BACKGROUND OF THE INVENTION
1. Technical Field
[0001] The present invention relates to a pump, especially to a mini air pump.
2. Description of Related Art
[0002] In a conventional mini air pump in which valves and a pump body are integrated, relief
flows flow into the sprig chamber and directly act on the spring. Under the influence
of air pressure, the spring can't be set up stably in the spring chamber and this
causes changes in the abutting force applied to the relief valve by the spring. Thereby
accurate actuation of the relief valve within preset air pressure is unable to be
ensured.
[0003] Moreover, buzzing noises of the air flow are usually generated when relief flows
are directly released to the atmosphere. Thus the operating noise of the mini air
pump is increased to a certain extent.
[0004] A conventional mini pump design is known, for example, from document
DE 10 2018 207 800 A1 and includes a diaphragm, a bladder base, a valve seat stacked over the diaphragm,
a pump cover stacked on the valve seat, an air inlet valve disposed in a flowing direction
of air in an air inlet channel and an air outlet valve arranged in a flowing direction
of air in an exhaust channel, wherein the pump is further provided with a relief valve
and an elastic member for applying a preload to the relief valve. Document
DE 10 2018 102 120 A1 teaches a similar pump structure. Furthermore, document
WO 2013/030408 A1 discloses another quite similar pump structure, as defined in the preamble of claim
1.
[0005] However, there is still room for improvement and there is a need to provide a novel
mini air pump which solves the above problems to some degree.
SUMMARY OF THE INVENTION
[0006] It is a primary object of the present invention to provide a mini air pump in which
a relief valve actuates accurately for precise regulation of air pressure in objects
to be inflated and overpressure protection of the objects to be inflated.
[0007] The present invention provides a mini air pump according to claim 1, which includes:
a diaphragm which includes a plurality of bladders on one side of the diaphragm and
each of the bladders having a bladder cavity with an opening toward the other side
of the diaphragm; a bladder base which includes a plurality of air inlet channels
and a plurality of bladder holes penetrating the bladder base in thickness direction
while the diaphragm is attached to the bladder base and the bladders are passed through
the bladder holes correspondingly; a pump body which includes a valve seat provided
with a plurality of exhaust channels and stacked over the diaphragm, a pump cover
stacked on the valve sea, an exhaust chamber and a spring chamber separated from each
other and constructed by the valve seat and the pump cover, and a return channel constructed
by the valve seat, the diaphragm, and the bladder base and communicating the valve
seat, the diaphragm, and the bladder base with one another; the exhaust channels communicating
with the bladder cavity while return channel communicating with the air inlet channel
but not communicating with the spring chamber; an air inlet valve disposed in flowing
direction of air in the air inlet channel and used for communicating the bladder cavity
with the air inlet channel in one-way manner; an air outlet valve arranged in flowing
direction of air in the exhaust channel and used for communicating the exhaust chamber
with the bladder cavity in one-way manner; a relief valve mounted in the exhaust chamber
for selectively communicating the return channel with the exhaust chamber; and a preload
member mounted in the spring chamber and having at least one spring which applies
a preload to the relief valve.
[0008] The spring chamber is disconnected from both the exhaust chamber and the return channel
to prevent the exhaust flow or the return flow from flowing into the spring chamber.
Thus, the spring is quite stably positioned in the spring chamber to ensure the abutting
force applied to the relief valve by the spring remains the same and the relief valve
can act more accurately. Therefore the stability of the mini air pump during blowing
up of the objects to be inflated is increased.
[0009] Implementation of the present invention produces advantageous effects which are described
in detail as follows.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The structure and the technical means adopted by the present invention to achieve
the above and other objects can be best understood by referring to the following detailed
description of the preferred embodiments and the accompanying drawings, wherein:
Fig. 1 is an explosive view of an embodiment according to the present invention;
Fig. 2 is a sectional view of an embodiment according to the present invention; and
Fig. 3 is a sectional view of an embodiment viewed from another angle according to
the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0011] Preferred embodiments of the present invention are described in detail as follows
and are shown in the figures, wherein the same or similar reference numerals are used
to refer to the same or similar elements having the same or similar functions. The
embodiments described with reference to the figures are exemplary and explanatory
only.
[0012] Referring to Fig. 1, Fig. 2 and Fig. 3, a mini air pump 100 according to the present
invention includes a diaphragm 10, a bladder base 20, a pump body 30, an air inlet
valve 40, an air outlet valve 51, a relief valve 52 and a preload member 70.
