(11) EP 3 799 935 A2

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

07.04.2021 Bulletin 2021/14

(21) Numéro de dépôt: **20198874.8**

(22) Date de dépôt: 29.09.2020

(51) Int Cl.:

A62C 2/06 (2006.01) A62C 8/06 (2006.01) A62C 3/16 (2006.01)

(84) Etats contractants désignés:

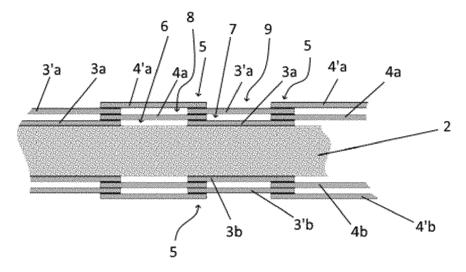
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

Etats de validation désignés:

KH MA MD TN


(30) Priorité: 03.10.2019 FR 1910968

- (71) Demandeur: Soletanche Freyssinet 92500 Rueil Malmaison (FR)
- (72) Inventeur: RAILLARD, Vincent 73240 Avressieux (FR)
- (74) Mandataire: Plasseraud IP 66, rue de la Chaussée d'Antin 75440 Paris Cedex 09 (FR)

(54) COUVERTURE INTUMESCENTE DE PROTECTION AU FEU

(57) L'invention concerne une couverture de protection au feu (1) qui comporte une première couche (10) constituée d'un tissu d'un matériau résistant à la chaleur, notamment un tissu de verre ou un tissu à fibres méta-aramides et une deuxième couche (11) constituée d'un matériau intumescent comme un silicone ou autre

matériau intumescent acrylique, époxy ou PVC, ledit matériau intumescent contenant des charges graphites et/ou silicates et un dispositif de protection au feu de chemins de câbles utilisant une ou plusieurs desdites couvertures.

Fig. 3

EP 3 799 935 A2

10

Domaine technique

[0001] L'invention relève du domaine de la protection de dispositifs allongés tels que des chemins de câbles ou des tuyauteries par tissu de protection au feu et en particulier par enrobage des chemins de câbles avec une ou plusieurs couvertures intumescentes de protection au feu.

Technique antérieure

[0002] La protection des dispositifs tels que les chemins de câble a été réalisée depuis les années 1980 à l'aide de produits d'isolation thermique technique à fibres réfractaires utilisant des matériaux alcalino-terreux alumine-silicate qui sont utilisés en particulier dans les installations de fours industriels à haute température par exemple pour le traitement thermique des aciers ou autres. Ces produits isolants ont la particularité d'avoir un point de fusion très élevé de l'ordre de 1300 à 1450°C et une très bonne tenue mécanique forte résistance et faible retrait presque jusqu'à leur température de fusion. [0003] Un exemple de protection au feu utilisant un matériau fibreux isolant est connu du document FR2973252 A1 au nom de la demanderesse.

Problème technique

[0004] Toutefois, pour les bâtiments de réacteurs nucléaires comportant des tuyauteries hautes pressions, l'utilisation de produits fibreux est à éviter car, en cas de rupture d'une telle tuyauterie, un jet puissant peut venir détruire les protections des chemins de câbles et entraîner les fibres qui risquent de colmater les filtres.

[0005] Par ailleurs les protections au feu à matériaux fibreux isolants limitent la dissipation de la chaleur produite par les câbles de puissance et nécessitent des dispositifs de ventilation qui augments le poids et l'encombrement du système.

