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(57) The present invention concerns a method for
training a logistic regression classifier on a dataset by
using a resistive RAM as hardware accelerator, each row
of the resistive RAM comprising M cells which can be
programmed in a first resistance state or a second re-
sistance state. The probability of a data element x be-
longing to a class is modelled by a logistic function ap-
plied to a score wTx of said element, where w is a pa-
rameter vector of the model. The logistic regression clas-
sifier is trained by populating the resistive RAM with sam-
ples of a model parameter vector which are obtained by
MCMC sampling. Once populated, the resistive RAM can
be used for classifying new data.



EP 3 825 927 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF THE INVENTION

[0001] The present invention concerns the field of machine learning and more specifically the use of Markov Chain
Monte Carlo (MCMC) sampling for machine learning. The invention also relates to the field of resistive Random Access
Memories (RRAMs).

BACKGROUND OF THE INVENTION

[0002] Classification is a common problem within machine learning. Basically, classifying amounts to predicting a
qualitative response for an observation i.e. assigning the observation to a category or a class. Many classification
techniques are available to predict a qualitative response. A very popular supervised classification method is logistic
regression.
[0003] Consider an example of dataset as illustrated in Fig. 1. Each element of the dataset can be described by two
attributes (or features) x1,x2 and has a binary response t={0,1}. In other words, each element can be classified as
belonging to a first class, t = 0, (points plotted as a circle) or as belonging to a second class, t = 0 (points plotted as a square).
[0004] The data elements of the dataset can be represented by vectors xn, the size of which being the number M of

attributes (here M = 2). These vectors can be stacked in a matrix  where N is the number of
elements in the dataset, thereby representing the whole dataset. Similarly, the responses of the elements of the dataset
can be stacked in a vector t=(t1,t2,...,tN)T.
[0005] We look for a linear model which would allow us to classify the data elements of the dataset according to their
known responses and predict the class of a new observation xnew. More specifically, we assume that for any data element
xn of the dataset the probability that it belongs to the first class (Tn = 0) decreases with the dot product wTxn where w
is a vector, hereinafter referred to as parameter vector capturing the parameters of the model. Conversely, we assume
that the probability that data element xn belongs to the second class (Tn = 1) increases with the dot product. A simple
way to convert the dot product into a probability value is to squash the dot product into the range [0,1] with a sigmoid
function (a.k.a. standard logistic function), according to the logit model: 

and therefore: 

[0006] Following a Bayesian approach, we now consider the parameter vector as a random vector and are interested
in finding the posterior probability density (also called posterior density or, simply, posterior) knowing the dataset elements
and their respective classes, that is p(w|t,X). The posterior can be obtained from the prior probability density, p(w), (also
called prior density or, simply, prior), the likelihood p(t|X,w) and the marginal likelihood, p(t|X), according to Bayes’ rule: 

where the marginal likelihood is obtained by p(|X)=∫p(t|X,w)p(w)dw.
[0007] In the following, the posterior p(w|t,X) will simply be denoted π(w) and the likelihood of parameter vector w,
p(t|X,w), will be denoted <(w). Since p(t|X) is a constant depending only upon the dataset, the posterior is proportional
to the product of the likelihood with the prior: 



EP 3 825 927 A1

3

5

10

15

20

25

30

35

40

45

50

55

where Z is a constant.
[0008] It should be noted that the terms posterior and prior always refer to the available observations (the dataset X)
and their respective responses (t).
[0009] Assuming that the elements of t are conditionally independent, the likelihood <(w) can be expressed as follows: 

and therefore, substituting expressions (1-1) and (1-2) into (4): 

[0010] Even assuming a known distribution e.g. a Gaussian distribution for the prior π(w), it is generally impossible to
compute the denominator Z-1 of (2) because the integration of the likelihood p(t|X,w) for obtaining the marginal likelihood
p(t|X) is not analytically tractable.
[0011] Several options are available at this stage. According to a first option, one may look for the parameter vector,
wMAP (where MAP stands for Maximum A Posteriori) achieving the maximum value of the posterior, π(w) and predict
the class of a new observation according to (1-1) and (1-2) with the MAP parameter vector, wMAP. According to a second
option, referred to as Laplace approximation, one may try to approximate the posterior around its maximum value by a
gaussian distribution. A third option, which better captures the distribution of the parameter vector is to sample the
posterior π(w) knowing the likelihood <(w) and the prior p(w) and availing of the proportionality relationship (3). Sampling
means drawing samples of the parameter vector w according to the posterior π(w). Once Ns samples of the posterior
have been obtained, ws, s =1,...,Ns, namely once we have got Ns models we can predict the class of a new observation
xnew (unseen data point) by calculating the average: 

and therefore: 

