

(11) EP 3 835 556 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.06.2021 Bulletin 2021/24

(51) Int Cl.:

F01K 7/34 (2006.01)

F01K 17/00 (2006.01)

(21) Application number: 20211476.5

(22) Date of filing: 03.12.2020

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

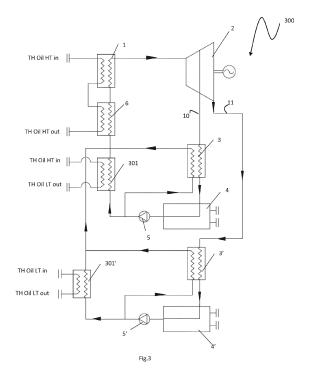
Designated Extension States:

BA ME

KH MA MD TN

(30) Priority: 10.12.2019 IT 201900023364

(71) Applicant: Turboden S.p.A.


25124 Brescia (IT)

(72) Inventors:

- DUVIA, Andrea 25124 Brescia (IT)
- BINI, Roberto
 25124 Brescia (IT)
- GAIA, Mario
 25124 Brescia (IT)
- (74) Representative: Bruni, Giovanni Laforgia, Bruni & Partners Corso Duca degli Abruzzi, 2 10128 Torino (IT)

(54) HIGH EFFICIENCY ORGANIC RANKINE CYCLE WITH FLEXIBLE HEAT DETACHMENT

- (57) Organic Rankine cycle (300, 400, 500) comprising:
- an evaporator (1) where the pressurized fluid is heated, vaporized and brought into subcritical or supercritical conditions using the heat of a source;
- a turbine (2) where the fluid while expanding provides the useful work of the cycle:
- at least one pump (5, 5') where the liquid is brought from the pressure of at least one condenser (4, 4') to the evaporator pressure (1);
- a pre-heater (6), which using the same source supplies heat to the working fluid, bringing it to a temperature close to the vaporization temperature,
- said organic Rankine cycle (300, 400, 500) further comprising
- a first recuperator (3) which receives a first portion of organic fluid vapor extracted from the turbine (2), and is connected to a first condenser (4), by means of a first circuit (10) at medium pressure;
- at least one second recuperator (3', 403', 404') which receives a second portion organic fluid vapor leaving the turbine (2) and is connected to a second condenser (4'), by means of a second low pressure circuit (11), said organic Rankine cycle (300, 400, 500) being characterized by at least one further pre-heater (301, 301') positioned in parallel with one or both of said first and second recuperator (3, 3').

25

35

45

Technical field of the invention

[0001] The present invention relates to a high efficiency, innovative organic Rankine cycle plant with flexible heat detachment.

1

Background art

[0002] As is known, a thermodynamic cycle is defined as a finite succession of thermodynamic transformations (for example isotherm, isochore, isobaric or adiabatic) after which the system returns to its initial state. In particular, an ideal Rankine cycle is a thermodynamic cycle composed of two adiabatic transformations and two isobars with two phase changes, from liquid to vapor and from vapor to liquid. Its purpose is to turn heat into work. This cycle is generally adopted above all in thermoelectric power plants for the production of electricity and uses water as the driving fluid, both in liquid form and in vapor form, and the corresponding expansion takes place in the so-called steam turbine.

[0003] Together with Rankine cycles with water as the working fluid, organic Rankine cycles (ORC) have been hypothesized and implemented, which use high molecular mass organic fluids for the most diverse applications, in particular also for the exploitation of thermal sources at low-medium temperature. As in other steam cycles, the plant for an ORC cycle includes, by way of example, one or more pumps for feeding the organic working fluid, one or more heat exchangers to carry out the preheating, vaporization and eventual overheating or heating phases in supercritical conditions of the same working fluid, a steam turbine for the expansion of the fluid, mechanically connected to an electric generator or an operating machine. ORC cycles are also used for the production of electricity and for the exploitation of the heat recovered from the organic working fluid in the condenser.

[0004] Similar solutions are known to the state of the art in the field of steam turbines (e.g. bleed and condensation turbines).

