CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to Chinese patent application No.
201811083042.0, filed on September 17, 2018, entitled "A INK CARTRIDGE REPAIRING OR UPGRADING METHOD", and priority to Chinese
patent application No.
201910295986.2, filed on April 12, 2019, entitled "A PRINTING CONSUMABLE, AN CONSUMABLE CHIP, AND INK CARTRIDGE REFORMING
METHOD", the entirety of all of which are incorporated herein by reference.
TECHNICAL FIELD
[0002] The present disclosure generally relates to the field of image forming consumables
and, more particularly, relates to a printing consumable, consumable chip, an ink
cartridge, an ink cartridge reforming method and a configuration method of differentiating
module.
BACKGROUND
[0003] Printing consumables include replaceable parts that provide printing materials for
a printing system, such as ink cartridges containing ink, toner cartridges containing
toner, and circuit substrates attached to the cartridges and the like. Replaceable
parts are usually manufactured to match a single printing system. For example, one
ink cartridge type can only be used for one certain printer type. When the replaceable
part is installed in the printing system, the printing system may identify the replaceable
part; and when the replaceable part is identified as a mismatched replaceable part,
further access to the replaceable part may be denied.
SUMMARY
[0004] For this reason, the present disclosure provides the printing consumable, the consumable
chip, the ink cartridge, the cartridge reforming method, and the configuration method
of the differentiating module, which is to at least partially improve the above-mentioned
problems.
[0005] In order to achieve the above purpose, the present disclosure adopts the following
technical solutions.
[0006] One aspect of the present disclosure provides a printing consumable; the printing
consumable includes a first nozzle circuit, configured to feed back a first signal
in response to a detection signal transmitted by the printer; and a second nozzle
circuit, configured to not respond to the detection signal transmitted by the printer
or configured to feed back a second signal different from the first signal in response
to the detection signal.
[0007] Optionally, the second nozzle circuit includes a heating resistor; and a resistance
value of the heating resistor of the second nozzle circuit is different from a resistance
value of a heating resistor of the other nozzle circuit of the printing consumable.
[0008] Optionally, the second nozzle circuit includes an interface circuit and/or an address
circuit, where the interface circuit is in a disconnected state so as not to respond
to the detection signal; and the address circuit is in a disconnected state so as
not to respond to the detection signal.
[0009] Optionally, the second nozzle circuit includes a feedback circuit and a conversion
circuit which are electrically connected to each other, and the feedback circuit is
configured to feed back the first signal in response to the detection signal transmitted
by the printer.
[0010] Optionally, the conversion circuit includes: a first adjustment circuit , and the
first adjustment circuit is electrically connected to the feedback circuit, where
the first adjustment circuit is configured to adjust the detection signal, such that
the feedback circuit feeds back the second signal after receiving an adjusted detection
signal; and/or a second adjustment circuit, the second adjustment circuit is electrically
connected to the feedback circuit, where the second adjustment circuit is configured
to adjust the first signal fed back by the feedback circuit to the second signal.
[0011] Optionally, the first adjustment circuit is configured to increase a voltage of the
detection signal, and the second adjustment circuit is configured to increase a voltage
of the first signal to obtain the second signal.
[0012] Optionally, each of the first adjustment circuit and the second adjustment circuit
includes a resistor, connected in series with a heating resistor of the second nozzle
circuit; and/or each of the first adjustment circuit and the second adjustment circuit
includes an excitation source, connected in series with the heating resistor of the
second nozzle circuit.
[0013] Optionally, the conversion circuit includes an address determination circuit and
one of a disconnection control circuit and a pulse interference circuit; the address
determination circuit is electrically connected to the disconnection control circuit
or the pulse interference circuit; the address determination circuit is configured
to determine whether the second nozzle circuit is selected according to an address
signal transmitted by the printer; the disconnection control circuit is configured
to disconnect an electrical connection between the second nozzle circuit and the printer
when the second nozzle circuit is selected; and the pulse interference circuit is
configured to add a pulse signal to the address signal when the second nozzle circuit
is selected.
[0014] Optionally, the second nozzle hole circuit includes a heating resistor and a temperature
detection device, wherein the temperature detection device is configured to feed back
the second signal in response to the detection signal characterizing a signal configured
to heat the heating resistor.
[0015] Optionally, the conversion circuit is disposed on a substrate electrically connected
to the feedback circuit.
[0016] Another aspect of the present disclosure provides a consumable chip, and this consumable
chip may include the conversion circuit provided in some embodiments.
[0017] Another aspect of the present disclosure provides an ink cartridge reforming method
which is configured to reform an ink cartridge; the ink cartridge includes a first
nuzzle hole circuit which is configured to feed back a first signal in response to
a detection signal transmitted by a printer; the method includes reforming at least
one first nozzle circuit of the ink cartridge to provide a second nozzle circuit,
where the second nozzle circuit does not respond to the detection signal transmitted
by the printer or feeds back a second signal different from the first signal in response
to the detection signal transmitted by the printer.