Exposé de l'invention

[0006] Au vu de ce problème, la présente demande propose un dispositif de protection d'un ou plusieurs éléments allongés au moyen de plaques d'un matériau de couverture muni d'une face externe comportant une couche de tissu d'un matériau résistant à la chaleur et muni d'une face interne côté élément allongé comportant une couche de matériau intumescent, caractérisé en ce qu'il comporte une pluralité de plaques de couvertures déposées en quinconce et comprenant :

- une première couche de plaques de couvertures posées sur au moins une face du chemin de câble en laissant des premiers espaces entre elles ;
- une deuxième couche de plaques de couvertures

posées sur la première couche, chevauchant les premiers espaces et laissant elles-mêmes entre elles des deuxièmes espaces;

- une troisième couche de plaques de couvertures chevauchant les deuxièmes espaces et séparées entre elles par des troisièmes espaces et;
- au moins une quatrième couche de plaques de couvertures chevauchant les troisième espaces et séparées entre elles par des quatrièmes espaces;

lesdits espaces étant d'une longueur telle que les extrémités des plaques desdites couches sont empilées les unes sur les autres.

[0007] Ce mode de réalisation permet notamment d'avoir des zones d'expansion du matériau intumescent en cas de feu et un bon refroidissement des chemins de câbles en utilisation normale.

[0008] Les caractéristiques suivantes prises seules ou en combinaison sont l'objet de modes de réalisation particuliers.

[0009] Les extrémités empilées peuvent notamment former des zones de fixation des couvertures par des liens métalliques ou des colliers de serrage.

[0010] Selon un premier mode de réalisation, lesdits espaces sont remplis d'air ambiant.

[0011] Selon un mode de réalisation alternatif, des moyens séparateurs sont disposés dans lesdits espaces pour renforcer la structure de la couverture.

[0012] Lesdits moyens séparateurs peuvent être des plaques ajourées ou des séparateurs accordéons qui comblent une partie de l'espace libre pour renforcer la structure tout en laissant de l'espace pour permettre au matériau intumescent de gonfler.

[0013] Les moyens séparateurs peuvent être réalisés en martériau fusible qui laissera la place au matériau intumescent lors de son gonflement.

[0014] Les plaques de la couverture adaptée à recouvrir des chemins de câbles, tuyauteries ou autres équipements à protéger du feu peuvent comporter une première couche constituée d'un tissu d'un matériau notamment un tissu de verre résistant à la chaleur au-delà de 500°C ou un tissu à fibres méta-aramides et une deuxième couche constituée d'un matériau intumescent comme un silicone ou autre matériau intumescent acrylique, époxy ou PVC, ledit matériau intumescent contenant des charges graphites et/ou silicates.

[0015] Un avantage de l'invention est que avant l'intumescence, la conductivité thermique du matériau est importante et son l'épaisseur plus faible que les dispositifs fibreux ce qui permet un refroidissement des câbles ou tuyaux recouverts par les couvertures par conduction beaucoup plus importante que pour les systèmes à isolation thermique à base de laine ce qui rend inutile la présence de dispositifs de ventilation et réduit le poids et l'encombrement du système.

[0016] Avantageusement, une troisième couche d'un matériau d'accroché est intercalée ente la première couche et le deuxième couche.

5

[0017] Le matériau d'accroché est notamment un matériau de même nature chimique que le matériau intumescent.

[0018] Il est préférablement de type à polycondensation ou polyaddition et est adaptée à favoriser l'adhérence du matériau intumescent sur la première couche. Ce peut être un matériau réticulé à température ambiante.

[0019] Pour rendre le produit lavable et étanche à l'air ou à l'eau et décontaminable par lavage, la première couche est préférablement revêtue sur son côté opposé à la deuxième couche d'une couche de finition formant une face externe de la couverture. La couche de finition est avantageusement réalisée avec un matériau silicone.

[0020] La couche silicone de finition est réalisée avantageusement dans un matériau de type à polycondensation ou polyaddition. Ce peut être un matériau réticulé à température ambiante.

[0021] Le matériau intumescent est avantageusement de type à polycondensation ou polyaddition et permet une protection au feu par la modification de ses propriétés thermiques lors de son expansion. Ce peut être un matériau réticulé à température ambiante.

[0022] Lesdits éléments allongés sont notamment des chemins de câbles ou des tuyauteries, les couvertures étant disposées sur l'ensemble des faces desdits chemins de câbles ou tuyauteries et maintenues par des moyens de serrage tels que colliers de serrage, fil de fer ou autre.