[0005] As for ORC cycles, the organic fluids used in them are characterized by a high molecular mass and consequently generate high volumetric flows in the turbine, even for intermediate pressure values. This would make less efficient their bleeding from the turbine.

[0006] In addition, ORC cycles normally use working fluids which are overheated during the expansion in the turbine. Starting from overheated steam conditions, the heat exploitation by an external user, even by extracting the working fluid at intermediate pressure compared to the pressure drop in the turbine, is not thermodynamically very efficient, as the portion of de-overheating has a high temperature difference between the working fluid and the heat-transfer fluid of the thermal user. This leads to a significant loss of flow exergy, which does not occur in water vapor cycles. In fact, when heat is transferred to

the thermal users through a condenser, the loss of efficiency is very significant due to the fact that in the deoverheating phase the organic vapor exchanges heat with the heat carrier of the user with a very high temperature difference.

[0007] An organic Rankine cycle system with flexible heat detachment, according to the known technique, is shown in Figure 1 and comprises two distinct recuperators 3, 3' which use respectively, medium and low-pressure steam portions extracted from the turbine 2 along two different circuits, a first medium pressure circuit 10 and a second low pressure circuit 11. In the medium pressure recuperator 3, the organic liquid coming from the first high temperature condenser 4 is preheated whereas in the second low pressure recuperator 3' the organic liquid coming from the second low temperature condenser 4' is preheated.

[0008] However, the organic Rankine cycle system according to the known technique fails to obtain an optimum efficiency in heat recovery.

[0009] There is therefore the need to define an organic Rankine cycle system which allows to overcome the aforementioned drawbacks and therefore is able to use the detached and flexible heat recovered from the organic working fluid in an extremely efficient way.

Summary of the invention

[0010] Aim of the present invention is therefore to detach in an extremely efficient and flexible way the heat recovery from the organic working fluid, by defining an organic Rankine cycle in which the steam expanding inside the turbine is separated in two flows, one of which is tapped inside the turbine and has an intermediate pressure value with respect to the pressure drop of the turbine as a whole.

[0011] In other words, the expansion inside the turbine of a portion of the vapor generated by the organic fluid is limited. The separation of a portion of the vapor takes place at a condensation pressure level, suitable to supply heat to the external user, whereas the remaining portion of the organic fluid vapor is expanded up to a lower pressure allowed by the heat absorption temperature of the thermal well (for example either a cooling tower or a dry cooler or air in a dry cooled direct air conditioner).

[0012] Therefore, the aim of the present invention is to maximize the electrical efficiency, despite the fact that part of the heat is extracted to supply it to the thermal users before having completed its expansion up to its minimum condensation pressure. The envisaged solution is then able to supply heat in a flexible way, as only the part of vapor necessary to satisfy the users condenses at intermediate pressure. If the heat required should vary over time, it is possible to vary the tapped quantity by effecting the complete expansion for the vapor portion not needed to satisfy the thermal user.

[0013] Furthermore, part of the heat contained in each of the two organic vapor flows, both the less expanded

15

25

30

35

40

and the more expanded ones, is used in two recuperators at a medium and low pressure, which recover the heat downstream of the turbine in order to preheat the liquid of the organic fluid coming from the condensers. The addition of recuperators allows to significantly increase the electrical efficiency.

[0014] In particular, the present invention defines an organic Rankine cycle which allows the flexible heat detachment according to independent claim 1.

[0015] Further preferred and/or particularly advantageous embodiments of the invention are described according to the characteristics set out in the attached dependent claims.

Brief description of the drawings

[0016] The invention will now be described with reference to the annexed drawings, which illustrate some nonlimiting examples of its implementation, in which:

- Figure 1 shows a diagram of an organic Rankine cycle with flexible heat detachment according to the prior art,
- Figure 2 shows a diagram of the organic Rankine cycle with flexible heat detachment in a first embodiment of the present invention,
- Figure 3 shows a schematic diagram of the organic Rankine cycle with flexible heat detachment in a second embodiment of the present invention,
- Figure 4 shows a schematic diagram of the organic Rankine cycle with flexible heat detachment in a third embodiment of the present invention,
- Figure 5 shows a schematic diagram of the organic Rankine cycle with flexible heat detachment in a fourth embodiment of the present invention,
- Figure 6 shows a schematic diagram of the organic Rankine cycle with flexible heat detachment in a fifth embodiment of the present invention.