[0013] With reference to Fig. 1, Fig. 2 and Fig. 3, a plurality of bladders 11 are disposed
on one side of the diaphragm 10 (such as a lower side in Fig. 2) and each bladder
11 includes a bladder cavity 111 with an opening toward the other side of the diaphragm
10 (such as an upper side in Fig. 2). The diaphragm 10 is a flexible member made of
materials such as rubber. The volume of the bladder cavity 111 can be increased or
decreased due to the bladder 11 being squeezed or stretched by an external force so
as to pump air/gas in/out.
[0014] The bladder base 20 is used for supporting the diaphragm 10 and composed of a plurality
of bladder holes 21 and a plurality of air inlet channels 22. The bladder holes 21
are penetrating the bladder base 20 in the thickness direction of the bladder base
20. The diaphragm 10 is attached to the bladder base 20 and each of the bladders 11
is inserted through one of the bladder holes 21 correspondingly.
[0015] The air inlet channels 22 are used for delivering air/gas to the bladder cavity 111.
The air inlet channel 22 can not only be disposed on the bladder base 20. For example,
a part of the air inlet channels 22 may be formed on the bladder base 20 while the
rest part of the air inlet channels 22 may be formed on the pump body 30. In this
case, an intake air flow first is passed through the part of the air inlet channels
22 of the bladder base 20, moved upward through the part of the air inlet channels
22 on the pump body 30 and then turned downward to be sucked into the bladder cavity
111. In this embodiment, the flow noise is reduced by the air flow travelling further.
[0016] In order to prevent backflow of the air into the bladder cavity 111, the air inlet
valve 40 is disposed in the flowing direction of the air in the air inlet channels
22 and used for communicating the bladder cavity 111 with the air inlet channels 22
in one-way manner. More specifically, the air inlet valve 40 is opened and the air
is allowed to pass through the air inlet channels 22 to be delivered into the bladder
cavity 111 when the bladder cavity 111 is stretched to increase the volume thereof
and draw the air in. While, when the bladder cavity 111 is squeezed to decrease the
volume thereof and exhaust the air, the air inlet valve 40 is closed. Thus, arrangement
of the air inlet valve 40 in the flowing direction of the intake flow prevents the
air flow from flowing back.
[0017] Moreover, the pump body 30 consists of a valve seat 31 and a pump cover 32 stacked
on each other. The valve seat 31 is stacked over the diaphragm 10. The pump body 30
is generally made of plastic which is easy to mold.
[0018] More specifically, as shown in Fig. 2 and Fig. 3, an exhaust chamber 33 and a spring
chamber 34, separated from each other, are constructed by the valve seat 31 and the
pump cover 32. The valve seat 31 is provided with a plurality of exhaust channels
311 which are communicating with the bladder cavities 111. When the bladder cavities
111 are compressed, the air from inside the bladder cavities 111 is flowing into the
exhaust chamber 33 through the exhaust channels 311 while exhaust flow will not flow
into the spring chamber 34.
[0019] In order to prevent the air flowing into the exhaust chamber 33 from returning, the
air outlet valve 51 is disposed in the flowing direction of the air in the exhaust
channels 311 and used for communicating the bladder cavities 111 with the exhaust
chamber 33 in one-way manner. More concretely, the air outlet valve 51 is closed and
the air is delivered to the bladder cavities 111 through the air inlet channels 22
when the bladder cavity 111 is stretched to increase the volume thereof and draw the
air in. While, when the bladder cavity 111 is squeezed to decrease the volume thereof
and exhaust the air, the air outlet valve 51 is opened and the air flow moves out
through the exhaust channels 311. Moreover, the air outlet valve 51 is open when the
air inlet valve 40 is closed while the air outlet valve 51 is closed once the air
inlet valve 40 is open. Thereby the air is drawn into the bladder cavity 111 and exhausted
from the bladder cavity 111 repeatedly.
[0020] A return channel 35 is constructed by the valve seat 31, the diaphragm 10 and the
bladder base 20 and communicating the valve seat 31, the diaphragm 10, and the bladder
base 20 with one another. The return channel 35 is communicating with the air inlet
channel 22 but is not communicating with the spring chamber 34. The relief valve 52
is mounted in the exhaust chamber 33 for selectively communicating the exhaust chamber
33 with the return channel 35. When the mini air pump 100 is used to blow up an object,
which users intend to inflate, and the pressure in the object raises over a preset
value, the relief valve 52 is opened and air in the exhaust chamber 33 is output through
the return channel 35 and returned to the air inlet channels 22.