[0023] Les couvertures réalisées avec les matériaux de la présente demande ont l'avantage d'être légères et souples et de ne pas risquer de projeter des fibres pouvant colmater des filtres en cas de détérioration des protections des chemins de câbles dans le cas de soufflage par un jet de vapeur ou autre.

[0024] D'autres caractéristiques et avantages sont l'objet de la description qui suit.

Brève description des dessins

[0025] D'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et à l'analyse des dessins annexés, sur lesquels :

[Fig. 1] est une vue schématique de couches d'une couverture selon un mode de réalisation de la présente invention ;

[Fig. 2] est une vue schématique de côté en coupe d'une réalisation de chemin de câble équipé de couvertures;

[fig. 3] est une vue schématique de côté en coupe d'une réalisation de chemin de câble équipé de couvertures disposées selon l'invention;

[Fig. 4A] représente une première réalisation de séparateur ;

[Fig. 4B] représente une seconde réalisation de séparateur.

Description des modes de réalisation

[0026] Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.

[0027] Il est maintenant fait référence à la figure 1.

[0028] La couverture intumescente de protection au feu 1 de la figure 1 comporte une couche 10 constituée d'un tissu résistant à la chaleur notamment un tissu de verre résistant à la chaleur au-delà de 500°C ou un tissu à fibres aramides résistant à la chaleur.

[0029] Pour les tissus à fibres aramides on préférera un tissu à base de fibres méta-aramides et notamment (poly(métaphénylène isophtalamide), PA MPD-I) connu sous la marque Nomex dont la résistance à la chaleur est moindre que le verre mais qui reste un second choix éventuellement utilisable.

[0030] Cette couche est réalisée pour offrir une très bonne résistance en traction selon la chaine ou la trame du tissu ainsi qu'au déchirement tout en permettant sa découpe au ciseau ou cutter.

[0031] Le tissu de verre peu onéreux est particulièrement bien adapté à cette application et sera pris comme exemple non limitatif dans la description ci-dessous.

[0032] Ce tissu de verre constitue une couche support pour une couche 11 de produit intumescent tel qu'un matériau silicone intumescent ou un matériau intumescent acrylique, époxy ou PVC contenant des charges graphites.

[0033] Le tissu de verre permet de réaliser une couche de base qui ne se déforme pas dans son plan ce qui permet de maintenir une bonne cohésion avec la couche de matériau intumescent jusqu'à des températures élevées, la fibre de verre ne devenant visqueuse qu'à des températures de l'ordre de 800°C.

[0034] Le tissu de verre est de préférence un tissu comportant de 5 à 10 fils/cm en trame et chaine, pour lequel les fils sont composés de 100 à 300 brins de verre, le tissu ayant une masse surfacique de 400 à 800 g/m².

45 [0035] La couche de matériau intumescent est réalisée dans l'exemple qui suit à partir d'un matériau silicone réticulant à température ambiante mais comme vu plus haut, un matériau intumescent acrylique, époxy ou PVC contenant des charges graphite ou silicate peut être uti-50 lisé.

[0036] Ce matériau peut être sous forme d'un enduit appliqué, par exemple, par un procédé d'enduction simple ou multi-passe sur la couche de tissu éventuellement préalablement recouverte d'une couche de matériau d'accroché 12 de même nature chimique que le matériau intumescent.

[0037] Une telle couche de matériau d'accroché 12 entre le tissu de verre et la couche de matériau intumescent

est selon l'exemple une couche de matériau silicone d'accroché réticulant à température ambiante dans le cas d'un matériau intumescent à base de silicone, un matériau acrylique pour un matériau intumescent à base d'acrylique, un matériau époxy pour un matériau intumescent à base d'époxy, un matériau PVC pour un matériau intumescent à base de PVC.

