Technical field
[0001] This invention relates to the field of machining slabs, for example tiles, made from
ceramic material, stone, glass or the like. In particular, the invention relates to
a machine for grinding slabs.
Background art
[0002] It is known that the slabs produced industrially and which can be used as tiles for
flooring and other types of covering require a grinding operation.
[0003] The main aim of this grinding operation is to guarantee the mutual orientation of
the sides in such a way as to allow the placing alongside of the various slabs without
clearance.
[0004] In the field of the industrial production of slabs this operation is carried out
by means of grinding machines which are able to quickly process large quantities of
ceramic products which feed in succession on a horizontal movement plane.
[0005] The sides of the products to be processed protrude laterally and come into contact
with a succession of grinding wheels, which remove the excess material and move the
outer perimeter flush and, if necessary, one or more inclined grinding wheels, for
performance of the chamfering operation.
[0006] In commonly used machines, the grinding of the slabs is performed in two steps.
[0007] In a first step, they are ground by specific grinding wheels facing each other facing
the movement plane on two opposite sides of each slab.
[0008] The slabs are then rotated by 90° in such a way that the two remaining sides can
be ground by further grinding wheels facing and alongside the movement plane.
[0009] In order to be able to guarantee the mutual perpendicularity between the sides which
are to be ground in the first step and the sides which are to be ground in the second
step, the machines for grinding slabs have special positioning means which, after
the rotation of the slabs, adjust the orientation on the movement plane in such a
way that the sides already ground are perpendicular to the orientation of the subsequent
grinding wheels.
[0010] For this purpose, the prior art teaches the use of the linear thrust elements located
above the movement plane which, simultaneously with the passage of each slab, are
lowered and transferred horizontally in an independent fashion so as to come into
contact with the rear edge of the latter in such a way as to adjust the orientation.
[0011] A solution of this kind is described in document
WO2011110907A1.
[0012] Disadvantageously, the kinematic mechanism linked to the movement of these thrust
elements is complex and the movement mechanism is complex and requires a large number
of movement units. Document
WO 2016/207814 A1, on which the preamble of claim 1 is based, describes thrust elements whose distance
is adjusted in an integral manner with the distance between heavy grinding wheel banks.
[0013] In this context, the technical purpose which forms the basis of this invention is
to provide a machine for grinding slabs which overcomes at least some of the above-mentioned
drawbacks of the prior art.
[0014] In particular, the aim of the invention is to provide a machine for grinding slabs
which is an alternative to and more efficient than the prior art, with regard to the
mechanism for moving the thrust elements.
Disclosure of the invention
[0016] The technical purpose indicated and the aims specified are substantially achieved
by a machine for grinding slabs comprising the technical features described in one
or more of the accompanying claims. The dependent claims correspond to possible different
embodiments of the invention. Further features and advantages of the invention are
more apparent in the non-limiting description which follows of a preferred embodiment
of a machine for grinding slabs.
Brief description of the drawings
[0017] The description is set out below with reference to the accompanying drawings which
are provided solely for purposes of illustration without restricting the scope of
the invention and in which:
- Figure 1 shows a perspective view of a machine for grinding slabs made according to
the invention;
- Figure 2 shows a perspective view of a detail of the machine of Figure 1, with some
parts removed in order to better illustrate others;
- Figure 3 shows a detail of the machine of Figure 1;
- Figure 4 shows a perspective view of a detail of the machine of Figure 1, with some
parts removed in order to better illustrate others;
- Figure 5A shows a perspective view of a detail of the machine of Figure 1, with some
parts removed in order to better illustrate others;
- Figure 5B shows a perspective view from a different angle of the detail of Figure
5A.
Detailed description of preferred embodiments of the invention
[0018] With reference to the drawings, a machine for grinding slabs is indicated generically
by the reference numeral 1 and it will be referred to below as "machine 1".
[0019] For the purposes of this generic description, the term "slabs" means sheet-like elements
made of ceramic, stone, glass or the like, such as, for example, tiles for floors
or walls.