[0021] As shown in Fig. 2 and Fig. 3, a preload member 70 which includes at least one spring
71 is mounted in the spring chamber 34. The spring 71 applies a preload to the relief
valve 52. The air flow in the exhaust chamber 33 will not flow into the spring chamber
34 because the exhaust chamber 33 and the spring chamber 34 are separated from each
other. The air flow in the return channel 35 also won't flow into the spring chamber
34. Thus, the spring 71 will not shake or shift due to the relief flow or the exhaust
flow. Thereby the assembly position of the spring 71 in the spring chamber 34 remains
and the same abutting force (the above preload) is applied to the relief valve 52
by the spring 71. Therefore accurate actuation of the relief valve 52 is ensured and
the stability of the mini air pump 100 during the blowing-up is improved.
[0022] In a nutshell, in the mini air pump 100, the spring chamber 34 is not only disconnected
from the exhaust chamber 33 but also the return channel 35 so as to prevent the exhaust
flow or the return flow from flowing into the spring chamber 34. Thus, the spring
71 is relatively stably positioned in the spring chamber 34 to ensure that the abutting
force applied to the relief valve 52 by the spring 71 remains the same and the relief
valve 52 can actuate more accurately. Therefore the stability of the mini air pump
100 during the blow-up of the objects to be inflated is increased.
[0023] Furthermore, noise caused by air flow can be reduced due to the return flow being
exhausted to the air inlet channel 22, instead of being directly released to the atmosphere.
And the operating noise of the mini air pump 100 is further minimized.
[0024] In some embodiments of the present invention, the air outlet valve 51 and the relief
valve 52 are integrally formed on a valve membrane 50, as shown in Fig. 1 together
with Fig. 2 and Fig. 3. That means the air outlet valve 51 and the relief valve 52
are integrated with the valve membrane 50. The valve membrane 50 is clipped between
the valve seat 31 and the pump cover 32. The air outlet valve 51 is used to control
on/off of the exhaust channels 311 while the pressure of the air in the exhaust chamber
33 is regulated through the relief valve 52. Thus the regulation of the blow-up of
the objects to be inflated by the mini air pump 100 is achieved.
[0025] More specifically, the relief valve 52 is formed on one side of the valve membrane
50 facing the valve seat 31. The valve seat 31 is provided with a groove 312 while
the valve membrane 50 is provided with at least one communication hole 53 by which
the groove 312 and the exhaust chamber 33 are communicating with each other. The air
flow in the exhaust chamber 33 can flow to the groove 312 through the communication
hole 53. When the relief valve 52 is open, the air flow moves from the groove 312
to the return channel 35. Thereby pressure relief is achieved.
[0026] As shown in Fig. 1, the groove 312 includes a circular groove 3121 and a plurality
of long grooves 3122 which are arranged around and radiated from the circular groove
3121. A free end of the long groove 3122 is arranged corresponding to the communication
hole 53. As shown in Fig. 2 and Fig. 3, the return channel 35 is located at a central
portion of the pump body 30 while the exhaust chamber 33 is located around the pump
body 30. The air flow in the exhaust chamber 33 is directed to the central circular
groove 3121 through the long grooves 3122. Then the air flow is output through the
return channel 35 when the relief valve 52 is open.
[0027] As shown in Fig. 2 and Fig. 3, the relief valve 52 is a circular flange which is
arranged around an entrance of the return channel 35 and is directly abutting against
the valve seat 31. The spring 71 of the preload member 70 is abutting against the
valve membrane 50 so that the circular flange is tightly attached to the valve seat
31. When the air pressure in the exhaust chamber 33 is insufficient to push and open
the relief valve 52, the groove 312 and the return channel 35 are not communicating
with each other. While the air pressure in the exhaust chamber 33 is larger than the
abutting force of the spring 71, the relief valve 52 is moved upward so that the circular
flange and the attached surface of the valve seat 31 are separated from each other
to allow the groove 312 and the return channel 35 communicating with each other.
[0028] In a preferred embodiment, as shown in Fig. 1 and Fig. 3, a positioning rod 54 is
mounted on the other side of the valve membrane 50. The preload member 70 further
includes a spring seat 72 and a stopper 73. The positioning rod 54 is inserted through
the spring seat 72 and one end of the spring 71 is abutting against and mounted in
a limit slot 721 defined in the spring seat 72. The spring seat 72 is positioned on
the valve membrane 50 by the positioning rod 54. The spring 71 is locked in the limit
slot 721 and applying an abutting force to the spring seat 72 so that the relief valve
52 is further abutting against the valve seat 31. That means the spring 71 and the
valve membrane 50 are connected firmly by the spring seat 72 in combination with the
positioning rod 54.