[0018] Optionally, reforming the at least one first nozzle circuit of the ink cartridge
includes disconnecting a heating resistor of the first nozzle circuit; and/or changing
a resistance value of the heating resistor of the first nozzle circuit; and/or disconnecting
an interface circuit and/or an address circuit of the first nozzle circuit.
[0019] Optionally, the heating resistor, the interface circuit, and the address circuit
of the first nozzle circuit are disconnected by laser or cut off by focused ion beam
(FIB).
[0020] Optionally, reforming the at least one first nozzle circuit of the ink cartridge
includes configuring a conversion circuit which is electrically connected to the first
nozzle circuit.
[0021] Another aspect of the present disclosure provides an ink cartridge. The ink cartridge
includes a first ink cartridge only usable for a first printer, where the first ink
cartridge includes a fluid accommodation container configured to store ink, a storage
circuit configured to store data for the first printer to access, and a nozzle circuit
configured to control ink injection action; and a differentiating module, where the
differentiating module includes an electrical characteristic difference and a mechanical
structure difference, where the differentiating module is configured to identify and
determine an ink cartridge type; each of the first ink cartridge and the second ink
cartridge has a same-sized fluid accommodation container and/or a same nozzle position;
and the differentiating module is attached to the first ink cartridge, and where the
first ink cartridge is reformable into a second ink cartridge, such that the second
ink cartridge is usable for a first printer and a second printer.
[0022] Another aspect of the present disclosure provides a configuration method of the differentiating
module which is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
first ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the mechanical characteristic difference, and the printer may identify the second
ink cartridge through the mechanical characteristic difference.
[0023] Another aspect of the present disclosure provides a configuration method of the differentiating
module which is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
first ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the electrical characteristic difference, and the printer may identify the second
ink cartridge through the electrical characteristic difference.
[0024] Another aspect of the present disclosure provides a configuration method of the differentiating
module which is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
differentiating module includes a controller, where the controller is configured to,
after performing receiving and interference processing on partial transmission signals
outputted by a second printer, output a coordinated control signal, and transmit the
coordinated control signal to a storage circuit and/or a nozzle circuit; and the first
ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the electrical characteristic difference of the storage circuit and/or the nozzle
circuit, and the printer may identify the second ink cartridge through the electrical
characteristic difference, such that the second ink cartridge is usable for a first
printer and a second printer.
[0025] Another aspect of the present disclosure provides a configuration method of the differentiating
module which is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
differentiating module includes a controller, where the controller is configured to,
after performing receiving and interference processing on a signal originally fed
back to a second printer, output a coordinated control signal which is then transmitted
to the second printer; and the first ink cartridge and the second ink cartridge may
have a same-sized fluid accommodation container and/or a same nozzle position; the
differentiating module may be configured as the electrical characteristic difference
of the storage circuit and/or the nozzle circuit, and the printer may identify the
second ink cartridge through the electrical characteristic difference, such that the
second ink cartridge is usable for a first printer and a second printer.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] In order to clearly illustrate the technical solutions in the embodiments of the
present disclosure, the drawings, which are required to be used in the description
of the disclosed embodiments, are briefly described hereinafter. It should be understood
that the following drawings are merely some embodiments of the present disclosure
and are not to be considered as the scope limitation. Other drawings derived from
such drawings may be obtained by those skilled in the art without creative work.
FIG. 1 illustrates a connection schematic of a printing consumable;
FIG. 2 illustrates a connection schematic of a printing consumable according to various
embodiments of the present disclosure;
FIG. 3 illustrates a schematic between a printer and a heating resistor of a nozzle
circuit according to various embodiments of the present disclosure;
FIG. 4 illustrates a structural schematic of a second nozzle circuit according to
various embodiments of the present disclosure;
FIG. 5 illustrates a structural schematic of another conversion circuit according
to various embodiments of the present disclosure;
FIG. 6 illustrates a structural schematic of another conversion circuit according
to various embodiments of the present disclosure; and
FIG. 7 illustrates a flowchart of a cartridge reforming method according to various
embodiments of the present disclosure.
DETAILED DESCRIPTION
[0027] In order to illustrate objectives, technical solutions and advantages of embodiments
of the present disclosure more clearly, the technical solutions in the embodiments
of the present disclosure may be clearly and completely described in the following
with reference to the drawings in the embodiments of the present disclosure. Obviously,
the described embodiments may be a portion of the embodiments, not all of the embodiments,
of the present disclosure. The components of the embodiments of the present disclosure,
which are described and illustrated in the drawings herein, may be arranged and designed
in various different configurations.
[0028] Therefore, the detailed description of the embodiments of the present disclosure
in the drawings may not be intended to limit the scope of the claimed disclosure and
may merely represent selected embodiments of the present disclosure. Based on the
embodiments of the present disclosures, all other embodiments obtained by those skilled
in the art without creative work are within the protection scope of the present disclosure.
[0029] It should be noted that similar reference numerals and letters refer to similar items
in the following drawings, and therefore, once an item is defined in a drawing, it
is not required to be further defined and illustrated in subsequent drawings.