[0012] Each instance of ws capturing the model parameters is associated with a linear decision boundary in the space
of attributes as shown in Fig. 2. More generally, each sample ws defines a decision boundary is the form of a hyperplane
in the space of attributes.
[0013] It follows from expression (6-1) and (6-2) that we can train a logistic regression classifier on the data set X with
known labels t provided we are able to sample the posterior π(w).
[0014] The sampling of π(w) can be achieved by a so-called MCMC (Markov Chain Monte Carlo) technique allowing
to explore the parameter space according to a Markov stochastic process. A popular sampling algorithm using this
technique is the Metropolis-Hastings algorithm which is outlined further below. A detailed presentation of the Metropolis-
Hastings algorithm and its application to machine learning can be found for instance in the book by Simon Rogers and
Mark Girolami entitled "First course in Machine Learning", Chapter IV, second edition, Chapman & Hall/ CRC Press,
2017, or in the article of C. Andrieu et al. entitled "An introduction to MCMC for machine learning" published in Machine

^
^
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Learning, vol. 5, pages 5-43, 2003.
[0015] A flowchart of the Metropolis-Hastings algorithm is illustrated in Fig. 3.
[0016] It assumes that a conditional probability density for moving from a parameter vector to a next one is defined
beforehand.
[0017] The algorithm starts at step 310 with an arbitrary parameter vector w0, and by initialising an iteration counter s = 0 .
[0018] At step 320, the iteration counter is incremented by one, that is s=s+1.
[0019] At step 330, a new candidate parameter vector, ws, is generated by using the conditional probability density
p(ws|ws-1) mentioned above. Without prejudice to generality, this conditional probability density can be chosen Gaussian,
i.e. p(ws|ws-1)∼ N(ws-1,∑) where ∑ is a predetermined covariance matrix. ∑ is chosen diagonal and its eigenvalues are
chosen commensurate with the parameter space to explore. It should be noted that the conditional probability density
is simply here to define a random walk through the parameter space and is not related to the posterior π(w).
[0020] Fig. 4 illustrates an example of random walk in the model space performed by the Metropolis-Hastings algorithm.
The average size of a move from one sample to the next is given by the eigenvalues of the covariance matrix.
[0021] Returning to the flowchart of Fig. 3, step 340 calculates an acceptance ratio, r, defined as the ratio of the
posterior density at the candidate sample ws to that at the previous sample ws-1, divided by the ratio of the proposed
densities, namely:

since the Gaussian distribution is symmetrical. The acceptance ratio r appraises the suitability of the candidate vector
ws to better classify the data of the dataset than vector ws-1 output by the previous iteration.
[0022] Although the posteriors cannot be calculated due to the presence of the constant Z, their ratio can be easily
obtained from expression (3) as the product of the ratio of the priors with the ratio of likelihoods: 

in which we will assume that the priors are all Gaussian i.e. p(ws)∼N(0,σ2IM) and p(ws-1) ∼ N(0,σ2IM), where IM is the
identity matrix of size M3M, M being the size of the data elements, that is the number of attributes.
[0023] It is checked at step 350 whether the acceptance ratio is greater than or equal to 1. In the affirmative, the
algorithm jumps to step 353 where the candidate vector is accepted that is ws =ws. In the negative, the algorithm proceeds
further with step 360 where a sample value, u, of a random variable U having a uniform probability density on the interval
[0,1] is drawn.
[0024] It is then checked at step 370 whether the sample value, u, is lower than or equal than the acceptance ratio,
r. In the affirmative, the algorithm jumps to step 353 where the candidate vector is accepted, that is ws =ws. However,
in the negative, the candidate vector is rejected at step 357 and the parameter vector output by the iteration s is chosen
equal to the one output by previous iteration, that is ws =ws-1.
[0025] In other words, if posterior density at ws is higher that the posterior density at ws-1, the candidate vector is
systematically retained whereas it is only conditionally retained otherwise. Hence, it should be understood that due to
the rejection mechanism, several consecutive samples of the sequence ws, s = 1,..., Ns may be identical.
[0026] After having being updated by the candidate vector (step 353) or not (step 357), the algorithm goes back to
step 320 for a new iteration.
[0027] Since, u ≤ 1, it is important to note that step 350 can be skipped. It suffices then to compare the acceptance
ratio, r, with u in 370, the parameter vector being updated with ws if u≤r and being kept equal identical to the previous
parameter vector ws-1 otherwise.
[0028] The algorithm stops when a predetermined stopping criterion (not represented) is met, e.g. when a predeter-
mined number Ns of samples have been obtained.
[0029] The Metropolis-Hastings algorithm can be run on a traditional computer for training a logistic regression classifier.
However, when the dataset is large or when the size (Ns) of the model is large, the algorithm requires a large size
memory and powerful computer resources.
[0030] An object of the present invention is to propose a method for training a logistic regression classifier which can
be carried out very efficiently on a hardware accelerator having very simple architecture.
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BRIEF DESCRIPTION OF THE INVENTION