[0020] According to the preferred embodiment, the machine 1 comprises a main frame 10 which
defines a supporting base of the machine 1 and supports a plurality of grinding and/or
chamfering wheels 11.
[0021] The machine 1 also comprises a secondary frame 20 which can be connected to the main
frame 10 by one or more connecting portions 21 and preferably having one or more supporting
portions 22 configured for resting on the floor.
[0022] The main frame 10 supports a conveyor 12 configured for moving a plurality of slabs
along a feed direction "A" from an infeed station "I" to an outfeed station "U" passing
through a grinding station "R" on which the grinding wheels 11 face.
[0023] The conveyor 12 is configured to receive the slabs to be processed from a movement
plane upstream of the machine 1 and connected to the conveyor 12 at the infeed station
"I".
[0024] Preferably, the conveyor 12 comprises two pairs of belts and each pair of belts comprises
a lower belt and an upper belt opposite to each other and configured to grip a slab
positioned between them and move it along the feed direction "A".
[0025] The two pairs of belts are positioned in such a way that they grip on the slabs at
respective side edges to be ground, in particular in such a way that the above-mentioned
edges protrude laterally from the belts and are exposed.
[0026] Preferably, the grinding wheels 11 are connected to the main frame 10 in such a way
that they are movable towards and away from the conveyor 12 to come into contact with
the exposed lateral edges of the slabs passing through the grinding station "R" and
perform the grinding and/or chamfering.
[0027] In this solution, the secondary frame 20 forms a structure which can be coupled to
the main frame 10 in a modular fashion in order to increase the flexibility of use,
only the main frame 10 and the components described above which are supported by it
define, in effect, in itself an operational machine for grinding slabs.
[0028] According to the preferred embodiment, the secondary frame 20 defines a calibration
station "C" upstream of said grinding station "R" and of the infeed station "I", at
the movement plane upstream of the machine 1, and has positioning means 25 acting
on the slabs which travel on the movement plane at the calibration station "C".
[0029] According to alternative embodiments not illustrated, the positioning means 25 act
along the conveyor 12 and the calibration station "C" is positioned between the infeed
station "I" and the grinding station "R", upstream of the latter.
[0030] In general, the positioning means 25 are configured for adjusting an orientation
of the slabs which pass through the calibration station "C" to adjust the orientation
with respect to their feed direction "A" defined by the conveyor 12.
[0031] More specifically, the positioning means 25 comprise sliding guides 26, preferably
two, oriented parallel to the feed direction "A" and two carriages 27 which are slidable
on them.
[0032] Preferably, the positioning means 25 comprise a single transfer actuator 28 configured
for simultaneously moving the carriages 27 along the feed direction "A" between an
advanced position and a withdrawn position in such a way that the carriages 27 are
positioned at all times at the same longitudinal coordinate along the feed direction
"A".
[0033] In particular, in the advanced position, the carriages 27 are positioned further
upstream relative to the withdrawn position with reference to the feed direction "A"
of the slabs.
[0034] In more detail, the translation actuator 28 is connected to the carriages 27 by means
of the mechanical transmission units 29 which connect together in a kinematic fashion
the movements of the carriages 27 on the sliding guides 26 in such a way that they
move in a synchronous fashion with each other.
[0035] According to the preferred embodiment, the positioning means 25 comprise supports
30, each fixed to a respective carriage 27 in such a way that it can translate between
the advanced position and the withdrawn position following the movement of the carriage
27.
[0036] Moreover, the positioning means 25 comprise thrust elements 35, preferably two, each
rotatably connected to a respective support 30 in such a way as to be rotationally
movable relative to it between an engaging position and a disengaging position.
[0037] Preferably, the thrust elements 35 are rotatable about respective axes of rotation
'G' oriented perpendicularly to the feed direction "A" and parallel to the plane in
which the slabs lie.
