(19)
(11) EP 3 849 939 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.07.2022 Bulletin 2022/28

(21) Application number: 19739295.4

(22) Date of filing: 16.07.2019
(51) International Patent Classification (IPC): 
C01B 3/02(2006.01)
F01K 13/02(2006.01)
C01C 1/04(2006.01)
C01B 3/38(2006.01)
(52) Cooperative Patent Classification (CPC):
C01B 3/025; C01B 3/382; C01B 3/50; C01B 2203/0233; C01B 2203/0244; C01B 2203/0283; C01B 2203/0475; C01B 2203/0844; C01B 2203/141; C01B 2203/142; C01B 2203/1604; C01C 1/0405; F01K 17/06; Y02P 20/52
(86) International application number:
PCT/EP2019/069145
(87) International publication number:
WO 2020/052832 (19.03.2020 Gazette 2020/12)

(54)

PROCESS FOR THE SYNTHESIS OF AMMONIA

VERFAHREN ZUR SYNTHESE VON AMMONIAK

PROCÉDÉ DE SYNTHÈSE DE L'AMMONIAC


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 11.09.2018 EP 18193675

(43) Date of publication of application:
21.07.2021 Bulletin 2021/29

(73) Proprietor: CASALE SA
6900 Lugano (CH)

(72) Inventors:
  • ROSSI, Umberto
    22100 Como (IT)
  • PENNATI, Alessandra
    6900 Lugano (CH)
  • OSTUNI, Raffaele
    6900 Lugano (CH)
  • BRUNI, Costantino
    6900 Lugano (CH)

(74) Representative: M. Zardi & Co S.A. 
Via G. B. Pioda, 6
6900 Lugano
6900 Lugano (CH)


(56) References cited: : 
WO-A1-02/48027
GB-A- 2 146 632
US-A1- 2004 245 086
US-A1- 2018 044 192
CA-A- 1 152 727
US-A- 4 728 506
US-A1- 2016 145 113
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to the field of the industrial production of ammonia.

    Prior Art



    [0002] The industrial production of ammonia involves the catalytic reaction of a synthesis gas ("make-up gas") comprising hydrogen and nitrogen inside a highpressure (HP) synthesis loop usually operating at about 80-300 bar.

    [0003] The make-up gas is produced in a front-end section, upstream the HP synthesis loop, by conversion of a hydrocarbon feedstock (e.g. natural gas).

    [0004] The conversion of natural gas into said make-up gas usually involves a primary reforming with steam and a secondary reforming with air, obtaining a raw synthesis gas, followed by purification of said raw gas. The purification usually includes shift conversion of carbon monoxide into carbon dioxide, removal of carbon dioxide and, optionally, methanation.

    [0005] A plant for the production of ammonia also comprises a complex steam system including steam producers and steam users. The steam producers recover process heat from various process streams, mostly from the conversion of natural gas into raw synthesis gas (usually by steam reforming) and from the subsequent purification (usually from shift conversion). The main steam users are the driving turbines of large gas compressors, such as the synthesis gas compressor which raises the pressure of the make-up gas to the pressure of the synthesis loop and the air compressor which raises the air pressure from atmospheric to the pressure of the secondary reforming.

    [0006] In addition to the above-mentioned large gas compressors, an ammonia plant typically contains several smaller auxiliary machines, such as small compressors, fans and pumps. Historically these smaller machines have been driven by small steam turbines having a low efficiency. For example, these turbines have a mechanical efficiency of 30-50%, resulting in a relatively high steam consumption.

    [0007] In a few existing ammonia plants, some of the small steam turbines have been replaced with electric motors to reduce operating costs, while in some new plant designs most or all of the smaller machines are electrically driven. In the latter configuration, the necessary power is usually provided by a central generator driven by a larger and more efficient steam turbine, thus reducing plant energy consumptions by saving natural gas. Such turbine may have a mechanical efficiency of 80% or more. Furthermore, the larger the size of the steam turbine the higher the efficiency. Usually, said steam turbine expands more steam than that required by the generator to produce electric power, as it may conveniently drive one of the plant main compressor, and usually the biggest one.

    [0008] The steam for the steam generator is produced in the plant using fuel energy. The above-mentioned configuration with central turbo-generator entails a significant fuel saving compared to a plurality of smaller turbines, due to the large difference in efficiency, even accounting for power losses entailed by electricity generation, distribution and use in the electric motors. Moreover, since electricity is produced in the plant starting from fuel, its cost is lower than the purchase cost from the external grid. Hence there is a clear trend to maximize the size of the steam turbo-generator to gain maximum benefits from electrification and higher machine efficiency. Accordingly, the prior art teaches to generate as much steam as possible from heat recovery from process gas cooling, up to the point that all electrical energy consumptions of the plant can be satisfied internally.