[0031] The present invention is defined by the appended independent claims. Various preferred embodiments are
defined in the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] The present invention will be better understood from the description of the following embodiments, by way of
illustration and in no way limitative thereto:

Fig. 1 schematically illustrates an example of a dataset defined by two features following a binary response model;
Fig. 2 schematically illustrates decision boundaries corresponding to instances of the model parameters for sepa-
rating the two classes of response in Fig. 1;
Fig. 3 schematically illustrates the flow chart of the Metropolis-Hastings algorithm for sampling the model parameters;
Fig. 4 shows an example of random walk in the model space performed by the Metropolis-Hastings algorithm;
Fig. 5 shows examples of a probability density function of the resistance value of a cell in a low resistance state as
well as examples of a probability density function of the resistance value of a cell in a high resistance state;
Fig. 6 shows the relationship between the SET programming current and the median low resistance value of a cell
in an LRS state;
Fig. 7 shows the relationship between the RESET programming voltage and the median high resistance value of a
cell in an HRS state;
Fig. 8 shows the structure of a RRAM which can be used for a training method according to a first embodiment of
the invention;
Fig. 9 schematically illustrates the flowchart of a method for training a logistic regression classifier on a dataset by
using the RRAM of Fig. 8, according to the first embodiment of the invention;
Fig. 10 shows a method for classifying new data with a RRAM based logistic regression classifier after it has been
trained by a training method according to the first embodiment of the invention.
Fig. 11 shows the structure of a RRAM which can be used for a training method according to a second embodiment
of the invention.

DETAILED DISCLOSURE OF PARTICULAR EMBODIMENTS

[0033] The idea at the basis of the present invention is to use a resistive switching RAM also simply called resistive
memory (RRAM) for implementing the training of a logistic regression classifier according to the Metropolis-Hastings
algorithm. More specifically, the invention makes use of the cycle to cycle (C2C) variability of the low-resistance after a
SET operation or the high-resistance after a RESET operation in order to generate successive parameter vectors of the
model.
[0034] We recall that a resistive switching RAM consists of non-volatile random access memory cells, each cell com-
prising a resistor made of dielectric which can be programmed either in a low resistance state (LRS) with a so-called
SET operation or in a high resistance state (HRS) with a so-called RESET operation. During a SET operation, a strong
electric field is applied to the cell, while limiting the current to a programming current value. This operation forms a
conductive filament through the dielectric and brings the resistor to a low resistance value, RLO which depends upon
the programming current value.
[0035] Conversely, during a RESET operation, a programming voltage is applied to the cell with the same or opposite
polarity than the one used for electroforming. This voltage breaks the filament and the resistor returns therefore to a
high resistance value, RHI which depends upon the programming voltage value.
[0036] A detailed description of RRAM can be found in the article by R. Carboni and D. lelmini, entitled "Stochastic
memory devices for security and computing", published in Adv. Electron. Mat., 2019, 5, 1900198, pages 1-27.
[0037] Once a cell has been programmed by a SET or a RESET operation, the resistance value (RLO or RHI) is stable
in time until the next operation is performed. However, the low resistance value varies from one SET operation to the
next, even if the programming current is kept constant. More specifically, for a given programming current, the low
resistance RLO can be considered as a random variable which exhibits a normal distribution over SET operations (cycle
to cycle variability). Expressed otherwise, each time a SET operation is applied to the memory cell, the obtained resistance
value is sampled from this normal distribution.
[0038] Similarly, the high resistance value varies from one RESET operation to the next, even if the programming
voltage is kept constant. More specifically, for a given programming voltage, high resistance RHI can be considered as
a random variable which follows a log-normal distribution over the RESET operations (cycle to cycle variability). In other
words, each time a RESET operation is applied to the memory cell, the obtained resistance value is sampled from this
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log-normal distribution.
[0039] Fig. 5 shows, on its left side, examples of probability density function of RLO for a cell in a low resistance state.
The three examples shown correspond to three different RRAM cells. It also shows, on its right side, examples of
probability density function of RHI for a cell in a high resistance state HRS. The three examples shown correspond to
the same three RRAM cells. The probability density function has been obtained by cycling 100 times each of the cells.
The x-axis being represented in logarithm scale and the shape of RHI distribution being Gaussian, this confirms that RHI
follows a log-normal distribution.
[0040] The median value of the RLO distribution (or, equivalently, the mean value since the distribution is normal)
depends on the programming current value during the SET operation as illustrated in Fig. 6. The x-axis indicates the