[0038] In the engaging position the thrust elements 35 are configured for making contact
against an end edge of a slab positioned in the calibration station "C" which advances
towards the grinding station "R".
[0039] In the disengaging position, the thrust elements 35 are configured so as not to interfere
with a feeding of the slabs positioned on the movement plane or on the conveyor 12
towards the grinding station "R".
[0040] The positioning means 25 comprise two rotation actuators 31 each connected to a respective
thrust element 35 and configured to rotate about the respective axis of rotation "G"
from the engaging position to the disengaging position.
[0041] Preferably, the rotation actuators 31 are mutually independent and configured to
rotate the two thrust elements 35 independently of each other.
[0042] Moreover, the sliding of the carriages 27 along the sliding guides 26 allows the
thrust elements 35 to be translated from the advanced position to the withdrawn position.
[0043] With reference to the structure of the thrust elements 35, preferably each of them
comprises an arm 36 hinged to one of the supports 30 at a relative end in such a way
as to allow the rotation of the thrust element 35 between the engaging position and
the disengaging position.
[0044] The other end is, on the other hand, free and configured to be positioned at the
level of the slabs in the calibration station "C" when in an engaging position and
able to position so as not to interfere with a feed of the slabs towards the grinding
station "R" when in a disengaging position. Preferably, each arm 36 extends along
a respective main line of extension shaped in such a way that its free end is oriented
perpendicularly to the lying position of the slabs in the calibration station "C"
when the respective thrust element 35 is in an engaging position.
[0045] Moreover, each thrust element 35 comprises a removable contact plug 37, connected
to each arm 36 at the free end in such a way that it makes contact with a respective
slab when in an engaging position during a transfer of the thrust element 35 from
the advanced position to the withdrawn position.
[0046] The positioning means 25 comprise a mechanism for adjusting the reciprocal distance
between the sliding guides 26 in such a way as to control the distance between the
thrust elements 35 in a direction transversal to the feed direction "A".
[0047] In the embodiment illustrated, the sliding guides 26 are slidably mounted on further
orientation guides 32 perpendicularly to the feed direction "A" and the above-mentioned
adjustment mechanism comprises a unit 33 for adjusting the mutual distance between
the sliding guides 26.
[0048] Preferably, the adjusting unit 33 can adjust the mutual distance between the guides
26, and therefore between the thrust elements 35, between a minimum of 400 mm and
a maximum of 2400 mm.
[0049] The invention achieves the set aim by overcoming the drawbacks of the prior art.
[0050] In fact, the solution described defines an effective alternative to the prior art
solutions and, thanks to the kinematic mechanisms which control the thrust elements,
it is simpler and more efficient to perform the movement.
1. A machine (1) for grinding slabs, comprising:
- a conveyor (12) configured for moving a plurality of slabs along a feed direction
(A) from an infeed station (I) to an outfeed station (U) passing through a grinding
station (R);
- a plurality of grinding wheels (11) facing the grinding station (R) and configured
for grinding one or more slabs in the grinding station (R);
- positioning means (25) acting on a calibration station (C) upstream of the grinding
station (R) and configured for adjusting the orientation of one or more slabs relative
to the respective feed direction (A);
- a main frame (10) supporting the plurality of grinding wheels (II), the main frame
(10) defining a base for supporting the machine (1);
characterised in that it comprises a secondary frame
(20) supporting the positioning means (25), the secondary frame (20) having at least
a supporting portion (22) configured for supporting or anchoring on the ground and
at least a connecting portion (21) configured for a reversible connection with the
main frame, the positioning means (25) comprising thrust elements (35) rotationally
movable between an engaging position wherein the thrust elements (35) are configured
for making contact against an end edge of a slab positioned in the calibration station
(C), and a disengaging position, wherein the thrust elements (35) are configured so
as not to interfere with a feeding of the slabs towards the grinding station (R),
the thrust elements (35) also being transferable parallel to the feed direction (A)
between an advanced position and a withdrawn position, the positioning
means (25) comprising a mechanism for adjusting the reciprocal distance between the
thrust elements (35) in a direction transversal to the feed direction (A).
