

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 805 386 A1

(12)

EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:

14.04.2021 Bulletin 2021/15

(21) Application number: 19815297.7

(22) Date of filing: 07.06.2019

(51) Int Cl.:

C12N 15/09 (2006.01)

C07K 19/00 (2006.01)

C12N 9/16 (2006.01)

C12N 15/113 (2010.01)

C12N 15/55 (2006.01)

C12N 15/62 (2006.01)

(86) International application number:

PCT/JP2019/022795

(87) International publication number:

WO 2019/235627 (12.12.2019 Gazette 2019/50)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 08.06.2018 US 201862682244 P

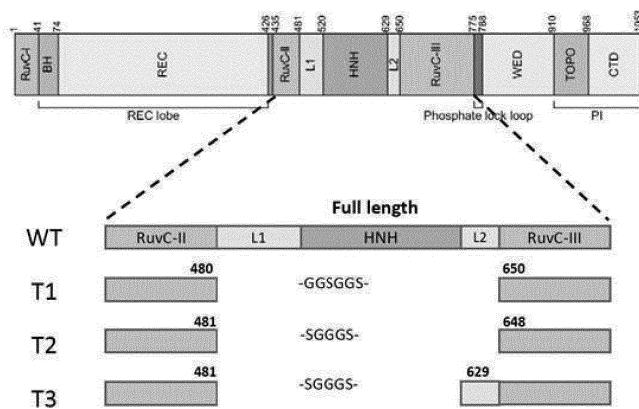
(71) Applicant: **Modalis Therapeutics Corporation**
Tokyo, 103-0023 (JP)

(72) Inventors:

- YAMAGATA, Tetsuya
Cambridge, MA 02138 (US)
- QIN, Yuanbo
Cambridge, MA 02138 (US)

(74) Representative: **Hoffmann Eitle**
Patent- und Rechtsanwälte PartmbB
Arabellastraße 30
81925 München (DE)

(54) **MODIFIED CAS9 PROTEIN AND USE THEREOF**


(57) A protein having a binding ability to guide RNA and consisting of a sequence containing an amino acid sequence wherein a continuous deletion region is present between the 481-position and the 649-position in the amino acid sequence shown in SEQ ID NO: 2, the deletion region containing

- (i) all or a part of L1 domain (481- to 519-positions), and
- (ii) entire HNH domain (520- to 628-positions), and fur-

ther optionally containing

(iii) all or a part of L2 domain (629- to 649-positions), wherein amino acids adjacent to each of the deletion region are linked by a linker consisting of 3 to 10 amino acid residues functions as a miniaturized dSaCas9 protein while maintaining DNA binding affinity. Use of the miniaturized dSaCas9 protein makes it possible to mount many genes into vectors.

Fig. 1

Description

[Technical Field]

5 **[0001]** The present invention relates to a modified Cas9 protein that is miniaturized while maintaining a binding ability to guide RNA, and use thereof.

[Background Art]

10 **[0002]** Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are known to compose the adaptive immune system that provides acquired resistance against invasive foreign nucleic acids in bacteria and archaea together with Cas (CRISPR-associated) genes. CRISPR frequently originate from phage or plasmid DNA and are composed of 24 bp to 48 bp short, conserved repeat sequences having unique variable DNA sequences referred to as spacers of similar size inserted there between. In addition, a group of genes encoding the Cas protein family is present in the vicinity 15 of the repeat and spacer sequences.

15 **[0003]** In the CRISPR/Cas system, foreign DNA is cleaved into fragments of about 30 bp by the Cas protein family and inserted into CRISPR. Cas1 and Cas2 proteins, which are among the Cas protein family, recognize a base sequence referred to as proto-spacer adjacent motif (PAM) of foreign DNA, cut the upstream, and insert same into the CRISPR sequence of the host, which creates immune memory of bacteria. RNA generated by transcription of a CRISPR sequence 20 including immune memory (referred to as pre-crRNA) is paired with a partially complementary RNA (trans-activating crRNA: tracrRNA) and incorporated into Cas9 protein which is one of the Cas protein family. The pre-crRNA and tracrRNA incorporated into Cas9 are cleaved by RNaseIII to form small RNA fragments (CRISPR-RNAs: crRNAs) containing a foreign sequence (guide sequence), and a Cas9-crRNA-tracrRNA complex is thus formed. The Cas9-crRNA-tracrRNA complex binds to a foreign invasive DNA complementary to crRNA, and the Cas9 protein, which is an enzyme that 25 cleaves the DNA (nuclease), cleaves the foreign invasive DNA, thereby suppressing and eliminating the function of the DNA that invaded from the outside.

20 **[0004]** In recent years, techniques for applying the CRISPR/Cas system to genome editing have been actively developed. crRNA and tracrRNA are fused, expressed as a tracrRNA-crRNA chimera (hereinafter to be referred to as guide RNA: gRNA), and utilized. Using this, nuclease (RNA-guided nuclease: RGN) is then recruited to cleave genomic DNA 30 at the target site.

25 **[0005]** On the other hand, a system that can regulate the expression level of the target gene can be obtained by fusing a transcriptional regulator such as transcriptional activator (e.g., VP64, VP160 and the like), a transcriptional inhibitor (e.g., KRAB and the like), and the like with a variant (nuclease-null, dCas9) wherein the nuclease of the Cas9 protein in CRISPR/Cas9, which is one of the genome editing systems, is inactivated. For example, to further increase the 35 efficiency of gene activation, it is fused with an activation factor (VP64-p65-Rta, VPR) in which three transcriptional activators are linked, and the fused dCas9 protein (dCas9-VPR; dCas9 fusion protein) strongly activates expression of the target gene without cleaving DNA.

30 **[0006]** Various variants of Cas9 protein have been created and reported for the purpose of alleviating PAM specificity, modifying (activating/inactivating) nuclease activity, and miniaturizing size (patent documents 1 - 3).

35 **[0007]** The Cas9 protein consists of two lobes; a REC lobe (REC: recognition) and a NUC lobe (NUC: nuclease). The REC lobe is composed of an α -helix rich in arginine residues, a REC1 domain and a REC2 domain, and the NUC lobe is composed of a RuvC domain, an HNH domain and a PI domain (PI: PAM interacting). The RuvC domain contains three motifs (RuvC-I to RuvC-III). As a miniaturized Cas9 protein, SaCas9 (i.e., mini-SaCas9) has been reported in 40 which all or part of each functional domain is removed and linked with a linker. As the linker, GS-linker (GGGGSGGGG: SEQ ID NO: 10), R-linker (KRRRRHR: SEQ ID NO: 11) and GSK linker (GSK) are known (patent document 4, non-patent document 1).

[Document List]

50 [Patent documents]

[0008]

55 patent document 1: WO 2016/141224A1
 patent document 2: WO 2017/010543A1
 patent document 3: WO 2018/074979A1
 patent document 4: WO 2018/209712A1

[non-patent document]

[0009] non-patent document 1: Dacheng Ma, et al., ACS Synth. Biol. 2018, 7, 978-985

5 [Summary of Invention]

[Technical Problem]

10 [0010] Expression of dCas9 fusion protein in vivo requires an expression vector. In gene therapy, adeno-associated virus vector (AAV) is mainly used since it is highly safe and highly efficient. The mountable size of AAV is about 4.4 kb, while the dCas9 protein already occupies about 4 kb, and the constitution of fusion protein is extremely limited for mounting on AAV.

15 [0011] Therefore, the present inventors aim to provide a further miniaturized dCas9 protein variant having DNA binding affinity substantially equivalent to that of a full-length protein.

[Solution to Problem]

20 [0012] The present inventors took note of a nuclease-null variant (dSaCas9) of Cas9 derived from *S. aureus* (to be also referred to as SaCas9 in the present description) as a Cas9 protein, and have conducted intensive studies in an attempt to solve the above-mentioned problems. As a result, they have found a specific region that has little influence on the ability to bind to guide RNA even if deleted, and succeeded in producing a miniaturized dSaCas9 protein while maintaining or enhancing the DNA binding affinity by substituting the amino acid at a predetermined position with a specific amino acid, which resulted in the completion of the present invention.

[0013] Deletion and substitution are also collectively referred to as mutation.

25 [0014] In the present description, dSaCas9 protein before introduction of mutation is sometimes to be referred to as wild-type dSaCas9 (protein), and dSaCas9 protein after introduction of mutation is sometimes to be referred to as modified dSaCas9 variant (protein).

[0015] That is, the present invention provides the following.

30 [1] A protein having a binding ability to guide RNA and consisting of a sequence comprising an amino acid sequence wherein a continuous deletion region is present between the 481-position and the 649-position in the amino acid sequence shown in SEQ ID NO: 2, the deletion region comprising

35 (i) all or a part of L1 domain (481- to 519-positions), and
(ii) entire HNH domain (520- to 628-positions), and further optionally comprising
(iii) all or a part of L2 domain (629- to 649-positions), wherein amino acids adjacent to each of the deletion region are linked by a linker consisting of 3 to 10 amino acid residues.

40 [2] The protein of the above-mentioned [1], wherein the deletion region comprises

(i) entire L1 domain (481- to 519-positions),
(ii) entire HNH domain region (520- to 628-positions), and
(iii) entire L2 domain (629- to 649-positions).

45 [3] The protein of the above-mentioned [1], wherein the deletion region comprises

(i) a part of L1 domain (482- to 519-positions),
(ii) entire HNH domain (520- to 628-positions), and
(iii) a part of L2 domain (629- to 647-positions).

50 [4] The protein of the above-mentioned [1], wherein the deletion region comprises

(i) a part of L1 domain (482- to 519-positions), and
(ii) entire HNH domain (520- to 628-positions).

55 [5] A protein consisting of a sequence comprising an amino acid sequence resulting from substitution of glutamic acid (E) at the 45-position and/or the 163-position with other amino acid in the amino acid sequence shown in SEQ ID NO: 2, and having a binding ability to guide RNA.

[6] The protein of the above-mentioned [5], wherein said other amino acid is a basic amino acid.

[7] The protein of the above-mentioned [6], wherein the basic amino acid is lysine (K).

[8] The protein of any of the above-mentioned [1] to [4], wherein glutamic acid (E) at the 45-position and/or the 163-position are/is substituted with other amino acid(s).

5 [9] The protein of the above-mentioned [8], wherein said other amino acid is a basic amino acid.

[10] The protein of the above-mentioned [9], wherein the basic amino acid is lysine (K).

[11] The protein of any of the above-mentioned [1] to [8], wherein the linker is a 5 - 9 amino acid length linker composed of glycine (G) and serine (S).

[12] The protein of any of the above-mentioned [1] to [11], wherein the linker is selected from the following:

10 - SGGGS-

- GGSGGS-

15 - SGSGSGSG-

- SGSGSGSGS-.

[13] The protein of any of the above-mentioned [1] to [12], having identity of 80% or more at a site other than the mutated and/or deleted positions in the SEQ ID NO: 2.

20 [14] The protein of any of the above-mentioned [1] to [12], wherein one to several amino acids are substituted, deleted, inserted and/or added at a site other than the mutated and/or deleted positions in the SEQ ID NO: 2.

[15] The protein of any of the above-mentioned [1] to [14], wherein a transcriptional regulator protein or domain is linked.

25 [16] The protein of the above-mentioned [15], wherein the transcriptional regulator is a transcriptional activator.

[17] The protein of the above-mentioned [15], wherein the transcriptional regulator is a transcriptional silencer or a transcriptional inhibitor.

[18] A nucleic acid encoding the protein of any of the above-mentioned [1] to [17].

30 [19] A protein-RNA complex provided with the protein of any of the above-mentioned [1] to [18] and a guide RNA comprising a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from a proto-spacer adjacent motif (PAM) sequence in a target double-stranded polynucleotide.

[20] A method for site-specifically modifying a target double-stranded polynucleotide, including a step of mixing and incubating a target double-stranded polynucleotide, a protein and a guide RNA, and a step of having the aforementioned protein modify the aforementioned target double-stranded polynucleotide at a binding site located upstream of a PAM sequence; wherein, the aforementioned protein is the protein of any of the above-mentioned [1] to [17], and the aforementioned guide RNA contains a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from the aforementioned PAM sequence in the aforementioned target double-stranded polynucleotide.

35 [21] A method for increasing expression of a target gene in a cell, comprising expressing the protein of the above-mentioned [16] and one or plural guide RNAs for the aforementioned target gene in the aforementioned cell.

[22] A method for decreasing expression of a target gene in a cell, comprising expressing the protein of the above-mentioned [17] and one or plural guide RNAs for the aforementioned target gene in the aforementioned cell.