[0029] In another preferred embodiment, refer to Fig. 1 and Fig. 3, a guiding chamber 321
communicating with the spring chamber 34 is formed in the pump cover 32 and the other
end of the spring 71 is extended into the guiding chamber 321 while the stopper 73
which applies a pre-tension to the other end of the spring 71 is mounted in the guiding
chamber 321. The two ends of the spring 71 is limited between the spring seat 72 and
the stopper 73 while the cylindrical surface of the spring 71 is limited in the guiding
chamber 321 for preventing shaking or weaving of the spring 71. The stability of the
preload member 70 within the spring chamber 34 is further improved.
[0030] As shown in Fig. 1 and Fig. 3, in a preferred embodiment of the present invention,
the bladder base 20 is further provided with a plurality of sink slots 23 each of
which is communicating with the air inlet channel 22 and the return channel 35 correspondingly.
By the sink slots 23, the return flow is dispersed and delivered into different air
inlet channels 22 to prevent the return flow from concentrating in and flowing out
from the return channel 35 on the bladder base 20. Thereby air flow noise is further
reduced.
[0031] As shown in Fig. 2 and Fig. 3, according to the present invention, a valve cap 80
is disposed over the pump cover 32 and a buffer chamber 81 is constructed by the pump
cover 32 and the valve cap 80. The buffer chamber 81 is communicating with the exhaust
chamber 33. That means the air flowing out from the exhaust chamber 33 is reaching
the buffer chamber 81 first, not being directly delivered to the object to be inflated.
Thereby the air flow is delivered to the outside after noise attenuation in the buffer
chamber 81. Therefore the operating noise of the mini air pump 100 is further reduced.
[0032] In order to avoid the air flow returning to the exhaust chamber 33, a one-way valve
90 is arranged at an air vent of the valve cap 80 or the pump cover 32. The one-way
valve 90 is open when air in the exhaust chamber 33 is delivered to the outside. While
the air in the exhaust chamber 33 is not delivered to the outside, the one-way valve
90 is closed.
[0033] In some other embodiments of the present invention, the air inlet valve 40 is integrally
formed on the diaphragm 10 and arranged corresponding to an outlet of the air inlet
channel 22. That means the air inlet valve 40 is a part of the e diaphragm 10. When
the air is delivered into the bladder cavity 111, the intake air flow first is directly
passed through the air inlet channel 22 of the bladder base 20 to be sent into the
bladder cavity 111.
[0034] It should be understood that terms such as "top", "bottom", "in", "out", "upper",
"lower", etc. should be constructed to refer to the orientation as then described
or as shown in the drawings. These relative terms are for convenience of description
and do not require that the present invention to constructed or operated in a particular
orientation.
[0035] In the present invention, unless specified or limited otherwise, the terms "mounted",
"coupled", "connected", "fixed" and the like are used broadly and may be, for example,
fixed connections, detachable connection, or integral connection; may also be mechanical
or electrical connections; may also be direct connections or indirect connections
via intervening structures; may also be inner communications or interaction of two
elements, which can be understood by those skilled in the art according to specific
situations.
[0036] In the present disclosure, unless specified or limited otherwise, the first feature
"on" or "under" the second feature may include direct contact of the first and second
features, and may also include the first and second features are not in direct contact
but through additional features between them. Moreover, the first feature is "on",
"over" and "above" the second feature means the first feature directly is right on
the top of or diagonally above the second feature, or merely indicating that the first
feature is at a higher level than the second feature. The first feature is "beneath",
"under" and "below" the second feature means the first feature is directly is just
beneath or diagonally below the second feature, or merely the first feature is at
a lower level than the second feature.
[0037] In the description of the present specification, the description with reference to
the term "one embodiment", "some embodiments", "an example", "a specific example",
or "some examples" etc., means that particular features, structures, materials, or
characteristics of the described embodiment is included in at least one embodiment
or example of the present invention. In the present specification, the schematic description
related to the above term is not necessary for the same embodiment or example. Furthermore,
the particular features, structures, materials, or characteristics described may be
connected in at least one embodiment or example in a suitable manner.