programming current (in mA) according to a logarithmic scale whereas the y-axis indicates the median value 
(in Ω) according to a logarithmic scale. This dependency being linear in logscale, it follows that the median value of the

low resistance follows a power law of the type  where a and γ are positive coefficients.
[0041] Furthermore, the median value of the RHI distribution depends upon the programming voltage value during the
RESET operation, as illustrated in Fig. 7. The x-axis indicates the programming voltage (in V) according to a linear scale

whereas the y-axis indicates the median value,  (in Ω) according to a logarithmic scale. This dependency being
linear in semi-log scale, it follows that the median value of the high resistance follows an exponential law of the type

 where b and λ are positive coefficients.
[0042] According to a first embodiment of the invention, the method for training a logistic regression classifier uses a
resistive RAM structure as shown in Fig. 8.
[0043] The resistive RAM is comprised of word lines which are addressed by word select signals row[0],row[1],...,row[P].
Each word line is comprised of M cells where M stands for the number of attributes, each word line being intended to
store a sample a parameter word of the model. Furthermore, each word line is associated with a counter of occurrences,
the function of which will be described further below.
[0044] The cells of a column, m =1,...,M, can be fed with a data control signal, col[m]. Each cell comprises a FET
transistor, the gate of which is controlled by a word select signal and the source of which is connected to a data control
signal through a resistor, Rp,m. The drains of the FETs of a word line, p = 1,...,P, are all connected to the same output
line, out [p].
[0045] During a write operation into a cell located at the intersection of row p and column m, word select signal row[p]
is applied and a programming voltage is applied to col[m]. The programming can occur during a SET operation or a
RESET operation as mentioned above.
[0046] During a read operation of a cell located at the intersection of row p and column m, a word select signal is
applied at row[p] and a data control signal is applied at col[m]. Assuming that a voltage xm is applied to col[m], the output
line output[p] will output a current xm / Rp,m = gp,mxm, where gp,m is the conductance of the resistive RAM cell. If the
RAM cell was programmed to store a value (of conductance) wp,m, the output current would be wp,m·xm. Hence, if all
the cells of a line are read simultaneously, the output current of line output[p] will be the value of the dot product wT

px,
where x =(x1,...,xM)T and wp is the parameter vector stored at line p .
[0047] The resistive RAM of Fig. 8 can be used as hardware accelerator for training a logistic regression classifier on
a dataset as explained in the flowchart of Fig. 9.
[0048] We adopt here the same notations as in the introductory part of the application. Each element of the training
dataset is represented by M attributes which can be stacked in a vector x of size M . Each element of the training dataset
is labelled with a binary target t indicating whether the element in question belongs to a first class or to a second class.
[0049] The probability of an element x belonging to a class is modelled by a logistic function applied to a score wTx
where w is a parameter vector of size M. More specifically, the probability of element x belonging to the first class is
given by: 