Detailed description

[0017] The invention relates to a high efficiency heat detachment in an organic Rankine cycle. An organic Rankine cycle 100 according to the known art is shown in Figure 1 and comprises:

- an evaporator 1, where the pressurized fluid is heated, vaporized and possibly overheated or brought to supercritical conditions by using heat from an external source, for example a diathermic oil (TH oil HT in/out) or high temperature smokes coming from a biomass boiler or industrial heat recovery boiler;
- an expander (turbine) 2 where the fluid expanding (in an ideal iso-entropic manner) transfers the useful work of the cycle to the outside;
- a first recuperator 3 which receives steam at medium pressure, tapped from the turbine 2 and connected to a first condenser 4 at high temperature, of the

- water-steam or other heat transfer fluid cooled type, suitable for transferring heat to the thermal user, where the heat released by the working fluid is removed:
- a second recuperator 3' which receives steam at low pressure at the outlet of the turbine 2 and is connected ed to a second condenser 4' at low temperature of the water or air-cooled type, where further heat is released by the working fluid;
- a pump 5, 5' where the liquid is returned by the pressure of the condenser 4, 4' up to the pressure of the evaporator 1, and where the negative cycle work is exchanged (in an ideally iso-entropic way);
- a preheater 6, which by using for example the same source as the evaporator supplies heat to the working fluid bringing it up to a temperature close to the vaporization one.

[0018] Throughout the present description, the following is meant:

- for a high pressure, the pressure of the working fluid entering the turbine 2;
- for a medium or intermediate pressure, the pressure of the working fluid in a phase of the cycle (medium pressure circuit 10) in which the entire enthalpy drop of the turbine (or of the turbines, if there were more than one) has not been processed. The medium pressure circuit 10 has its origin at the midpoint of the turbine in which the entire enthalpic drop has not been processed and includes the first recuperator 3 and the first condenser 4;
- for a low pressure, the pressure of the working fluid in a phase of the cycle (low pressure circuit 11) in which the entire enthalpy drop of the turbine (or of the turbines, if there were more than one) was processed. The low-pressure circuit 11 originates from the turbine exiting at the point where the entire enthalpy drop has been processed, and comprises the second recuperator 3' and the second condenser 4';
- for a high temperature, the temperature of the working fluid in the first recuperator or in the first condenser; for a high temperature, the temperature of the hottest external source is also meant;
- for a low temperature, the temperature of the working fluid in the second recuperator or in the second condenser; for a low or medium temperature, the temperature of the least hot external source is also meant.

[0019] In this way, the exergy in both organic vapor flows coming from the turbine 2 and provide with a high temperature (as the organic vapor tapped or exiting from turbine, is normally overheated or under supercritical conditions and therefore is at a temperature higher than that of condensation) is used in the two condensers 4, 4' for the recovery of the internal heat of the organic fluid and mainly of the latent condensation heat, at a temper-

ature close to the temperature of the heat user and/or of the heat sink.

[0020] A first embodiment of the present invention is shown in Figure 2. The proposed organic Rankine cycle 200 comprises two turbines 2, 2' positioned in series. The second turbine 2' is positioned downstream of the recuperator 3. In practice, the flow of the organic steam leaving the generator 3 is divided into two flows, the first of which will reach the condenser 4 at a high temperature, whereas the remaining steam flow will continue its expansion in the turbine 2'. The presence of only one recuperator 3 makes it simpler and more economic or at the expense of a slight reduction in the efficiency of the thermodynamic cycle of the same. Advantageously, also the realization of the low-pressure turbine 2' is more easily made through the low temperatures of the organic fluid to be expanded and through a reduced volumetric flow of organic vapor to be conveyed into the same turbine 2'. [0021] In many cases, it will be advantageous to connect the two turbines to a common electric generator, equipped with two shafts.