[23] The method of the above-mentioned [21] or [22], wherein the cell is a eukaryotic cell.

40 [24] The method of the above-mentioned [21] or [22], wherein the cell is a yeast cell, a plant cell or an animal cell.

[Advantageous Effects of Invention]

[0016] According to the present invention, a dSaCas9 protein further miniaturized while having a binding ability to guide RNA can be obtained. The miniaturized dSaCas9 protein makes it possible to mount a larger number of genes into expression vectors limited in capacity.

[Brief Description of Drawings]

55 **[0017]**

Fig. 1 is a schematic showing of the structure of wild-type dSaCas9(WT) and dSaCas9 variants (T1 - T3).

T1: dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 T2: dsaCas9-d(K482-V647) with "SGGGS" as linker,
 T3: dsaCas9-d(K482-E628) with "SGGGS" as linker

5 Fig. 2 is a graph showing the DNA binding affinity of wild-type dSaCas9(WT) and dSaCas9 variants (T1 - T3).

T1: dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 T2: dsaCas9-d(K482-V647) with "SGGGS" as linker,
 T3: dsaCas9-d(K482-E628) with "SGGGS" as linker

10 Fig. 3 is a graph showing the DNA binding affinity of wild-type dSaCas9(WT) and dSaCas9 variants (M1 - M14).

M1: E782K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M2: N968K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 15 M3: L988H on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M4: N806R on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M5: A889N on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M6: D786R on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M7: K50H on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 20 M8: A53K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M9: K57H on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M10: I64K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M11: V41N on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 25 M12: E45K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M13: G52K on dsaCas9-d(E481-T649) with "GGSGGS" as linker,
 M14: L56K on dsaCas9-d(E481-T649) with "GGSGGS" as linker

Fig. 4 is a graph showing the DNA binding affinity of wild-type dSaCas9(WT) and dSaCas9 variants (M15 - M27).

30 M15: E163K on dsaCas9-d(E481-T649) + E45K,
 M16: N806Q on dsaCas9-d(E481-T649) + E45K,
 M17: D896K on dsaCas9-d(E481-T649) + E45K,
 M18: E42R on dsaCas9-d(E481-T649) + E45K,
 M19: D73R on dsaCas9-d(E481-T649) + E45K,
 35 M20: Q456K on dsaCas9-d(E481-T649) + E45K,
 M21: T787Q on dsaCas9-d(E481-T649) + E45K,
 M22: N873K on dsaCas9-d(E481-T649) + E45K,
 M23: Q835K on dsaCas9-d(E481-T649) + E45K,
 M24: L891K on dsaCas9-d(E481-T649) + E45K,
 40 M25: N899K on dsaCas9-d(E481-T649) + E45K,
 M26: N902R on dsaCas9-d(E481-T649) + E45K,
 M27: E739R on dsaCas9-d(E481-T649) + E45K

[Description of Embodiments]

45 [0018] The present invention is described below. Unless particularly indicated, the terms used in the present description have meanings generally used in the pertinent field.

<dSaCas9 variant>

50 [0019] The dSaCas9 variant of the present invention is a dSaCas9 protein further miniaturized while having a binding ability to guide RNA. Using the miniaturized dSaCas9 protein, a larger number of genes can be mounted into a vector.

[0020] In the present description, "guide RNA" refers to that which mimics the hairpin structure of tracrRNA-crRNA, and contains in the 5'-terminal region thereof a polynucleotide composed of a base sequence complementary to a base sequence located from 1 to preferably 20 to 24 bases, and more preferably from 1 to preferably 22 to 24 bases, upstream from the PAM sequence in a target double-stranded polynucleotide. Moreover, guide RNA may contain one or more polynucleotides composed of a base sequence allowing the obtaining of a hairpin structure composed of base sequences non-complementary to a target double-stranded polynucleotide symmetrically arranged so as to form a complementary

sequence having a single point as the axis thereof.

[0021] The guide RNA has a function of binding to the dSaCas9 variant of the present invention and leading the protein to a target DNA. The guide RNA has a sequence at the 5'-terminal which is complementary to the target DNA, and binds to the target DNA via the complementary sequence, thereby leading the dSaCas9 variant of the present invention to the target DNA. Since the dSaCas9 variant does not have a DNA endonuclease, it does not cleave target DNA though it binds to the target DNA.

[0022] The guide RNA is designed and prepared based on the sequence information of the target DNA. Specific examples include sequences such as those used in the Examples.

[0023] In the present description, the terms "polypeptide", "peptide" and "protein" refer to polymers of amino acid residues and are used interchangeably. In addition, these terms also refer to amino acid polymers in which one or a plurality of amino acid residues are in the form of a chemical analog or modified derivative of the corresponding amino acids present in nature.

[0024] In the present description, the "basic amino acid" refers to an amino acid having a residue showing basicity in addition to one amino group in a molecule such as lysine, arginine, histidine and the like.

[0025] In the present description, a "sequence" refers to a nucleotide sequence of an arbitrary length, is a deoxyribonucleotide or ribonucleotide, and may be linear or branched and single-stranded or double-stranded.

[0026] In the present description, a "PAM sequence" refers to a sequence present in a target double-stranded polynucleotide that can be recognized by Cas9 protein, and the length and base sequence of the PAM sequence differs according to the bacterial species.

[0027] Furthermore, in the present description, "N" refers to any one base selected from the group consisting of adenine, cytosine, thymine and guanine, "A" refers to adenine, "G" to guanine, "C" to cytosine, "T" to thymine, "R" to a base having a purine skeleton (adenine or guanine), and "Y" to a base having a pyrimidine skeleton (cytosine or thymine).

[0028] In the present description, a "polynucleotide" refers to a deoxyribonucleotide or ribonucleotide polymer having linear or cyclic coordination and may be single-stranded or double-stranded, and should not be interpreted as being restricted with respect to polymer length. In addition, polynucleotides include known analogs of naturally-occurring nucleotides as well as nucleotides in which at least one of the base moieties, sugar moieties and phosphate moieties thereof has been modified (such as a phosphorothioate backbone). In general, an analog of a specific nucleotide has the same base-pairing specificity, and for example, A analogs form base pairs with T.

[0029] The present invention provides a protein (embodiment 1) having a binding ability to guide RNA and consisting of a sequence comprising an amino acid sequence wherein a continuous deletion region is present between the 481-position and 649-positions in the amino acid sequence shown in SEQ ID NO: 2, the deletion region comprising

- (i) all or a part of L1 domain (481- to 519-positions), and
- (ii) entire HNH domain (520- to 628-positions), and further optionally containing
- (iii) all or a part of L2 domain (629- to 649-positions), wherein amino acids adjacent to each of the deletion region are linked by a linker consisting of 3 to 10 amino acid residues.

[0030] SEQ ID NO: 2 is a full-length amino acid sequence of dSaCas9 protein. The dSaCas9 protein is SaCas9 (S. aureus-derived Cas9) in which the 10-position aspartic acid is substituted with alanine, and the 580-position asparagine is substituted with alanine, and consists of two lobes of REC lobe (41 - 425 residues) and NUC lobe (1 - 40 residues and 435 - 1053 residues) as also shown in Fig. 1. The two lobes are linked via bridge helix (BH: 41 - 73 residues) rich in arginine and linker loop (426 - 434 residues). The NUC lobe is constituted of RuvC domain (1 - 40, 435 - 480 and 650 - 774 residues), HNH domain (520 - 628 residues), WED domain (788 - 909 residues) and PI domain (910 - 1053 residues). The PI domain is divided into topoisomerase homology (TOPO) domain and C-terminal domain (CTD). The RuvC domain is constituted of 3 separate motifs (RuvC-I - III) and is associated with the HNH domain and PI domain. The HNH domain is linked to RuvC-II and RuvC-III via L1 (481 - 519 residues) linker and L2 (629 - 649 residues) linker, respectively. The WED domain and RuvC domain are linked by "phosphate lock" loop (775 - 787 residues) (H. Nishimasu et al., Cell, Volume 162, Issue 5, pp. 1113-1126).

[0031] In one embodiment of the present invention, the continuous deletion region present between the 481-position and the 649-position in the amino acid sequence shown in SEQ ID NO: 2 is

- (i) entire L1 domain (481- to 519-positions),
- (ii) entire HNH domain (520- to 628-positions), and
- (iii) entire L2 domain (629- to 649-positions)

(embodiment 1-1).

[0032] In one embodiment of the present invention, the continuous deletion region present between the 481-position

and the 649-position in the amino acid sequence shown in SEQ ID NO: 2 is

5 (i) a part of L1 domain (482- to 519-positions),
 (ii) entire HNH domain (520- to 628-positions), and
 (iii) a part of L2 domain (629- to 647-positions)

(embodiment 1-2).

10 [0033] In one embodiment of the present invention, the continuous deletion region present between the 481-position and the 649-position in the amino acid sequence shown in SEQ ID NO: 2 is

(i) a part of L1 domain (482- to 519-positions), and
 (ii) entire HNH domain (520- to 628)

15 (embodiment 1-3).

[0034] In another embodiment of the present invention, the present invention provides a protein (embodiment 2) having binding ability to guide RNA and further having mutations at the 45-position and/or the 163-position in addition to the mutations in the aforementioned embodiments 1, 1-1, 1-2 and 1-3.

20 [0035] The mutation(s) at the 45-position and/or the 163-position are/is specifically substitution of glutamic acid with basic amino acid, preferably with lysine, arginine or histidine, more preferably with lysine.

[0036] In another embodiment of the present invention, the present invention provides a protein (embodiment 3) consisting of a sequence comprising an amino acid sequence resulting from substitution of glutamic acid at the 45-position and/or the 163-position with other amino acid in the amino acid sequence shown in SEQ ID NO: 2, and having a binding ability to guide RNA.

[0037] The mutation(s) at the 45-position and/or the 163-position are/is specifically substitution of glutamic acid with basic amino acid, preferably with lysine, arginine or histidine, more preferably with lysine.

[0038] As a method for optionally creating "a continuous deletion region between the 481-position and the 649-position" in the amino acid sequence shown in SEQ ID NO: 2, and a method for substituting "glutamic acid at the 45-position and/or the 163-position with other amino acid" in the amino acid sequence shown in SEQ ID NO: 2, a method including introducing a conventional site-specific mutation into a DNA encoding a predetermined amino acid sequence, and then expressing the DNA by a conventional method can be mentioned. Examples of the method for introducing a site-specific mutation include a method using amber mutation (gapped-duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), a method by PCR using a primer for mutagenesis, and the like. In addition, it can be easily performed according to the manual and using the Q5 Site-Directed Mutagenesis Kit (NEB).

[0039] In another embodiment of the present invention, the present invention provides a protein (embodiment 4) that is functionally equivalent to the proteins of the aforementioned embodiments 1, 1-1, 1-2, 1-3, 2 and 3. To be functionally equivalent to the proteins of the aforementioned embodiments 1, 1-1, 1-2, 1-3, 2 and 3, the amino acid sequence having identity of 80% or more at a site other than the positions where the mutations have been applied in the SEQ ID NO: 2 in the aforementioned embodiments 1, 1-1, 1-2, 1-3, 2 and 3 and needs to have a binding ability to guide RNA. When amino acids are increased or decreased due to mutation, the "site other than the position(s) where the mutation(s) has(have) been applied" can be interpreted to mean a "site other than the position(s) corresponding to the position(s) where the mutation(s) has (have) been applied". This identity is preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, particularly preferably 95% or more, and most preferably 99% or more. The amino acid sequence identity can be determined by a method known per se. For example, amino acid sequence identity (%) can be determined using a program conventionally used in the pertinent field (e.g., BLAST, FASTA, etc.) by default. In another aspect, identity (%) is determined by any algorithm known in the pertinent field, such as algorithms of Needleman et al. (1970) (J. Mol. Biol. 48: 444-453), Myers and Miller (CABIOS, 1988, 4: 11-17) and the like. The algorithm of Needleman et al. is incorporated into the GAP program in the GCG software package (available at www.gcg.com) and the identity (%) can be determined using, for example, any of BLOSUM 62 matrix and PAM250 matrix, as well as gap weight: 16, 14, 12, 10, 8, 6 or 4, and length weight: 1, 2, 3, 4, 5 or 6. The algorithm of Myers and Miller is incorporated into the ALIGN program that is a part of the GCG sequence alignment software package. When the ALIGN program is used to compare amino acid sequences, for example, PAM120 weight residue table, gap length penalty 12, and gap penalty 4 can be used.