    [0009] In plant front end, steam generation takes conveniently place in waste heat boilers by cooling the process gas. The latter is primarily a mixture of hydrogen and nitrogen, but contains also a considerable amount of carbon monoxide. Carbon monoxide, in conjunction to high temperature, can potentially lead to metal dusting, especially in heat exchangers. Waste heat boilers, contrary to gas-gas exchangers like steam superheaters, avoid working in the metal dusting risk zone. In fact, as they exchange almost exclusively latent heat, boiling water keeps the temperature of the metal parts low enough to avoid metal dusting.

    [0010] During the start-up of an ammonia plant, the generator cannot produce any electric energy. To connect to the plant grid, in fact, the generator speed must match the grid frequency. The start-up is typically unsteady and during unsteady state operation the generator speed is not stable and the connection to the grid is not possible.

    [0011] The plant startup, on the other hand, requires a certain input of electric power, which is termed startup power. The startup power is the power required to perform a predetermined start-up procedure.

    [0012] As no power can be internally produced with the generator during the startup procedure, the startup power needs be imported from an external source, for example an electric grid. Said import is discontinued during the normal operation of the plant, when the turbo-generator can be operated.

    [0013] The startup power may include the power required for (but not limited to): the primary reformer fan (or fans), the steam net pumps (boiler feed water, process and turbines condensates), the acid gas removal unit pumps, the auxiliary steam generator, the plant utilities (e.g. cooling water circuit).

    [0014] The startup power is significant: it may have the same order of magnitude as the power required during operation of the plant. In a large ammonia plant the startup power is therefore of several megawatts. For example, an ammonia plant producing 3000 t/d of ammonia typically requires around 40 MW of electric power for operation and around 15 MW for startup.

    [0015] The prior-art solution of producing internally as much energy as possible, importing the startup power from an external grid when needed, is made in an attempt to make efficient use of steam in the turbo-generator and to reduce the overall fuel consumption; however, it has important drawbacks.

    [0016] The need of the startup power is temporary and unpredictable. For example a startup may be needed after an unplanned shut down of the plant. The import of such a large power for limited and unpredictable periods, if available, is very expensive.

    [0017] Dedicated gas engines driving electricity generators have been installed in plants of the prior art to power the start-up phase instead of importing electric energy from the electric grid. This solution however is not satisfactory. It avoids costs associated with large electric power import at start-up but introduces another cost related to installation of large dedicated gas engines and generators, which are used only for start-up.

    [0018] Hence, there is still the need to find a solution for the provision of electric energy during the start-up of an ammonia plant, which is easy to realize and low-cost while still enabling to have a high efficiency for the plant.

    Summary of the invention



    [0019] The aim of the invention is to overcome the aforementioned drawbacks and limitations of the prior art.

    [0020] This aim is reached with a process for the synthesis of ammonia from a hydrocarbon feedstock, wherein the process includes reforming the hydrocarbon feedstock to produce a make-up gas and converting said make-up gas into ammonia, the process is performed in an ammonia synthesis plant requiring a predetermined electric power for operation and requiring a start-up power for start-up, and the process is characterized in that a first amount of electric power is internally produced in the ammonia plant, and in that a second amount of electric power is imported from a source of electric power which is external to said plant, wherein said second electric power is equal to or greater than said start-up power.

    [0021] The start-up power is the power required during the start-up procedure of the process and related plant. The start-up procedure identifies a transitional condition wherein the plant passes from a shut-down condition to a steady-state operation. Also, the start-up procedure can be identified by the fact that the product (in this case ammonia) is not produced or is produced outside the required specification (e.g. in terms of purity).

    [0022] The steady-state operation is identified as a condition where relevant operating parameters of the process remain constant or substantially constant, i.e. they vary within a limited range. Said operating parameters may include for example the temperature and pressure of the relevant steps of the process. Also, the steady-state operation can be identified as a condition where the product is produced within the required specification. In the steady-state operation, the process may deliver ammonia according to a nominal capacity (full load) or in a different amount when running at a partial load.

    [0023] The start-up power may include the power supply to a primary reformer fan (or fans), to steam net pumps (boiler feed water, process and turbines condensates), to the acid gas removal unit pumps, to the auxiliary steam generator and to other utilities (e.g. cooling water circuit).

    [0024] Preferably said first electric power is internally produced by means of a generator operated by a steam turbine, the generator and the turbine being part of said ammonia plant.

    [0025] Preferably the import of said second electric power, which is equal to or greater than the start-up power, takes place for at least 80% of the operation time of said ammonia plant on an annual basis, preferably for at least 90% thereof.