[0022] Advantageously moreover, the detachment of the steam can also be carried out inside a single turbine with intermediate extraction. In both cases, the proposed diagram allows to regulate the quantity of expanded steam at intermediate and low-pressure levels, thus adapting the cycle to the actual quantity of heat required by the heat users at a medium temperature.

[0023] In the case of a single turbine with intermediate extraction, a second embodiment of the present invention is shown in Figure 3. The organic Rankine cycle 300 proposed here represents a more advanced solution of the diagram of Fig. 1. Compared with ORC 100, this ORC cycle 300 includes at least an additional preheater 301, 301' positioned in parallel to one or both the first and second recuperators 3, 3'. Said preheaters 301, 301' preheat the working fluid coming from the condensers 4, 4' by means of the same thermal source (TH oil HT in/out) and/or by means of a lower temperature thermal source (TH oil LT in/out).

[0024] Advantageously, the cycle 300 allows to further optimize the ORC plant performance should heat be added from a heat source at a lower temperature, without significant loss of efficiency of the same cycle. This is made possible bearing in mind that the heat capacity of the liquid is higher than the heat capacity of the vapor passing through the recuperator. Therefore, since the recuperator or both recuperators 3, 3' work with a lower flow of organic liquid, for the same vapor flow it will not be necessary to increase the heat exchange surfaces in order to guarantee the same preheating temperature.

[0025] For example, in applications which biomass or combustion wastes, the low-temperature circuit may be powered by an economizer of the combustion gases, thereby increasing the performance of the ORC cycle without the need for more fuel.

[0026] In any case, the presence of recuperator 3, 3' is still advantageous as it allows however to further in-

crease the heat flow which can be used, and then the performance of the same cycle.

[0027] A third embodiment of the present invention is shown in Fig. 4. The organic Rankine cycle 400 proposed here represents an evolution of diagram 3. The cycle 400 differs from the cycle 300 in that the preheater 301' of the low-pressure circuit 11 is replaced by two preheaters 401', 402' in series between them and the recuperator 3' is replaced by two recuperators 403', 404' in series within each other. The preheaters 401', 402' and the respective recuperators 403', 404' are in parallel with each other.

[0028] Advantageously, the cycle 400 allows to use additional heat from a heat source at a lower temperature (LT source in/out) in order to increase the performance of the same cycle. The heat source could be for example the heat from a smoke condensation system and/or other

[0029] If such source of additional heat should is not available, the heat of the condenser 4 at high temperature could also be used, then by introducing an additional innovative regeneration in the cycle.

low temperature sources.

[0030] Therefore, a fourth embodiment of the present invention is considered, according to which the heat exchanger 402' in parallel to the recuperator 404' extracts heat or directly from the condenser 4 at a high temperature (which provides heat by a medium-pressure steam condensation) or indirectly by means of a part of the fluid of the thermal user which has heated up in the condenser 4 at a high temperature (organic Rankine cycle 500, shown in Figure 5).

[0031] A fifth embodiment of the present invention is shown in Figure 6. This embodiment derives from the first embodiment, in which the proposed organic Rankine cycle 200 comprises two turbines 2, 2' positioned in series. In the case of Figure 6, the organic Rankine cycle 600 comprises at least one further preheater 601, 601' positioned in parallel to one or both of the first and second recuperators 3, 3'. Said pre-heaters 601, 601' preheat the working fluid coming from condensers 4, 4' by means of the same thermal source (TH oil HT in/out) and/or by means of a lower temperature thermal source (TH oil LT in/out).

[0032] As can be seen, the organic Rankine cycle 600 represents the combination of the diagrams of Figure 2 and Figure 3. Consequently, it reproduces the same advantages: the construction of the low-pressure turbine 2' is easier to make due to the low temperatures of the organic fluid to be expanded and the reduced volumetric flow of organic vapor to be conveyed into the turbine 2' itself; the cycle 600 also allows to further optimize the performance of the ORC plant if heat coming from a thermal source at a lower temperature should be added, without significant loss of efficiency of the cycle itself.