[0030] In the existing technology, due to the limitation of a single matching relationship
between replaceable parts and printers, certain replaceable parts may be discarded,
resulting in a backlog of inventory. Taking the printing consumables as an example,
different printers have different identification specifications for the nozzles of
the printing consumables, and the printing consumables with single specification nozzles
are difficult to be applied to multiple printers, which may easily result in waste
of consumable resources.
[0031] Referring to FIG. 1, FIG. 1 illustrates a schematic of a printing consumable 900
in an existing technology. The printer consumable 900 may be detachably installed
on a printer. The printer consumable 900 may include a printhead driver circuit 910
including a plurality of nozzle circuits. The plurality of nozzle circuits may be,
for example, a1, b1, c1, d1, and e1 shown in FIG. 1. In one embodiment, the nozzle
circuits of the printing consumable 900 may be configured to feed back a first signal
in response to a detection signal transmitted by the printer.
[0032] The printing consumable 900 may match a first printer 200. When any printing consumable
is installed on the first printer 200, the first printer 200 may establish an electrical
connection with each nozzle circuit of the printing consumable. The first printer
200 may detect the nozzle circuits of the connected printing consumable. The detection
mechanism may be described as the following. The detection signal may be transmitted
to a first specific nozzle circuit of the connected printing consumable; and if it
is detected that the first specific nozzle circuit returns the first signal, the first
printer 200 may identify the connected printing consumable as a first consumable that
matches the first printer.
[0033] In certain scenarios, since printers have restrictions on the identification specifications
of the nozzle circuits, the recycled printing consumable 900 may only be applicable
to the first printer 200, but not applicable to other printers, which may have a significantly
limited application range, thereby resulting in a low utilization rate of the recycled
printing consumables and wasting resources. In other scenarios, when the identification
mechanism, by the printer, of the nozzle circuits of the printing consumable is changed
due to that the printer is replaced or upgraded, the printing consumable originally
applicable to the printer may no longer be applicable to the replaced or upgraded
printer. For example, when the above-mentioned first printer 200 is replaced or upgraded
to a second printer, the printer consumable 900 may no longer be applicable to the
second printer and may have to be discarded which results in waste of resources.
[0034] In order to at least partially improve the above-mentioned problem, the present disclosure
provides a printing consumable, a consumable chip, an ink cartridge, a ink cartridge
reforming method, and a configuration method of differentiating module, which may
be described in detail hereinafter.
[0035] Referring to FIG. 2, FIG. 2 exemplarily illustrates a connection schematic of the
printing consumable 100 according to various embodiments of the present disclosure.
The printing consumable 100 may be detachably installed on the printer, where the
printing consumable 100 may be obtained by reforming the printing consumable 900 shown
in FIG. 1. For example, the nozzle circuit 110 of the printing consumable 100 may
be obtained by reforming the nozzle circuit 910 shown in FIG. 1.
[0036] The printing consumable 100 may include first nozzle circuits and second nozzle circuits,
where the first nozzle circuits may refer to the nozzle circuits that have not been
reformed and the second nozzle circuits may refer to the nozzle circuits that have
been reformed. Referring to FIG. 1, it is assumed that the nozzle circuits a1 and
b1 shown in FIG. 1 need to be reformed, the reformed nozzle circuits a1 and b1 may
both be second nozzle circuits which are, for example, second nozzle circuits a2 and
b2 shown in FIG. 2. Correspondingly, the nozzle circuits c1, d1, and e1 that have
not been reformed in FIG. 1 may all be first nozzle circuits which are, for example,
the first nozzle circuits c1, d1, and e1 shown in FIG. 2.
[0037] The first nozzle circuits of the printing consumable 100 may be configured to feed
back the first signal in response to the detection signal transmitted by the printer.
The second nozzle circuits may not respond to the detection signal transmitted by
the printer or may feed back a second signal different from the first signal in response
to the detection signal transmitted by the printer.
[0038] The second printer may have the following detection mechanism. The detection signal
may be transmitted to a second specific nozzle circuit of the connected printing consumable;
and if it is not detected that the second specific nozzle circuit returns the first
signal, the second printer may identify the connected printing consumable as a second
consumable that matches the second printer.
[0039] According to the above-mentioned manner, when the printing consumable 100 is connected
to the second printer, the printing consumable 100 may be identified by the second
printer as the second consumable that matches the second printer.
[0040] The second specific nozzle circuit of the printing consumable 900 (e.g., the old
printing consumable) may be reformed to obtain the second nozzle circuit.
[0041] For example, the detection mechanism of the second printer 400 may include the following.
For detecting two nozzle circuits, e.g., having addresses D1 and D2, respectively,
the two nozzle circuits (with respective addresses D1 and D2) are used as the second
specific nozzle circuits. Correspondingly, the quantity of the second nozzle circuits
of the printing consumable 100 may be two, and the addresses of the second nozzle
circuits may be D1 and D2, respectively.
[0042] In an implementation manner of one embodiment, the first signal may be a signal with
a voltage lower than a pre-set value, and the second signal may be a signal with a
voltage not lower than the pre-set value. Optionally, the pre-set value may be about
3.3 V. It should be noted that the voltage mentioned herein may be an average voltage,
a maximum voltage (e.g., the amplitude of the voltage signal), or an effective voltage
(e.g., an effective value of the voltage signal), which may not be limited according
to the embodiments of the present disclosure.