whereas the probability of this element belonging to the second class is given by: 
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where the parameter vectors ws, s= 1,...,Ns are obtained by MCMC sampling the posterior π(w), that is knowing the
elements of the dataset X and their respective labels.
[0050] At step 900, the RRAM is initialised by programming all the cells in either the first resistance state (LRS),
according to a first variant or the second resistance state (HRS), according to a second variant that is by performing a
SET operation (first variant) or a RESET operation (second variant) on all the cells of the RRAM. Preferably, the cells
are programmed in the first resistance state for reasons that will become more apparent below.
[0051] At step 910, the first row of the RAM is read, that is the data w0,1,..., w0,M forming a first initial parameter vector
w0. The counter of iterations s is initialized, s= 0. The counters of occurrences associated with the different rows are
reset to zero.
[0052] The training method then enters an iterative loop, where s stands for the current iteration, ws-1 is the current
parameter vector which has already been stored in the RRAM at the previous iteration and ws is a candidate parameter
vector at iteration s .
[0053] At step 920, the counter of iterations is incremented, s=s+1.
[0054] At step 930, a candidate parameter vector, ws, is generated from the current parameter vector, ws-1, by reading
the cells of the current row and programming the cells of the next row with a SET operation (1st variant) or with a RESET
operation (2nd variant). More specifically a current or voltage is read from the cell of current row j and applied as a voltage
to the cell of the next row of the same column. By so doing, a candidate vector, ws, is generated with conditional probability
p(ws|ws-1) according to a normal distribution law (1st variant), and stored temporarily at row j+1. As to the second variant,
the current or voltage read from the cell current row j is generated with a conditional probability which follows a log-
normal law. Preferably, the read current or voltage is applied to an exponential amplifying circuit (for example an oper-
ational amplifier having an exponential characteristic element, such as a diode or biased FET on its non-inverting input)
before being applied to the cell of the next row and same column. The exponential amplifying circuit projects the log-
normal distribution into a normal distribution.
[0055] It follows from this step that the resistances of the cells of the next row are derived from the resistances of the
current row according to a Markovian process.
[0056] At step 940, the current parameter vector, ws-1, and the candidate parameter, ws, respectively stored at the
current row and at the next row are read from the RRAM. The priors p(ws) and p(ws-1) are calculated by a processor
(not shown) from a predetermined gaussian law which may have been obtained during a calibration phase. Preferably,
these values are calculated under a logarithm form, i.e. log(p(ws)) and log(p(ws-1)).
[0057] At step 950, the vectors xn, n=1,..,N of the dataset X are applied in turn to the set of columns of the RRAM.

The output lines output[j] and output[j+1] respectively output the dot products  and  n=1,..,N, which are
supplied to the processor.
[0058] At step 960, the processor computes the likelihoods <(ws) and <(ws-1) from expression (5):

[0059] It is noted that for each term of product (10-1) or (10-2) only one of the two ratios has to be computed (namely
the one corresponding to tn =1).
[0060] Preferably, the log-likelihoods log(<(ws)) and log(<(ws-1)) are calculated instead as a sum of terms, only those
being weighted by tn = 1 needing to be computed.
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[0061] The processor then computes the product of the ratio of the likelihoods  ) with the ratio of the priors

 to obtain the acceptance ratio according to expression (8).
[0062] Preferably, the acceptance ratio can be computed under its logarithm form, log(r) as the sum of difference of
log-likelihoods and difference of log of priors.
[0063] At step 970, a random value u is sampled from a random variable U exhibiting a uniform probability density
law over range [0,1]. The random value can be generated by the processor. Alternatively, it can be generated by a
dedicated row of the RRAM, for example row[P] as shown in Fig. 8. In order to obtain a uniform distribution, a voltage
close to the threshold SET voltage is applied as data control signal to the columns col[m] m=1,...,M. In such instance,
each cell has a probability 1/2 to be in the LRS state and a probability 1/2 to be in the HRS state. Upon reading the word
stored at row[P], the output line output[P] supplies current is supplied which is uniformly generated between 0 and a
predetermined value Imax, from which the random value u of uniform law over range [0,1] can be derived.
[0064] At step 980, the acceptance ratio r is compared with the random value u. In practice, the comparison can be
performed between the logarithmic values log(r) and log(u).
[0065] If r ≥ u, the candidate parameter vector ws is retained as the new current vector at step 983, that is ws =ws and
the new current row is j+1. The counter of occurrences associated with row j+1 is set to 1.
[0066] Else, if r < u, the candidate parameter is rejected at step 987, that is ws = ws-1 , the current row is kept at j and
the counter of occurrences associated with row j is incremented by one.
[0067] In both cases, the algorithm checks whether a stopping criterion is met, for example whether s = Ns, that is
whether a maximum number of samples has been reached or if the RRAM is full. In the negative, the algorithm goes
back to step 920. Otherwise, it stops. According to a variant, instead of stopping when the RRAM is full, that is when
the last row has been reached, the algorithm loops back to the first row and goes on as before. This variant is of interest
when convergence to the posterior is slow.
[0068] Once the logistic regression classifier has been trained on the training dataset, that is, in practice, when the
Ns samples of parameter vector have been stored in the RRAM, the RRAM can be used for the classification of new
observation as shown in Fig. 10.
[0069] Fig. 10 shows a method for classifying new observation with a RRAM based logistic regression classifier after
it has been trained by a training method according to the first embodiment of the invention.
[0070] The RRAM contains Ns samples of the model parameter vector ws, s = 1,...,Ns. It is nevertheless important to
understand that the same sample value may occur several times, the occurrences of the same sample value being
stored in the same row. More specifically, if we denote vj the integer stored in the counter of occurrences associated
with row j and J the number of rows where a sample has been stored (i.e. the rows for which the associated counters
are not equal to zero), we have the relationship: 