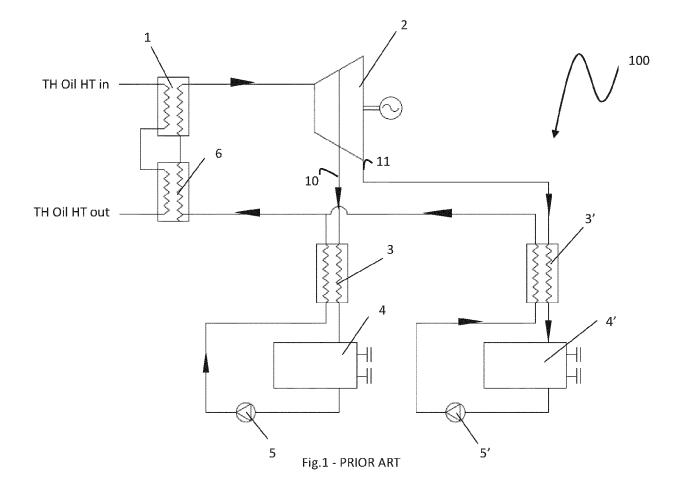
[0033] In addition to the embodiments of the invention as described above, it should be understood that there are numerous further variants. It must also be understood that said embodiments are only examples and do not limit neither the object of the invention, nor its applica-

5

tions, nor its possible configurations. On the contrary, although the above description makes it possible for the skilled person to carry out the present invention at least according to an exemplary configuration thereof, it must be understood that numerous variations of the described components are conceivable, without thereby departing from the object of the invention, as defined in the attached claims, interpreted literally and/or according to their legal equivalents.

Claims

- 1. Organic Rankine cycle (300, 400, 500) comprising:
 - an evaporator (1) where the pressurized fluid is heated, vaporized and brought into subcritical or supercritical conditions using the heat of a source;
 - a turbine (2) where the fluid while expanding provides the useful work of the cycle;
 - at least one pump (5, 5') where the liquid is brought from the pressure of at least one condenser (4, 4') to the evaporator pressure (1);
 - a pre-heater (6), which using the same source supplies heat to the working fluid, bringing it to a temperature close to the vaporization temperature,


said organic Rankine cycle (300, 400, 500) further comprising

- a first recuperator (3) which receives a first portion of organic fluid vapor extracted from the turbine (2), and is connected to a first condenser (4), by means of a first circuit (10) at medium pressure;
- at least one second recuperator (3', 403', 404') which receives a second portion organic fluid vapor leaving the turbine (2) and is connected to a second condenser (4'), by means of a second low pressure circuit (11), said organic Rankine cycle (300, 400, 500) being **characterized by** at least one further pre-heater (301, 301') positioned in parallel with one or both of said first and second recuperator (3, 3').
- 2. Organic Rankine cycle (300, 400, 500) according to claim 1, wherein in the first recuperator (3) the organic fluid coming from the first condenser (4) is preheated while in the second recuperator (3', 403', 404') the organic fluid coming from the second condenser (4') is preheated.
- 3. Organic Rankine cycle (300) according to claim 1 or 2, wherein said preheaters (301, 301 ') are configured to preheat the working fluid coming from the condensers (4, 4') through the same thermal source

and / or by means of a lower temperature thermal source.

- 4. Organic Rankine cycle (400) according to claim 1 or 2, further comprising in the second low pressure circuit (11) two preheaters (401 ', 402') in series with each other and two recuperators (403 ', 404') also in series with each other.
- 5. Organic Rankine cycle (400) according to claim 4, wherein the preheaters (401', 402') and the respective recuperators (403', 404') are in parallel with each other.
- 6. Organic Rankine cycle (500) according to claim 5, wherein the heat exchanger (402') in parallel with the recuperator (404') takes heat either directly from the first condenser (4) or indirectly by means of a fluid portion of the thermal utility that is heated in the first condenser (4).