1. A mini air pump (100) comprising:
a diaphragm (10) which includes a plurality of bladders (11) on one side of the diaphragm
(10) and each of the bladders (11) having a bladder cavity (111) with an opening toward
the other side of the diaphragm (10);
a bladder base (20) which includes a plurality of air inlet channels (22) and a plurality
of bladder holes (21) penetrating the bladder base (20) in thickness direction while
the diaphragm (10) is attached to the bladder base (20) and the bladders (11) are
passed through the bladder holes (21) correspondingly;
a pump body (30) which includes a valve seat (31) provided with a plurality of exhaust
channels (311) and stacked over the diaphragm (10), a pump cover (32) stacked on the
valve seat (31), an exhaust chamber (33) and a spring chamber (34) separated from
each other and constructed by the valve seat (31) and the pump cover (32), and a return
channel (35) constructed by the valve seat (31), the diaphragm (10), and the bladder
base (20) and communicating the valve seat (31), the diaphragm (10) and the bladder
base (20) with one another; the exhaust channels (311) communicating with the bladder
cavity (111) while return channel (35) communicating with the air inlet channels (22)
but not communicating with the spring chamber (34);
an air inlet valve (40) disposed in flowing direction of air in the air inlet channel
(22) and used for communicating the bladder cavity (111) with the air inlet channels
(22) in one-way manner;
an air outlet valve (51) arranged in flowing direction of air in the exhaust channel
(311) and used for communicating the exhaust chamber (33) with the bladder cavity
(111) in one-way manner;
a relief valve (52) mounted in the exhaust chamber (33) for selectively communicating
the return channel (35) with the exhaust chamber (33); and
a preload member (70) mounted in the spring chamber (34) and having at least one spring
(71) which applies a preload to the relief valve (52);
wherein the spring (71) is relatively stably positioned in the spring chamber (34)
to ensure that the abutting force applied to the relief valve (52) by the spring (71)
remains the same and the relief valve (52) can actuate more accurately;
wherein the diaphragm (10) is a flexible member being preferably made of a rubber
material; and
wherein the pump body (30) is made of an easy-moldable plastic;
characterized in that
the exhaust chamber (33) and the spring chamber (34) are separated from each other;
a valve cap (80) is disposed over the pump cover (32) and a buffer chamber (81) is
constructed by the pump cover (32) and the valve cap (80); wherein the buffer chamber
(81) is communicating with the exhaust chamber (33);
wherein a one-way valve (90) is arranged at an air vent of the valve cap (80) or the
pump cover (32);
wherein the one-way valve (90) is open when air in the exhaust chamber (33) is delivered
to the outside, whereas, while the air in the exhaust chamber (33) is not delivered
to the outside, the one-way valve (90) is closed.
2. The mini air pump (100) as claimed in claim 1, wherein the air outlet valve (51) and
the relief valve (52) are integrally formed on a valve membrane (50) while the relief
valve (52) is formed on one side of the valve membrane (50) facing the valve seat
(31); wherein a groove (312) is mounted on the valve seat (31) and the valve membrane
(50) is provided with at least one communication hole (53) by which the groove (312)
and the exhaust chamber (33) are communicating with each other.
3. The mini air pump (100) as claimed in claim 2, wherein the relief valve (52) is a
circular flange which is arranged around an entrance of the return channel (35) and
is directly abutting against the valve seat (31).
4. The mini air pump (100) as claimed in claim 2, wherein the groove (312) includes a
circular groove (3121) and a plurality of long grooves (3122) which are arranged around
and radiated from the circular groove (3121) while a free end of the long groove (3122)
is arranged corresponding to the communication hole (53).
5. The mini air pump (100) as claimed in claim 2, wherein a positioning rod (54) is mounted
on the other side of the valve membrane (50) while the preload member (70) further
includes a spring seat (72) and the positioning rod (54) is inserted through the spring
seat (72); one end of the spring (71) is abutting against and mounted in a limit slot
(721) defined in the spring seat (72).
6. The mini air pump (100) as claimed in claim 5, wherein a guiding chamber (321) communicating
with the spring chamber (34) is formed in the pump cover (32) and the other end of
the spring (71) is extended into the guiding chamber (321) while a stopper (73) which
applies a pre-tension to the other end of the spring (71) is mounted in the guiding
chamber (321).
7. The mini air pump (100) as claimed in claim 1, wherein the bladder base (20) is further
provided with a plurality of sink slots (23) each of which is communicating with one
of the air inlet channels (22) and the return channel (35) correspondingly.