    [0026] The internally produced electric power is also denoted with the symbol P1. The power imported from said external source is also denoted with the symbol P2. The start-up power is also denoted with the symbol Ps. According to the present invention, said imported power P2 is equal to or greater than the start-up power Ps.

    [0027] Preferably, said external source is an external electric network.

    [0028] The invention provides that a relatively large amount of electric power is imported from an external source. The internally produced electric power P1 is therefore less than the prior art.

    [0029] The prior art prompts to the electric power input required for operation being entirely or substantially entirely produced internally in the ammonia process, typically in a steam turbine and generator equipment. Compared to the prior art, the invention provides that less steam is expanded in the steam turbine coupled to said generator.

    [0030] Accordingly, the invention has the following advantages: the generator and the steam turbine coupled to said generator are smaller; the start-up procedure is simplified compared to the prior art because the imported power P2 satisfies the requirement of the startup procedure; dedicated gas engines are not required to generate the start-up power; it is possible to make a contract for importing a fixed amount of electric power P2 from an external source.

    [0031] The process of the invention may comprise a step of primary reforming of the hydrocarbon feedstock in the presence of steam and a step of secondary reforming of the so obtained first reformed gas. The step of primary reforming is performed in a fired steam reformer. The step of secondary reforming includes a step of air-fired secondary reforming of at least a portion of said first reformed gas; in some embodiments, part of the reforming is performed as gas heated reforming (GHR), arranged either in series or in parallel to the step of secondary reforming.

    [0032] The process of the invention can also include the purification of a raw product gas, obtaining a make-up synthesis gas; conversion of said make-up synthesis gas into ammonia in a synthesis loop. Said primary reforming is preferably performed at a temperature of at least 790 °C and absolute pressure of at least 50 bar; said step of secondary reforming is carried out substantially in absence of excess air relative to the stoichiometric amount, and said make-up synthesis gas has a H2 to N2 molar ratio in the range 2.5 to 3.

    [0033] Said primary reforming is advantageously carried out in a bundle of externally heated tubes filled with a catalyst (catalytic tubes) and said values of temperature and pressure are referred to the process gas at the exit of the catalytic tubes of the primary reforming.

    [0034] The above mentioned temperature of at least 790 °C is preferably greater than 800 °C, more preferably greater than 810 °C.

    [0035] Preferably, said H2 to N2 molar ratio is in the range 2.6 to 2.8.

    [0036] The stoichiometric amount of air is understood as the amount which is necessary to achieve the H2 to N2 molar ratio of 3 in the make-up gas admitted to the synthesis loop, i.e. it depends substantially on the amount of hydrogen H2 of said make-up gas. The substantially absence of excess air shall be understood as an amount of air which results in the H2 to N2 molar ratio being 2.5 or greater.

    [0037] According to a preferred embodiment, the reforming process, including the primary reforming and secondary reforming, is operated with a global steam-to-carbon ratio equal to or greater than 2.9, preferably greater than 3. The global steam-to-carbon ratio denotes the overall ratio of steam and carbon admitted to the reforming process. Such relatively high steam-to-carbon ratio is beneficial to the conversion of the feedstock. It is also synergistic with the elevated pressure of the primary reforming, namely at least 50 bar absolute.

    [0038] According to a preferred embodiment, the purification of said raw product gas comprises a step of high temperature shift (HTS) in at least one shift converter. Steam used to feed the steam turbines of the plant and steam used in the primary reforming (also called process steam) is recovered by thermal recovery from various process streams, mostly from the primary reforming and from the HTS.

    [0039] Since part of the power input of the plant is imported from an external source and less steam is expanded in the steam turbine driving the electric generator, some of the steam generated via thermal recovery is advantageously superheated. The heat source for said steam superheating is the process gas before or after the HTS, i.e. feeding or leaving the HTS converter. This embodiment reduces the steam production in the front-end section and, therefore, the steam in excess, which otherwise would be too much due to the high pressure and the relatively high steam-to-carbon ratio of the reforming process. Accordingly, steam superheating is maximized, thus minimizing steam production in the plant.

    [0040] In another embodiment, the heat contained in the process gas leaving the secondary reformer is conveniently used to reform part of the mixed feed in a gas heated reformer. In this way, steam production in the plant is reduced accordingly.

    [0041] The gas heated reforming is preferably arranged in parallel with the secondary reforming, i.e. the gas reformed in the gas heated reforming mixes with that reformed in the secondary reforming. Alternatively, the gas heated reforming may be arranged in series with the secondary reforming, i.e. the gas reformed in the gas heated reforming is fed to the secondary reforming.

    [0042] Advantages of embodiments featuring a GHR include: the duty of the fired primary reformer is reduced, which is an advantage to reach high capacity in terms of production of ammonia; the production of steam is reduced, which is an advantage particularly for standalone plants.