[0040] As a protein functionally equivalent to the proteins of the aforementioned embodiments 1, 1-1, 1-2, 1-3, 2 and 3, a protein (embodiment 4-1) which comprises one to several amino acids substituted, deleted, inserted and/or added at site(s) other than the positions where the mutations have been applied in the SEQ ID NO: 2 in the aforementioned embodiment 1, 1-1, 1-2, 1-3, 2 and 3 and having the binding ability to guide RNA is provided. When amino acids are

increased or decreased due to mutation, the "site other than the position(s) where the mutation(s) has(have) been applied" can be interpreted to mean a "site other than the position(s) corresponding to the position(s) where the mutation(s) has(have) been applied".

[0041] As a technique for artificially performing "substitution, deletion, insertion and/or addition of amino acid", for example, a method including applying conventional site specific mutation introduction to DNA encoding a predetermined amino acid sequence, and thereafter expressing the DNA by a conventional method can be mentioned. Examples of the site specific mutation introduction method include a method using amber mutation (gapped duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), a PCR method using a mutation introduction primer and the like. In addition, it can be easily performed according to the manual and using the Q5 Site-Directed Mutagenesis Kit (NEB).

[0042] The number of the amino acids modified above is at least one residue, specifically one or several, or more than that. Among the aforementioned substitution, deletion, insertion and addition, substitution of amino acid is particularly preferred. The substitution is more preferably substitution with an amino acid having similar properties such as hydrophobicity, charge, pK, and characteristic of steric structure and the like. Examples of the substitution include substitution within the groups of i) glycine, alanine; ii) valine, isoleucine, leucine; iii) aspartic acid, glutamic acid, asparagine, glutamine; iv) serine, threonine; v) lysine, arginine; vi) phenylalanine, tyrosine.

[0043] In the dSaCas9 variant of the present invention, the dSaCas9 variant protein is in a state of being cleaved by the deletion mutation, and the both ends of the deletion region are linked by a linker. That is, in the dSaCas9 variant of the present invention, amino acids each adjacent to the deletion region are linked by a linker consisting of 3 to 10 amino acid residues. Due to the linkage, the dSaCas9 variant of the present invention has a continuous amino acid sequence.

[0044] The linker (hereinafter to be also referred to as the linker of the present invention) is not particularly limited as long as it can link both ends of a cleaved protein and does not influence the function thereof. Preferably, it is a group capable of adopting a intrinsically disordered structure that binds to other protein while freely changing its own shape according to the protein, and preferably a linker composed of 3 to 10 amino acid residues which is constituted of glycine (G) and serine (S). More preferably, the linker of the present invention is a peptide residue having a length of 5 - 9 amino acids. Specifically, the following residues can be mentioned.

- SGGS- (SEQ ID NO: 3)
- GGSGGS- (SEQ ID NO: 4)
- SGSGSGSG- (SEQ ID NO: 5)
- SGSGSGSGS- (SEQ ID NO: 6)

[0045] The introduction of linker in each variant can also be performed by a method including performing conventional site-specific mutagenesis on the DNA encoding a predetermined amino acid sequence to insert a base sequence encoding the linker, and thereafter expressing the DNA by a conventional method. Examples of the method for site-specific mutagenesis include methods same as those described above.

[0046] The dSaCas9 variant in the present embodiment can be produced according to, for example, the method indicated below. First, a host is transformed using a vector containing a nucleic acid that encodes the dSaCas9 variant of the present invention. Then, the host is cultured to express the aforementioned protein. Conditions such as medium composition, culture temperature, duration of culturing or addition of inducing agents can be determined by a person with ordinary skill in the art in accordance with known methods so that the transformant grows and the aforementioned protein is efficiently produced. In addition, in the case of having incorporated a selection marker in the form of an antibiotic resistance gene in an expression vector, the transformant can be selected by adding antibiotic to the medium. Then, dSaCas9 variant of the present invention is obtained by purifying the aforementioned protein expressed by the host according to a method known per se.

[0047] There are no particular limitations on the host, and examples thereof include animal cells, plant cells, insect cells and microorganisms such as Escherichia coli, Bacillus subtilis or yeast. Preferred host is an animal cell.

<dSaCas9 variant-guide RNA complex>

[0048] In one embodiment thereof, the present invention provides a protein-RNA complex provided with the protein indicated in the previous section on <dSaCas9 variant> and guide RNA containing a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from a proto-spacer adjacent motif (PAM) sequence in a target double-stranded polynucleotide.

[0049] The aforementioned protein and the aforementioned guide RNA are able to form a protein-RNA complex by mixing in vitro and in vivo under mild conditions. Mild conditions refer to a temperature and pH of a degree that does not cause protein decomposition or denaturation, and the temperature is preferably 4°C to 40°C, while the pH is preferably 4 to 10.

[0050] In addition, the duration of mixing and incubating the aforementioned protein and the aforementioned guide

RNA is preferably 0.5 hr to 1 hr. The complex formed by the aforementioned protein and the aforementioned guide RNA is stable and is able to maintain stability even if allowed to stand for several hours at room temperature.

<CRISPR-Cas Vector System>

5 [0051] In one embodiment thereof, the present invention provides a CRISPR-Cas vector system provided with a first vector containing a gene encoding a protein indicated in the previous section on <dSaCas9 variant>, and a second vector containing a guide RNA containing a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from PAM sequence in a target double-stranded polynucleotide.

10 [0052] In another embodiment, the present invention provides a CRISPR-Cas vector system in which a gene encoding a protein indicated in the previous section on <dSaCas9 variant>, and a guide RNA containing a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from PAM sequence in a target double-stranded polynucleotide are contained in the same vector.

15 [0053] The guide RNA is suitably designed to contain in the 5'-terminal region thereof a polynucleotide composed of a base sequence complementary to a base sequence located from 1 to 20 to 24 bases, and preferably to 22 to 24 bases, upstream from a PAM sequence in a target double-stranded polynucleotide. Moreover, the guide RNA may also contain one or more polynucleotides composed of a base sequence allowing the obtaining of a hairpin structure composed of base sequences non-complementary to a target double-stranded polynucleotide symmetrically arranged so as to form a complementary sequence having a single point as the axis thereof.

20 [0054] The vector of the present embodiment is preferably an expression vector. Examples of the expression vector that can be used include *E. coli*-derived plasmids such as pBR322, pBR325, pUC12 or pUC13; *B. subtilis*-derived plasmids such as pUB110, pTP5 or pC194; yeast-derived plasmids such as pSH19 or pSH15; bacteriophages such as λ -phages; viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus or cytomegalovirus; and modified vectors thereof. In view of the activation of gene expression in vivo, a virus vector, particularly an adeno-associated virus, is preferable.

25 [0055] In the aforementioned expression vector, there are no particular limitations on the promoters for expression of the aforementioned dSaCas9 variant protein or the aforementioned guide RNA, and examples thereof that can be used include promoters for expression in animal cells such as EF1 α promoter, SR α promoter, SV40 promoter, LTR promoter, cytomegalovirus (CMV) promoter or HSV-tk promoter, promoters for expression in plant cells such as the 35S promoter of cauliflower mosaic virus (CaMV) or rubber elongation factor (REF) promoter, and promoters for expression in insect cells such as polyhedrin promoter or p10 promoter. These promoters can be suitably selected according to the aforementioned dSaCas9 variant protein and the aforementioned guide RNA, or the type of cells expressing the aforementioned Cas9 protein and the aforementioned guide RNA.

30 [0056] The aforementioned expression vector may also further have a multi-cloning site, enhancer, splicing signal, polyadenylation signal, selection marker (drug resistant) and promoter thereof, or replication origin and the like.

<Method for Site-Specifically Modifying Target Double-Stranded Polynucleotide>

[First Embodiment]

40 [0057] In one embodiment thereof, the present invention provides a method for site-specifically modifying a target double-stranded polynucleotide, provided with:

45 a step for mixing and incubating a target double-stranded polynucleotide, a protein and a guide RNA, and
a step for having the aforementioned protein modify the aforementioned target double-stranded polynucleotide at a binding site located upstream of a PAM sequence; wherein,
the aforementioned target double-stranded polynucleotide has a PAM sequence,
the aforementioned protein is a protein shown in the aforementioned <dSaCas9 variant>, and
50 the aforementioned guide RNA contains a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from the aforementioned PAM sequence in the aforementioned target double-stranded polynucleotide.

[0058] In the present embodiment, the target double-stranded polynucleotide is not particular limited as long as it has a PAM sequence.

55 [0059] In the present embodiment, the protein and guide RNA are as described in the aforementioned <dSaCas9 variant>.

[0060] The following provides a detailed explanation of the method for site-specifically modifying a target double-stranded polynucleotide.

[0061] First, the aforementioned protein and the aforementioned guide RNA are mixed and incubated under mild conditions. Mild conditions are as previously described. The incubation time is preferably 0.5 hr to 1 hr. A complex formed by the aforementioned protein and the aforementioned guide RNA is stable and is able to maintain stability even if allowed to stand for several hours at room temperature.

5 [0062] Next, the aforementioned protein and the aforementioned guide RNA form a complex on the aforementioned target double-stranded polynucleotide. The aforementioned protein recognizes PAM sequences, and binds to the aforementioned target double-stranded polynucleotide at a binding site located upstream of the PAM sequence. Successively, a target double-stranded polynucleotide modified to meet the purpose can be obtained in a region determined by the complementary binding of the aforementioned guide RNA and the aforementioned double-stranded polynucleotide.

10 [0063] In the present description, the "modification" means that the target double-stranded polynucleotide changes structurally or functionally. For example, structural or functional change of the target double-stranded polynucleotide by the addition of a functional protein or a base sequence can be mentioned. By the modification, the function of the target double-stranded polynucleotide can be altered, deleted, enhanced, or suppressed, and a new function can be added.

15 [0064] Since the dSaCas9 variant of the present invention does not have endonuclease activity, the protein can bind to the aforementioned target double-stranded polynucleotide at the binding site located upstream of the PAM sequence bond, but stays there and cannot cleave the polynucleotide. Therefore, for example, when a labeled protein such as fluorescent protein (e.g., GFP) and the like is fused to the protein, the labeled protein can be bound to the target double-stranded polynucleotide via dSaCas9 variant protein-guide RNA. By appropriately selecting a substance to be bound to the dSaCas9 variant, various functions can be imparted to the target double-stranded polynucleotide.

20 [0065] Furthermore, transcriptional regulator protein or domain can be linked to the N-terminal or C-terminal of the dSaCas9 variant protein. Examples of the transcriptional regulator or domain thereof include transcriptional activator or domain thereof (e.g., VP64, VP160, NF- κ B p65), transcriptional silencer or domain thereof (e.g., hetero chromatin protein 1(HP1)), and transcriptional inhibitor or domain thereof (e.g., Kruppel-associated box (KRAB), ERF repressor domain (ERD), mSin3A interaction domain (SID)).

25 [0066] It is also possible to link an enzyme that modifies the methylation state of DNA (e.g., DNA methyltransferase (DNMT), TET), or an enzyme that modifies a histone subunit (e.g., histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase, histone demethylase).

30 [Second Embodiment]

[0067] In the present embodiment, an expression step may be further provided prior to the incubation step in which the protein described in the previous section on <dSaCas9 variant> and guide RNA are expressed using the previously described CRISPR-Cas vector system.

[0068] In the expression step of the present embodiment, dSaCas9 variant protein and guide RNA are first expressed using the aforementioned CRISPR-Cas vector system. A specific expression method includes transforming a host using an expression vector containing a gene that encodes dSaCas9 variant protein and an expression vector containing guide RNA, respectively (or expression vector simultaneously containing gene encoding dSaCas9 variant protein and guide RNA). Then, the host is cultured to express the dSaCas9 variant protein and guide RNA. Conditions such as medium composition, culture temperature, duration of culturing or addition of inducing agents can be determined by a person with ordinary skill in the art in accordance with known methods so that the transformant grows and the aforementioned protein is efficiently produced. In addition, in the case of having incorporated a selection marker in the form of an antibiotic resistance gene in the expression vector, the transformant can be selected by adding antibiotic to the medium. Then, the dSaCas9 variant protein and guide RNA are obtained by purifying the dSaCas9 variant protein and guide RNA expressed by the host according to a suitable method.