8. The mini air pump (100) as claimed in claim 1, wherein the air inlet valve (40) is
integrally formed on the diaphragm (10) and arranged corresponding to an outlet of
the air inlet channels (22).
1. Mini-Luftpumpe (100), umfassend:
eine Membran (10), die eine Vielzahl von Blasen (11) auf einer Seite der Membran (10)
aufweist und jede der Blasen (11) einen Blasenhohlraum (111) mit einer Öffnung zur
anderen Seite der Membran (10) aufweist,
eine Blasenbasis (20), die eine Vielzahl von Lufteinlasskanälen (22) und eine Vielzahl
von Blasenlöchern (21) aufweist, die die Blasenbasis (20) in Richtung der Dicke durchdringen,
während die Membran (10) an der Blasenbasis (20) befestigt ist und die Blasen (11)
entsprechend durch die Blasenlöcher (21) geführt werden,
einen Pumpenkörper (30), der einen Ventilsitz (31) aufweist, der mit einer Vielzahl
von Auslasskanälen (311) versehen ist und über der Membran (10) angeordnet ist, einen
Pumpendeckel (32), der auf dem Ventilsitz (31) gestapelt ist, eine Auslasskammer (33)
und eine Federkammer (34), die voneinander getrennt sind und durch den Ventilsitz
(31) und den Pumpendeckel (32) gebildet werden, und einen Rücklaufkanal (35), der
durch den Ventilsitz (31), die Membran (10) und die Blasenbasis (20) gebildet wird
und den Ventilsitz (31), die Membran (10) und die Blasenbasis (20) miteinander verbindet,
wobei die Auslasskanäle (311) mit dem Blasenhohlraum (111) in Verbindung stehen, während
der Rücklaufkanal (35) mit den Lufteinlasskanälen (22), aber nicht mit der Federkammer
(34) in Verbindung steht,
ein Lufteinlassventil (40), das in Strömungsrichtung der Luft im Lufteinlasskanal
(22) angeordnet ist und dazu dient, den Blasenhohlraum (111) mit den Lufteinlasskanälen
(22) in einer Einwegverbindung zu verbinden,
ein Luftauslassventil (51), das in Strömungsrichtung der Luft im Auslasskanal (311)
angeordnet ist und dazu dient, die Auslasskammer (33) mit dem Blasenhohlraum (111)
in einer Einwegverbindung zu verbinden,
ein Überdruckventil (52), das in der Auslasskammer (33) angebracht ist, um den Rücklaufkanal
(35) selektiv mit der Auslasskammer (33) zu verbinden, und
ein Vorspannelement (70), das in der Federkammer (34) angebracht ist und mindestens
eine Feder (71) aufweist, die eine Vorspannung auf das Überdruckventil (52) ausübt,
wobei die Feder (71) relativ stabil in der Federkammer (34) positioniert ist, um sicherzustellen,
dass die von der Feder (71) auf das Überdruckventil (52) ausgeübte Anpresskraft gleich
bleibt und das Überdruckventil (52) genauer betätigen kann,
wobei die Membran (10) ein flexibles Element ist, das vorzugsweise aus einem Gummimaterial
hergestellt ist, und
wobei der Pumpenkörper (30) aus einem leicht formbaren Kunststoff hergestellt ist,
dadurch gekennzeichnet, dass
die Auslasskammer (33) und die Federkammer (34) voneinander getrennt sind, eine Ventilkappe
(80) über dem Pumpendeckel (32) angeordnet ist und eine Pufferkammer (81) durch den
Pumpendeckel (32) und die Ventilkappe (80) gebildet wird, wobei die Pufferkammer (81)
mit der Auslasskammer (33) in Verbindung steht,
wobei ein Einwegventil (90) an einer Entlüftung der Ventilkappe (80) oder des Pumpendeckels
(32) angeordnet ist,
wobei das Einwegventil (90) offen ist, wenn Luft in der Auslasskammer (33) nach außen
gefördert wird, während das Einwegventil (90) geschlossen ist, wenn die Luft in der
Auslasskammer (33) nicht nach außen gefördert wird.
