

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 812 681 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
28.04.2021 Bulletin 2021/17

(51) Int Cl.:
F28D 9/00 (2006.01)

(21) Application number: **20200578.1**

(22) Date of filing: **07.10.2020**

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: **24.10.2019 DK PA201901252**

(71) Applicant: **Danfoss A/S
6430 Nordborg (DK)**

(72) Inventors:

- SATOSEK, Roman
6430 Nordborg (DK)**
- MAZEJ, Mitja
6430 Nordborg (DK)**
- DEBEVC, Martin
6430 Nordborg (DK)**

(74) Representative: **Stevens, Brian
Danfoss A/S
Intellectual Property
Nordborgvej 81
6430 Nordborg (DK)**

(54) PLATE KIND HEAT EXCHANGER WITH END PLATES

(57) The present invention relate to a plate heat exchanger including a stack of patterned heat transfer plates connected to each other by brazing or welding, where patterns of the connected neighbouring heat transfer plates forms respectively a first flow path and second flow path on the opposing sides of a heat transfer plate, said heat transfer plates comprising aligned first pair of port holes forming respectively first inlet and first outlet for a first fluid to be distributed to said first flow path,

where a first end plate is connected to the stack first side outermost heat transfer plate with first opening aligned to the first inlet, and a second end plate is connected to the stack second side outermost heat transfer plate with a blank section aligned with the first inlet, where the second side outermost heat transfer plate is formed with a contacting projection connected and brazed or welded to the inner surface of the second end plate.

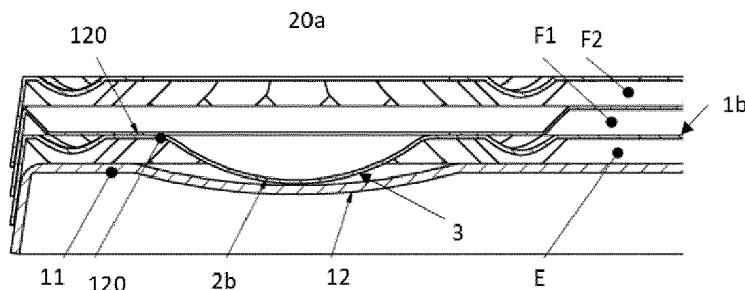


Fig. 6

Description**BACKGROUND**

[0001] A typical construction of a plate heat exchanger comprises a plurality of heat transfer plate stacked on top of each other. The heat transfer plates are formed with patterns such that flow paths are formed between each set of neighboring heat transfer plates. Openings and are formed in the heat transfer plates to form inlets and outlets for fluids to these flow paths. The plates are positioned between end plates, which end plates to same material and weight often are relatively thin, e.g. of the same thickness as the heat transfer plates, or only slightly thicker.

[0002] The heat transfer plates are brazed or welded together at the connections, just as respectively the upper and lower heat transfer plates are brazed or connected to the respective upper and lower end plate.

[0003] Especially in the opening areas the pressures are high, and due to the relatively thin thickness the end-plates tend to deform at high pressures, possible breaking or breaking in the connection to the neighboring heat transfer plates, possible leading to leaks

[0004] The present invention is aimed to reducing assembly complexity of the typical plate heat exchanger and at the same time improving the mechanical strength by reducing level of deformations on the area around the openings/portholes at the second end plate.

SUMMARY OF THE INVENTION

[0005] The problems are solved according to the invention as is described in the claims.

[0006] This includes introducing a plate heat exchanger including a stack of patterned heat transfer plates connected to each other by brazing or welding and defining a first side and second side, were patterns of the connected neighbouring heat transfer plates forms respectively a first flow path and second flow path on the opposing sides of a heat transfer plate, said heat transfer plates comprising aligned first pair of port holes forming respectively first inlet and first outlet for a first fluid to be distributed to said first flow path, where a first end plate is connected to the stack first side outermost heat transfer plate with a first opening aligned to the first inlet, and a second end plate is connected to the stack second side outermost heat transfer plate with a blank area aligned with the first inlet, where the second side outermost heat transfer plate is formed with a contacting projection connected and brazed or welded the inner surface of the second end plate.

[0007] The blank area may be curving in an outwards direction relative to the stack and may be dome shaped.