[0043] In the above-mentioned implementation manners, the second nozzle circuits in one
embodiment may have various implementation structures. Before describing the structures
of the second nozzle circuits, the detection principle of the printing consumable
100 may be briefly described herein.
[0044] For example, referring to FIG. 3, the printer may be electrically connected to a
heating resistor R of the nozzle circuit through a detection terminal, where the side
of the detection terminal connected with the heating resistor may have a point A,
and the side of the detection terminal away from the heating resistor R may be connected
to a non-constant voltage source. Therefore, when the resistor is connected to the
point A of the detection terminal, the voltage of the point A may be pulled down.
For example, the voltage (e.g., the average voltage, the maximum voltage, or the effective
voltage) of the detection signal outputted from the detection terminal is 15 V, the
voltage of the point A may be pulled down to less than 3.3 V when the heating resistor
R is connected to the point A. At this point, the signal detected from the point A
may be used as the first signal. As the resistance of the heating resistor R increases,
the pulled down voltage at the point A may gradually increase, that is, the pulled
downed extent of the voltage at the point A may be reduced. For example, when the
resistance value of the heating resistor R approaches infinity, the voltage at the
point A may no longer be pulled down, that is, be basically maintained at 15 V. When
the pulled down voltage at the point A is not lower than 3.3 V, the signal detected
from the point A may be used as the second signal.
[0045] The structure of the second nozzle circuit is described in detail hereinafter.
[0046] In the first embodiment provided by the present disclosure, the second nozzle circuit
may include the heating resistor which is in a disconnected state. It should be understood
that the disconnected state described herein may refer to that the heating resistor
is in a mechanically disconnected state, for example, the disconnected state may be
achieved by the manners including cutting, fusing, laser irradiation, and the like.
In such way, the resistance value of the heating resistor may be regarded as infinite,
so that the voltage of the detection signal transmitted by the printer may not be
pulled down basically. In other words, the voltage of the feedback signal obtained
after the printer transmits the detection signal to the second nozzle circuit may
not be lower than the pre-set value, that is, the feedback signal may be the second
signal different from the first signal.
[0047] In the second embodiment provided by the present disclosure, the resistance value
of the heating resistor of the second nozzle circuit may be different from the resistance
value of the heating resistor of the first nozzle circuit of the printing consumable
100. The resistance of the heating resistor of the second nozzle circuit may be determined
according to the detection mechanism of the second printer 400. For example, when
the voltage of the second signal is not lower than the pre-set value, the resistance
value of the heating resistor of the second nozzle circuit may be greater than the
resistance value of the heating resistor of the first nozzle circuit.
[0048] In one embodiment, the nozzle circuit of the printing consumable may receive the
detection signal transmitted by the printer through an interface circuit and receive
the address signal of the printer through an address circuit. The printer may first
transmit the address signal to the printing consumable, where the address signal is
used to select the nozzle circuit that needs to be detected (e.g., the above-mentioned
first specific nozzle circuit or second specific nozzle circuit); and then the printer
may transmit the detection signal to the selected nozzle circuit.
[0049] Based on the above-mentioned description, in the third embodiment provided by the
present disclosure, the second nozzle circuit may include the interface circuit and/or
the address circuit. The interface circuit may be in a disconnected state and/or the
address circuit may be in a disconnected state, where the disconnected state refers
to a mechanically disconnected state.
[0050] When the interface circuit of the second nozzle circuit is in the disconnected state,
the second nozzle circuit may not be able to receive the detection signal transmitted
by the printer, so that the second nozzle circuit may not be able to feed back the
corresponding feedback signal. In other words, after the printer transmits the detection
signal to the second nozzle circuit, the second nozzle circuit may not return the
first signal (e.g., no response).
[0051] In the fourth embodiment provided by the present disclosure, the first adjustment
circuit and/or the second adjustment circuit may include a temperature detection device.
The temperature detection device may be configured to feed back the second signal
in response to the detection signal. The detection signal may characterize the signal
used to heat the heating resistor ("heating signal" hereinafter) of the second nozzle
circuit.
[0052] For example, for the connected printing consumable, the printer may input a heating
signal to the nozzle circuit, which needs to be detected, of the printing consumable.
Liquids (e.g., inks and the like) may be around the heating resistor of the nozzle
circuit that needs to be detected. When the heating resistor of the nozzle circuit
that needs to be heated generates heat, the temperature of the surrounding liquid
may increase. The temperature detection device may be configured to detect the temperature
of the surrounding liquid. In one embodiment, the temperature detection device may
convert the temperature of the surrounding liquid into an electrical signal and provide
the electrical signal as the feedback signal to the printer.