45 <Method for Site-Specifically Modifying Target Double-Stranded Polynucleotide in Cells>

[0069] In one embodiment thereof, the present invention provides a method for site-specifically modifying a target double-stranded polynucleotide in cells, provided with:

50 a step for introducing the previously described CRISPR-Cas vector system into a cell and expressing protein described in the previous section on <dSaCas9 variant> and guide RNA,

a step for having the aforementioned protein bind with the aforementioned target double-stranded polynucleotide at a binding site located upstream of a PAM sequence, and

55 a step for obtaining a modified target double-stranded polynucleotide in a region determined by complementary binding between the aforementioned guide RNA and the aforementioned target double-stranded polynucleotide; wherein

the aforementioned guide RNA contains a polynucleotide composed of a base sequence complementary to a base

sequence located 1 to 20 to 24 bases upstream from the aforementioned PAM sequence in the aforementioned target double-stranded polynucleotide.

5 [0070] In the expression step of the present embodiment, first, dSaCas9 variant protein and guide RNA are expressed in a cell using the aforementioned CRISPR-Cas vector system.

[0071] Examples of organisms serving as the origin of the cells targeted for application of the method of the present embodiment include prokaryote, yeast, animal, plant, insect and the like. There are no particular limitations on the aforementioned animals, and examples thereof include, but are not limited to, human, monkey, dog, cat, rabbit, swine, bovine, mouse, rat and the like. In addition, the type of organism serving as the source of the cells can be arbitrarily selected according to the desired type or objective of the target double-stranded polynucleotide.

[0072] Examples of animal-derived cells targeted for application of the method of the present embodiment include, but are not limited to, germ cells (such as sperm or ova), somatic cells composing the body, stem cells, progenitor cells, cancer cells isolated from the body, cells isolated from the body that are stably maintained outside the body as a result of having become immortalized (cell line), and cells isolated from the body for which the nuclei have been artificially replaced.

[0073] Examples of somatic cells composing the body include, but are not limited to, cells harvested from arbitrary tissue such as the skin, kidneys, spleen, adrenals, liver, lungs, ovaries, pancreas, uterus, stomach, small intestine, large intestine, urinary bladder, prostate gland, testes, thymus, muscle, connective tissue, bone, cartilage, vascular tissue, blood, heart, eyes, brain or neural tissue. Specific examples of somatic cells include, but are not limited to, fibroblasts, bone marrow cells, immune cells (e.g., B lymphocytes, T lymphocytes, neutrophils, macrophages or monocytes etc.), erythrocytes, platelets, osteocytes, bone marrow cells, pericytes, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, intravascular endothelial cells, lymphatic endothelial cells, hepatocytes, pancreatic islet cells (e.g., α cells, β cells, δ cells, ϵ cells or PP cells etc.), chondrocytes, cumulus cells, glia cells, nerve cells (neurons), oligodendrocytes, microglia cells, astrocytes, cardiomyocytes, esophageal cells, muscle cells (e.g., smooth muscle cells or skeletal muscle cells etc.), melanocytes and mononuclear cells, and the like.

[0074] Stem cells refer to cells having both the ability to self-replicate as well as the ability to differentiate into a plurality of other cell lines. Examples of stem cells include, but are not limited to, embryonic stem cells (ES cells), embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells and hair follicle stem cells, and the like.

[0075] Cancer cells are cells derived from somatic cells that have acquired reproductive integrity. Examples of the origins of cancer cells include, but are not limited to, breast cancer (e.g., invasive ductal carcinoma, non-invasive ductal carcinoma, inflammatory breast cancer etc.), prostate cancer (e.g., hormone-dependent prostate cancer or hormone-independent prostate cancer etc.), pancreatic cancer (e.g., pancreatic ductal carcinoma etc.), gastric cancer (e.g., papillary adenocarcinoma, mucinous carcinoma, adenosquamous carcinoma etc.), lung cancer (e.g., non-small cell lung cancer, small cell lung cancer, malignant mesothelioma etc.), colon cancer (e.g., gastrointestinal stromal tumor etc.), rectal cancer (e.g., gastrointestinal stromal tumor etc.), colorectal cancer (e.g., familial colorectal cancer, hereditary non-polyposis colon cancer, gastrointestinal stromal tumor etc.), small intestine cancer (e.g., non-Hodgkin's lymphoma, gastrointestinal stromal tumor etc.), esophageal cancer, duodenal cancer, tongue cancer, pharyngeal cancer (e.g., nasopharyngeal carcinoma, oropharyngeal carcinoma, hypopharyngeal carcinoma etc.), head and neck cancer, salivary gland cancer, brain tumor (e.g., pineal astrocytoma, pilocytic astrocytoma, diffuse astrocytoma, anaplastic astrocytoma etc.), schwannoma, liver cancer (e.g., primary liver cancer, extrahepatic bile duct cancer etc.), kidney cancer (e.g., renal cell carcinoma, transitional cell carcinoma of the renal pelvis and ureter etc.), gallbladder cancer, bile duct cancer, pancreatic cancer, endometrial carcinoma, cervical cancer, ovarian cancer (e.g., epithelial ovarian cancer, extragonadal germ cell tumor, ovarian germ cell tumor, ovarian low malignant potential tumor etc.), bladder cancer, urethral cancer, skin cancer (e.g., intraocular (ocular) melanoma, Merkel cell carcinoma etc.), hemangioma, malignant lymphoma (e.g., reticulum cell sarcoma, lymphosarcoma, Hodgkin's etc.), melanoma (malignant melanoma), thyroid cancer (e.g., medullary thyroid cancer etc.), parathyroid cancer, nasal cancer, paranasal cancer, bone tumor (e.g., osteosarcoma, Ewing's tumor, uterine sarcoma, soft tissue sarcoma etc.), metastatic medulloblastoma, angioblastoma, protuberant dermatofibrosarcoma, retinal sarcoma, penile cancer, testicular tumor, pediatric solid tumor (e.g., Wilms tumor or pediatric kidney tumor etc.), Kaposi's sarcoma, AIDS-induced Kaposi's sarcoma, maxillary sinus tumor, fibrous histiocytoma, leiomyosarcoma, rhabdomyosarcoma, chronic myeloproliferative disease and leukemia (e.g., acute myelogenous leukemia, acute lymphoblastic leukemia etc.).

[0076] Cell lines refer to cells that have acquired reproductive integrity through artificial manipulation ex vivo. Examples of cell lines include, but are not limited to, HCT116, Huh7, HEK293 (human embryonic kidney cells), HeLa (human cervical cancer cell line), HepG2 (human liver cancer cell line), UT7/TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, NsO/1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five and Vero.

[0077] Introduction of the CRISPR-Cas vector system into cells can be carried out using a method suitable for the viable cells used, and examples thereof include electroporation method, heat shock method, calcium phosphate method, lipofection method, DEAE dextran method, microinjection method, particle gun method, methods using viruses, and methods using commercially available transfection reagents such as FuGENE (registered trade mark) 6 Transfection

5 Reagent (manufactured by Roche), Lipofectamine 2000 Reagent (manufactured by Invitrogen Corp.), Lipofectamine LTX Reagent (manufactured by Invitrogen Corp.) or Lipofectamine 3000 Reagent (manufactured by Invitrogen Corp.).

[0078] The subsequent modification step is the same as the method shown in the aforementioned <Method for Site-Specifically Modifying Target Double-Stranded nucleotide>

10 [First Embodiment].

[0079] By the modification of the target double-stranded polynucleotide in this embodiment, cells with modified target double-stranded polynucleotide can be obtained.

15 [0080] While the present invention is explained in more detail in the following by referring to Examples, they do not limit the scope of the present invention.

[Example]

Example 1: Evaluation of DNA binding affinity of dSaCas9 variant

20 (Method)

1. Cloning

25 [0081] Using NEB Q5 Site-Directed Mutagenesis Kit, a predetermined deletion region was made in dSaCas9 gene, a gene encoding a linker was introduced, and a KRAB gene as a transcriptional regulator was fused to produce various dSaCas9 variants (Fig. 1). The expression suppression activity of these variants was examined using MYD88 gene. All gene constructs of dSaCas9 variant were incorporated into pX601 vectors (F. Ann Ran et al., Nature 2015; 520(7546); pp.186-191). For the DNA binding assay, crRNA sequence; GGAGCCACAGTTCTTCCACGG (SEQ ID NO: 7) was fused with tracrRNA sequence; GTTTTAGTACTCTGGAAACAGAATCTACTAAAACAAGGCAAAATGCCGTTTAT-CACGTCAA CTTGTTGGCGAGATTTTTT (SEQ ID NO: 8) to form a guide RNA (sgRNA) to be expressed from the vector.

30 [0082] As the guide RNA (control sgRNA) sequence of the control, the following sequence was used: ACGGAG-GCTAAGCGTCGCAA (SEQ ID NO: 9).

35 2. Cell transfection

40 [0083] HEK293FT cells were seeded in a 24-well plate at a density of 75,000 cells per well 24 hr before transfection and cultured in DMEM medium supplemented with 10% FBS, 2 mM fresh L-glutamine, 1 mM sodium pyruvate and non-essential amino acid. The cells were transfected according to the manual and using 500 ng of each dSaCas9 variant (repressor) expression vector, each sgRNA expression vector, and 1.5 μ l of Lipofectamine 2000 (Life technologies). For the gene expression analysis, the cells were recovered at 48-72 hr after transfection, dissolved in RLT buffer (Qiagen), and the total RNA was extracted using RNeasy kit (Qiagen).

45 3. Gene expression analysis

50 [0084] For the Taqman analysis, cDNA was prepared from 1.5 μ g of the total RNA by using 20 μ l volume TaqManTM High-Capacity RNA-to-cDNA Kit (Applied Biosystems). The prepared cDNA was diluted 20-fold and 6.33 μ l was used for each Taqman reaction. The Taqman primers and probes for the MYD88 gene were obtained from Applied Biosystems.

55 [0085] In Roche LightCycler 96 or LightCycler 480, the Taqman reaction was run using Taqman gene expression master mix (ThermoFisher), reaction was run using Taqman gene expression master mix (ThermoFisher), and the analysis was performed using LightCycler 96 analysis software.

[0086] Taqman probe product IDs:

55 MYD88: Hs01573837_g1 (FAM)
HPRT: Hs99999909_m1 (FAM, VIC)

[0086] Taqman QPCR condition:

Step 1; 95C 10 min
Step 2; 95C 15 sec
Step 3; 60C 30 sec
Repeat Step 2 and 3; 40 times

5

(Results)

[0087] When compared with the control, the gene expression level in the dSaCas9 variant of the present invention was as low as that of the wild-type dSaCas9 (Fig. 2). From the results, it was shown that the binding ability to the guide RNA, and further, the DNA binding affinity, were maintained even though the dSaCas9 variant of the present invention has a deletion region and is reduced to a size of about 80% that of the full-length dSaCas9.

[0088] Various point mutations were further introduced into T1 which showed particularly high DNA binding affinity in the above-mentioned results, and the effects thereof were confirmed. The results are shown in Fig. 3.

[0089] It was confirmed that M12 (T1 variant in which glutamic acid at the 45-position was substituted with lysine) had DNA binding affinity superior to that of T1.

[0090] Various point mutations were further introduced into M12, and the effects thereof were confirmed. The results are shown in Fig. 4.

[0091] It was confirmed that M15 (M12 variant in which glutamic acid at the 163-position was substituted with lysine) had DNA binding affinity superior to that of M12.

20

[Industrial Applicability]

[0092] According to the present invention, a dSaCas9 protein that is miniaturized while maintaining a DNA binding ability can be obtained. Use of the miniaturized dSaCas9 protein makes it possible to mount many genes into vectors, and thus provides various genome editing techniques.

[0093] This application is based on a provisional patent application No. 62/682,244 filed in the US (filing date: June 8, 2018), the contents of which are incorporated in full herein.

