of external storage. For instance, the external
storage interface 3626 can be configured to provide ac-
cess to cloud storage sources as if those sources were
physically connected to the computer 3602.

[0167] The computer 3602 can be operable to commu-
nicate with any wireless devices or entities operatively
disposed in wireless communication, e.g.. a printer, scan-
ner, desktop and/or portable computer, portable data as-
sistant, communications satellite, any piece of equipment
or location associated with a wirelessly detectable tag
(e.g., a kiosk, news stand, store shelf, etc.), and tele-
phone. This can include Wireless Fidelity (Wi-Fi) and
BLUETOOTH® wireless technologies. Thus, the com-
munication can be a predefined structure as with a con-
ventional network or simply an ad hoc communication
between at least two devices.
[0168] FIG. 37 is a schematic block diagram of a sam-
ple computing environment 1800 with which the dis-
closed subject matter can interact. The sample comput-
ing environment 3700 includes one or more client(s)
3702. The client(s) 3702 can be hardware and/or soft-
ware (e.g., threads, processes, computing devices). The
sample computing environment 3700 also includes one
or more server(s) 3704. The server(s) 3704 can also be
hardware and/or software (e.g., threads, processes,
computing devices). The servers 3704 can house
threads to perform transformations by employing one or
more embodiments as described herein, for example.
One possible communication between a client 3702 and
servers 3704 can be in the form of a data packet adapted
to be transmitted between two or more computer proc-
esses. The sample computing environment 3700 in-
cludes a communication framework 3706 that can be em-
ployed to facilitate communications between the client(s)
3702 and the server(s) 3704. The client(s) 3702 are op-
erably connected to one or more client data store(s) 3708
that can be employed to store information local to the
client(s) 3702. Similarly, the server(s) 3704 are operably
connected to one or more server data store(s) 3710 that
can be employed to store information local to the servers
3704.
[0169] What has been described above includes ex-
amples of the subject innovation. It is, of course, not pos-
sible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the
disclosed subject matter, but one of ordinary skill in the
art may recognize that many further combinations and
permutations of the subject innovation are possible. Ac-
cordingly, the disclosed subject matter is intended to em-
brace all such alterations, modifications, and variations
that fall within the spirit and scope of the appended
claims.
[0170] In particular and in regard to the various func-
tions performed by the above described components, de-
vices, circuits, systems and the like, the terms (including
a reference to a "means") used to describe such compo-
nents are intended to correspond, unless otherwise in-
dicated, to any component which performs the specified
function of the described component (e.g., a functional
equivalent), even though not structurally equivalent to
the disclosed structure, which performs the function in
the herein illustrated exemplary aspects of the disclosed

51 52

EP 3 798 759 A1

28

5

10

15

20

25

30

35

40

45

50

55

subject matter. In this regard, it will also be recognized
that the disclosed subject matter includes a system as
well as a computer-readable medium having computer-
executable instructions for performing the acts and/or
events of the various methods of the disclosed subject
matter.
[0171] In addition, while a particular feature of the dis-
closed subject matter may have been disclosed with re-
spect to only one of several implementations, such fea-
ture may be combined with one or more other features
of the other implementations as may be desired and ad-
vantageous for any given or particular application. Fur-
thermore, to the extent that the terms "includes," and
"including" and variants thereof are used in either the
detailed description or the claims, these terms are intend-
ed to be inclusive in a manner similar to the term "com-
prising."
[0172] In this application, the word "exemplary" is used
to mean serving as an example, instance, or illustration.
Any aspect or design described herein as "exemplary" is
not necessarily to be construed as preferred or advanta-
geous over other aspects or designs. Rather, use of the
word exemplary is intended to present concepts in a con-
crete fashion.
[0173] Various aspects or features described herein
may be implemented as a method, apparatus, or article
of manufacture using standard programming and/or en-
gineering techniques. The term "article of manufacture"
as used herein is intended to encompass a computer
program accessible from any computer-readable device,
carrier, or media. For example, computer readable media
can include but are not limited to magnetic storage de-
vices (e.g., hard disk, floppy disk, magnetic strips...), op-
tical disks [e.g., compact disk (CD), digital versatile disk
(DVD)...], smart cards, and flash memory devices (e.g.,
card, stick, key drive...).
[0174] The following is a list of further preferred
embodiments of the invention:

Embodiment 1. A system for developing industrial
applications, comprising:

a memory that stores executable components;
and

a processor, operatively coupled to the memory,
that executes the executable components, the
executable components comprising:

a user interface component configured to
render an industrial integrated development
environment (IDE) development interface
and to receive, via interaction with the de-
velopment interface, industrial design input
that defines aspects of an industrial auto-
mation project, wherein the development in-
terface comprises

one or more workspace canvases con-
figured to facilitate development of a
selected aspect of the industrial auto-
mation project, and

a global panel control bar comprising
visibility icons corresponding to respec-
tive panels available to be invoked on
the development interface; and

a project generation component configured
to generate system project data based on
the industrial design input,

wherein

the interface display comprises a left global
panel area, a right global panel area, and a
bottom global panel area,

the respective panels are designated to one
of the left global panel area, the right global
panel area, or the bottom global panel area,
and

the user interface component is further con-
figured to, in response to selection of a vis-
ibility icon, of the visibility icons, toggle a
visibility of a panel corresponding to the vis-
ibility icon in one of the left global panel area,
the right global panel area, or the bottom
global panel area.

Embodiment 2. The system of embodiment 1, where-
in
the respective panels comprise controls that allow
the panels to be individually configured as one of a
pinned panel or an overlay panel, and
the user interface component is further configured to:

in response to the selection of the visibility icon
and a determination that the corresponding pan-
el is a pinned panel, render the corresponding
panel as being pinned to a background of the
development interface, and

in response to the selection of the visibility icon
and a determination that the corresponding pan-
el is an overlay panel, render the corresponding
global panel as an overlay.

Embodiment 3. The system of embodiment 2, where-
in
rendering a pinned panel in one of the left global
panel area, the right global panel area, or the bottom
global panel area causes the one or more workspace
canvases to resize to accommodate placement of
the pinned panel, and

53 54

EP 3 798 759 A1

29

5

10

15

20

25

30

35

40

45

50

55

rendering an overlay panel in one of the left global
panel area, the right global panel area, or the bottom
global panel area causes the overlay panel to be
rendered over a portion of the one or more work-
space canvases.

Embodiment 4. The system of embodiment 2, where-
in rendering an overlay panel in one of the left global
panel area, the right global panel area, or the bottom
global panel area in which a pinned panel is visible
causes the overlay panel to be rendered over at least
a portion of the pinned panel.

Embodiment 5. The system of embodiment 1, where-
in
the visibility icons are segregated on the global panel
control bar into groups corresponding to the left glo-
bal panel area, the right global panel area, and the
bottom global panel area, and
the visibility icon is assigned to one of the groups
according to which of the left global panel area, the
right global panel area, or the bottom global panel
area will render the panel.

Embodiment 6. The system of embodiment 2, where-
in the user interface component is further configured
to, in response to receipt of input data indicative of
a dragging of a visibility icon, of the visibility icons,
from the global panel control bar to one of the left
global panel area, the right global panel area, or the
bottom global panel area, render a panel corre-
sponding to the visibility icon on the one of the left
global panel area, the right global panel area, or the
bottom global panel area as a pinned panel.

Embodiment 7. The system of embodiment 2, where-
in
the user interface component is further configured
to render multiple pinned panels in a same global
panel area in a vertically stacked arrangement, and
the same global panel area is one of the left global
panel area, the right global panel area, or the bottom
global panel area.