[0008] In an embodiment the second side outermost heat transfer plate is formed as a blank section where aligned with the second end plate blank area, and is curving in an outwards direction relative to the stack and con-

nected by brazing or welding to the inner surface of the blank section of said second end plate, where the second side outermost heat transfer plate blank section may be dome shaped.

5 [0009] By 'aligned with' means they at least partly overlap.

[0010] In an embodiment heat transfer plate blank section projects outwards relative to the stack and has a flat top surface connected by brazing or welding to the blank area.

10 [0011] In an embodiment the heat transfer plate blank section projects outwards relative to the stack and has a flat top surface connected by brazing or welding to the circumference of the blank area.

15 [0012] In an embodiment a projection is formed as a circular projection contacting the second end plate at an area encircling the blank area.

[0013] In an embodiment the projection has a rounded top surface.

20 [0014] In an embodiment the projection has a flat top surface.

FIGURES

25 [0015]

Fig. 1 Side view of a stacked plate kind heat exchanger with upper and lower end plates and inlets and outlets.

30

Fig. 2 Illustrate several end plates and heat transfer plates to be stacked.

35 [0016] Fig. 3 Illustrate an embodiment of reinforcement connection in the inlet area.

Fig. 4 Illustrate an embodiment of reinforcement connection in the inlet area.

40 [0017] Fig. 5 Illustrate an embodiment of reinforcement connection in the inlet area.

Fig. 6 Illustrate an embodiment of reinforcement connection in the inlet area.

45

DETAILED DESCRIPTION OF THE INVENTION

[0016] It should be understood, that the detailed description and specific examples, while indicating embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from the detailed description.

[0017] Fig. 1 is a side view illustrates a typical plate heat exchanger (100) including a stack (110) of patterned heat transfer plates (1) connected to each other by brazing or welding.

[0018] A first end plate (10) is connected to the stack

(110) first side and a second end plate (11) to the stack (110) second side. In the illustration port connections (50) is connected to the first end plate (10) connecting the flow paths formed between the heat transfer plates (1) in the stack to a heating system fluid flow conduits or pipes. In the illustration seen from the side only two such port connections (50) is shown, and both in the first end plate (10). As seen in fig. 2 there usually are four such port connections (50), and in other embodiment some could be in the first end plate (10), and others in the second end plate (11).

[0019] Fig. 2 illustrate the same heat exchanger (100) having 6 heat transfer plates (1, 1a, 1b), though any number would apply, and usually it comprised significantly more heat transfer plates (1) than the illustration.

[0020] The heat transfer plates (1, 1a, 1b) are formed as thin sheets shaped with patterns (5), such as the illustrated chevron shaped corrugations. However, any other form of pattern (5) would also apply. Every second heat transfer plate (1, 1a, 1b) either may formed with different patterns (5), or may simply be rotated relative the other plates, such that the patterns (5) only cross each other forming respectively a first flow path and second flow path on the opposing sides of a heat transfer plate (1, 1a, 1b). The crossed patterns (5) then forms heat transferring regions.

[0021] The heat transfer plates (1, 1a, 1b) and first (10) and second (11) end plates are brazed or welded at the rims to seal the flow paths from the externals, and optionally at some, or all, of the other connection points.

[0022] At least some of the heat transfer plates (1, 1a, 1b) comprises a first pair of openings (20, 21) and a second pair of openings (22, 23) - one of which not visible in the figure. The openings (20, 21, 22, 23) are aligned to the corresponding openings of the neighbouring heat transfer plates (1, 1a, 1b) such that the e.g. the aligned first pair of openings (20, 21) forms a first inlet (20a) and first outlet (21a) for the first flow paths respectively (illustrated in fig. 1), and the aligned second pair of openings (22, 23) forms a second inlet and second outlet for the first flow paths respectively (not illustrated).

[0023] The first end plate (10) is connected to the first side outermost heat transfer plate (1a) with first connection opening (30) aligned to the first inlet (20a), and a second end plate (11) is connected to the stack (110) second side outermost heat transfer plate (1b) with a blank area (12) aligned with the first inlet (20a). The blank area (12) could be shaped relative to the bulk of the second end plate (11) or could simple just be the flat part of the second end plate (11) aligning with the first inlet (20a).