30

35

40

45

50

55

SEQUENCE LISTING

<110> EdiGENE Corporation
 5 <120> Modified Cas9 protein and use thereof
 <130> 092916
 <150> US62/682,244
 10 <151> 2018-6-8
 <160> 11
 <170> PatentIn version 3.5
 15 <210> 1
 <211> 3162
 <212> DNA
 <213> *Staphylococcus aureus*
 20 <220>
 <221> CDS
 <222> (1) .. (3162)
 <220>
 25 <221> gene
 <222> (1) .. (3162)
 <223> dSaCas9
 <400> 2
 30 atg aag cgg aac tac atc ctg ggc ctg gcc atc ggc atc acc acc agc gtg
 Met Lys Arg Asn Tyr Ile Leu Gly Leu Ala Ile Gly Ile Thr Ser Val
 1 5 10 15
 ggc tac ggc atc atc gac tac gag aca cgg gac gtg atc gat gcc ggc
 Gly Tyr Gly Ile Ile Asp Tyr Glu Thr Arg Asp Val Ile Asp Ala Gly
 35 20 25 30
 gtg cgg ctg ttc aaa gag gcc aac gtg gaa aac aac gag ggc agg cgg
 Val Arg Leu Phe Lys Ala Asn Val Glu Asn Asn Glu Gly Arg Arg
 40 35 40 45
 45 agc aag aga ggc gcc aga agg ctg aag cgg cgg agg cgg cat aga atc
 Ser Lys Arg Gly Ala Arg Arg Leu Lys Arg Arg Arg Arg His Arg Ile
 50 55 60
 cag aga gtg aag aag ctg ctg ttc gac tac aac ctg ctg acc gac cac
 Gln Arg Val Lys Lys Leu Phe Asp Tyr Asn Leu Leu Thr Asp His
 65 70 75 80
 50 agc gag ctg agc ggc atc aac ccc tac gag gcc aga gtg aag ggc ctg
 Ser Glu Leu Ser Gly Ile Asn Pro Tyr Glu Ala Arg Val Lys Gly Leu
 85 90 95
 55 agc cag aag ctg agc gag gaa gag ttc tct gcc gcc ctg ctg cac ctg
 Ser Gln Lys Leu Ser Glu Glu Phe Ser Ala Ala Leu Leu His Leu
 100 105 110
 ggc aag aga aga ggc gtg cac aac gtg aac gag gtg gaa gag gac acc
 Ala Lys Arg Arg Gly Val His Asn Val Asn Glu Val Glu Glu Asp Thr
 115 120 125

EP 3 805 386 A1

ggc aac gag ctg tcc acc aaa gag cag atc agc cg	gg aac gag ctg tcc acc aaa gag cag atc agc cg	gg aac gag ctg tcc acc aaa gag cag atc agc cg	432
Gly Asn Glu Leu Ser Thr Lys Glu Gln Ile Ser Arg Asn Ser Lys Ala	130 135 140		
5 ctg gaa gag aaa tac gtg gcc gaa ctg cag ctg gaa cgg ctg aag aaa	Leu Glu Glu Lys Tyr Val Ala Glu Leu Gln Leu Glu Arg Leu Lys Lys	145 150 155 160	480
Asp Gly Glu Val Arg Gly Ser Ile Asn Arg Phe Lys Thr Ser Asp Tyr	165 170 175		528
10 gac ggc gaa gtg cgg ggc agc atc aac aga ttc aag acc agc gac tac	Asp Gly Glu Val Arg Gly Ser Ile Asn Arg Phe Lys Thr Ser Asp Tyr	180 185 190	576
gtg aaa gaa gcc aaa cag ctg ctg aag gtg cag aag gcc tac cac cag	Val Lys Glu Ala Lys Gln Leu Leu Lys Val Gln Lys Ala Tyr His Gln		
15 ctg gac cag agc ttc atc gac acc tac atc gac ctg ctg gaa acc cgg	Leu Asp Gln Ser Phe Ile Asp Thr Tyr Ile Asp Leu Leu Glu Thr Arg	195 200 205	624
20 cgg acc tac tat gag gga cct ggc gag ggc agc ccc ttc ggc tgg aag	Arg Thr Tyr Tyr Glu Gly Pro Gly Glu Gly Ser Pro Phe Gly Trp Lys	210 215 220	672
gac atc aaa gaa tgg tac gag atg ctg atg ggc cac tgc acc tac ttc	Asp Ile Lys Glu Trp Tyr Glu Met Leu Met Gly His Cys Thr Tyr Phe	225 230 235 240	720
25 ccc gag gaa ctg cgg agc gtg aag tac gcc tac aac gcc gac ctg tac	Pro Glu Glu Leu Arg Ser Val Lys Tyr Ala Tyr Asn Ala Asp Ile Tyr	245 250 255	768
30 aac gcc ctg aac gac ctg aac aat ctc gtg atc acc agg gac gag aac	Asn Ala Leu Asn Asp Leu Asn Asn Leu Val Ile Thr Arg Asp Glu Asn	260 265 270	816
gag aag ctg gaa tat tac gag aag ttc cag atc atc gag aac gtg ttc	Glu Lys Leu Glu Tyr Tyr Glu Lys Phe Gln Ile Ile Glu Asn Val Phe	275 280 285	864
35 aag cag aag aag ccc acc ctg aag cag atc gac aaa gaa atc ctc	Lys Gln Lys Lys Pro Thr Leu Lys Gln Ile Ala Lys Glu Ile Leu	290 295 300	912
40 gtg aac gaa gag gat att aag ggc tac aga gtg acc agc acc ggc aag	Val Asn Glu Glu Asp Ile Lys Gly Tyr Arg Val Thr Ser Thr Gly Lys	305 310 315 320	960
45 ccc gag ttc acc aac ctg aag gtg tac cac gac atc aag gac att acc	Pro Glu Phe Thr Asn Leu Lys Val Tyr His Asp Ile Lys Asp Ile Thr	325 330 335	1008
50 gcc cgg aaa gag att att gag aac gcc gag ctg ctg gat cag att gcc	Ala Arg Lys Glu Ile Ile Glu Asn Ala Glu Leu Leu Asp Gln Ile Ala	340 345 350	1056
aag atc ctg acc atc tac cag agc agc gag gac atc cag gaa gaa ctg	Lys Ile Leu Thr Ile Tyr Gln Ser Ser Glu Asp Ile Gln Glu Glu Leu	355 360 365	1104
55 acc aat ctg aac tcc gag ctg acc cag gaa gag atc gag cag atc tct	Thr Asn Leu Asn Ser Glu Leu Thr Gln Glu Glu Ile Glu Gln Ile Ser	370 375 380	1152

EP 3 805 386 A1

aat	ctg	aag	ggc	tat	acc	ggc	acc	cac	aac	ctg	agc	ctg	aag	gcc	atc	1200
Asn	Leu	Lys	Gly	Tyr	Thr	Gly	Thr	His	Asn	Leu	Ser	Leu	Lys	Ala	Ile	
385					390					395					400	
5																
aac	ctg	atc	ctg	gac	gag	ctg	tgg	cac	acc	aac	gac	aac	cag	atc	gct	1248
Asn	Leu	Ile	Leu	Asp	Glu	Leu	Trp	His	Thr	Asn	Asp	Asn	Gln	Ile	Ala	
										405	410				415	
10																
atc	ttc	aac	cg	ctg	aag	ctg	gtg	ccc	aag	aag	gtg	gac	ctg	tcc	cag	1296
Ile	Phe	Asn	Arg	Leu	Lys	Leu	Val	Pro	Lys	Lys	Val	Asp	Leu	Ser	Gln	
								420		425					430	
15																
cag	aaa	gag	atc	ccc	acc	acc	ctg	gtg	gac	gac	ttc	atc	ctg	agc	ccc	1344
Gln	Lys	Glu	Ile	Pro	Thr	Thr	Leu	Val	Asp	Asp	Phe	Ile	Leu	Ser	Pro	
								435		440					445	
20																
gtc	gtg	aag	aga	agc	ttc	atc	cag	agc	atc	aaa	gtg	atc	aac	gcc	atc	1392
Val	Val	Lys	Arg	Ser	Phe	Ile	Gln	Ser	Ile	Lys	Val	Ile	Asn	Ala	Ile	
								450		455					460	
25																
atc	aag	aag	tac	ggc	ctg	ccc	acc	gac	atc	att	atc	gag	ctg	gcc	cgc	1440
Ile	Lys	Lys	Tyr	Gly	Leu	Pro	Asn	Asp	Ile	Ile	Ile	Glu	Leu	Ala	Arg	
								465		470					480	
30																
gag	aag	aac	tcc	aag	gac	gcc	cag	aaa	atg	atc	aac	gag	atg	cag	aag	1488
Glu	Lys	Asn	Ser	Lys	Asp	Ala	Gln	Lys	Met	Ile	Asn	Glu	Met	Gln	Lys	
								485		490					495	
35																
cgg	aac	cg	cag	acc	aac	gag	cg	atc	gag	gaa	atc	atc	cg	acc	acc	1536
Arg	Asn	Arg	Gln	Thr	Asn	Glu	Arg	Ile	Glu	Glu	Ile	Ile	Arg	Thr	Thr	
								500		505					510	
40																
ggc	aaa	gag	aac	gcc	aag	tac	ctg	atc	gag	aag	atc	aag	ctg	cac	gac	1584
Gly	Lys	Glu	Asn	Ala	Lys	Tyr	Leu	Ile	Glu	Lys	Ile	Lys	Leu	His	Asp	
								515		520					525	
45																
atg	cag	gaa	ggc	aag	tgc	ctg	tac	agc	ctg	gaa	gcc	atc	cct	ctg	gaa	1632
Met	Gln	Glu	Gly	Lys	Cys	Leu	Tyr	Ser	Leu	Glu	Ala	Ile	Pro	Leu	Glu	
								530		535					540	
50																
gat	ctg	ctg	aac	acc	ccc	tcc	aac	tat	gag	gtg	gac	cac	atc	atc	ccc	1680
Asp	Leu	Leu	Asn	Asn	Pro	Phe	Asn	Tyr	Glu	Val	Asp	His	Ile	Ile	Pro	
								545		550					560	
55																
aga	agc	gtg	tcc	tcc	gac	aac	agc	tcc	aac	aac	aag	gtg	ctc	gtg	aag	1728
Arg	Ser	Val	Ser	Phe	Asp	Asn	Ser	Phe	Asn	Asn	Lys	Val	Leu	Val	Lys	
								565		570					575	
60																
cag	gaa	gaa	ggc	agc	aag	aag	ggc	aac	cg	acc	cca	tcc	cag	tac	ctg	1776
Gln	Glu	Glu	Ala	Ser	Lys	Lys	Gly	Asn	Arg	Thr	Pro	Phe	Gln	Tyr	Leu	
								580		585					590	
65																
agc	agc	agc	gac	agc	aag	atc	agc	tac	gaa	acc	tcc	aag	aag	cac	atc	1824
Ser	Ser	Ser	Asp	Ser	Lys	Ile	Ser	Tyr	Glu	Thr	Phe	Lys	Lys	His	Ile	
								595		600					605	
70																
ctg	aat	ctg	gcc	aag	ggc	aag	ggc	aga	atc	agc	aag	acc	aag	aaa	gag	1872
Leu	Asn	Leu	Ala	Lys	Gly	Lys	Gly	Arg	Ile	Ser	Lys	Thr	Lys	Lys	Glu	
								610		615					620	
75																
tat	ctg	ctg	gaa	gaa	cgg	gac	atc	aac	agg	tcc	tcc	gtg	cag	aaa	gac	1920
Tyr	Leu	Leu	Glu	Glu	Arg	Asp	Ile	Asn	Arg	Phe	Ser	Val	Gln	Lys	Asp	