    [0043] The process gas used for steam superheating has a temperature preferably higher than 400 °C, more preferably higher than 450 °C, and even more preferably higher than 500 °C.

    [0044] Preferably, the conversion of the make-up synthesis gas into ammonia is carried out at a loop pressure which is 2 to 3.5 times the pressure of the process gas at the exit of the primary reforming catalytic tubes. Said loop pressure is understood as the delivery pressure of a circulator of the loop. More preferably said loop pressure is in the range 100 to 200 bar, and even more preferably 120 to 160 bar.

    [0045] Accordingly, the make-up synthesis gas is compressed to the loop pressure in a suitable gas compressor. Preferably, the delivery of the main gas compressor is sent to the suction side of the circulator of the loop. This results in the duty of the gas compressor being reduced since part of the compression is given by the circulator. The power absorbed by the compressor, for a given capacity, is reduced accordingly.

    [0046] Preferably, said gas compressor is driven by a condensing steam turbine with no steam extraction and said turbine is fed with medium pressure steam. Said turbine is much simpler and cheaper. The terms "medium pressure" refers to a pressure which is few bars higher than the pressure of the reforming process.

    [0047] Preferably, said gas compressor is a single casing machine with one compression section. This is possible due to the relatively high pressure of the reforming process. Said gas compressor can run at lower speed (revolutions per minute), is more efficient and has a simplified design. This allows a significant reduction of the footprint and the cost of the plant.

    [0048] An air feed directed to the secondary reforming is advantageously compressed in an air compressor powered by a steam turbine. In some embodiments of the invention, the air compressor (instead of the syngas compressor) becomes the largest power user. Accordingly, the highest pressure available steam is used to drive the steam turbine coupled to said air compressor; steam discharged by, or extracted from, said turbine is preferably used for the primary reforming.

    [0049] This is advantageous as regards the efficiency of the process, because air compression can be achieved much more efficiently than syngas compression. This is mainly due to the possibility to use, in some embodiments, an air compressor of the integrally geared type (IG), which is unsuitable for the synthesis gas.

    [0050] Moreover, the steam turbine can be easily coupled to the air compressor with a dedicated pinion shaft at the desired speed: hence there is no limitation to the size of the steam turbine coupled to the air compressor.

    [0051] As mentioned, the air compressor is preferably an integrally geared turbomachine (IG). An integrally geared turbomachine is typically designed to operate at fixed speed and is usually controlled acting on the inlet guide vanes (IGV) installed at suction. The efficiency of said compressor is affected by fluctuations of the volumetric flowrate of the air feed, which are due to temperature fluctuations of the air feed between day and night, summer and winter.

    [0052] In order to work close to the point of maximum efficiency and to remain inside the range of control given by the IGV, the air feed could be heated or cooled at the suction of the air compressor, thus maintaining the inlet temperature of the air compressor within a target range.

    [0053] Preferably the heater and/or the cooler are integrated with an air filter at the suction of the air compressor so as to reduce the footprint and save costs.

    [0054] This embodiment provides an efficient way to properly control the air compressor and to keep the compressor operating within its optimal range, i.e. assuring the most efficient performance. This is particularly advantageous because even small variations of the air compressor efficiency have a significant impact on the energy consumption of the entire plant.

    [0055] According to a preferred embodiment, the conversion of the make-up synthesis gas into ammonia is carried out in two reactors arranged in series so that the effluent of a first reactor is further reacted in a second reactor.

    [0056] Preferably, the effluent of the first reactor is cooled before admission to the second reactor in a suitable heat exchanger placed between the two reactors. This is advantageous because allows to generate steam in said heat exchanger by cooling the product gas from the first reactor.

    [0057] This solution is also advantageous because the cold product gas can be conveniently used to flush the pressure vessel of the second converter. The gas temperature is cold enough to avoid the nitriding attack zone, assuring safe operation of the second reactor.

    [0058] Another aspect of the invention is a plant for the synthesis of ammonia according to the annexed claims.

    [0059] Another aspect of the invention is a method of operating an ammonia plant wherein the ammonia plant requires a predetermined power for operation and requires a predetermined start-up power for start-up, the method being characterized in that a first amount of electric power is internally produced in the ammonia plant by means of a generator of the plant operated by a steam turbine, and in that a second amount of electric power, is imported from a source of electric power which is external to said plant, wherein said second electric power is equal to or greater than said start-up power.