2. The machine (1) according to claim 1, wherein the positioning means (25) comprise
supports (30) which can be transferred in a direction parallel to the feed direction
(A) for moving the thrust elements (35) between the advanced position and the withdrawn
position, each thrust element (35) comprising an arm (36) having an end hinged to
a respective support (30) in such a way as to allow a rotation of the thrust element
(35) between the engaging position and the disengaging position and a free end configured
to be positioned at the level of the slabs in the calibration station (C) when in
an engaging position and so as not to interfere with a feed of the slabs towards the
grinding station (R) when in a disengaging position.
3. The machine (1) according to claim 2, wherein each arm (36) extends along a respective
line of extension shaped in such a way that the free end of each arm (36) is oriented
perpendicularly to the lying position of the slabs in the calibration station (C)
when the thrust element (35) is in an engaging position.
4. The machine (1) according to claim 2 or 3, wherein each thrust element (35) comprises
a removable contact plug (37), connected to each arm (36) in such a way that it makes
in contact with a respective slab when the thrust element (35) is in an engaging position
during a transfer of the thrust element (35) from the advanced position to the withdrawn
position.
5. The machine (1) according to any one of claims 2 to 4, wherein the positioning means
(25) comprise carriages (27) slidable on respective sliding guides (26) parallel to
the feed direction (A), each support (30) being fixed to a respective one of the carriages
(27) to allow transfer of the thrust elements (35) between the advanced position and
the withdrawn position.
6. The machine (1) according to claim 5, wherein the positioning means (25) comprising
a single transfer actuator (28) configured for simultaneously moving the slidable
carriages (27) between the advanced position and the withdrawn position, the transfer
actuator (28) being connected to the carriages (27) by transmission units that kinematically
constrain the movement of the carriages (27) on the sliding guides (26).
7. The machine (1) according to any one of the preceding claims, comprising two rotation
actuators (31) each connected to a respective thrust element (35), the rotation actuators
(31) being configured for actuating the rotation of the thrust elements (35) from
the engaging position to the disengaging position in a mutually independent fashion.
8. The machine (1) according to any one of claims 5, 6 or 7, wherein the sliding guides
(26) parallel to the feed direction (A) are slidably mounted on further guides (32)
perpendicular to the feed direction (A), the adjustment mechanism comprising a unit
(33) for adjusting the distance between the sliding guides (26).
9. The machine (1) according to any one of the preceding claims, wherein the thrust elements
(35) are rotationally movable between the engaging position and the disengaging position
about an axis of rotation (G) parallel to a sliding plane of the slabs on the conveyor
(12) and preferably perpendicular to the feed direction (A).
10. The machine (1) according to any one of the preceding claims, wherein the conveyor
(12) is configured for receiving the slabs at the infeed station (I) from a movement
plane upstream defining the calibration station (C), the positioning means (25) acting
on the movement plane for adjusting the orientation of the slabs advancing towards
the infeed station (I).