EP 3 805 386 A1

	625	630	635	640	
5	ttc atc aac cg ^g aac ctg gtg gat acc aga tac gcc acc aga ggc ctg Phe Ile Asn Arg Asn Leu Val Asp Thr Arg Tyr Ala Thr Arg Gly Leu 645 650 655				1968
	atg aac ctg ctg cg ^g agc tac ttc aga gtg aac aac ctg gac gtg aaa Met Asn Leu Leu Arg Ser Tyr Phe Arg Val Asn Asn Leu Asp Val Lys 660 665 670				2016
10	gtg aag tcc atc aat gg ^c gg ^c ttc acc agc ttt ctg cg ^g aag tgg Val Lys Ser Ile Asn Gly Gly Phe Thr Ser Phe Leu Arg Arg Lys Trp 675 680 685				2064
15	aag ttt aag aaa gag cg ^g aac aag ggg tac aag cac cac gcc gag gac Lys Phe Lys Lys Glu Arg Asn Lys Gly Tyr Lys His His Ala Glu Asp 690 695 700				2112
	gg ^c ctg atc att gg ^c aac gg ^c gat ttc atc ttc aaa gag tgg aag aaa Ala Leu Ile Ile Ala Asn Ala Asp Phe Ile Phe Lys Glu Trp Lys Lys 705 710 715 720				2160
20	ctg gac aag gg ^c aaa aaa gtg atg gaa aac cag atg ttc gag gaa aag Leu Asp Lys Ala Lys Lys Val Met Glu Asn Gln Met Phe Glu Glu Lys 725 730 735				2208
25	cag gg ^c gag agc atg ccc gag atc gaa acc gag cag gag tac aaa gag Gln Ala Glu Ser Met Pro Glu Ile Glu Thr Glu Gln Glu Tyr Lys Glu 740 745 750				2256
	atc ttc atc acc ccc cac cag atc aag cac att aag gac ttc aag gac Ile Phe Ile Thr Pro His Gln Ile Lys His Ile Lys Asp Phe Lys Asp 755 760 765				2304
30	tac aag tac agc cac cg ^g gtg gac aag aag cct aat aga gag ctg att Tyr Lys Tyr Ser His Arg Val Asp Lys Lys Pro Asn Arg Glu Leu Ile 770 775 780				2352
35	aac gac acc ctg tac tcc acc cg ^g aag gac gac aag gg ^c aac acc ctg Asn Asp Thr Leu Tyr Ser Thr Arg Lys Asp Asp Lys Gly Asn Thr Leu 785 790 795 800				2400
	atc gtg aac aat ctg aac gg ^c ctg tac gac aag gac aat gac aag ctg Ile Val Asn Asn Leu Asn Gly Leu Tyr Asp Lys Asp Asn Asp Lys Leu 805 810 815				2448
40	aaa aag ctg atc aac aag agc ccc gaa aag ctg ctg atg tac cac cac Lys Lys Leu Ile Asn Lys Ser Pro Glu Lys Leu Leu Met Tyr His His 820 825 830				2496
45	gac ccc cag acc tac cag aaa ctg aag ctg att atg gaa cag tac ggc Asp Pro Gln Thr Tyr Gln Lys Leu Lys Leu Ile Met Glu Gln Tyr Gly 835 840 845				2544
50	gac gag aag aat ccc ctg tac aag tac tac gag gaa acc gg ^c aac tac Asp Glu Lys Asn Pro Leu Tyr Lys Tyr Glu Glu Thr Gly Asn Tyr 850 855 860				2592
	ctg acc aag tac tcc aaa aag gac aac gg ^c ccc gtg atc aag aag att Leu Thr Lys Tyr Ser Lys Lys Asp Asn Gly Pro Val Ile Lys Lys Ile 865 870 875 880				2640
55	aag tat tac ggc aac aaa ctg aac gcc cat ctg gac atc acc gac gac				2688

EP 3 805 386 A1

5	Lys Tyr Tyr Gly Asn Lys Leu Asn Ala His Leu Asp Ile Thr Asp Asp 885 890 895	
	tac ccc aac agc aga aac aag gtc gtg aag ctg tcc ctg aag ccc tac Tyr Pro Asn Ser Arg Asn Lys Val Val Lys Leu Ser Leu Lys Pro Tyr 900 905 910	2736
10	aga ttc gac gtg tac ctg gac aat ggc gtg tac aag ttc gtg acc gtg Arg Phe Asp Val Tyr Leu Asp Asn Gly Val Tyr Lys Phe Val Thr Val 915 920 925	2784
	aag aat ctg gat gtg atc aaa aaa gaa aac tac tac gaa gtg aat agc Lys Asn Leu Asp Val Ile Lys Lys Glu Asn Tyr Tyr Glu Val Asn Ser 930 935 940	2832
15	aag tgc tat gag gaa gct aag aag ctg aag aag atc agc aac cag gcc Lys Cys Tyr Glu Glu Ala Lys Lys Leu Lys Ile Ser Asn Gln Ala 945 950 955 960	2880
20	gag ttt atc gcc tcc ttc tac aac aac gat ctg atc aag atc aac ggc Glu Phe Ile Ala Ser Phe Tyr Asn Asn Asp Leu Ile Lys Ile Asn Gly 965 970 975	2928
	gag ctg tat aga gtg atc ggc gtg aac aac gac ctg ctg aac cgg atc Glu Leu Tyr Arg Val Ile Gly Val Asn Asn Asp Leu Leu Asn Arg Ile 980 985 990	2976
25	gaa gtg aac atg atc gac atc acc tac cgc gag tac ctg gaa aac atg Glu Val Asn Met Ile Asp Ile Thr Tyr Arg Glu Tyr Leu Glu Asn Met 995 1000 1005	3024
30	aac gac aag agg ccc ccc agg atc att aag aca atc gcc tcc aag Asn Asp Lys Arg Pro Pro Arg Ile Ile Lys Thr Ile Ala Ser Lys 1010 1015 1020	3069
35	acc cag agc att aag aag tac agc aca gac att ctg ggc aac ctg Thr Gln Ser Ile Lys Lys Tyr Ser Thr Asp Ile Leu Gly Asn Leu 1025 1030 1035	3114
	tat gaa gtg aaa tct aag aag cac cct cag atc atc aaa aag ggc Tyr Glu Val Lys Ser Lys Lys His Pro Gln Ile Ile Lys Lys Gly 1040 1045 1050	3159
40	taa	3162
	<210> 2	
	<211> 1053	
45	<212> PRT	
	<213> Staphylococcus aureus	
	<400> 2	
50	Met Lys Arg Asn Tyr Ile Leu Gly Leu Ala Ile Gly Ile Thr Ser Val 1 5 10 15	
	Gly Tyr Gly Ile Ile Asp Tyr Glu Thr Arg Asp Val Ile Asp Ala Gly 20 25 30	
55	Val Arg Leu Phe Lys Glu Ala Asn Val Glu Asn Asn Glu Gly Arg Arg 35 40 45	