Embodiment 8. The system of embodiment 7, where-
in the user interface component is further configured
to, in response to receipt of an instruction to collapse
one of the multiple pinned panels, collapse the one
of the multiple pinned panels vertically.

Embodiment 9. The system of embodiment 1, where-
in
the visibility icons are first visibility icons, and
the user interface component is further configured
to, in response to invoking a development task on a
workspace canvas, of the one or more workspace
canvases, render one or more second visibility icons
on the workspace canvas that control visibility of re-

spective one or more content panels that are relevant
to the development task.

Embodiment 10. The system of embodiment 1,
wherein
the one or more workspace canvases comprise mul-
tiple tabbed canvases, and
the user interface component is further configured
to arrange the multiple canvases, in accordance with
user input, to be one or more of vertically stacked,
horizontally stacked, or overlaid.

Embodiment 11. The system of embodiment 10,
wherein the user interface is further configured to
extend the development interface across multiple
display devices to yield multiple instance of the de-
velopment interface, and to distribute the multiple
tabbed interfaces across the multiple instances.

Embodiment 12. The system of embodiment 1,
wherein the panel is at least one of an explorer panel
that facilitates browsing of aspects of the industrial
automation project, a properties panel that renders
property information for a selected element within
the one or more workspace canvases, an online pan-
el that renders communication statistics for the sys-
tem, a cross reference panel that renders cross ref-
erence information for a selected element within the
one or more workspace canvases, an output panel
that renders output statistics, an errors panel that
renders development or runtime errors, or a toolbox
panel that renders selectable editing tools.

Embodiment 13. A method for curating an industrial
development workspace, comprising:

displaying, by an industrial integrated develop-
ment environment (IDE) system comprising a
processor, a development interface on a client
device, wherein the displaying comprises:

displaying one or more workspace canvas-
es on which respective development tasks
are performed, and

displaying a global panel control bar com-
prising visibility icons corresponding to re-
spective panels available to be invoked on
the development interface;

receiving, by the industrial IDE system, selection
of a visibility icon, of the visibility icons, via in-
teraction with the development interface; and

in response to the receiving, toggling, by the in-
dustrial IDE system, a visibility of a panel corre-
sponding to the visibility icon, wherein the tog-
gling comprises adding the panel to or removing

55 56

EP 3 798 759 A1

30

5

10

15

20

25

30

35

40

45

50

55

the panel from one of a left global panel area, a
right global panel area, or a bottom global panel
area of the development interface.

Embodiment 14. The method of embodiment 13,
wherein the toggling comprises:

in response to the selection of the visibility icon
and a determination that the panel is set to be
a pinned panel, rendering the panel as being
pinned to a background of the development in-
terface, and
in response to the selection of the visibility icon
and a determination that the panel is set to be
an overlay panel, rendering the panel as an
overlay.

Embodiment 15. The method of embodiment 14, fur-
ther comprising:

in response to determining that a pinned panel
has been rendered visible in one of the left global
panel area, the right global panel area, or the
bottom global panel area, resizing, by the indus-
trial IDE system, the one or more workspace
canvases to accommodate placement of the
pinned panel, and

in response to determining that an overlay panel
has been rendered visible in one of the left global
panel area, the right global panel area, or the
bottom global panel area, overlaying the overlay
panel over a portion of the one or more work-
space canvases.

Embodiment 16. The method of embodiment 14, fur-
ther comprising, in response to determining that mul-
tiple pinned panels have been rendered visible in a
same global panel area, rendering the multiple
pinned panels in a vertically stacked arrangement
within the same global panel area.

Embodiment 17. The method of embodiment 16, fur-
ther comprising, in response to receipt of an instruc-
tion to collapse one of the multiple pinned panels,
collapsing the one of the multiple pinned panels ver-
tically.

Embodiment 18. The method of embodiment 13,
wherein the visibility icons are first visibility icons,
and the method further comprises:
in response to invoking a development task on a
workspace canvas, of the one or more workspace
canvases, rendering one or more second visibility
icons on the workspace canvas that control visibility
of respective one or more content panels that are
relevant to the development task.