40

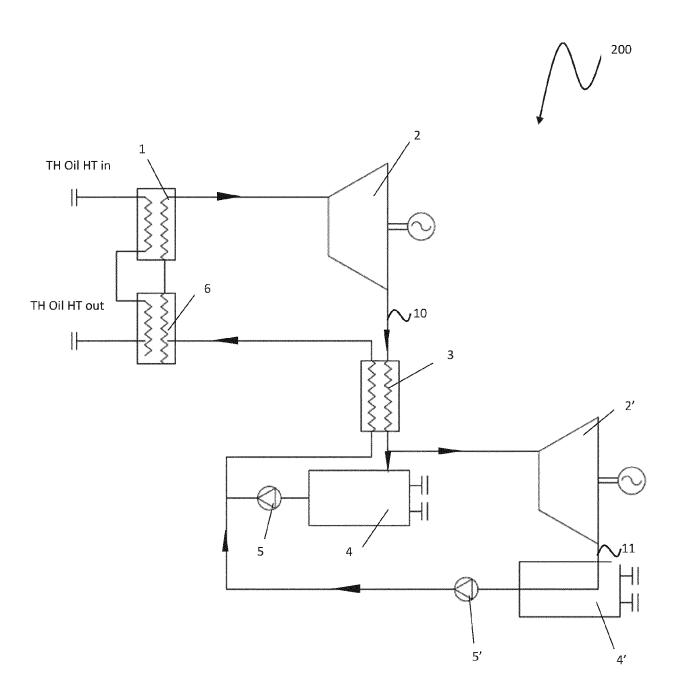
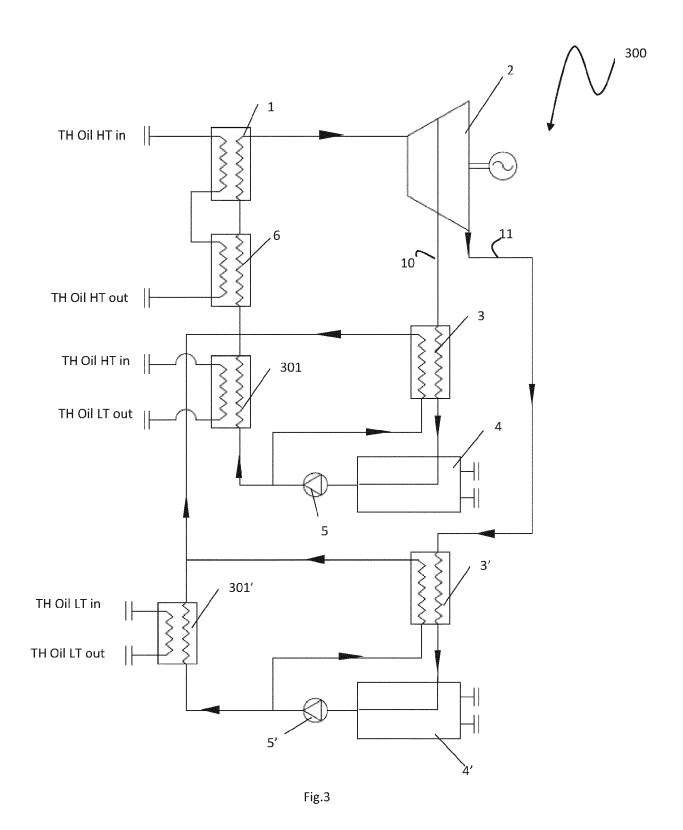