2. Mini-Luftpumpe (100) nach Anspruch 1, wobei das Luftauslassventil (51) und das Überdruckventil
(52) einstückig auf einer Ventilmembran (50) ausgebildet sind, während das Überdruckventil
(52) auf einer Seite der Ventilmembran (50) ausgebildet ist, die dem Ventilsitz (31)
zugewandt ist, wobei eine Nut (312) auf dem Ventilsitz (31) angebracht ist und die
Ventilmembran (50) mit mindestens einem Verbindungsloch (53) versehen ist, durch das
die Nut (312) und die Auslasskammer (33) miteinander in Verbindung stehen.
3. Mini-Luftpumpe (100) nach Anspruch 2, wobei das Überdruckventil (52) ein kreisförmiger
Flansch ist, der um einen Eingang des Rücklaufkanals (35) herum angeordnet ist und
direkt an dem Ventilsitz (31) anliegt.
4. Mini-Luftpumpe (100) nach Anspruch 2, wobei die Nut (312) eine kreisförmige Nut (3121)
und eine Vielzahl von Längsnuten (3122) umfasst, die um die kreisförmige Nut (3121)
herum angeordnet sind und von dieser ausgehen, während ein freies Ende der Längsnut
(3122) entsprechend dem Verbindungsloch (53) angeordnet ist.
5. Mini-Luftpumpe (100) nach Anspruch 2, wobei eine Positionierungsstange (54) auf der
anderen Seite der Ventilmembran (50) angebracht ist, während das Vorspannelement (70)
ferner einen Federsitz (72) aufweist und die Positionierungsstange (54) durch den
Federsitz (72) eingeführt ist, wobei ein Ende der Feder (71) an einem in dem Federsitz
(72) definierten Begrenzungsschlitz (721) anliegt und darin montiert ist.
6. Mini-Luftpumpe (100) nach Anspruch 5, wobei in dem Pumpendeckel (32) eine mit der
Federkammer (34) in Verbindung stehende Führungskammer (321) ausgebildet ist und das
andere Ende der Feder (71) sich in die Führungskammer (321) erstreckt, während ein
Stopper (73), der eine Vorspannung auf das andere Ende der Feder (71) ausübt, in der
Führungskammer (321) montiert ist.
7. Mini-Luftpumpe (100) nach Anspruch 1 , wobei die Blasenbasis (20) ferner mit einer
Vielzahl von Senkungsschlitzen (23) versehen ist, von denen jeder mit einem der Lufteinlasskanäle
(22) und dem Rücklaufkanal (35) in Verbindung steht.
8. Mini-Luftpumpe (100) nach Anspruch 1, wobei das Lufteinlassventil (40) einstückig
an der Membran (10) ausgebildet und entsprechend einem Auslass der Lufteinlasskanäle
(22) angeordnet ist.
1. Mini-pompe à air (100) comprenant :
un diaphragme (10) qui inclut une pluralité de vessies (11) sur un côté du diaphragme
(10) et chacune des vessies (11) présentant une cavité de vessie (111) avec une ouverture
vers l'autre côté du diaphragme (10) ;
une base de vessie (20) qui inclut une pluralité de canaux d'entrée d'air (22) et
une pluralité de trous de vessie (21) pénétrant dans la base de vessie (20) dans une
direction d'épaisseur alors que le diaphragme (10) est attaché à la base de vessie
(20) et les vessies (11) sont passées à travers les trous de vessie (21) de façon
correspondante ;
un corps de pompe (30) qui inclut un siège de soupape (31) pourvu d'une pluralité
de canaux d'échappement (311) et empilé sur le diaphragme (10), un couvercle de pompe
(32) empilé sur le siège de soupape (31), une chambre d'échappement (33) et une chambre
à ressort (34) séparées l'une de l'autre et construites par le siège de soupape (31)
et le couvercle de pompe (32), et un canal de retour (35) construit par le siège de
soupape (31), le diaphragme (10) et la base de vessie (20) et faisant communiquer
le siège de soupape (31), le diaphragme (10) et la base de vessie (20) les uns avec
les autres ; les canaux d'échappement (311) communiquant avec la cavité de vessie
(111) tandis qu'un canal de retour (35) communique avec les canaux d'entrée d'air
(22) mais ne communique pas avec la chambre à ressort (34) ;
une soupape d'entrée d'air (40) disposée dans une direction d'écoulement d'air dans
le canal d'entrée d'air (22) et utilisée pour faire communiquer la cavité de vessie
(111) avec les canaux d'entrée d'air (22) d'une manière unidirectionnelle ;
une soupape de sortie d'air (51) agencée dans une direction d'écoulement d'air dans
le canal d'échappement (311) et utilisée pour faire communiquer la chambre d'échappement
(33) avec la cavité de vessie (111) d'une manière unidirectionnelle ;