Embodiment 19. A non-transitory computer-reada-
ble medium having stored thereon instructions that,
in response to execution, cause an industrial inte-
grated development environment (IDE) system com-
prising a processor to perform operations, the oper-
ations comprising:

displaying a development interface for the in-
dustrial IDE system on a client device, wherein
the displaying comprises:

displaying one or more workspace canvas-
es on which respective development tasks
are performed, and

displaying a global panel control bar com-
prising visibility icons corresponding to re-
spective panels available to be invoked on
the development interface;

receiving selection of a visibility icon, of the vis-
ibility icons, via interaction with the development
interface; and

in response to the receiving, toggling a visibility
of a panel corresponding to the visibility icon,
wherein the toggling comprises adding the panel
to or removing the panel from one of a left global
panel area, a right global panel area, or a bottom
global panel area of the development interface.

Embodiment 20. The non-transitory computer-read-
able medium of embodiment 19, wherein the toggling
comprises:

in response to the selection of the visibility icon
and a determination that the panel is set to be
a pinned panel, rendering the panel as being
pinned to a background of the development in-
terface, and

in response to the selection of the visibility icon
and a determination that the panel is set to be
an overlay panel, rendering the panel as an
overlay.

Claims

1. A system for developing industrial applications, com-
prising:

a memory that stores executable components;
and
a processor, operatively coupled to the memory,
that executes the executable components, the
executable components comprising:

57 58

EP 3 798 759 A1

31

5

10

15

20

25

30

35

40

45

50

55

a user interface component configured to
render an industrial integrated development
environment (IDE) development interface
and to receive, via interaction with the de-
velopment interface, industrial design input
that defines aspects of an industrial auto-
mation project, wherein the development in-
terface comprises

one or more workspace canvases con-
figured to facilitate development of a
selected aspect of the industrial auto-
mation project, and
a global panel control bar comprising
visibility icons corresponding to respec-
tive panels available to be invoked on
the development interface; and

a project generation component configured
to generate system project data based on
the industrial design input,
wherein
the interface display comprises a left global
panel area, a right global panel area, and a
bottom global panel area,
the respective panels are designated to one
of the left global panel area, the right global
panel area, or the bottom global panel area,
and
the user interface component is further con-
figured to, in response to selection of a vis-
ibility icon, of the visibility icons, toggle a
visibility of a panel corresponding to the vis-
ibility icon in one of the left global panel area,
the right global panel area, or the bottom
global panel area.

2. The system of claim 1, wherein
the respective panels comprise controls that allow
the panels to be individu ally configured as one of a
pinned panel or an overlay panel, and
the user interface component is further configured to:

in response to the selection of the visibility icon
and a determination that the corresponding pan-
el is a pinned panel, render the corresponding
panel as being pinned to a background of the
development interface, and
in response to the selection of the visibility icon
and a determination that the corresponding pan-
el is an overlay panel, render the corresponding
global panel as an overlay.

3. The system of claim 2, wherein
rendering a pinned panel in one of the left global
panel area, the right global panel area, or the bottom
global panel area causes the one or more workspace
canvases to resize to accommodate placement of

the pinned panel, and rendering an overlay panel in
one of the left global panel area, the right global panel
area, or the bottom global panel area causes the
overlay panel to be rendered over a portion of the
one or more workspace canvases; and/or
wherein rendering an overlay panel in one of the left
global panel area, the right global panel area, or the
bottom global panel area in which a pinned panel is
visible causes the overlay panel to be rendered over
at least a portion of the pinned panel.

4. The system of one of claims 1 to 3, wherein
the visibility icons are segregated on the global panel
control bar into groups corresponding to the left glo-
bal panel area, the right global panel area, and the
bottom global panel area, and
the visibility icon is assigned to one of the groups
according to which of the left global panel area, the
right global panel area, or the bottom global panel
area will render the panel.