Fig.2

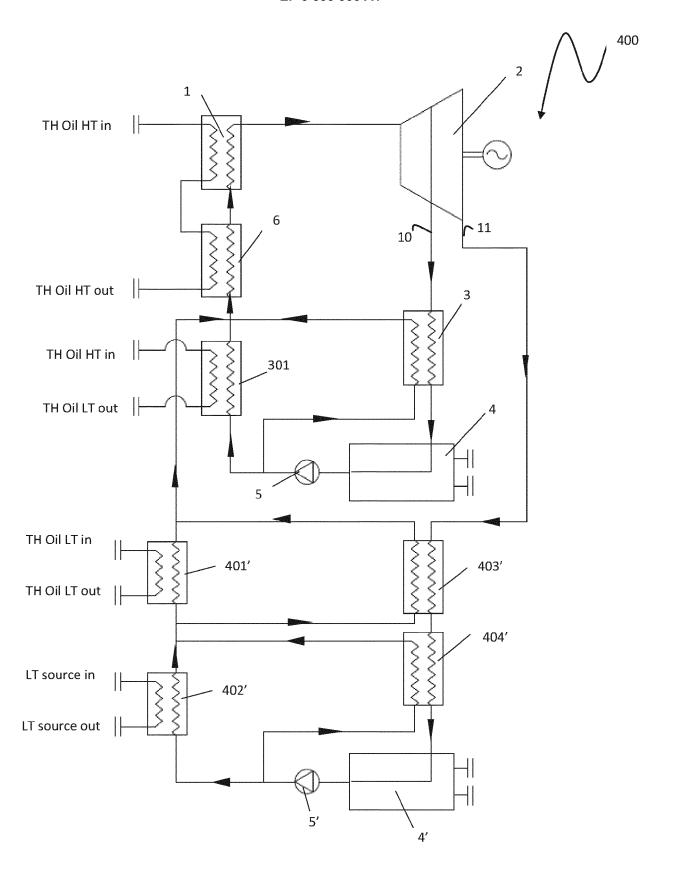
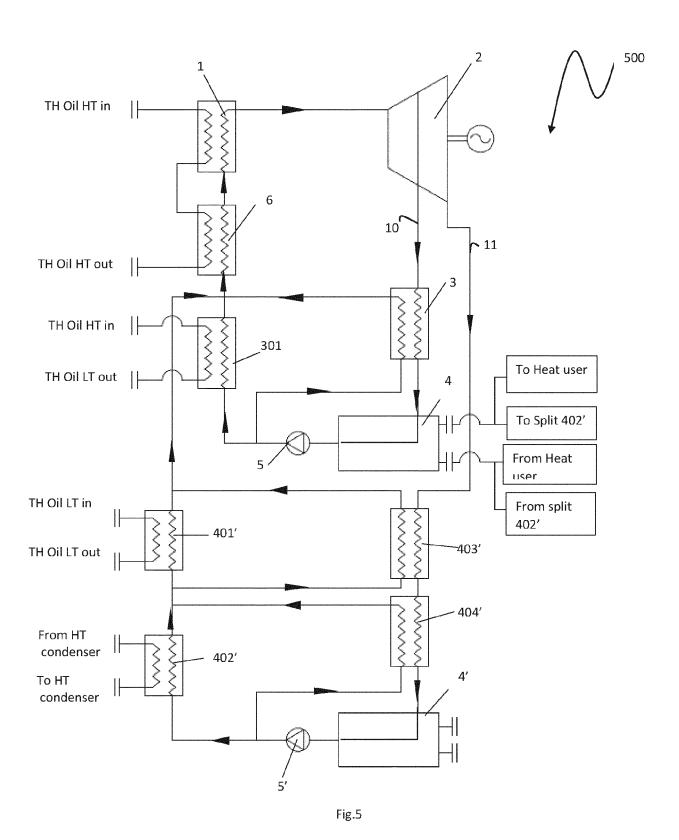
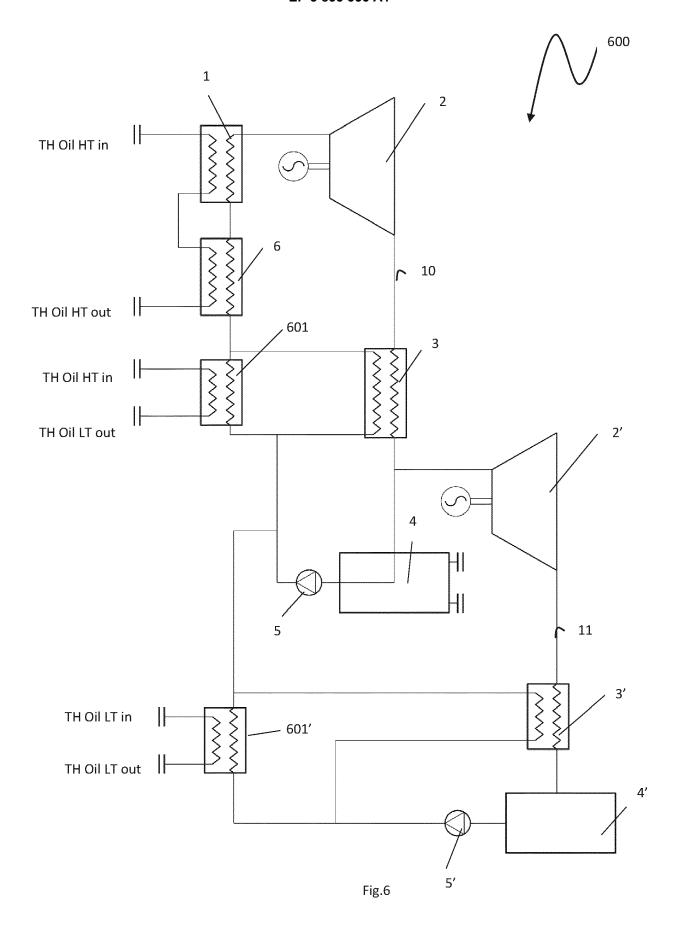