[0024] Further in the illustrated example second openings (31) aligns with the first inlet (21a), third openings (32) aligns with second inlet and fourth opening (33) aligns with second outlet. In other embodiments other of the openings. In other embodiments some of the openings (30, 31, 32, 33) are formed in the second end plate (11), the corresponding blank areas (12) thus being in the first end plate (10). Further, in some other embodi-

ments the respectively first and second pairs, and first and second inlets and outlets are arranged differently.

[0025] The port connections (50) are connected to the first end plate (10) (respectively second end plate (11)) and the openings (30, 31, 32, 33).

[0026] Fig. 3 illustrate a first reinforcement embodiment of the present invention, showing the area around the first inlet (20a) in the area of the second side outermost heat transfer plate (1b) and second end plate (11).

5 In the embodiment second side outermost heat transfer plate (1b) is formed with a blank section (2), meaning it does not form any opening (20). The blank section (2) forms a flat top surface (2b) of a projection (3) formed in the second side outermost heat transfer plate (1b) in an 10 outwards direction relative to the stack (110), where said flat top surface (2b) is connected by brazing or welding to the blank area (12) of the second end plate (11), which is seen to be flat. A sealing area (120) is illustrated 15 between the second side outermost heat transfer plate (1b) and its neighbouring plate (1) in the inlet area (20a). The first flow path F1 and second flow path F2 is illustrated 20 between neighbouring heat transfer plates (1, 1b), but the area E between the inner surface of the second end plate (11) and outer surface of the second outer most 25 heat transfer plate (1b) is empty.

[0027] Fig. 4 is a similar illustration to fig. 3, showing 30 a second reinforcement embodiment, where the blank area (12) is curving in an outwards direction relative to the stack (110). In this embodiment the projection (3) is formed as in the embodiment of fig. 3, only such that it's 35 top surface (2b) is larger than the curvy blank area (12), thus being connected to its circumference. The rest of the flat top surface (2b) thus 'covering' the blank area (12) in the plane of the bulk of the second end plate (11).

35 In one embodiment the curvy blank area (12) is dome shaped.

[0028] Fig. 5 is a similar illustration to fig. 4, showing 40 a third reinforcement embodiment, where the projection (3) in a circular shape with a top surface (2b) with a diameter which is larger than the curvy blank area (12), thus being connected the second end plate (11) in an 45 area encircling the blank area (12).

[0029] Fig. 6 is a fourth reinforcement embodiment 50 similar to illustrations of figs. 4 and 5, with a curvy or dome shaped blank area (12), but where the projection (3) has curvy shape with a top surface (2b) curving in an outwards direction relative to the stack (110) and connected by brazing or welding to the second end plate (11) blank area (12).

Claims

1. A plate heat exchanger (100) including a stack (110) of patterned (5) heat transfer plates (1) connected to each other by brazing or welding and defining a first side and second side, were patterns (5) of the connected neighbouring heat transfer plates (1)

forms respectively a first flow path and second flow path on the opposing sides of a heat transfer plate (1), said heat transfer plates (1) comprising aligned first pair of port holes (20, 21) forming respectively first inlet (20a) and first outlet (21a) for a first fluid to be distributed to said first flow path, where a first end plate (10) is connected to the stack (110) first side outermost heat transfer plate (1a) with a first opening (30) aligned to the first inlet (20a), and a second end plate (11) is connected to the stack (110) second side outermost heat transfer plate (1b) with a blank area (12) aligned with the first inlet (20a), **characterized in that**, the second side outermost heat transfer plate (1b) is formed with a contacting projection (3) connected and brazed or welded the inner surface of the second end plate (11).

2. A plate heat exchanger (100) as in claim 1, wherein the blank area (12) is curving in an outwards direction relative to the stack (110). 20

3. A plate heat exchanger (100) as in claim 2, where the blank area (12) is dome shaped.

4. A plate heat exchanger (100) is in claim 2 or 3, where the second side outermost heat transfer plate (1b) is formed as a blank section (2) where aligned with the second end plate (11) blank area (12), and is curving in an outwards direction relative to the stack (110) and connected by brazing or welding to the inner surface of the blank area (12) of said second end plate (11). 25

5. A plate heat exchanger (100) as in claim 4, where the second side outermost heat transfer plate (1b) blank section (2) is dome shaped. 35