[0038] La couche d'accroché est déposée sur le tissu par exemple par un procédé d'enduction avant la pose de la couche de matériau intumescent. Cette couche d'accroché permet une meilleure accroche du matériau intumescent sur le tissu. le matériau de la couche d'accroché est appliqué en fine couche sur le tissu, typiquement 100 à 300 g/m².

[0039] Selon un mode de réalisation préféré le tissu est un tissu de verre, la couche d'accroché est un matériau silicone et le matériau intumescent est à base silicone.

[0040] De retour à la couche de matériau intumescent 11, ce matériau, notamment silicone, est un matériau chargé en base silicate ou graphite ce qui permet son gonflement en cas d'élévation en température. Ce matériau, pour son application, contient un catalyseur pour permettre sa réticulation ainsi qu'un retardateur de prise pour allonger son temps de prise à température ambiante. Ceci permet une application aisée sur le tissu sans toutefois perturber le procédé de réticulation accélérée par chauffage pour lequel on cherche à avoir le temps de prise le plus court possible, typiquement de l'ordre de quelques minutes vers 140 à 180 °C. D'autre part, comme il ne faut pas déclencher l'intumescence du matériau intumescent pendant le procédé de réticulation accélérée par chauffage, le dosage entre la base silicate et/ou graphite expansible est adapté selon le procédé employé.

[0041] Par convention un appellera par la suite face externe de la couverture la face comportant la couche de tissu 10 et face interne la face comportant le matériau intumescent du fait que la face de la couverture en contact avec l'objet à protéger, par exemple un chemin de câble est la face comportant le matériau intumescent et la face externe de la couverture par rapport à l'objet à protéger est la face comportant le tissu.

[0042] La couverture selon l'exemple comprend en face externe sur le tissu, une couche 13 de finition pour laquelle on utilise un matériau silicone ou un mastic acrylique de finition réticulant à température ambiante. Ce matériau peut être un matériau liquide appliqué, par exemple, par un procédé d'enduction et que l'on laisse ensuite réticuler. Ce matériau de finition permet de rendre le tissu étanche à l'eau et à l'air, lavable et décontaminable. Il est appliqué en fine couche, typiquement 100 à 300 g/m².

[0043] Les matériaux silicone, acrylique, époxy ou PVC contenant des charges graphites et/ou silicates peuvent être notamment de type à polycondensation ou polyaddition. Ce sont des matériaux préférablement réticulables à température ambiante.

[0044] Le procédé de fabrication part d'un rouleau de tissu de largeur compatible avec les fours d'enduction d'une ligne de fabrication en continu qui comporte un poste d'application du matériau d'accroché à température ambiante, un poste d'enduction de ce matériau et de réticulation par chauffage, un poste retournant le matériau pour appliquer la couche de finition et procéder à son chauffage pour sa réticulation. La couverture d'une largeur de quelques mètres est ensuite conditionnée en rouleaux par exemple d'une longueur de 500 mètres pour être livrée à l'utilisateur qui va découper des plaques adaptées aux éléments à protéger.

[0045] La couverture intumescente de la présente demande peut être installée sur des chemins de câbles ou autres éléments allongés traversant des locaux comme des tuyauteries avec sa face interne de matériau silicone intumescent appliquée sur lesdits éléments allongés et sa face externe lavable en face extérieure.

[0046] Des plaques de couverture découpées en simple couche sont représentées à la figure 2 qui représente une coupe longitudinale d'un chemin de câble où des plaques 1a, 1b sont positionnées juxtaposées sur les faces supérieure, inférieure et sur les faces latérales non représentées.

[0047] Les plaques de couverture sont dimensionnées en fonction des dimensions des dispositifs à recouvrir et, par exemple des plaques de largeur égale à celle des chemins de câbles et des plaques de largeur égale à la hauteur des chemins de câbles peuvent être réalisées. Les plaques peuvent être découpées pour avoir une longueur de 1 m à 2 m et peuvent être recoupées pour s'ajuster sur les dispositifs à protéger.