    Claims

    1. A process for the synthesis of ammonia from a hydrocarbon feedstock, wherein the process includes reforming the hydrocarbon feedstock to produce a make-up gas and converting said make-up gas into ammonia, the process is performed in an ammonia synthesis plant requiring a predetermined electric power for operation and requiring a start-up power (Ps) for start-up, the process is characterized in that a first amount of electric power (P1) is internally produced in the ammonia plant, and in that a second amount of electric power (P2) is imported from a source of electric power which is external to said plant, wherein said second electric power is equal to or greater than said start-up power (Ps).
     
    2. A process according to claim 1, wherein said first electric power (P1) is internally produced by means of a generator operated by a steam turbine, the generator being part of said ammonia plant.
     
    3. A process according to claim 1 or 2, wherein the importing of said second electric power, which is equal to or greater than the start-up power, takes place for at least 80% of the operation time of said ammonia plant on an annual basis, preferably for at least 90% thereof.
     
    4. A process according to any of claims 1 to 3, wherein reforming the hydrocarbon feedstock for the production of said make-up gas includes a step of primary reforming of at least part of said hydrocarbon feedstock with steam obtaining a first partially reformed gas, and a step of air-fired secondary reforming of said first partially reformed gas, thus obtaining a raw product gas, and a purification process of said raw product gas.
     
    5. A process according to claim 4, wherein said primary reforming is performed at a temperature of at least 790 °C and absolute pressure of at least 50 bar; said step of secondary reforming is carried out substantially in absence of excess air relative to the stoichiometric amount, and said make-up synthesis gas has a H2 to N2 molar ratio in the range 2.5 to 3.
     
    6. A process according to claim 5, wherein the reforming process is operated with a global steam-to-carbon ratio equal to or greater than 2.9.
     
    7. A process according to any of the claims 4 to 6, wherein the purification of said raw product gas comprises a step of high temperature shift (HTS) in at least one HTS converter and wherein steam produced by a step of thermal recovery from the primary reforming or from the at least one HTS converter is superheated, the heat source for steam superheating being the process gas feeding or leaving the at least one HTS converter.
     
    8. A process according to any of the previous claims 4 to 7, comprising compression of an air feed directed to the secondary reforming within an air compressor, wherein said air feed is heated or cooled at the suction of the air compressor to maintain the inlet temperature of the air compressor within a target range.
     
    9. A process according to any of the previous claims 4 to 8, wherein said conversion of make-up synthesis gas into ammonia is carried out at a pressure which is 2.0 to 3.5 times the pressure of the primary reforming and said method comprises a step of compression of said make-up gas in a gas compressor, said gas compressor being driven by a condensing steam turbine with no steam extraction.
     
    10. A process according to any of the previous claims 4 to 9, wherein the reforming process further includes that a part of said hydrocarbon feedstock with steam is reformed in a step of gas-heated reforming in a gas-heated reformer, arranged either in series or in parallel with said air-fired secondary reforming.
     
    11. A plant for the synthesis of ammonia from a hydrocarbon feedstock according to the process of claim 1, comprising:

    a) a primary reforming section suitable for reforming a hydrocarbon feedstock with steam at a temperature of at least 790 °C and pressure of at least 50 bar, obtaining a first reformed gas,

    b) an air-fired secondary reforming section suitable for secondary reforming of said first reformed gas, obtaining a raw product gas,

    c) an air compressor wherein an air feed for the secondary reforming section is compressed,

    d) at least one electric generator for the internal production of electric power.

    e) a steam turbine driving said air compressor and said generator,

    f) a purification section of said raw product gas obtaining a make-up synthesis gas, wherein the purification section comprises a high temperature shift reactor and a steam super-heater placed directly upstream or downstream of said shift reactor, the latter superheating at least part of the steam produced by cooling the first reformed gas or the effluent of the shift reactor,

    g) a conversion section including a synthesis loop, for conversion of said make-up synthesis gas into ammonia, the plant requiring a start-up power, wherein said generator is rated for producing a power which is less than the power required by the plant for operation, and the plant imports the remaining power from an external source, the imported power being equal to or greater than said start-up power of the plant.


     
    12. Plant according to claim 11, comprising a gas-heated reformer which is in series or in parallel with said secondary reforming section.
     
    13. A method of operating an ammonia plant wherein the ammonia plant requires a predetermined power for operation and requires a predetermined startup power (Ps) for startup, the method being characterized in that a first amount of electric power (P1) is internally produced in the ammonia plant by means of a generator of the plant operated by a steam turbine, and in that a second amount of electric power (P2), is imported from a source of electric power which is external to said plant, wherein said second electric power is equal to or greater than said start-up power (Ps).
     