[0071] At step 1000, when a new observation xnew is to be classified, its components are applied as data control
signals to columns 1,...,M. These control signals are in practice voltages proportional to the components of xnew.
[0072] The classifying then enters an iterative loop, the loop being iterated as long as an occurrence counter is not zero.
[0073] At step 1010, the first J rows are selected and output lines output[1],output[2],...,output[J] are read in parallel

or in series by the processor. These output lines provide the dot products  j = 1,..., J where wj is stored at
row j. According to a variant, the first B rows of the RRAM can be ignored or discarded, these first B rows corresponding
to a burn-in period of the training phase, corresponding to convergence to the posterior. In such instance, the J rows
would be following these B rows.
[0074] After the output lines have been read, all the counters of occurrences that are not equal to zero are decremented
by one at step 1020.
[0075] It is the checked at 1030 whether ∃j ∈ {1,...,J} such as vj > 0. In the affirmative the algorithm goes back to step
1010.
[0076] Conversely, in the negative, the iterative loop is exited. The reading of the output lines provides the sequence
of samples (of the parameter vector) ws, s = 1,...,Ns.

~ ~
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[0077] Alternatively, instead of sequentially performing reading iterations until all the counters are equal to zero, the
output of each line output[j] may be amplified by an amplifier whose gain is controlled by the value vj stored in the
corresponding counter.
[0078] The processor calculates at step 1040 an average logistic regression value over the samples, according to
expression (6-1) or (6-2).
[0079] Finally, at step 1050, it is decided upon comparing P(Tn =1|xnew) or P(Tn = 0|xnew) with a predetermined
threshold value (e.g. 1/2) whether data element xnew belongs to the first class, 1051, or the second class, 1052.
[0080] Fig. 11 shows the structure of a resistive RAM which can be used for a training method according to a second
embodiment of the invention.
[0081] The structure of this resistive RAM differs from the one used in the first embodiment by the fact that the parameter
vectors of the models are stored as differential pairs. More precisely, each parameter vector wj is represented by a pair

 with  where the first part,  and the second part,  of parameter vector wj are
generated and stored separately in the RRAM.
[0082] More specifically, the resistive RAM is comprised of word lines which are addressed by word select signals
row[0],row[1],...,row[P]. Each word select signal, row[j] controls in fact two sub-rows: a first sub-row storing the first part

of the parameter vector,  and a second sub-row containing the second part of the parameter vector,  . The
outputs of the cells of the first sub-row of row j are connected to a first sub-row output line, sub_output+[j] and the outputs
of the cells of the second sub-row are connected to a second sub-row output line sub_output-[j]. The first and second
sub-row output lines are connected to the inputs of a subtractor sub[j].