5. The system of claim 2, wherein the user interface
component is further configured to, in response to
receipt of input data indicative of a dragging of a vis-
ibility icon, of the visibility icons, from the global panel
control bar to one of the left global panel area, the
right global panel area, or the bottom global panel
area, render a panel corresponding to the visibility
icon on the one of the left global panel area, the right
global panel area, or the bottom global panel area
as a pinned panel.

6. The system of claim 2, wherein
the user interface component is further configured
to render multiple pinned panels in a same global
panel area in a vertically stacked arrangement, and
the same global panel area is one of the left global
panel area, the right global panel area, or the bottom
global panel area,
wherein the user interface component is further con-
figured to, in response to receipt of an instruction to
collapse one of the multiple pinned panels, collapse
the one of the multiple pinned panels vertically.

7. The system of one of claims 1 to 6, wherein
the visibility icons are first visibility icons, and
the user interface component is further configured
to, in response to invoking a development task on a
workspace canvas, of the one or more workspace
canvases, render one or more second visibility icons
on the workspace canvas that control visibility of re-
spective one or more content panels that are relevant
to the development task.

8. The system of one of claims 1 to 7, wherein
the one or more workspace canvases comprise mul-
tiple tabbed canvases, and
the user interface component is further configured

59 60

EP 3 798 759 A1

32

5

10

15

20

25

30

35

40

45

50

55

to arrange the multiple canvases, in accordance with
user input, to be one or more of vertically stacked,
horizontally stacked, or overlaid,
wherein the user interface is further configured to
extend the development interface across multiple
display devices to yield multiple instance of the de-
velopment interface, and to distribute the multiple
tabbed interfaces across the multiple instances.

9. The system of one of claims 1 to 8, wherein the panel
is at least one of an explorer panel that facilitates
browsing of aspects of the industrial automation
project, a properties panel that renders property in-
formation for a selected element within the one or
more workspace canvases, an online panel that
renders communication statistics for the system, a
cross reference panel that renders cross reference
information for a selected element within the one or
more workspace canvases, an output panel that
renders output statistics, an errors panel that renders
development or runtime errors, or a toolbox panel
that renders selectable editing tools.

10. A method for curating an industrial development
workspace, comprising:

displaying, by an industrial integrated develop-
ment environment (IDE) system comprising a
processor, a development interface on a client
device, wherein the displaying comprises:

displaying one or more workspace canvas-
es on which respective development tasks
are performed, and
displaying a global panel control bar com-
prising visibility icons corresponding to re-
spective panels available to be invoked on
the development interface;

receiving, by the industrial IDE system, selection
of a visibility icon, of the visibility icons, via in-
teraction with the development interface; and
in response to the receiving, toggling, by the in-
dustrial IDE system, a visibility of a panel corre-
sponding to the visibility icon, wherein the tog-
gling comprises adding the panel to or removing
the panel from one of a left global panel area, a
right global panel area, or a bottom global panel
area of the development interface.

11. The method of claim 10, wherein the toggling com-
prises:

in response to the selection of the visibility icon
and a determination that the panel is set to be
a pinned panel, rendering the panel as being
pinned to a background of the development in-
terface, and

in response to the selection of the visibility icon
and a determination that the panel is set to be
an overlay panel, rendering the panel as an
overlay.

12. The method of claim 11, further comprising:

in response to determining that a pinned panel
has been rendered visible in one of the left global
panel area, the right global panel area, or the
bottom global panel area, resizing, by the indus-
trial IDE system, the one or more workspace
canvases to accommodate placement of the
pinned panel, and in response to determining
that an overlay panel has been rendered visible
in one of the left global panel area, the right glo-
bal panel area, or the bottom global panel area,
overlaying the overlay panel over a portion of
the one or more workspace canvases; and/or
in response to determining that multiple pinned
panels have been rendered visible in a same
global panel area, rendering the multiple pinned
panels in a vertically stacked arrangement with-
in the same global panel area, and in response
to receipt of an instruction to collapse one of the
multiple pinned panels, collapsing the one of the
multiple pinned panels vertically.