1. Maschine (1) zum Schleifen von Platten, umfassend:
- einen Förderer (12), der ausgelegt ist, um eine Vielzahl von Platten entlang einer
Zuführrichtung (A) von einer Einführstation (I) zu einer Abführstation (U) zu bewegen,
die durch eine Schleifstation (R) verläuft;
- eine Vielzahl von Schleifscheiben (11), die der Schleifstation (R) zugewandt und
zum Schleifen einer oder mehrerer Platten in der Schleifstation (R) ausgelegt sind;
- Positionierungsmittel (25), die auf eine Kalibrierungsstation (C) stromaufwärts
der Schleifstation (R) einwirken und zum Einstellen der Ausrichtung einer oder mehrerer
Platten relativ zur jeweiligen Zuführrichtung (A) ausgelegt sind;
- einen Hauptrahmen (10), der die Vielzahl von Schleifscheiben (II) trägt, wobei der
Hauptrahmen (10) eine Basis zum Tragen der Maschine (1) definiert;
dadurch gekennzeichnet, dass sie einen sekundären Rahmen (20), der die Positionierungsmittel (25) trägt, wobei
der sekundäre Rahmen (20) mindestens einen Trägerabschnitt (22), der zum Tragen oder
Verankern auf dem Boden ausgelegt ist, und mindestens einen Verbindungsabschnitt (21)
umfasst, der für eine reversible Verbindung mit dem Hauptrahmen ausgelegt ist, wobei
die Positionierungsmittel (25) Schubelemente (35) umfassen, die zwischen einer Eingriffsposition,
in der die Schubelemente (35) ausgelegt sind, um einen Kontakt mit einer Endkante
einer in der Kalibrierungsstation (C) positionierten Platte herzustellen, und einer
Löseposition, in der die Schubelemente (35) ausgelegt sind, um eine Zuführung der
Platten zur Schleifstation (R) hinführend nicht zu stören, drehbar beweglich sind,
wobei die Schubelemente (35) auch parallel zur Zuführrichtung (A) zwischen einer vorgeschobenen
Position und einer zurückgezogenen Position überführbar sind, wobei die Positionierungsmittel
(25) einen Mechanismus zum Einstellen des reziproken Abstands zwischen den Schubelementen
(35) in einer Richtung quer zur Zuführrichtung (A) umfassen.
2. Maschine (1) nach Anspruch 1, wobei die Positionierungsmittel (25) Träger (30) umfassen,
die in einer Richtung parallel zur Zuführrichtung (A) zum Bewegen der Schubelemente
(35) zwischen der vorgeschobenen Position und der zurückgezogenen Position überführt
werden können, wobei ein jedes Schubelement (35) einen Arm (36) umfasst, der ein Ende,
das an einem jeweiligen Träger (30) angelenkt ist, sodass eine Drehung des Schubelements
(35) zwischen der Eingriffsposition und der Löseposition ermöglicht wird, und ein
freies Ende aufweist, das so ausgelegt ist, dass es an der Höhe der Platten in der
Kalibrierungsstation (C) positioniert ist, wenn es sich in einer Eingriffsposition
befindet, und dass es eine Zuführung der Platten in Richtung der Schleifstation (R)
hinführend nicht stört, wenn es sich in einer Löseposition befindet.
3. Maschine (1) nach Anspruch 2, wobei sich ein jeder Arm (36) entlang einer jeweiligen
Verlängerungslinie erstreckt, die geformt ist, sodass das freie Ende eines jeden Arms
(36) senkrecht zur Liegeposition der Platten in der Kalibrierungsstation (C) ausgerichtet
ist, wenn sich das Schubelement (35) in einer Eingriffsposition befindet.
4. Maschine (1) nach Anspruch 2 oder 3, wobei ein jedes Schubelement (35) einen entfernbaren
Kontaktanschluss (37) umfasst, der mit einem jeden Arm (36) verbunden ist, sodass
er mit einer jeweiligen Platte in Kontakt kommt, wenn sich das Schubelement (35) in
einer Eingriffsposition während einer Überführung des Schubelements (35) von der vorgeschobenen
Position in die zurückgezogene Position befindet.
5. Maschine (1) nach einem der Ansprüche 2 bis 4, wobei die Positionierungsmittel (25)
Schlitten (27) umfassen, die auf jeweiligen Schiebeführungen (26) parallel zur Zuführrichtung
(A) verschiebbar sind, wobei ein jeder Träger (30) an einem jeweiligen der Schlitten
(27) befestigt ist, um eine Überführung der Schubelemente (35) zwischen der vorgeschobenen
Position und der zurückgezogenen Position zu ermöglichen.