6. A plate heat exchanger (100) as in any of claims 1-3, wherein heat transfer plate (1b) formed as a blank section (2) where aligned with the second end plate (11) blank area (12), and where said blank section (2) projects outwards relative to the stack (110) and has a flat top surface (2a) connected by brazing or welding to the blank area (12). 40

7. A plate heat exchanger (100) as in any of claims 1-3, wherein heat transfer plate (1b) is formed as a blank section (2) where aligned with the second end plate (11) blank area (12), where said blank section (2) projects outwards relative to the stack (110) and has a flat top surface (2a) connected by brazing or welding to the circumference of the blank area (12). 50

8. A plate heat exchanger (100) as in any of claims 1-3, wherein a projection (3) is formed as a circular projection contacting the second end plate (11) at an area encircling the blank area (12). 55

9. A plate heat exchanger (100) as in claim 8, wherein the projection (3) has a rounded top surface (2b). 5

10. A plate heat exchanger (100) as in claim 8, wherein the projection (3) has a flat top surface (2b).

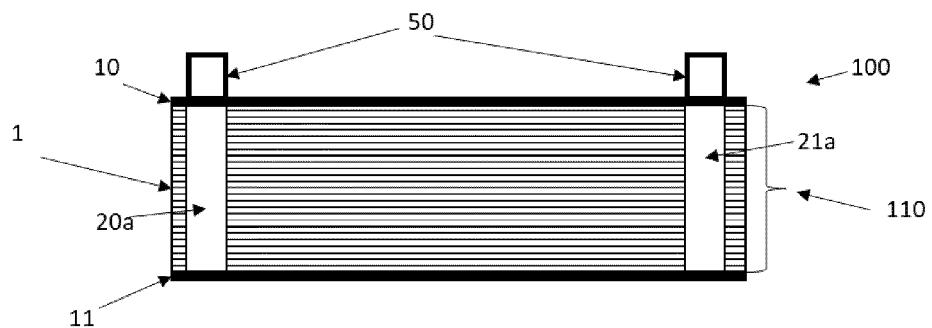


Fig. 1

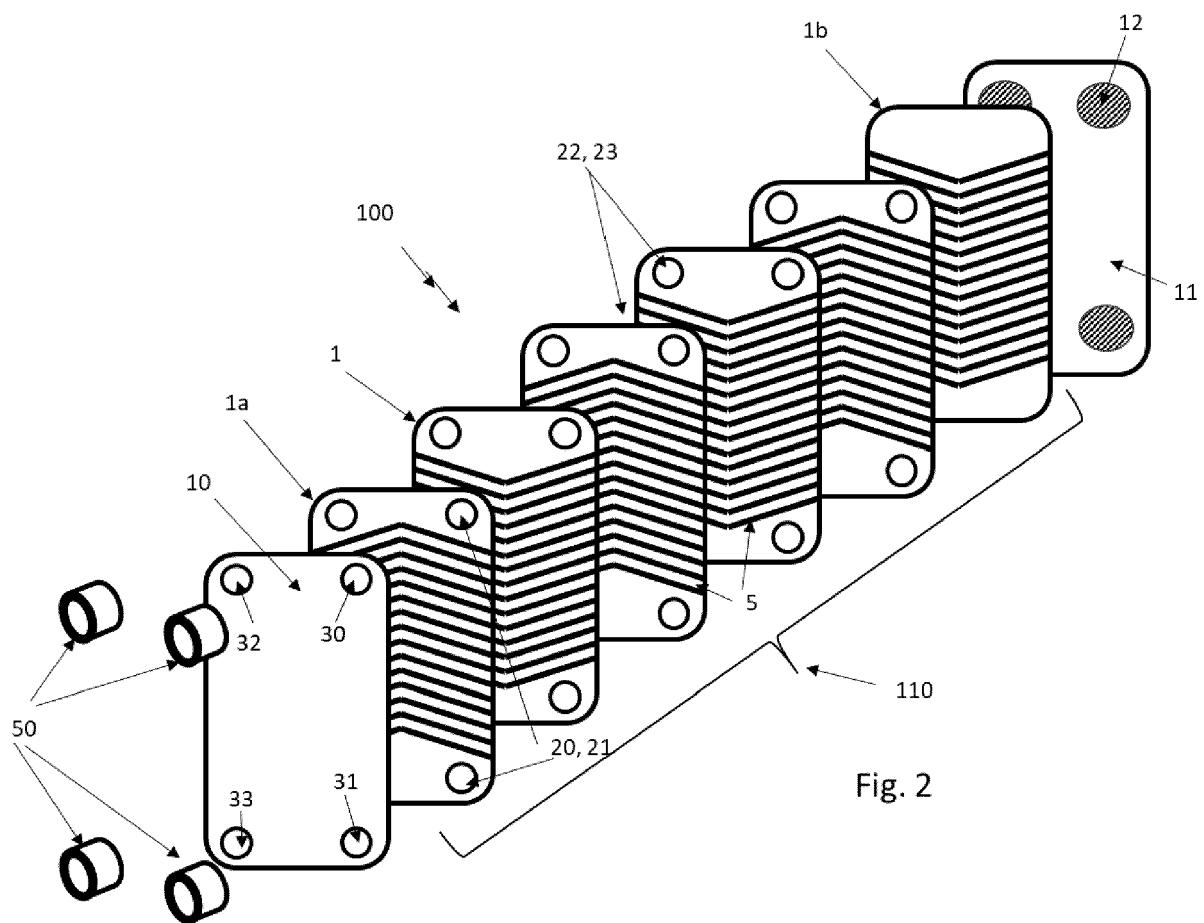


Fig. 2

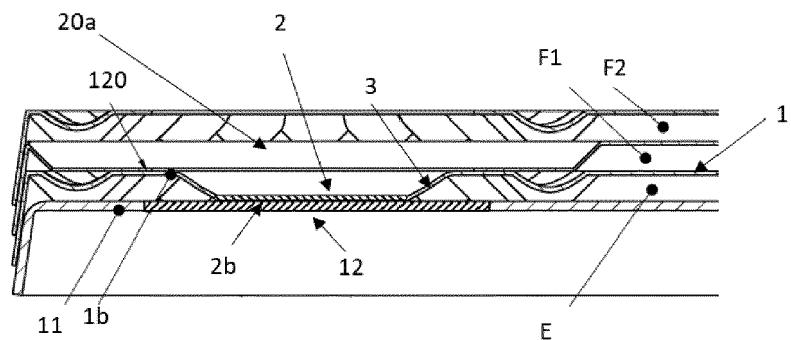