[0048] La figure 3 représente la configuration améliorée de l'invention qui laisse des interstices entre les couches pour donner de l'espace au matériau lorsqu'il gonfle à la chaleur.

[0049] Dans cet exemple des premières couches de plagues 3a et 3b sont posées respectivement sur et sous le chemin de câble en laissant des premiers espaces 6 entre elles d'une longueur telle que les extrémités de ces plaques sont recouvertes par les extrémités de deuxièmes couches de plaques 4a, 4b chevauchant les premiers espaces et laissant elles-mêmes entre elles des deuxièmes espaces 7. L'opération est reproduite avec une troisième couche de plaques 3'a, 3'b chevauchant les deuxièmes espaces et séparées entre elles par des troisièmes espaces 8 et une quatrième couche de plaques 4'a, 4'b séparées par des espaces 9. Ainsi les espaces entre les plaques de couverture intumescentes permettent l'expansion du matériau intumescent sous l'action de la chaleur d'un feu sans gonflement notable de la protection.

[0050] Par ailleurs, les extrémités empilées 5 d'une longueur de l'ordre de 5% à 20%, préférablement de 5% à 10% de la longueur des plaques vont par exemple servir de zones de fixation des couvertures par des liens métalliques ou des colliers de serrage.

[0051] Les espaces entre les plaques de couverture

35

40

45

10

15

20

25

30

35

40

50

55

peuvent être laissés vides et sont alors remplis d'air ambiant.

[0052] De manière alternative, des moyens de remplissage tels que des séparateurs 20, 21 adaptés à tenir les plaques écartées sont disposés dans les espaces entre les plaques pour renforcer la couverture des dispositifs protégés.

[0053] Ces moyens de remplissage peuvent être réalisés par des plaques ajourées 20 telles que des plaques nid d'abeille ou cloisonnées ou des séparateurs accordéons 21 disposés dans les espaces entre les plaques du matériau de couverture.

[0054] Ils peuvent être réalisés en matériau fusible ou non.

[0055] Lorsque le matériau des séparateurs est un matériau fusible, la résorption de ce matériau va laisser la place pour le gonflement de la couche de matériau intumescent des plaques lorsqu'il est soumis à la chaleur. A cas contraire, la forme des séparateurs va permettre le gonflement du matériau intumescent.

[0056] Les plaques de couverture sont maintenues sur les chemins de câble de manière traditionnelle, par exemple au moyen de colliers de serrage métalliques. Elles peuvent entourer plusieurs faces du chemin de câble ou se positionner face par face.

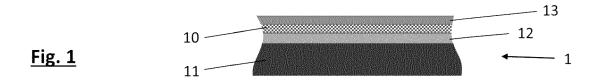
[0057] L'invention n'est pas limitée aux exemples représentés et notamment plus de quatre épaisseurs de couvertures par face de chemin de câble peuvent être utilisées.

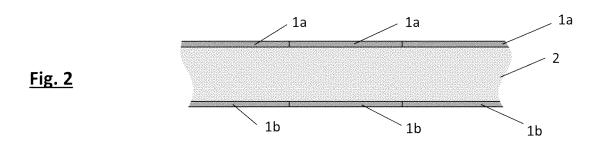
Revendications

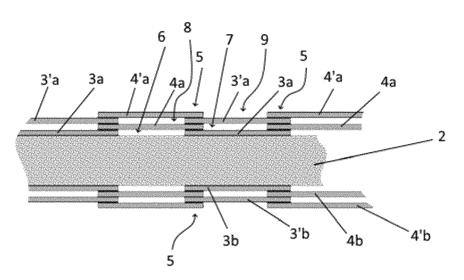
- 1. Dispositif de protection d'un ou plusieurs éléments allongés (2) au moyen de plaques d'un matériau de couverture muni d'une face externe comportant une couche de tissu (10) d'un matériau résistant à la chaleur et muni d'une face interne côté élément allongé comportant une couche (11) de matériau intumescent, caractérisé en ce qu'il comporte une pluralité de plaques de couvertures déposées en quinconce et comprenant :
 - une première couche de plaques de couvertures (3a et 3b) posées sur au moins une face du chemin de câble en laissant des premiers espaces (6) entre elles ;
 - une deuxième couche de plaques de couvertures (4a, 4b) posées sur la première couche, chevauchant les premiers espaces et laissant elles-mêmes entre elles des deuxièmes espaces (7):
 - une troisième couche de plaques de couvertures (3'a, 3'b) chevauchant les deuxièmes espaces (7) et séparées entre elles par des troisièmes espaces (8) et ;
 - au moins une quatrième couche de plaques de couvertures (4'a, 4'b) chevauchant les troi-