[0053] In such situation, the second nozzle circuit may be implemented by changing the heating
signal or the electrical signal provided by the temperature detection device. For
example, the heating signal may be pulled down, such that the heating effect of the
heating resistor of the detected nozzle circuit may be decreased; or the heating signal
may be grounded, such that the heating resistor of the detected nozzle circuit may
not be heated. In such way, the electrical signal provided by the temperature detection
device may be reduced, so that the detected second nozzle circuit may satisfy the
detection mechanism of the second printer. For another example, the electrical signal
provided by the temperature detection device may be pulled down, and then be fed back
to the second printer, such that the detected nozzle circuit may satisfy the detection
mechanism of the second printer. Referring to FIG. 4, the second nozzle circuit a2
shown in FIG. 2 may be used as an example to illustrate the structure of the second
nozzle circuit a2 provided by the fifth embodiment of the present disclosure. The
second nozzle circuit a2 may include a feedback circuit and a conversion circuit 40
which are electrically connected to each other. The feedback circuit may be configured
to feed back the first signal in response to the detection signal transmitted by the
printer. It should be noted that the feedback circuit and the first nozzle circuit
(e.g., the un-reformed nozzle circuit a1 of the old printing consumable 900) may have
a same structure. In order to conveniently understand the above-mentioned structure,
the feedback circuit in FIG. 4 may be represented by the feedback circuit a1.
[0054] It should be understood that other second nozzle circuits in one embodiment may have
a similar structure as the second nozzle circuit a2, which may not be described in
detail herein. It should be noted that other second nozzle circuits and the second
nozzle circuit a2 in one embodiment may share a same conversion circuit 40 or may
respectively include conversion circuits, which may not be limited according to the
embodiments of the present disclosure.
[0055] In one embodiment, the conversion circuit 40 may have various implementation structures.
The second nozzle circuit a2 may still be taken as an example for description hereinafter.
[0056] In the first implementation manner, the conversion circuit 40 may include a first
adjustment circuit 41 and/or a second adjustment circuit 42.
[0057] The first adjustment circuit 41 may be electrically connected to the feedback circuit
a1. The first adjustment circuit 41 may be configured to adjust the detection signal
transmitted by the printer, such that the feedback circuit 40 may feed back the second
signal after receiving the adjusted detection signal. The second adjustment circuit
41 may be electrically connected to the feedback circuit a1. The second adjustment
circuit 41 may be configured to adjust the first signal fed back by the feedback circuit
a1 to the second signal.
[0058] In one situation, when the voltage of the first signal is lower than the pre-set
value and the voltage of the second signal is higher than the pre-set value, the first
adjustment circuit 41 may be configured to increase the voltage of the detection signal,
and the second adjustment circuit may be configured to increase the voltage of the
first signal to obtain the second signal.
[0059] In the above-mentioned situation, the first adjustment circuit 41 and the second
adjustment circuit 42 may be resistors which are connected in series with the heating
resistor of the second nozzle circuit. In such way, it is equivalent that the resistance
connected to the point A of the detection terminal shown in FIG. 3 may increase, so
that the pulled down extent of the voltage at the point A may be reduced. In other
words, the pulled down voltage at the point A may increase. As long as the resistance
of the resistor is sufficiently large, it can be ensured that the pulled down voltage
at the point A may not be lower than the pre-set value.
[0060] In the above-mentioned situation, the first adjustment circuit 41 and the second
adjustment circuit 42 may also be excitation sources which are connected in series
with the heating resistor of the second nozzle circuit. When the resistance of the
heating resistor is constant, the voltage of the heating resistor on the side away
from the ground terminal may be increased by increasing the current passing through
the heating resistor, that is, the voltage at the point A shown in FIG. 3 may be increased.
[0061] In the second implementation manner, as shown in FIG. 5, the conversion circuit 40
may include an address determination circuit 51 and a disconnection control circuit
52 which are electrically connected to each other.
[0062] The address determination circuit 51 may be configured to determine whether the second
nozzle circuit is selected according to the address signal transmitted by the printer.
The disconnection control circuit 52 may be configured to disconnect the electrical
connection between the second nozzle circuit and the printer when the second nozzle
circuit is selected.
[0063] It should be understood that the disconnection described herein may refer to a temporary
disconnection. After the disconnection, the electrical connection between the second
nozzle circuit and the printer may be re-established if required.
[0064] As described above, in some situations, the printer may first transmit the address
signal to select the nozzle circuit that needs to be detected from the printing consumable
and transmit the detection signal to the selected nozzle circuit. According to the
above-mentioned description, when it is determined that the address signal is used
to select the second nozzle circuit, the address signal may be changed to select other
nozzle circuits.
[0065] For example, in the third implementation manner, as shown in FIG. 6, the conversion
circuit 40 may include the address determination circuit 51 and a pulse interference
circuit 62 which are electrically connected with each other.
[0066] The pulse interference circuit 62 may be configured to add a pulse signal to the
address signal to change the address signal when the second nozzle circuit is selected.
[0067] It should be noted that the address circuit of the nozzle circuit of the printing
consumable 100 may be connected to the printer according to the following two manners.
For the first manner, each nozzle circuit of the printing consumable 100 may have
its respective address circuit and may be connected to the printer through its respective
address circuit. For the second manner, the address circuits of all nozzle circuits
of the printing consumable 100 may be connected with each other and then connected
to the printer through an address decoding circuit.