[0083] The first sub-row of row j stores  and the second sub-row of row j stores  . Hence, when the components

of a vector x are applied to the data control lines and row j is selected, the first sub-row output line outputs 

and the second sub-row output line outputs  The output of subtractor sub[j] is therefore

 
[0084] The last row of the RRAM can be dedicated to an RNG as in the first embodiment. Alternatively, the RNG can
be located off the RRAM.
[0085] The RRAM of Fig. 11 can be used for training a logistic regression classifier along the same lines as those

described in relation with Fig. 9. Basically, for generating a parameter vector of a model, the first part,  and the

second part,  the parameter vector are generated and respectively stored in the first sub-row and second sub-row
of row j. However, a single counter of occurrences is associated to each row (and not each sub-row). Hence, when a

new candidate vector, ws is generated, it first part  and its second part  are respectively stored in the first sub-
row and second sub-row of the next row, j+1. Otherwise, the counter of occurrences associated with the row j is incre-
mented.
[0086] The first variant (programming with the SET operation) and the second variant (programming with the RESET
operation) envisaged for the first embodiment equally apply to the second embodiment.
[0087] The present invention has been described in the context of the training of a logistic regression classifier, which
classifies data into a class C (first class) or its complementary C (second class), the class the data belongs to being
identified by a binary target value. The man skilled in the art will nevertheless understand that the invention can be
extended to the training of a classifier which classifies data into a plurality of independent classes C1, C2,..., CQ or the
respective complementary classes. The RRAM is then divided in Q areas, each area being dedicated to a class Cq and
being associated with a corresponding logistic regression classifier. Alternatively, Q RRAMs can be used, each RRAM
being dedicated to a class Cq and being associated with a corresponding logistic regression classifier.
[0088] Finally, the training method according to the invention extends to a multinomial logistic classifier by using a
softmax model instead of the logit model described above.
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Claims

1. Method for training a logistic regression classifier on a dataset, each element of the dataset being represented by
a vector x of M attributes, hereinafter referred to as components, and being labelled with a binary target indicating
whether the element belongs to a first class or a second class, the probability of an element x belonging to a class
being modelled by a logistic function applied to a score wTx of said element, where w is a parameter vector of size
M representing the model, said method comprising the sampling of said parameter vector according to its posterior
probability density with respect to the data set, and being characterized by:

providing a resistive RAM, each row of the resistive RAM comprising M cells which can be programmed in a
first resistance state or a second resistance state, each row being intended to store a parameter vector, a
counter of occurrences being associated with each row;

initializing said resistive RAM by setting all cells in said first resistance state;
reading an initial vector w0 from the first row and entering an iterative loop comprising:

(a) generating a candidate parameter vector, ws, from the current parameter vector, ws-1, by reading
the cells of the current row and programming the resistances of the cells of the next row, the resistances
of the cells of the next row being derived from the resistances of the cells of the current row according
to a Markovian process;
(b) computing an acceptance ratio, r, of the candidate parameter vector, ws, as the ratio of the posterior
densities of ws and ws-1, with respect to the dataset;
(c) drawing a value u from a uniform distribution between 0 and 1 and comparing it with the acceptance
ratio, r;

(d1) if u ≤ r taking the next row as the current row and jumping to step (a);
(d2) else, keeping the current row, incrementing the counter of occurrences associated therewith
and jumping to step (a);

the training method being stopped when a predetermined stopping criterion is met.

2. Method for training a logistic regression classifier according to claim 1, characterised in that the first resistance
state is a high resistance state and the second resistance state is a low resistance state, and that, at step (a), the
current or voltage read from a cell of the current row is used for applying a voltage to a corresponding cell of the
next row while programming this cell in the low resistance state.

3. Method for training a logistic regression classifier according to claim 1, characterised in that the first resistance
state is a low resistance state and the second resistance state is a high resistance state, and that, at step (a), the
current or voltage read from a cell of the current row is amplified by an exponentiation circuit before being applied
as a voltage to a corresponding cell of the next row while programming this cell in the high resistance state.

4. Method for training a logistic regression classifier according to claim 3, characterised in that the value u from said
uniform distribution is obtained by applying a predetermined voltage to all the cells of a dedicated row, the outputs
of the dedicated row being connected to an output line, said predetermined voltage being chosen close to the
threshold voltage for programming the cells in a high resistance state, the value u being obtained from the output
of said output line.