sième espaces (8) et séparées entre elles par des quatrièmes espaces (9) ;

lesdits espaces étant d'une longueur telle que les extrémités des plaques desdites couches sont empilées les unes sur les autres.


- 2. Dispositif de protection d'un ou plusieurs éléments allongés (2) selon la revendication 1 pour lequel lesdits espaces sont remplis d'air ambiant.
- Dispositif de protection d'un ou plusieurs éléments allongés (2) selon la revendication 1 pour lequel des moyens séparateurs sont disposés dans lesdits espaces.
- 4. Dispositif de protection d'un ou plusieurs éléments allongés (2) selon la revendication 3 pour lequel lesdits moyens séparateurs sont des plaques ajourées (20) ou des séparateurs accordéon (21).
- 5. Dispositif de protection d'un ou plusieurs éléments allongés (2) selon la revendication 3 ou 4 pour lequel les moyens séparateurs sont réalisés en matériau fusible.
- 6. Dispositif de protection d'un ou plusieurs éléments allongés (2) selon l'une quelconque des revendications précédentes pour lequel lesdits éléments allongés sont des chemins de câbles ou des tuyauteries, les plaques de matériau de couverture étant disposées sur une ou plusieurs faces des chemins de câbles ou tuyauteries et maintenues par des moyens de serrage tels que colliers de serrage, fil de fer ou autre.
- 7. Dispositif de protection selon l'une quelconque des revendications précédentes, pour lequel le tissu est un tissu de verre ou un tissu à fibres méta-aramides et le matériau intumescent est un silicone ou un matériau intumescent acrylique, époxy ou PVC, ledit matériau intumescent contenant des charges graphites et/ou silicates
- 45 8. Dispositif de protection selon l'une quelconque des revendications précédentes pour lequel lesdites plaques comportent une troisième couche d'un matériau d'accroché (12) intercalée entre le tissu et le matériau intumescent.
 - 9. Dispositif de protection selon la revendication 8 pour lequel le matériau d'accroche (12) est de même nature chimique que le matériau intumescent et de type à polycondensation ou polyaddition adapté à favoriser l'adhérence du matériau intumescent sur ledit tissu.
 - 10. Dispositif de protection selon l'une quelconque des


revendications précédentes pour lequel le tissu est revêtu sur son côté opposé à la face interne d'une couche silicone de finition (13) formant une face externe de la couverture qui forme sur le tissu une couche d'étanchéité à l'air ou à l'eau décontaminable par lavage.


Dispositif de protection selon la revendication 10 pour lequel ladite couche silicone de finition (13) est

12. Dispositif de protection selon l'une quelconque des revendications précédentes pour lequel le matériau intumescent (11) est de type à polycondensation ou polyaddition.

de type à polycondensation ou polyaddition.

<u>Fig. 3</u>

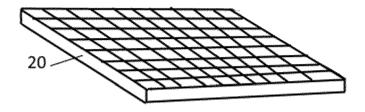


Fig. 4A

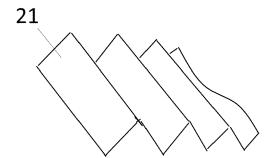


Fig. 4B

EP 3 799 935 A2

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

• FR 2973252 A1 [0003]