une soupape de décharge (52) montée dans la chambre d'échappement (33) pour faire
communiquer sélectivement le canal de retour (35) avec la chambre d'échappement (33)
; et
un organe de précharge (70) monté dans la chambre à ressort (34) et présentant au
moins un ressort (71) qui applique une précharge à la soupape de décharge (52) ;
dans laquelle le ressort (71) est positionné de manière relativement stable dans la
chambre à ressort (34) pour s'assurer que la force de butée appliquée à la soupape
de décharge (52) par le ressort (71) reste la même et la soupape de décharge (52)
peut fonctionner de manière plus précise ;
dans laquelle le diaphragme (10) est un organe flexible qui est de préférence composé
d'un matériau caoutchouc ; et
dans laquelle le corps de pompe (30) est composé d'un plastique facile à mouler,
caractérisée en ce que
la chambre d'échappement (33) et la chambre à ressort (34) sont séparées l'une de
l'autre ;
un chapeau de soupape (80) est disposée par-dessus le couvercle de pompe (32) et une
chambre tampon (81) est construite par le couvercle de pompe (32) et le chapeau de
soupape (80) ; dans laquelle la chambre tampon (81) communique avec la chambre d'échappement
(33) ;
dans laquelle une soupape unidirectionnelle (90) est agencée au niveau d'un orifice
d'aération du chapeau de soupape (80) ou du couvercle de pompe (32) ;
dans laquelle la soupape unidirectionnelle (90) est ouverte lorsque de l'air dans
la chambre d'échappement (33) est acheminé à l'extérieur, alors que, lorsque l'air
dans la chambre d'échappement (33) n'est pas acheminé à l'extérieur, la soupape unidirectionnelle
(90) est fermée.
2. Mini-pompe à air (100) selon la revendication 1, dans laquelle la soupape de sortie
d'air (51) et la soupape de décharge (52) sont formées d'un seul tenant sur une membrane
de soupape (50) alors que la soupape de décharge (52) est formée sur un côté de la
membrane de soupape (50) face au siège de soupape (31) ; dans laquelle une rainure
(312) est montée sur le siège de soupape (31) et la membrane de soupape (50) est pourvue
d'au moins un trou de communication (53) par lequel la rainure (312) et la chambre
d'échappement (33) communiquent l'une avec l'autre.
3. Mini-pompe à air (100) selon la revendication 2, dans laquelle la soupape de décharge
(52) est une bride circulaire qui est agencée autour d'une entrée du canal de retour
(35) et vient directement en butée contre le siège de soupape (31).
4. Mini-pompe à air (100) selon la revendication 2, dans laquelle la rainure (312) inclut
une rainure circulaire (3121) et une pluralité de rainures longues (3122) qui sont
agencées autour de la rainure circulaire (3121) et rayonnent depuis cette dernière
alors qu'une extrémité libre de la rainure longue (3122) est agencée en de façon à
correspondre au trou de communication (53).
5. Mini-pompe à air (100) selon la revendication 2, dans laquelle une tige de positionnement
(54) est montée sur l'autre côté de la membrane de soupape (50) alors que l'organe
de précharge (70) inclut en outre un siège de ressort (72) et la tige de positionnement
(54) est insérée dans le siège de ressort (72) ; une extrémité du ressort (71) vient
buter contre une fente de limite (721) définie dans le siège de ressort (72) et est
montée dans celle-ci.
6. Mini-pompe à air (100) selon la revendication 5, dans laquelle une chambre de guidage
(321) communiquant avec la chambre à ressort (34) est formée dans le couvercle de
pompe (32) et l'autre extrémité du ressort (71) est étendue dans la chambre de guidage
(321) tandis qu'un élément d'arrêt (73) qui applique une pré-tension à l'autre extrémité
du ressort (71) est monté dans la chambre de guidage (321).
7. Mini-pompe à air (100) selon la revendication 1, dans laquelle la base de vessie (20)
est en outre pourvue d'une pluralité de fentes de dissipateur (23), chacune communiquant
avec l'un des canaux d'entrée d'air (22) et le canal de retour (35) de façon correspondante.
8. Mini-pompe à air (100) selon la revendication 1, dans laquelle la soupape d'entrée
d'air (40) est formée d'un seul tenant sur le diaphragme (10) et agencée de manière
correspondante par rapport à une sortie des canaux d'entrée d'air (22).