[0068] In the first manner mentioned above, the pulse signal added by the pulse interference
circuit 62 may be transmitted to the address circuit; and in the second manner mentioned
above, the pulse signal added by the pulse interference circuit 62 may be transmitted
to the address decoding circuit.
[0069] Optionally, in one embodiment, the above-mentioned conversion circuits 40 may be
integrated on a substrate. In such way, when the nozzle conversion is required, it
is only necessary to electrically connect the substrate with the feedback circuit
(e.g., the first nozzle circuit that needs to be converted).
[0070] Optionally, the conversion circuit may also be configured to change the above-mentioned
heating signal, or the above-mentioned electrical signal provided by the temperature
detection device.
[0071] A consumable chip is also provided in one embodiment. The consumable chip may include
the conversion circuit 40 provided in one embodiment.
[0072] Optionally, the printing consumable provided in one embodiment may be an ink cartridge.
Based on the above description, as shown in FIG. 7, an ink cartridge reforming method
is provided in one embodiment. It is assumed that the printing consumable 900 is the
ink cartridge, the ink cartridge may be reformed through the ink cartridge reforming
method to obtain the reformed ink cartridge similar to the printing consumable 100.
Each step of the method may be described in detail hereinafter.
[0073] S1: at least one first nozzle circuit of the ink cartridge may be reformed to form
the second nozzle circuit, where the second nozzle circuit may not respond to the
detection signal transmitted by the printer or may feed back the second signal different
from the first signal in response to the detection signal transmitted by the printer.
[0074] In one implementation manner, performing the circuit reforming on at least one first
nozzle circuit of the ink cartridge may include at least one of the following steps:
disconnecting the heating resistor of the first nozzle circuit;
changing the resistance value of the first nozzle circuit; and
disconnecting the interface circuit and/or the address circuit of the first nozzle
circuit;
where the heating resistor, the interface circuit, and the address circuit of the
first nozzle circuit may be disconnected by laser and cut off by the focused ion beam
(FIB).
[0075] In another implementation manner, performing the circuit reforming on at least on
first nozzle circuit of the ink cartridge may include at least one of the following
steps:
configuring the conversion circuit which is electrically connected to the first nozzle
circuit;
where, the conversion circuit described here may be basically same as the conversion
circuit 40 described above.
[0076] The present disclosure also provides an ink cartridge including a first ink cartridge
only suitable or usable for the first printer and a differentiating module disposed
in the first ink cartridge. The first ink cartridge may include a fluid accommodation
container configured to store ink, a storage circuit configured to store data which
can be accessed by the printer, and a nozzle circuit configured to control ink injection
action. The differentiating module may include an electrical difference structure
causing the electrical characteristic difference and a mechanical difference structure
causing the mechanical structure difference. The printer may determine or identify
the ink cartridge type based on the differentiating module.
[0077] In the present disclosure, the ink cartridge matching the second printer may refer
to a second ink cartridge. The first ink cartridge and the second ink cartridge may
have a same-sized fluid accommodation container structure and/or a same nozzle position.
The differentiating module may be attached to the first ink cartridge. The first ink
cartridge attached with the differentiating module may be suitable/usable for the
second printer, that is, may be identified as the second ink cartridge by the second
printer. Particularly, when the first printer is a printer without a detection mechanism,
the first ink cartridge attached with the differentiating module may also be suitable/usable
for the first printer.
[0078] Optionally, the mechanical difference structure may include an interface circuit.
The interface circuit may be an interface circuit after the terminal arrangement has
been changed. The interface circuit with the changed terminal arrangement may match
the pin arrangement of the second printer. The mechanical difference structure may
include, for example, at least one of the above-mentioned conversion circuit, the
first adjustment circuit, the second adjustment circuit, the disconnected heating
resistor, the disconnected interface circuit, and the disconnected address circuit,
etc.
[0079] The present disclosure also provides a configuration method of the differentiating
module which is used to repair or upgrade the first ink cartridge to the second ink
cartridge. The method may include the following steps:
disposing the above-mentioned differentiating module in the first ink cartridge.
[0080] The first ink cartridge and the second ink cartridge may have a same-sized fluid
accommodation container and/or a same nozzle position. The differentiating module
may be configured as the mechanical characteristic difference or the electrical characteristic
difference. The printer may identify the first ink cartridge, which includes the differentiating
module, as the second ink cartridge through the mechanical characteristic difference
or the electrical characteristic difference.
[0081] Optionally, the differentiating module may include a controller.
[0082] In one implementation manner, the controller may be configured to receive partial
transmission signals outputted by the printer, output a coordinated control signal
after performing interference processing on the partial transmission signals, and
transmit the coordinated control signal to the storage circuit and/or the nozzle circuit.
In such way, the signal fed back from the storage circuit and/or the nozzle circuit
may be changed.
[0083] For example, in one implementation manner, the controller may be implemented by the
above-mentioned first adjustment circuit or also implemented by the above-mentioned
address determination circuit 51 and the pulse interference circuit 62.