EP 3 805 386 A1

Ser Lys Arg Gly Ala Arg Arg Leu Lys Arg Arg Arg Arg His Arg Ile
 50 55 60

5 Gln Arg Val Lys Lys Leu Leu Phe Asp Tyr Asn Leu Leu Thr Asp His
 65 70 75 80

10 Ser Glu Leu Ser Gly Ile Asn Pro Tyr Glu Ala Arg Val Lys Gly Leu
 85 90 95

15 Ser Gln Lys Leu Ser Glu Glu Glu Phe Ser Ala Ala Leu Leu His Leu
 100 105 110

Ala Lys Arg Arg Gly Val His Asn Val Asn Glu Val Glu Glu Asp Thr
 115 120 125

20 Gly Asn Glu Leu Ser Thr Lys Glu Gln Ile Ser Arg Asn Ser Lys Ala
 130 135 140

25 Leu Glu Glu Lys Tyr Val Ala Glu Leu Gln Leu Glu Arg Leu Lys Lys
 145 150 155 160

Asp Gly Glu Val Arg Gly Ser Ile Asn Arg Phe Lys Thr Ser Asp Tyr
 165 170 175

30 Val Lys Glu Ala Lys Gln Leu Leu Lys Val Gln Lys Ala Tyr His Gln
 180 185 190

35 Leu Asp Gln Ser Phe Ile Asp Thr Tyr Ile Asp Leu Leu Glu Thr Arg
 195 200 205

Arg Thr Tyr Tyr Glu Gly Pro Gly Glu Gly Ser Pro Phe Gly Trp Lys
 210 215 220

40 Asp Ile Lys Glu Trp Tyr Glu Met Leu Met Gly His Cys Thr Tyr Phe
 225 230 235 240

45 Pro Glu Glu Leu Arg Ser Val Lys Tyr Ala Tyr Asn Ala Asp Leu Tyr
 245 250 255

50 Asn Ala Leu Asn Asp Leu Asn Asn Leu Val Ile Thr Arg Asp Glu Asn
 260 265 270

Glu Lys Leu Glu Tyr Tyr Glu Lys Phe Gln Ile Ile Glu Asn Val Phe
 275 280 285

55 Lys Gln Lys Lys Lys Pro Thr Leu Lys Gln Ile Ala Lys Glu Ile Leu

EP 3 805 386 A1

290

295

300

5 Val Asn Glu Glu Asp Ile Lys Gly Tyr Arg Val Thr Ser Thr Gly Lys
 305 310 315 320

10 Pro Glu Phe Thr Asn Leu Lys Val Tyr His Asp Ile Lys Asp Ile Thr
 325 330 335

15 Ala Arg Lys Glu Ile Ile Glu Asn Ala Glu Leu Leu Asp Gln Ile Ala
 340 345 350

20 Lys Ile Leu Thr Ile Tyr Gln Ser Ser Glu Asp Ile Gln Glu Glu Leu
 355 360 365

25 Thr Asn Leu Asn Ser Glu Leu Thr Gln Glu Glu Ile Glu Gln Ile Ser
 370 375 380

30 Asn Leu Lys Gly Tyr Thr Gly Thr His Asn Leu Ser Leu Lys Ala Ile
 385 390 395 400

35 Asn Leu Ile Leu Asp Glu Leu Trp His Thr Asn Asp Asn Gln Ile Ala
 405 410 415

40 Ile Phe Asn Arg Leu Lys Leu Val Pro Lys Lys Val Asp Leu Ser Gln
 420 425 430

45 Gln Lys Glu Ile Pro Thr Thr Leu Val Asp Asp Phe Ile Leu Ser Pro
 435 440 445

50 Val Val Lys Arg Ser Phe Ile Gln Ser Ile Lys Val Ile Asn Ala Ile
 450 455 460

55 Ile Lys Lys Tyr Gly Leu Pro Asn Asp Ile Ile Ile Glu Leu Ala Arg
 465 470 475 480

60 Glu Lys Asn Ser Lys Asp Ala Gln Lys Met Ile Asn Glu Met Gln Lys
 485 490 495

65 Arg Asn Arg Gln Thr Asn Glu Arg Ile Glu Glu Ile Ile Arg Thr Thr
 500 505 510

70 Gly Lys Glu Asn Ala Lys Tyr Leu Ile Glu Lys Ile Lys Leu His Asp
 515 520 525

75 Met Gln Glu Gly Lys Cys Leu Tyr Ser Leu Glu Ala Ile Pro Leu Glu
 530 535 540

EP 3 805 386 A1

Asp Leu Leu Asn Asn Pro Phe Asn Tyr Glu Val Asp His Ile Ile Pro
545 550 555 560

5 Arg Ser Val Ser Phe Asp Asn Ser Phe Asn Asn Lys Val Leu Val Lys
565 570 575

10 Gln Glu Glu Ala Ser Lys Lys Gly Asn Arg Thr Pro Phe Gln Tyr Leu
580 585 590

15 Ser Ser Ser Asp Ser Lys Ile Ser Tyr Glu Thr Phe Lys Lys His Ile
595 600 605

20 Leu Asn Leu Ala Lys Gly Lys Gly Arg Ile Ser Lys Thr Lys Lys Glu
610 615 620

25 Tyr Leu Leu Glu Glu Arg Asp Ile Asn Arg Phe Ser Val Gln Lys Asp
625 630 635 640

30 Phe Ile Asn Arg Asn Leu Val Asp Thr Arg Tyr Ala Thr Arg Gly Leu
645 650 655

35 Met Asn Leu Leu Arg Ser Tyr Phe Arg Val Asn Asn Leu Asp Val Lys
660 665 670

40 Val Lys Ser Ile Asn Gly Gly Phe Thr Ser Phe Leu Arg Arg Lys Trp
675 680 685

45 Lys Phe Lys Lys Glu Arg Asn Lys Gly Tyr Lys His His Ala Glu Asp
690 695 700

50 Ala Leu Ile Ile Ala Asn Ala Asp Phe Ile Phe Lys Glu Trp Lys Lys
705 710 715 720

55 Leu Asp Lys Ala Lys Lys Val Met Glu Asn Gln Met Phe Glu Glu Lys
725 730 735

60 Gln Ala Glu Ser Met Pro Glu Ile Glu Thr Glu Gln Glu Tyr Lys Glu
740 745 750

65 Ile Phe Ile Thr Pro His Gln Ile Lys His Ile Lys Asp Phe Lys Asp
755 760 765

70 Tyr Lys Tyr Ser His Arg Val Asp Lys Lys Pro Asn Arg Glu Leu Ile
770 775 780

75 Asn Asp Thr Leu Tyr Ser Thr Arg Lys Asp Asp Lys Gly Asn Thr Leu
785 790 795 800

EP 3 805 386 A1

5 Ile Val Asn Asn Leu Asn Gly Leu Tyr Asp Lys Asp Asn Asp Lys Leu
805 810 815

10 Lys Lys Leu Ile Asn Lys Ser Pro Glu Lys Leu Leu Met Tyr His His
820 825 830

15 Asp Pro Gln Thr Tyr Gln Lys Leu Lys Leu Ile Met Glu Gln Tyr Gly
835 840 845

20 Asp Glu Lys Asn Pro Leu Tyr Lys Tyr Glu Glu Thr Gly Asn Tyr
850 855 860

25 Leu Thr Lys Tyr Ser Lys Lys Asp Asn Gly Pro Val Ile Lys Lys Ile
865 870 875 880

30 Lys Tyr Tyr Gly Asn Lys Leu Asn Ala His Leu Asp Ile Thr Asp Asp
885 890 895

35 Tyr Pro Asn Ser Arg Asn Lys Val Val Lys Leu Ser Leu Lys Pro Tyr
900 905 910

40 Arg Phe Asp Val Tyr Leu Asp Asn Gly Val Tyr Lys Phe Val Thr Val
915 920 925

45 Lys Asn Leu Asp Val Ile Lys Lys Glu Asn Tyr Tyr Glu Val Asn Ser
930 935 940

50 Lys Cys Tyr Glu Glu Ala Lys Lys Leu Lys Lys Ile Ser Asn Gln Ala
945 950 955 960

55 Glu Phe Ile Ala Ser Phe Tyr Asn Asn Asp Leu Ile Lys Ile Asn Gly
965 970 975

60 Glu Leu Tyr Arg Val Ile Gly Val Asn Asn Asp Leu Leu Asn Arg Ile
980 985 990

65 Glu Val Asn Met Ile Asp Ile Thr Tyr Arg Glu Tyr Leu Glu Asn Met
995 1000 1005

70 Asn Asp Lys Arg Pro Pro Arg Ile Ile Lys Thr Ile Ala Ser Lys
1010 1015 1020

75 Thr Gln Ser Ile Lys Lys Tyr Ser Thr Asp Ile Leu Gly Asn Leu
1025 1030 1035

80 Tyr Glu Val Lys Ser Lys Lys His Pro Gln Ile Ile Lys Lys Gly
1040 1045 1050

```

<210> 3
<211> 5
<212> PRT
<213> Artificial Sequence
5
<220>
<223> linker

<400> 3

10      Ser Gly Gly Gly Ser
1                      5

15      <210> 4
<211> 6
<212> PRT
<213> Artificial Sequence

20      <220>
<223> linker

<400> 4

25      Gly Gly Ser Gly Gly Ser
1                      5

30      <210> 5
<211> 8
<212> PRT
<213> Artificial Sequence
30
<220>
<223> linker

<400> 5

35      Ser Gly Ser Gly Ser Gly Ser Gly
1                      5

40      <210> 6
<211> 9
<212> PRT
<213> Artificial Sequence

45      <220>
<223> linker

<400> 6

50      Ser Gly Ser Gly Ser Gly Ser Gly Ser
1                      5

55      <210> 7
<211> 21
<212> RNA
<213> Artificial Sequence
55
<220>

```

<223> Synthetic sequence for crRNA
 <400> 7
 5 ggagccacag uucuuccacg g 21

<210> 8
 <211> 83
 <212> RNA
 10 <213> Artificial Sequence

<220>
 <223> Synthetic sequence for tracRNA

15 <400> 8
 guuuuaguac ucuggaaaca gaaucuacua aaacaaggca aaaugccgug uuuauacacgu 60
 caacuuguug gcgagauuuu uuu 83

20 <210> 9
 <211> 20
 <212> RNA
 <213> Artificial Sequence

25 <220>
 <223> Synthetic sequence for control sgRNA

<400> 9
 30 acggaggcua agcgucgcaa 20

<210> 10
 <211> 8
 <212> PRT
 35 <213> Artificial Sequence

<220>
 <223> linker

<400> 10
 40 Gly Gly Gly Ser Gly Gly Gly
 1 5

<210> 11
 <211> 7
 <212> PRT
 45 <213> Artificial Sequence

<220>
 50 <223> linker

<400> 11
 55 Lys Arg Arg Arg Arg His Arg
 1 5

Claims

1. A protein having a binding ability to guide RNA and consisting of a sequence comprising an amino acid sequence wherein a continuous deletion region is present between the 481-position and the 649-position in the amino acid sequence shown in SEQ ID NO: 2, the deletion region comprising

5 (i) all or a part of L1 domain (481- to 519-positions), and
 (ii) entire HNH domain (520- to 628-positions), and further optionally comprising
 10 (iii) all or a part of L2 domain (629- to 649-positions), wherein amino acids adjacent to each of the deletion region are linked by a linker consisting of 3 to 10 amino acid residues.

2. The protein according to claim 1, wherein the deletion region comprises

15 (i) entire L1 domain (481- to 519-positions),
 (ii) entire HNH domain region (520- to 628-positions), and
 (iii) entire L2 domain (629- to 649-positions).

3. The protein according to claim 1, wherein the deletion region comprises

20 (i) a part of L1 domain (482- to 519-positions),
 (ii) entire HNH domain (520- to 628-positions), and
 (iii) a part of L2 domain (629- to 647-positions).

4. The protein according to claim 1, wherein the deletion region comprises

25 (i) a part of L1 domain (482- to 519-positions), and
 (ii) entire HNH domain (520- to 628-positions).

5. A protein consisting of a sequence comprising an amino acid sequence resulting from substitution of glutamic acid (E) at the 45-position and/or the 163-position with other amino acid in the amino acid sequence shown in SEQ ID NO: 2, and having a binding ability to guide RNA.

6. The protein according to claim 5, wherein said other amino acid is a basic amino acid.

35 7. The protein according to claim 6, wherein the basic amino acid is lysine (K).

8. The protein according to any one of claims 1 to 4, wherein glutamic acid (E) at the 45-position and/or the 163-position are/is substituted with other amino acid(s).

40 9. The protein according to claim 8, wherein said other amino acid is a basic amino acid.

10. The protein according to claim 9, wherein the basic amino acid is lysine (K).

45 11. The protein according to any one of claims 1 to 8, wherein the linker is a 5 - 9 amino acid length linker composed of glycine (G) and serine (S).

12. The protein according to any one of claims 1 to 11, wherein the linker is selected from the following:

50 - SGGS-
 - GGSAGS-
 - SGSGSGSG-
 - SGSGSGSGS-.

55 13. The protein according to any one of claims 1 to 12, having identity of 80% or more at a site other than the mutated and/or deleted positions in the SEQ ID NO: 2.

14. The protein according to any one of claims 1 to 12, wherein one to several amino acids are substituted, deleted, inserted and/or added at a site other than the mutated and/or deleted positions in the SEQ ID NO: 2.

15. The protein according to any one of claims 1 to 14, wherein a transcriptional regulator protein or domain is linked.
16. The protein according to claim 15, wherein the transcriptional regulator is a transcriptional activator.
- 5 17. The protein according to claim 15, wherein the transcriptional regulator is a transcriptional silencer or a transcriptional inhibitor.
18. A nucleic acid encoding the protein according to any one of claims 1 to 17.
- 10 19. A protein-RNA complex provided with the protein according to any one of claims 1 to 18 and a guide RNA comprising a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from a proto-spacer adjacent motif (PAM) sequence in a target double-stranded polynucleotide.
- 15 20. A method for site-specifically modifying a target double-stranded polynucleotide, including a step of mixing and incubating a target double-stranded polynucleotide, a protein and a guide RNA, and a step of having the protein modify the target double-stranded polynucleotide at a binding site located upstream of a PAM sequence; wherein, the protein is the protein according to any one of claims 1 to 17, and the guide RNA contains a polynucleotide composed of a base sequence complementary to a base sequence located 1 to 20 to 24 bases upstream from the PAM sequence in the target double-stranded polynucleotide.
- 20 21. A method for increasing expression of a target gene in a cell, comprising expressing the protein according to claim 16 and one or plural guide RNAs for the target gene in the cell.
- 25 22. A method for decreasing expression of a target gene in a cell, comprising expressing the protein according to claim 17 and one or plural guide RNAs for the target gene in the cell.
23. The method according to claim 21 or 22, wherein the cell is a eukaryotic cell.
- 30 24. The method according to claim 21 or 22, wherein the cell is a yeast cell, a plant cell or an animal cell.