Fig. 3

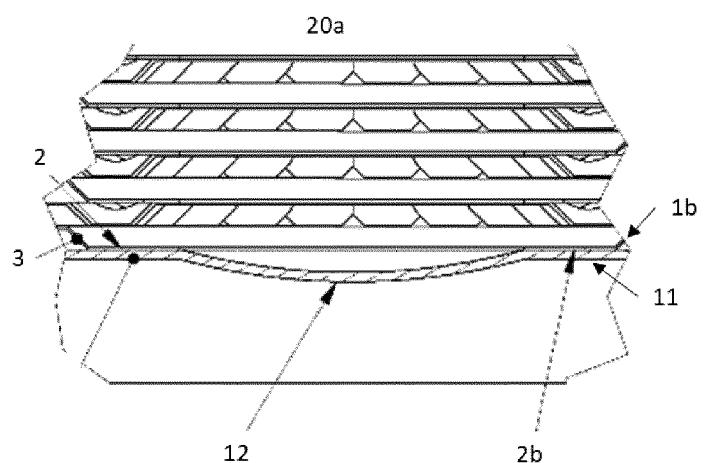


Fig. 4

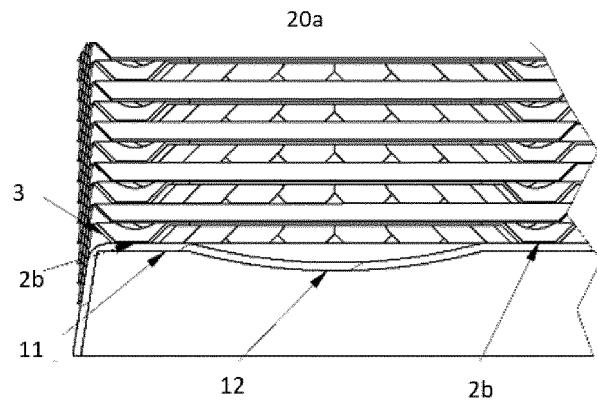


Fig. 5

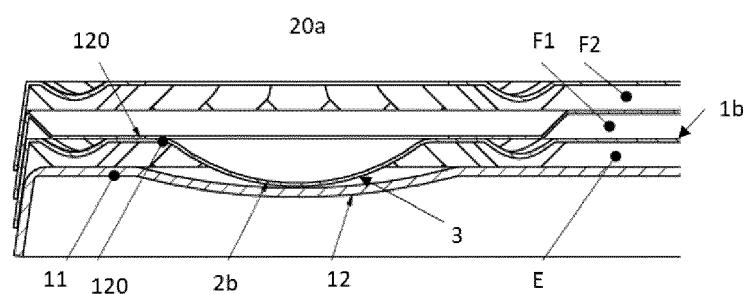


Fig. 6

EUROPEAN SEARCH REPORT

Application Number

EP 20 20 0578

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10 X	WO 97/15798 A1 (SWEP INTERNATIONAL AB [SE]; ANDERSSON SVEN [SE] ET AL.) 1 May 1997 (1997-05-01) * figure 4 *	1,6,7	INV. F28D9/00
15 X	----- WO 88/09473 A1 (ALFA LAVAL THERMAL [SE]) 1 December 1988 (1988-12-01) * figure 4 *	1,6,7	
20 X	----- EP 3 109 582 A1 (NISSHIN STEEL CO LTD [JP]) 28 December 2016 (2016-12-28) * figure 2a *	1,6,7	
25 X	----- EP 3 413 006 A1 (DANFOSS MICRO CHANNEL HEAT EXCHANGER JIAXING CO LTD [CN]) 12 December 2018 (2018-12-12) * figures 1-3 *	1	
30 A	----- DE 10 2014 203102 A1 (MAHLE BEHR GMBH & CO KG [DE]) 20 August 2015 (2015-08-20) * figure 1 *	1-10	TECHNICAL FIELDS SEARCHED (IPC)
35			F28F F28D
40			
45			
50 1	The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 5 February 2021	Examiner Mellado Ramirez, J
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 20 20 0578

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

05-02-2021

10	Patent document cited in search report	Publication date		Patent family member(s)	Publication date		