    Ansprüche

    1. Ein Verfahren zur Synthese von Ammoniak aus einem Kohlenwasserstoffausgangsmaterial, wobei der Vorgang ein Reformieren des Kohlenwasserstoffausgangsmaterials, um ein Frischgas zu produzieren, und ein Umwandeln von Frischgas in Ammoniak beinhaltet, wobei das Verfahren in einer Ammoniaksyntheseanlage durchgeführt wird, die eine zuvor bestimmte elektrische Leistung für einen Betrieb erfordert und eine Anlaufleistung (Ps) für einen Anlauf erfordert, wobei der Vorgang dadurch gekennzeichnet ist, dass eine erste Menge an elektrischer Leistung (P1) intern in der Ammoniakanlage produziert wird, und dass eine zweite Menge an elektrischer Leistung (P2) von einer Quelle von elektrischer Leistung importiert wird, die außerhalb der Anlage liegt, wobei die zweite elektrische Leistung gleich oder größer als die Anlaufleistung (Ps) ist.
     
    2. Verfahren nach Anspruch 1, wobei die erste elektrische Leistung (P1) intern mittels eines Generators produziert wird, der durch eine Dampfturbine betrieben wird, wobei der Generator Teil der Ammoniakanlage ist.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei das Importieren der zweiten elektrischen Leistung, die gleich oder größer als die Anlaufleistung ist, für wenigstens 80 % der Betriebszeit der Ammoniakanlage auf einer jährlichen Basis, vorzugsweise für wenigstens 90 % davon stattfindet.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Reformieren des Kohlenwasserstoffausgangsmaterials für die Produktion des Frischgases einen Schritt des primären Reformierens von wenigstens einem Teil des Kohlenwasserstoffausgangsmaterials mit Dampf, wobei ein erstes teilweise reformiertes Gas erhalten wird, und einen Schritt des luftbefeuerten sekundären Reformierens des ersten teilweise reformierten Gases, wobei dadurch ein Rohproduktgas erhalten wird, und einen Reinigungsvorgang des Rohproduktgases beinhaltet.
     
    5. Verfahren nach Anspruch 4, wobei das primäre Reformieren bei einer Temperatur von wenigstens 790 °C und einem Absolutdruck von wenigstens 50 bar durchgeführt wird; der Schritt des sekundären Reformierens im Wesentlichen in Abwesenheit von überschüssiger Luft relativ zu der stöchiometrischen Menge durchgeführt wird und das Frischsynthesegas ein Molverhältnis von H2 zu N2 in dem Bereich von 2,5 bis 3 aufweist.
     
    6. Verfahren nach Anspruch 5, wobei der Reformierungsvorgang mit einem Gesamtverhältnis von Dampf zu Kohlenstoff von gleich oder größer als 2,9 betrieben wird.
     
    7. Verfahren nach einem der Ansprüche 4 bis 6, wobei die Reinigung des Rohproduktgases einen Schritt einer Hochtemperatur-Shift (HTS) in wenigstens einem HTS-Konverter umfasst und wobei Dampf, der durch einen Schritt einer thermischen Rückgewinnung aus dem primären Reformieren oder aus dem wenigstens einen HTS-Konverter produziert wird, überhitzt ist, wobei die Hitzequelle zum Überhitzen von Dampf das Prozessgas ist, das den wenigstens einen HTS-Konverter speist oder verlässt.
     
    8. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 7, das eine Kompression einer Lufteinspeisung, die zu dem sekundären Reformieren geleitet wird, innerhalb eines Luftkompressors umfasst, wobei die Lufteinspeisung an der Ansaugung des Luftkompressors erhitzt oder gekühlt wird, um die Einlasstemperatur des Luftkompressors innerhalb eines Zielbereichs zu halten.
     
    9. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 8, wobei die Umwandlung von Frischsynthesegas in Ammoniak bei einem Druck durchgeführt wird, der das 2,0-bis 3,5-Fache des Drucks des primären Reformierens beträgt, und das Verfahren einen Schritt der Kompression des Frischgases in einem Gaskompressor umfasst, wobei der Gaskompressor durch eine kondensierende Dampfturbine ohne Dampfentnahme angetrieben wird.
     
    10. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 9, wobei der Reformierungsvorgang ferner beinhaltet, dass ein Teil des Kohlenwasserstoffausgangsmaterials mit Dampf in einem Schritt des gasbeheizten Reformierens in einem gasbeheizten Reformer reformiert wird, der entweder seriell oder parallel zu dem luftbefeuerten sekundären Reformieren vorgesehen ist.
     