5. Method for training a logistic regression classifier according to any of the preceding claims, characterised in that

the ratio of the posterior densities of ws and ws-1 are obtained as the product of the ratio of the likelihoods 

with respect to the dataset and the ratio of the priors  

~
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6. Method for training a logistic regression classifier according to claim 5, characterised in that the likelihood of the
candidate parameter vector <(ws) is calculated as

 and the likelihood of the current parameter vec-

tor  where xn, n=1,...,N are vectors repre-

senting data elements of the dataset, the dot product  being obtained by applying the components of vector
xn to the cells of the row containing candidate parameter vector ws, and by reading the common output line to which
the cells of the row containing ws are connected, the dot product ws-1

Txn being obtained by applying the components
of vector xn to the cells of the row containing current parameter vector ws-1, and by reading the common output line
to which the cells of the row containing ws-1 are connected.

7. Method for training a logistic regression classifier according to claims 1 to 6, characterised in that the predetermined
stopping criterion is met when a predetermined number of samples (Ns) is reached or when the resistive RAM is full.

8. Method for classifying an observation with a logistic regression classifier trained according to claims 1 to 7, obser-
vation to be classified being represented by a vector xnew of M components, characterised by

respectively applying the M components to the M cells of each row of the resistive RAM storing a parameter vector;

(a’) reading the output line associated with each row for which the counter of occurrences is not null, the

reading of the output line providing the dot product  where ws is the parameter vector stored at
this row;
(b’) decrementing the respective counters of occurrences of all the output lines that have been read at step
(a’);

steps (a’) and (b’) being repeated until all the counters of occurrences have reached zero, thereby obtaining a

sequence of Ns parameter vectors,  s = 1,...,Ns.

computing the average  and comparing it with a predeter-
mined threshold value in order to determine whether said observation belongs to the first class of the second
class.

9. Method for training a logistic regression classifier on a dataset, each element of the dataset being represented by
a vector x of M attributes and being labelled with a binary target indicating whether the element belongs to a first
class or a second class, the probability of an element x belonging to a class being modelled by a logistic function
applied to a score wTx of said element, where w is a parameter vector of size M representing the model, said method
comprising the sampling of said parameter vector according to its posterior probability density with respect to the
dataset, said method being characterized by:

providing a resistive RAM, each row of the resistive RAM comprising a first sub-row and a second sub-row ,
each sub-row comprising M cells which can be programmed in a first resistance state or a second resistance
state, the first sub-row being configured to store a first part of a parameter vector, the second sub-row being
configured to store a second part of the same parameter vector, this parameter vector being obtained as the
difference between said first part and said second part, and a counter of occurrences being associated with

~
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each row;

initializing said resistive RAM by setting all cells in said first resistance state;
reading the first part and second part of an initial vector w0 from the first row and entering an iterative loop
comprising:

(a) generating the first part and second part of a candidate parameter vector, ws, respectively from the
first part and second part of current parameter vector, ws-1, by reading the cells of the first and second
sub-row of current row and programming the resistances of the first and second sub-row of next row,
the resistances of the cells of the first and second sub-row of next row being derived from the resistances
of the cells of the first and second sub-row of current row according to a Markovian process;
(b) calculating the candidate parameter vector as the difference between its first part and second part;
calculating the current parameter vector as the difference between its first part and second part; com-
puting an acceptance ratio, r, of the candidate parameter vector, ws, as the ratio of the posterior densities
of ws and ws-1, with respect to the dataset ;
(c) drawing a value u from a uniform distribution between 0 and 1 and comparing it with the acceptance
ratio, r;

(d1) if u ≤ r taking the next row as the current row and jumping to step (a);
(d2) else, keeping the current row, incrementing the counter of occurrences associated therewith
and jumping to step (a);

the training method being stopped when a predetermined stopping criterion is met.

~

~

~
~



EP 3 825 927 A1

13



EP 3 825 927 A1

14



EP 3 825 927 A1

15



EP 3 825 927 A1

16



EP 3 825 927 A1

17



EP 3 825 927 A1

18



EP 3 825 927 A1

19



EP 3 825 927 A1

20

5

10

15

20

25

30

35

40

45

50

55



EP 3 825 927 A1

21

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• SIMON ROGERS ; MARK GIROLAMI. First course
in Machine Learning. Chapman & Hall/ CRC Press,
2017 [0014]

• C. ANDRIEU et al. An introduction to MCMC for ma-
chine learning. Machine Learning, 2003, vol. 5, 5-43
[0014]

• R. CARBONI ; D. LELMINI. Stochastic memory de-
vices for security and computing. Adv. Electron. Mat.,
2019, vol. 5 (1-27), 1900198 [0036]


	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