15	WO 9715798	A1 01-05-1997	AT	204069 T	15-08-2001		
			AU	707014 B2	01-07-1999		
			DE	69614402 T2	29-05-2002		
			DK	0857288 T3	01-10-2001		
			EP	0857288 A1	12-08-1998		
			ES	2160259 T3	01-11-2001		
			JP	3958367 B2	15-08-2007		
			JP	H11513785 A	24-11-1999		
			KR	19990066955 A	16-08-1999		
			PT	857288 E	28-12-2001		
20			US	5988269 A	23-11-1999		
			WO	9715798 A1	01-05-1997		
25	WO 8809473	A1 01-12-1988	AT	84140 T	15-01-1993		
			DE	3877215 T2	29-04-1993		
			DK	9189 A	10-01-1989		
			EP	0418227 A1	27-03-1991		
			JP	2719380 B2	25-02-1998		
			JP	H01503558 A	30-11-1989		
			SE	458884 B	16-05-1989		
			US	4987955 A	29-01-1991		
			WO	8809473 A1	01-12-1988		
30	EP 3109582	A1 28-12-2016	CA	2939817 A1	27-08-2015		
			CN	106062499 A	26-10-2016		
			EP	3109582 A1	28-12-2016		
			ES	2774033 T3	16-07-2020		
			JP	6192564 B2	06-09-2017		
			JP	2015152282 A	24-08-2015		
			KR	20160121573 A	19-10-2016		
			SG	11201606806Q A	29-09-2016		
			US	2017067700 A1	09-03-2017		
			WO	2015125831 A1	27-08-2015		
35	EP 3413006	A1 12-12-2018	CN	107036481 A	11-08-2017		
			CN	111006532 A	14-04-2020		
			EP	3413006 A1	12-12-2018		
			US	2019033015 A1	31-01-2019		
			WO	2017133349 A1	10-08-2017		
40	DE 102014203102	A1 20-08-2015					
45							
50							
55							