6. Maschine (1) nach Anspruch 5, wobei die Positionierungsmittel (25) einen einzelnen
Überführungsantrieb (28) umfasst, der zum gleichzeitigen Bewegen der verschiebbaren
Schlitten (27) zwischen der vorgeschobenen Position und der zurückgezogenen Position
ausgelegt ist, wobei der Überführungsantrieb (28) mit den Schlitten (27) durch Übertragungseinheiten
verbunden ist, die die Bewegung der Schlitten (27) auf den Schiebeführungen (26) kinematisch
einschränken.
7. Maschine (1) nach einem der vorhergehenden Ansprüche, umfassend zwei Drehantriebe
(31), die jeweils mit einem jeweiligen Schubelement (35) verbunden sind, wobei die
Drehantriebe (31) ausgelegt sind, um die Drehung der Schubelemente (35) von der Eingriffsposition
in die Löseposition auf eine wechselseitig unabhängige Weise zu betätigen.
8. Maschine (1) nach einem der Ansprüche 5, 6 oder 7, wobei die Schiebeführungen (26)
parallel zur Zuführrichtung (A) verschiebbar an weiteren Führungen (32) senkrecht
zur Zuführrichtung (A) montiert sind, wobei der Einstellmechanismus eine Einheit (33)
zum Einstellen des Abstands zwischen den Schiebeführungen (26) umfasst.
9. Maschine (1) nach einem der vorhergehenden Ansprüche, wobei die Schubelemente (35)
zwischen der Eingriffsposition und der Löseposition um eine Drehachse (G) drehbar
beweglich sind, die parallel zu einer Gleitebene der Platten auf dem Förderer (12)
und vorzugsweise senkrecht zur Zuführrichtung (A) verläuft.
10. Maschine (1) nach einem der vorhergehenden Ansprüche, wobei der Förderer (12) zum
Aufnehmen der Platten an der Einführstation (I) von einer Bewegungsebene stromaufwärts,
die die Kalibrierungsstation (C) definiert, ausgelegt ist, wobei die Positionierungsmittel
(25) auf die Bewegungsebene einwirkt, um die Ausrichtung der Platten, die in Richtung
der Einführstation (I) vorgeschoben werden, einzustellen.
1. Machine (1) pour rectifier des dalles, comprenant :
- un convoyeur (12) configuré pour déplacer une pluralité de dalles le long d'une
direction d'alimentation (A) à partir d'un poste d'alimentation (I) vers un poste
de sortie (U) passant par un poste de rectification (R) ;
- une pluralité de meules (11) faisant face au poste de rectification (R) et configurées
pour rectifier une ou plusieurs dalles dans le poste de rectification (R) ;
- des moyens de positionnement (25) agissant sur un poste de calibrage (C) en amont
du poste de rectification (R) et configurés pour régler l'orientation d'une ou plusieurs
dalles par rapport à la direction d'alimentation (A) respective ;
- un châssis principal (10) supportant la pluralité de meules (II), le châssis principal
(10) définissant une base pour supporter la machine (1) ; caractérisée en ce qu'elle comprend un châssis secondaire (20) supportant les moyens de positionnement (25),
le châssis secondaire (20) comportant au moins une partie de support (22) configurée
pour supporter ou s'ancrer au sol et au moins une partie de raccordement (21) configurée
pour un raccordement réversible avec le châssis principal, les moyens de positionnement
(25) comprenant des éléments de poussée (35) mobiles en rotation entre une position
de mise en prise dans laquelle les éléments de poussée (35) sont configurés pour se
mettre en contact contre un bord d'extrémité d'une dalle positionnée dans le poste
de calibrage (C), et une position de désengagement, dans laquelle les éléments de
poussée (35) sont configurés de manière à ne pas interférer avec une alimentation
des dalles vers le poste de rectification (R),
les éléments de poussée (35) étant aussi transférables parallèlement à la direction
d'alimentation (A) entre une position avancée et une position retirée, les moyens
de positionnement (25) comprenant un mécanisme pour régler la distance réciproque
entre les éléments de poussée (35) dans une direction transversale à la direction
d'alimentation (A).