[0084] In another implementation manner, the controller may be configured to receive the
feedback signal, output the coordinated feedback signal after performing interference
processing on the feedback signal, and transmit the coordinated feedback signal to
the printer. The feedback signal may be the signal fed back by the storage circuit
and/or the nozzle circuit for partial transmission signals of the printer.
[0085] For example, in one implementation manner, the controller may be implemented by the
above-mentioned second adjustment circuit.
[0086] The present disclosure provides the printing consumable, the consumable chip, the
ink cartridge, the cartridge reforming method, and the configuration method of the
differentiating module. The printing consumable may include the first nozzle circuits
and the second nozzle circuits. The first nozzle circuits may be configured to feed
back the first signal in response to the detection signal transmitted by the printer.
The second nozzle circuits may not respond to the detection signal transmitted by
the printer or may feed back the second signal different from the first signal in
response to the detection signal transmitted by the printer. Therefore, the printing
consumable originally suitable/usable for the first printer may be applied to the
second printer, thereby avoiding the waste of the consumable resources.
[0087] In the description of the present disclosure, it should also be noted that the terms
"configure", "install", "connected", and "connection" are to be understood broadly
unless otherwise specifically stated and defined; for example, it may be a fixed connection,
a detachable connection, or an integrated connection; it may be a mechanical connection
or an electrical connection; and it may be a direct connection or indirect connection
through an intermediate medium and may be an internal connection between the two elements.
The specific meanings of the above-mentioned terms in the present disclosure may be
understood in the specific circumstances for those skilled in the art.
[0088] It should be noted that, in the context, relational terms such as primary and secondary
and the like may be used merely to distinguish one entity or operation from another
entity or operation and may not necessarily require or imply such actual relationship
or order between the entities or operations. Furthermore, the terms "include", "comprise"
or any other variations thereof may be intended to encompass a non-exclusive inclusion,
such that a process, a method, an item, or a device which comprise a plurality of
elements may not only include such elements, but also include other elements which
are not explicitly listed or may further include elements which are inherent to the
process, the method, the item or the device. Without more restrictions, an element
defined by the phrase "include one ..." may not exclude that additional identical
elements may be in the process, the method, the item, or the device which includes
such element.
[0089] The above-mentioned disclosed embodiments are exemplary only and are not intended
to limit the scope of the present disclosure. Any changes or modifications that are
readily conceivable by those skilled in the art within the scope of the present disclosure
should be covered by the protection scope of the present disclosure. The scope of
the present disclosure is defined by the appended claims and their equivalents.
INDUSTRIAL APPLICABILITY
[0090] The present disclosure provides the printing consumable, the consumable chip, the
ink cartridge, the cartridge reforming method, and the configuration method of the
differentiating module. Therefore, the printing consumable originally suitable/usable
for the first printer may be applied to the second printer, thereby avoiding the waste
of the consumable resources.
1. A printing consumable, wherein:
the printing consumable detachably installed on a printer comprises:
a first nozzle circuit, configured to feed back a first signal in response to a detection
signal transmitted by the printer; and
a second nozzle circuit, configured to not respond to the detection signal transmitted
by the printer or configured to feed back a second signal different from the first
signal in response to the detection signal.
2. The printing consumable according to claim 1, wherein:
the second nozzle circuit includes a heating resistor; and the heating resistor is
in a disconnected state.
3. The printing consumable according to claim 1 or 2, wherein:
the second nozzle circuit includes a heating resistor; and a resistance value of the
heating resistor of the second nozzle circuit is different from a resistance value
of a heating resistor of the first nozzle circuit of the printing consumable.
4. The printing consumable according to one of the claim 1 to 3, wherein:
the second nozzle circuit includes an interface circuit and/or an address circuit,
wherein:
the interface circuit is in a disconnected state so as not to respond to the detection
signal; and/or
the address circuit is in a disconnected state so as not to respond to the detection
signal.
5. The printing consumable according to one of the claim 1 to 4, wherein:
the second nozzle circuit includes a feedback circuit and a conversion circuit which
are electrically connected to each other; wherein the feedback circuit is configured
to feed back the first signal in response to the detection signal transmitted by the
printer
6. The printing consumable according to claim 5, wherein:
conversion circuit including:
the first adjustment circuit is electrically connected to the feedback circuit, wherein
the first adjustment circuit is configured to adjust the detection signal, such that
the feedback circuit feeds back the second signal after receiving an adjusted detection
signal; and/or
the second adjustment circuit is electrically connected to the feedback circuit, wherein
the second adjustment circuit is configured to adjust the first signal fed back by
the feedback circuit to the second signal.
7. The printing consumable according to claim 6, wherein:
the first adjustment circuit is configured to increase a voltage of the detection
signal, and
the second adjustment circuit is configured to increase a voltage of the first signal
to obtain the second signal.
8. The printing consumable according to claim 7, wherein:
each of the first adjustment circuit and the second adjustment circuit includes a
resistor, connected in series with a heating resistor of the second nozzle circuit;
and/or
each of the first adjustment circuit and the second adjustment circuit includes an
excitation source, connected in series with the heating resistor of the second nozzle
circuit.