35

40

45

50

55

Fig. 1

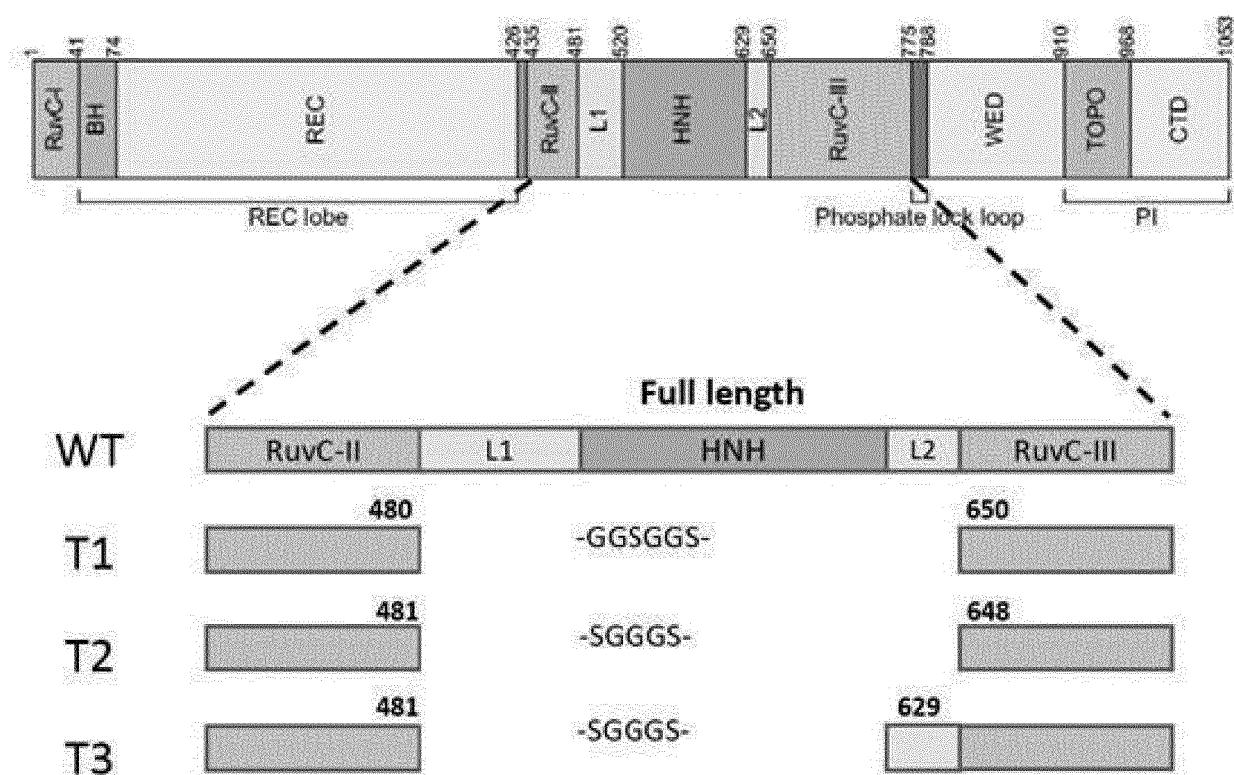


Fig. 2

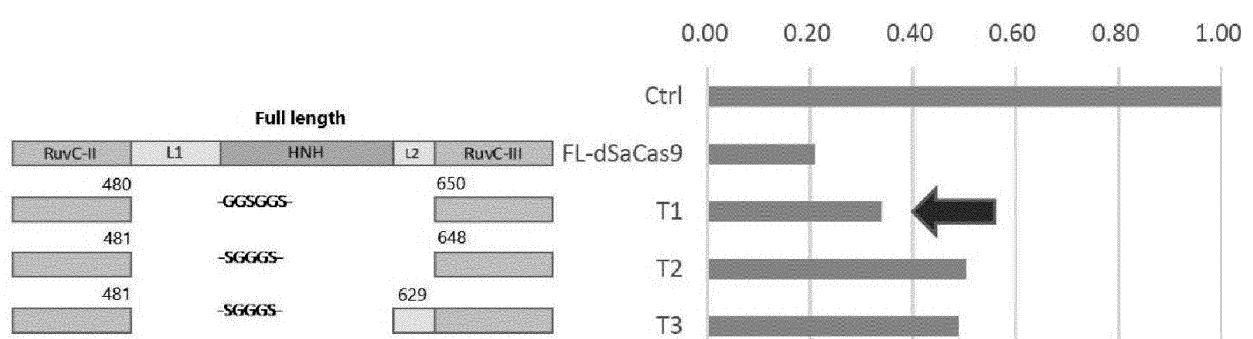


Fig. 3

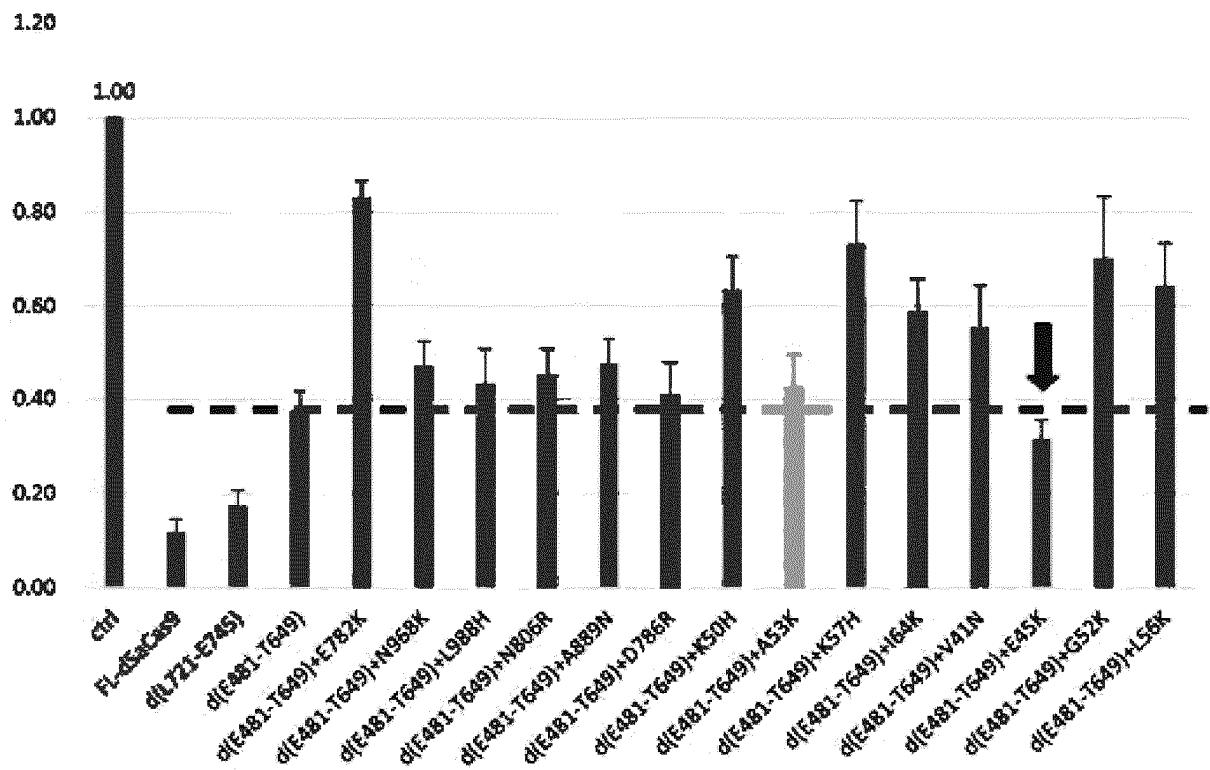
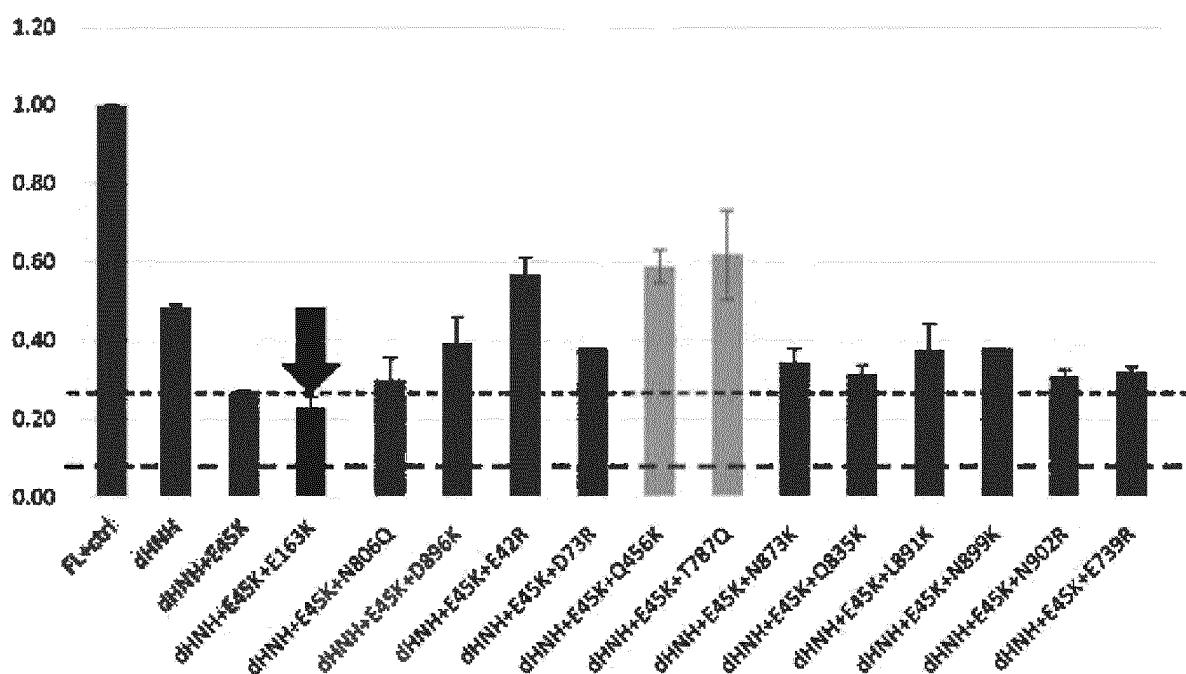



Fig. 4

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2019/022795									
5	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl. C12N15/09(2006.01)i, C07K19/00(2006.01)i, C12N9/16(2006.01)i, C12N15/113(2010.01)i, C12N15/55(2006.01)i, C12N15/62(2006.01)i										
10	According to International Patent Classification (IPC) or to both national classification and IPC										
15	B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl. C12N15/00-15/90, C07K19/00, C12N9/16										
20	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2019 Registered utility model specifications of Japan 1996-2019 Published registered utility model applications of Japan 1994-2019										
25	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580 (JDreamIII), MEDLINE/EMBASE/BIOSIS/WPIDS (STN), UniProt/GeneSeq										
30	C. DOCUMENTS CONSIDERED TO BE RELEVANT										
35	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Category*</th> <th style="text-align: left; padding: 2px;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="text-align: left; padding: 2px;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td style="text-align: center; padding: 2px;">X</td> <td style="padding: 2px;">MA, D. C. et al., Rational design of Mini-Cas9 for transcriptional activation, ACS Synth. Biol., 21 March 2018, vol. 7, pp. 978-985, supporting information, abstract, p. 979, right column, ll. 7, 23-28, p. 980, left column, l. 24 to p. 981, left column, l. 14, p. 983, left column, ll. 20-38, fig. 1, 2, SI diagrams 1, 4</td> <td style="text-align: center; padding: 2px;">1, 11, 13-24 1-4, 8-24</td> </tr> <tr> <td style="text-align: center; padding: 2px;">Y</td> <td style="padding: 2px;"></td> <td style="text-align: center; padding: 2px;"></td> </tr> </tbody> </table>		Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	MA, D. C. et al., Rational design of Mini-Cas9 for transcriptional activation, ACS Synth. Biol., 21 March 2018, vol. 7, pp. 978-985, supporting information, abstract, p. 979, right column, ll. 7, 23-28, p. 980, left column, l. 24 to p. 981, left column, l. 14, p. 983, left column, ll. 20-38, fig. 1, 2, SI diagrams 1, 4	1, 11, 13-24 1-4, 8-24	Y		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.									
X	MA, D. C. et al., Rational design of Mini-Cas9 for transcriptional activation, ACS Synth. Biol., 21 March 2018, vol. 7, pp. 978-985, supporting information, abstract, p. 979, right column, ll. 7, 23-28, p. 980, left column, l. 24 to p. 981, left column, l. 14, p. 983, left column, ll. 20-38, fig. 1, 2, SI diagrams 1, 4	1, 11, 13-24 1-4, 8-24									
Y											
40	<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.										
45	* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed										
50	Date of the actual completion of the international search 16.08.2019	Date of mailing of the international search report 03.09.2019									
55	Name and mailing address of the ISA/ Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan	Authorized officer Telephone No.									

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2019/022795	
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
5	Y	NISHIMASU, Hiroshi et al., Crystal structure of staphylococcus aureus Cas9, Cell, 2015, vol. 162, pp. 1113-1126, fig. S3, p. 1121, left column, ll. 3-7, fig. S3	1-4, 8-24
10	X	WO 2016/205759 A1 (THE BROAD INSTITUTE INC.) 22 December 2016, claims 1-3, 36, 51-52, 54-56, paragraphs [00111], [00113], [00254]	5-7, 11-24
15	Y	& US 2018/0312824 A1	1-4, 8-24
20	Y	WO 2016/196655 A1 (THE REGENTS OF THE UNIVERSITY OF CALIFORNIA) 08 December 2016, paragraph [0070] & US 2018/0298360 A1 & EP 3303634 A1	1-4, 8-24
25	Y	WO 2017/217768 A1 (TOOLGEN INCORPORATED) 21 December 2017, paragraph [269] & US 2019/0177710 A1, paragraph [0471] & EP 3473728 A1 & CN 109312386 A & KR 10-2019-0008548 A	1-4, 8-24
30	Y	JP 2018-502572 A (DYAX CORP.) 01 February 2018, paragraphs [0069], [0070] & US 2018/0118851 A1, paragraphs [0087], [0088] & WO 2016/109774 A1 & EP 3240570 A1 & KR 10-2017-0118058 A & CN 107405399 A	1-4, 8-24
35	Y	JP 2010-505437 A (NOVO NORDISK HEALTH CARE AG) 25 February 2010, paragraphs [0028], [0029] & US 2010/0009407 A1, paragraph [0088] & WO 2008/043847 A1 & EP 2076527 A1 & CN 101563358 A	1-4, 8-24
40			
45			
50			
55			

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2019/022795
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
5		
10	Y JP 2017-527284 A (VIB VZW) 21 September 2017, paragraph [0241] & US 2017/0283470 A1, paragraph [0357] & WO 2016/034591 A2 & EP 3224274 A2 & KR 10-2017-0042794 A & CN 107207570 A	1-4, 8-24
15	Y WO 2008/008523 A1 (REGENTS OF THE UNIVERSITY OF MINNESOTA) 17 January 2008, page 10, line 30 & US 2009/0280165 A1	1-4, 8-24
20	A STERNBERG, S. H. et al., Conformational control of DNA target cleavage by CRISPR-Cas9, <i>Nature</i> , 2015, vol. 527, pp. 110-113	1-24
25	A WO 2018/074979 A1 (NANYANG TECHNOLOGICAL UNIVERSITY) 26 April 2018 (Family: none)	1-24
30	A WO 2016/205613 A1 (THE BROAD INSTITUTE INC.) 22 December 2016 & JP 2018-522546 A & US 2019/0010471 A1 & EP 3129393 A1 & KR 10-2018-0034404 A & CN 108290933 A	1-24
35	P, X WO 2018/209712 A1 (TSINGHUA UNIVERSITY) 22 November 2018 & US 2018/0163188 A1	1-4, 11-24
40	P, Y	1-4, 8-24
45	P, X WO 2019/089910 A1 (OHIO STATE INNOVATION FOUNDATION) 09 May 2019 (Family: none)	1-4, 11-24
50	P, Y	1-4, 8-24
55		

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2016141224 A1 [0008]
- WO 2017010543 A1 [0008]
- WO 2018074979 A1 [0008]
- WO 2018209712 A1 [0008]
- US 62682244 B [0093]

Non-patent literature cited in the description

- **DACHENG MA et al.** *ACS Synth. Biol.*, 2018, vol. 7, 978-985 [0009]
- **H. NISHIMASU et al.** *Cell*, vol. 162 (5), 1113-1126 [0030]
- gapped duplex method. *Nucleic Acids Res.*, 1984, vol. 12, 9441-9456 [0038]
- **NEEDLEMAN et al.** *J. Mol. Biol.*, 1970, vol. 48, 444-453 [0039]
- **MYERS ; MILLER.** *CABIOS*, 1988, vol. 4, 11-17 [0039]
- gapped duplex method. *Nucleic Acids Res.*, 1984, vol. 12, 9441-9456 [0041]
- **F. ANN RAN et al.** *Nature*, 2015, vol. 520 (7546), 186-191 [0081]