13. The method of one of claims 10 to 12, wherein the
visibility icons are first visibility icons, and the method
further comprises:
in response to invoking a development task on a
workspace canvas, of the one or more workspace
canvases, rendering one or more second visibility
icons on the workspace canvas that control visibility
of respective one or more content panels that are
relevant to the development task.

14. A non-transitory computer-readable medium having
stored thereon instructions that, in response to exe-
cution, cause an industrial integrated development
environment (IDE) system comprising a processor
to perform operations, the operations comprising:

displaying a development interface for the in-
dustrial IDE system on a client device, wherein
the displaying comprises:

displaying one or more workspace canvas-
es on which respective development tasks
are performed, and
displaying a global panel control bar com-
prising visibility icons corresponding to re-
spective panels available to be invoked on
the development interface;

receiving selection of a visibility icon, of the vis-
ibility icons, via interaction with the development

61 62

EP 3 798 759 A1

33

5

10

15

20

25

30

35

40

45

50

55

interface; and
in response to the receiving, toggling a visibility
of a panel corresponding to the visibility icon,
wherein the toggling comprises adding the panel
to or removing the panel from one of a left global
panel area, a right global panel area, or a bottom
global panel area of the development interface.

15. The non-transitory computer-readable medium of
claim 14, wherein the toggling comprises:

in response to the selection of the visibility icon
and a determination that the panel is set to be
a pinned panel, rendering the panel as being
pinned to a background of the development in-
terface, and
in response to the selection of the visibility icon
and a determination that the panel is set to be
an overlay panel, rendering the panel as an
overlay.

63 64

EP 3 798 759 A1

34

EP 3 798 759 A1

35

EP 3 798 759 A1

36

EP 3 798 759 A1

37

EP 3 798 759 A1

38

EP 3 798 759 A1

39

EP 3 798 759 A1

40

EP 3 798 759 A1

41

EP 3 798 759 A1

42

EP 3 798 759 A1

43

EP 3 798 759 A1

44

EP 3 798 759 A1

45

EP 3 798 759 A1

46

EP 3 798 759 A1

47

EP 3 798 759 A1

48

EP 3 798 759 A1

49

EP 3 798 759 A1

50

EP 3 798 759 A1

51

EP 3 798 759 A1

52

EP 3 798 759 A1

53

EP 3 798 759 A1

54

EP 3 798 759 A1

55

EP 3 798 759 A1

56

EP 3 798 759 A1

57

EP 3 798 759 A1

58

EP 3 798 759 A1

59

EP 3 798 759 A1

60

EP 3 798 759 A1

61

EP 3 798 759 A1

62

EP 3 798 759 A1

63

EP 3 798 759 A1

64

EP 3 798 759 A1

65

EP 3 798 759 A1

66

EP 3 798 759 A1

67

EP 3 798 759 A1

68

EP 3 798 759 A1

69

EP 3 798 759 A1

70

EP 3 798 759 A1

71

EP 3 798 759 A1

72

EP 3 798 759 A1

73

EP 3 798 759 A1

74

EP 3 798 759 A1

75

EP 3 798 759 A1

76

EP 3 798 759 A1

77

EP 3 798 759 A1

78

EP 3 798 759 A1

79

EP 3 798 759 A1

80

EP 3 798 759 A1

81

EP 3 798 759 A1

82

EP 3 798 759 A1

83

EP 3 798 759 A1

84

EP 3 798 759 A1

85

EP 3 798 759 A1

86

EP 3 798 759 A1

87

EP 3 798 759 A1

88

EP 3 798 759 A1

89

EP 3 798 759 A1

90

5

10

15

20

25

30

35

40

45

50

55

EP 3 798 759 A1

91

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