Fig.4

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 20 21 1476

10	

_	Flace of Sealon
EPO FORM 1503 03.82 (P04C01)	Munich
	CATEGORY OF CITED DOCUMENTS
	X : particularly relevant if taken alone Y : particularly relevant if combined with and document of the same category A : technological background O : non-written disclosure P : intermediate document

& : member of the same patent family, corresponding document

Category	Citation of document with in of relevant passa	idication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Х	US 2015/076831 A1 (19 March 2015 (2015 * figure 1 * * paragraphs [0026]	-03-19)	1-6	INV. F01K7/34 F01K17/00
Х	EP 1 936 129 A2 (EX 25 June 2008 (2008- * abstract; figure * paragraphs [0009]	06-25) 1 *	1-6	
A	US 2012/131919 A1 (ET AL) 31 May 2012 * abstract; figures * paragraphs [0017]	(2012-05-31) 1-4 *	[US] 1-6	
				TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has b	peen drawn up for all claims		
	Place of search	Date of completion of the	search	Examiner
	Munich	29 March 20		relas, Dimitrios
CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure X: member of the same patent family, corresponding				

EP 3 835 556 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 21 1476

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-03-2021

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	US 2015076831 A1	19-03-2015	AU 2014315252 A1 CA 2923403 A1 CN 105765178 A EP 3042048 A1 EP 3042049 A1 EP 3163029 A1 JP 2016534281 A KR 20160123278 A KR 20160125346 A US 2015076831 A1 US 2015377076 A1	07-04-2016 12-03-2015 13-07-2016 13-07-2016 13-07-2016 03-05-2017 04-11-2016 25-10-2016 31-10-2016 19-03-2015 31-12-2015
25	EP 1936129 A2	25-06-2008	DE 69938039 T2 DK 1936129 T3 EP 1936129 A2 ES 2301229 T3 PT 1070830 E SI 1070830 T1	22-01-2009 04-03-2019 25-06-2008 16-06-2008 28-04-2008 30-06-2008
30	US 2012131919 A1	31-05-2012	AU 2011336831 A1 CA 2818816 A1 CA 2820606 A1 CN 103477035 A EP 2646657 A2	13-06-2013 07-06-2012 07-06-2012 25-12-2013 09-10-2013
35			EP 2646658 A2 JP 6039572 B2 JP 2014502329 A KR 20140048075 A KR 20140064704 A RU 2013124072 A	09-10-2013 07-12-2016 30-01-2014 23-04-2014 28-05-2014 10-01-2015
40			US 2012131919 A1 US 2012131920 A1 US 2014096521 A1 WO 2012074905 A2 WO 2012074907 A2	31-05-2012 31-05-2012 10-04-2014 07-06-2012 07-06-2012
45				
50 950 N				
<i>55</i> ౖ				