2. Machine (1) selon la revendication 1, dans laquelle les moyens de positionnement (25)
comprennent des supports (30) pouvant être transférés dans une direction parallèle
à la direction d'alimentation (A) pour déplacer les éléments de poussée (35) entre
la position avancée et la position retirée, chaque élément de poussée (35) comprenant
un bras (36) comportant une extrémité montée articulée à un support respectif (30)
de manière à permettre une rotation de l'élément de poussée (35) entre la position
de mise en prise et la position de désengagement et une extrémité libre configurée
pour être positionnée au niveau des dalles dans le poste de calibrage (C) lorsqu'elle
est dans une position de mise en prise et de manière à ne pas interférer avec une
alimentation des dalles vers le poste de rectification (R) lorsqu'elle est dans une
position de désengagement.
3. Machine (1) selon la revendication 2, dans laquelle chaque bras (36) se prolonge le
long d'une ligne d'extension respective formée de telle sorte que l'extrémité libre
de chaque bras (36) est orientée perpendiculairement à la position d'appui des dalles
dans le poste de calibrage (C) lorsque l'élément de poussée (35) est dans une position
de mise en prise.
4. Machine (1) selon la revendication 2 ou 3, dans laquelle chaque élément de poussée
(35) comprend une fiche de contact amovible (37) reliée à chaque bras (36) de telle
manière qu'elle entre en contact avec une dalle respective lorsque l'élément de poussée
(35) se trouve dans une position de mise en prise pendant un transfert de l'élément
de poussée (35) de la position avancée à la position retirée.
5. Machine (1) selon l'une quelconque des revendications 2 à 4, dans laquelle les moyens
de positionnement (25) comprennent des chariots (27) pouvant coulisser sur des guides
coulissants (26) respectifs parallèles à la direction d'alimentation (A), chaque support
(30) étant fixé à un chariot respectif des chariots (27) pour permettre le transfert
des éléments de poussée (35) entre la position avancée et la position retirée.
6. Machine (1) selon la revendication 5, dans laquelle les moyens de positionnement (25)
comprennent un actionneur de transfert (28) individuel configuré pour déplacer simultanément
les chariots coulissants (27) entre la position avancée et la position retirée, l'actionneur
de transfert (28) étant relié aux chariots (27) par des unités de transmission étant
solidaires, de façon cinématique, du mouvement des chariots (27) sur les guides coulissants
(26).
7. Machine (1) selon l'une quelconque des revendications précédentes, comprenant deux
actionneurs de rotation (31) reliés chacun à un élément de poussée (35) respectif,
les actionneurs de rotation (31) étant configurés pour actionner la rotation des éléments
de poussée (35) de la position de mise en prise à la position de désengagement de
manière mutuellement indépendante.
8. Machine (1) selon l'une quelconque des revendications 5, 6 ou 7, dans laquelle les
guides coulissants (26) parallèles à la direction d'alimentation (A) sont montés de
manière coulissante sur des guides supplémentaires (32) perpendiculaires à la direction
d'alimentation (A), le mécanisme de réglage comprenant une unité (33) pour régler
la distance entre les guides coulissants (26) .
9. Machine (1) selon l'une quelconque des revendications précédentes, dans laquelle les
éléments de poussée (35) sont mobiles en rotation entre la position de mise en prise
et la position de désengagement autour d'un axe de rotation (G) parallèle à un plan
de coulissement des dalles sur le convoyeur (12) et de préférence perpendiculaire
à la direction d'alimentation (A).
10. Machine (1) selon l'une quelconque des revendications précédentes, dans laquelle le
convoyeur (12) est configuré pour recevoir les dalles en correspondance du poste d'alimentation
(I) à partir d'un plan de déplacement en amont définissant le poste de calibrage (C),
les moyens de positionnement (25) agissant sur le plan de déplacement pour régler
l'orientation des dalles avançant vers le poste d'alimentation (I).