    11. Anlage für die Synthese von Ammoniak aus einem Kohlenwasserstoffausgangsmaterial gemäß dem Vorgang nach Anspruch 1, umfassend:

    a) einen primären Reformierungsabschnitt, der zum Reformieren eines Kohlenwasserstoffausgangsmaterials mit Dampf bei einer Temperatur von wenigstens 790 °C und einem Druck von wenigstens 50 bar geeignet ist, wobei ein erstes reformiertes Gas erhalten wird,

    b) einen luftbefeuerten sekundären Reformierungsabschnitt, der zum sekundären Reformieren des ersten reformierten Gases geeignet ist, wobei ein Rohproduktgas erhalten wird,

    c) einen Luftkompressor, wobei eine Lufteinspeisung für den sekundären Reformierungsabschnitt komprimiert wird,

    d) wenigstens einen elektrischen Generator für die interne Produktion von elektrischer Leistung,

    e) eine Dampfturbine, die den Luftkompressor und den Generator antreibt,

    f) einen Reinigungsabschnitt des Rohproduktgases, wobei ein Frischsynthesegas erhalten wird, wobei der Reinigungsabschnitt einen Hochtemperatur-Shift-Reaktor und einen Dampfüberhitzer umfasst, der direkt stromaufwärts oder stromabwärts des Shift-Reaktors platziert ist, wobei letzterer wenigstens einen Teil des Dampfes überhitzt, der durch Kühlen des ersten reformierten Gases oder des Ausflusses des Shift-Reaktors produziert wird,

    g) einen Umwandlungsabschnitt, der eine Syntheseschleife beinhaltet, für die Umwandlung des Frischsynthesegases in Ammoniak,

    wobei die Anlage eine Anlaufleistung erfordert, wobei der Generator zum Produzieren einer Leistung ausgelegt ist, die geringer als die Leistung ist, die durch die Anlage für den Betrieb erforderlich ist, und die Anlage die verbleibende Leistung von einer äußeren Quelle importiert, wobei die importierte Leistung gleich oder größer als die Anlaufleistung der Anlage ist.
     
    12. Anlage nach Anspruch 11, die einen gasbeheizten Reformer umfasst, der seriell oder parallel zu dem sekundären Reformierungsabschnitt ist.
     
    13. Verfahren zum Betreiben einer Ammoniakanlage, wobei die Ammoniakanlage eine zuvor bestimmte Leistung für den Betrieb erfordert und eine zuvor bestimmte Anlaufleistung (Ps) für den Anlauf erfordert, wobei das Verfahren dadurch gekennzeichnet ist, dass eine erste Menge an elektrischer Leistung (P1) intern in der Ammoniakanlage mittels eines Generators der Anlage produziert wird, der durch eine Dampfturbine betrieben wird, und dadurch, dass eine zweite Menge an elektrischer Leistung (P2) von einer Quelle von elektrischer Leistung importiert wird, die außerhalb der Anlage liegt, wobei die zweite elektrische Leistung gleich oder größer als die Anlaufleistung (Ps) ist.
     


    Revendications

    1. Processus pour la synthèse d'ammoniac à partir d'une charge d'alimentation hydrocarbonée, le processus comportant le reformage de la charge d'alimentation hydrocarbonée pour produire un gaz d'appoint et convertir ledit gaz d'appoint en ammoniac, le processus étant réalisé dans une usine de synthèse d'ammoniac nécessitant une puissance électrique prédéterminée pour le fonctionnement et nécessitant une puissance de démarrage (Ps) pour le démarrage, le processus étant caractérisé en ce qu'une première quantité de puissance électrique (P1) est produite en interne dans l'usine d'ammoniac, et en ce qu'une deuxième quantité de puissance électrique (P2) est importée à partir d'une source de puissance électrique qui est externe à ladite usine, ladite deuxième puissance électrique étant égale ou supérieure à ladite puissance de démarrage (Ps).
     
    2. Processus selon la revendication 1, dans lequel ladite première puissance électrique (P1) est produite en interne au moyen d'un générateur actionné par une turbine à vapeur, le générateur faisant partie de ladite usine d'ammoniac.
     
    3. Processus selon la revendication 1 ou 2, dans lequel l'importation de ladite deuxième puissance électrique, qui est égale ou supérieure à la puissance de démarrage, a lieu pendant au moins 80 % du temps de fonctionnement de ladite usine d'ammoniac sur une base annuelle, de préférence pendant au moins 90 % celui-ci.
     
    4. Processus selon l'une quelconque des revendications 1 à 3, dans lequel le reformage de la charge d'alimentation hydrocarbonée pour la production dudit gaz d'appoint comporte une étape de reformage primaire d'au moins une partie de ladite charge d'alimentation hydrocarbonée avec de la vapeur obtenant un premier gaz partiellement reformé, et une étape de reformage secondaire à l'air dudit premier gaz partiellement reformé, obtenant ainsi un gaz produit brut, et un processus de purification dudit gaz produit brut.
     