9. The printing consumable according to one of the claim 5 to 8, wherein:
the conversion circuit including: an address determination circuit and one of a disconnection
control circuit and a pulse interference circuit, and the address determination circuit
is electrically connected to the disconnection control circuit or the pulse interference
circuit;
the address determination circuit is configured to determine whether the second nozzle
circuit is selected according to an address signal transmitted by the printer;
the disconnection control circuit is configured to disconnect an electrical connection
between the second nozzle circuit and the printer when the second nozzle circuit is
selected; and
the pulse interference circuit is configured to add a pulse signal to the address
signal when the second nozzle circuit is selected.
10. The printing consumable according to one of the claim 5 to 9, wherein:
the second nozzle hole circuit includes a heating resistor and a temperature detection
device, wherein the temperature detection device is configured to feed back the second
signal in response to the detection signal characterizing a signal configured to heat
the heating resistor.
11. The printing consumable according to one of the claim 5 to 10, wherein:
the conversion circuit is disposed on a substrate electrically connected to the feedback
circuit.
12. An consumable chip, wherein:
the consumable chip may include the conversion circuit provided in one of the claim
5 to 11.
13. An ink cartridge reforming method, wherein:
the method is configured to reform an ink cartridge, and the ink cartridge includes
a first nuzzle hole circuit which is configured to feed back a first signal in response
to a detection signal transmitted by a printer, the method comprising:
reforming at least one first nozzle circuit of the ink cartridge to provide a second
nozzle circuit, wherein the second nozzle circuit does not respond to the detection
signal transmitted by the printer or feeds back a second signal different from the
first signal in response to the detection signal transmitted by the printer.
14. The method according to claim 13, wherein reforming the at least one first nozzle
circuit of the ink cartridge includes:
disconnecting a heating resistor of the first nozzle circuit; and/or
changing a resistance value of the heating resistor of the first nozzle circuit; and/or
disconnecting an interface circuit and/or an address circuit of the first nozzle circuit.
15. The method according to claim 14, wherein:
the heating resistor, the interface circuit, and the address circuit of the first
nozzle circuit are disconnected by laser or cut off by focused ion beam (FIB).
16. The method according to claim 13, wherein:
reforming the at least one first nozzle circuit of the ink cartridge includes:
configuring a conversion circuit which is electrically connected to the first nozzle
circuit.
17. An ink cartridge, the ink cartridge includes a first ink cartridge only usable for
a first printer, where the first ink cartridge includes a fluid accommodation container
configured to store ink, a storage circuit configured to store data for the first
printer to access, and a nozzle circuit configured to control ink injection action;
and a differentiating module, where the differentiating module includes an electrical
characteristic difference and a mechanical structure difference, where the differentiating
module is configured to identify and determine an ink cartridge type; wherein:
each of the first ink cartridge and the second ink cartridge has a same-sized fluid
accommodation container and/or a same nozzle position; and the differentiating module
is attached to the first ink cartridge, such that the ink cartridge is usable for
a first printer and a second printer.
18. A configuration method of the differentiating module, wherein:
the method is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
first ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the mechanical characteristic difference, and the printer may identify the second
ink cartridge through the mechanical characteristic difference.
19. A configuration method of the differentiating module, wherein:
the method is used to repair or upgrade the first ink cartridge to the second ink
cartridge; disposing the differentiating module in the first ink cartridge, and the
first ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the electrical characteristic difference, and the printer may identify the second
ink cartridge through the electrical characteristic difference.
20. A configuration method of the differentiating module, which is used to repair or upgrade
the first ink cartridge to the second ink cartridge; disposing the above-mentioned
differentiating module in the first ink cartridge, and the differentiating module
includes a controller, where the controller is configured to, after performing receiving
and interference processing on partial transmission signals outputted by a second
printer, output a coordinated control signal, and transmit the coordinated control
signal to a storage circuit and/or a nozzle circuit; wherein:
the first ink cartridge and the second ink cartridge may have a same-sized fluid accommodation
container and/or a same nozzle position; the differentiating module may be configured
as the electrical characteristic difference of the storage circuit and/or the nozzle
circuit, and the printer may identify the second ink cartridge through the electrical
characteristic difference, such that the second ink cartridge is usable for a first
printer and a second printer.
21. A configuration method of the differentiating module, which is used to repair or upgrade
the first ink cartridge to the second ink cartridge; disposing the differentiating
module in the first ink cartridge, and the differentiating module includes a controller,
where the controller is configured to, after performing receiving and interference
processing on a signal originally fed back to a second printer, output a coordinated
control signal which is then transmitted to the second printer; wherein:
and the first ink cartridge and the second ink cartridge may have a same-sized fluid
accommodation container and/or a same nozzle position; the differentiating module
may be configured as the electrical characteristic difference of the storage circuit
and/or the nozzle circuit, and the printer may identify the second ink cartridge through
the electrical characteristic difference, such that the second ink cartridge is usable
for a first printer and a second printer.