    5. Processus selon la revendication 4, dans lequel ledit reformage primaire est réalisé à une température d'au moins 790°C et à une pression absolue d'au moins 50 bar ; ladite étape de reformage secondaire est effectuée sensiblement en l'absence d'un excès d'air par rapport à la quantité stœchiométrique, et ledit gaz de synthèse d'appoint a un rapport molaire H2/N2 dans la plage de 2,5 à 3.
     
    6. Processus selon la revendication 5, dans lequel le processus de reformage est mis en œuvre avec un rapport global vapeur/carbone égal ou supérieur à 2,9.
     
    7. Processus selon l'une quelconque des revendications 4 à 6, dans lequel la purification dudit gaz produit brut comprend une étape de décalage à haute température (HTS) dans au moins un convertisseur HTS et dans lequel la vapeur produite par une étape de récupération thermique à partir du reformage primaire ou à partir de l'au moins un convertisseur HTS est surchauffée, la source de chaleur pour la surchauffe de la vapeur étant le gaz de traitement alimentant ou quittant l'au moins un convertisseur HTS.
     
    8. Processus selon l'une quelconque des revendications précédentes 4 à 7, comprenant la compression d'une alimentation en air dirigée vers le reformage secondaire à l'intérieur d'un compresseur d'air, ladite alimentation en air étant chauffée ou refroidie à l'aspiration du compresseur d'air pour maintenir la température d'entrée du compresseur d'air dans une plage cible.
     
    9. Processus selon l'une quelconque des revendications précédentes 4 à 8, dans lequel ladite conversion du gaz de synthèse d'appoint en ammoniac est effectuée à une pression qui fait de 2,0 à 3,5 fois la pression du reformage primaire et ledit procédé comprend une étape de compression dudit gaz d'appoint dans un compresseur à gaz, ledit compresseur à gaz étant entraîné par une turbine à vapeur à condensation sans extraction de vapeur.
     
    10. Processus selon l'une quelconque des revendications précédentes 4 à 9, dans lequel le processus de reformage comporte en outre le fait qu'une partie de ladite charge d'alimentation hydrocarbonée avec de la vapeur est reformée dans une étape de reformage chauffé au gaz dans un dispositif de reformage chauffé au gaz, agencé soit en série soit en parallèle avec ledit reformage secondaire à l'air.
     
    11. Usine pour la synthèse d'ammoniac à partir d'une charge d'alimentation hydrocarbonée selon le processus de la revendication 1, comprenant :

    a) une section de reformage primaire adaptée pour reformer une charge d'alimentation hydrocarbonée avec de la vapeur à une température d'au moins 790°C et à une pression d'au moins 50 bar, obtenant un premier gaz reformé,

    b) une section de reformage secondaire à l'air adaptée pour un reformage secondaire dudit premier gaz reformé, obtenant un gaz produit brut,

    c) un compresseur d'air dans lequel une alimentation en air pour la section de reformage secondaire est comprimée,

    d) au moins un générateur électrique pour la production interne de puissance électrique,

    e) une turbine à vapeur entraînant ledit compresseur d'air et ledit générateur,

    f) une section de purification dudit gaz produit brut obtenant un gaz de synthèse d'appoint, la section de purification comprenant un réacteur à décalage à haute température et un surchauffeur de vapeur placé directement en amont ou en aval dudit réacteur à décalage, ce dernier surchauffant au moins une partie de la vapeur produite en refroidissant le premier gaz reformé ou l'effluent du réacteur à décalage,

    g) une section de conversion comportant une boucle de synthèse, pour la conversion dudit gaz de synthèse d'appoint en ammoniac,

    l'usine nécessitant une puissance de démarrage, dans laquelle ledit générateur est conçu pour produire une puissance qui est inférieure à la puissance requise par l'usine pour son fonctionnement, et l'usine importe la puissance restante à partir d'une source externe, la puissance importée étant égale ou supérieure à ladite puissance de démarrage de l'usine.
     
    12. Usine selon la revendication 11, comprenant un dispositif de reformage chauffé au gaz qui est en série ou en parallèle avec ladite section de reformage secondaire.
     
    13. Procédé d'exploitation d'une usine d'ammoniac dans lequel l'usine d'ammoniac nécessite une puissance prédéterminée pour le fonctionnement et nécessite une puissance de démarrage (Ps) prédéterminée pour le démarrage, le procédé étant caractérisé en ce qu'une première quantité de puissance électrique (P1) est produite en interne dans l'usine d'ammoniac au moyen d'un générateur de l'usine actionné par une turbine à vapeur, et en ce qu'une deuxième quantité de puissance électrique (P2) est importée à partir d'une source de puissance électrique qui est externe à ladite usine, ladite deuxième puissance électrique étant égale ou supérieure à ladite puissance de démarrage (Ps).