Field of the invention
[0001] The present invention relates to the field of the industrial production of ammonia.
Prior Art
[0002] The industrial production of ammonia involves the catalytic reaction of a synthesis
gas ("make-up gas") comprising hydrogen and nitrogen inside a highpressure (HP) synthesis
loop usually operating at about 80-300 bar.
[0003] The make-up gas is produced in a front-end section, upstream the HP synthesis loop,
by conversion of a hydrocarbon feedstock (e.g. natural gas).
[0004] The conversion of natural gas into said make-up gas usually involves a primary reforming
with steam and a secondary reforming with air, obtaining a raw synthesis gas, followed
by purification of said raw gas. The purification usually includes shift conversion
of carbon monoxide into carbon dioxide, removal of carbon dioxide and, optionally,
methanation.
[0005] A plant for the production of ammonia also comprises a complex steam system including
steam producers and steam users. The steam producers recover process heat from various
process streams, mostly from the conversion of natural gas into raw synthesis gas
(usually by steam reforming) and from the subsequent purification (usually from shift
conversion). The main steam users are the driving turbines of large gas compressors,
such as the synthesis gas compressor which raises the pressure of the make-up gas
to the pressure of the synthesis loop and the air compressor which raises the air
pressure from atmospheric to the pressure of the secondary reforming.
[0006] In addition to the above-mentioned large gas compressors, an ammonia plant typically
contains several smaller auxiliary machines, such as small compressors, fans and pumps.
Historically these smaller machines have been driven by small steam turbines having
a low efficiency. For example, these turbines have a mechanical efficiency of 30-50%,
resulting in a relatively high steam consumption.
[0007] In a few existing ammonia plants, some of the small steam turbines have been replaced
with electric motors to reduce operating costs, while in some new plant designs most
or all of the smaller machines are electrically driven. In the latter configuration,
the necessary power is usually provided by a central generator driven by a larger
and more efficient steam turbine, thus reducing plant energy consumptions by saving
natural gas. Such turbine may have a mechanical efficiency of 80% or more. Furthermore,
the larger the size of the steam turbine the higher the efficiency. Usually, said
steam turbine expands more steam than that required by the generator to produce electric
power, as it may conveniently drive one of the plant main compressor, and usually
the biggest one.
[0008] The steam for the steam generator is produced in the plant using fuel energy. The
above-mentioned configuration with central turbo-generator entails a significant fuel
saving compared to a plurality of smaller turbines, due to the large difference in
efficiency, even accounting for power losses entailed by electricity generation, distribution
and use in the electric motors. Moreover, since electricity is produced in the plant
starting from fuel, its cost is lower than the purchase cost from the external grid.
Hence there is a clear trend to maximize the size of the steam turbo-generator to
gain maximum benefits from electrification and higher machine efficiency. Accordingly,
the prior art teaches to generate as much steam as possible from heat recovery from
process gas cooling, up to the point that all electrical energy consumptions of the
plant can be satisfied internally.
[0009] In plant front end, steam generation takes conveniently place in waste heat boilers
by cooling the process gas. The latter is primarily a mixture of hydrogen and nitrogen,
but contains also a considerable amount of carbon monoxide. Carbon monoxide, in conjunction
to high temperature, can potentially lead to metal dusting, especially in heat exchangers.
Waste heat boilers, contrary to gas-gas exchangers like steam superheaters, avoid
working in the metal dusting risk zone. In fact, as they exchange almost exclusively
latent heat, boiling water keeps the temperature of the metal parts low enough to
avoid metal dusting.
[0010] During the start-up of an ammonia plant, the generator cannot produce any electric
energy. To connect to the plant grid, in fact, the generator speed must match the
grid frequency. The start-up is typically unsteady and during unsteady state operation
the generator speed is not stable and the connection to the grid is not possible.
[0011] The plant startup, on the other hand, requires a certain input of electric power,
which is termed startup power. The startup power is the power required to perform
a predetermined start-up procedure.
[0012] As no power can be internally produced with the generator during the startup procedure,
the startup power needs be imported from an external source, for example an electric
grid. Said import is discontinued during the normal operation of the plant, when the
turbo-generator can be operated.
[0013] The startup power may include the power required for (but not limited to): the primary
reformer fan (or fans), the steam net pumps (boiler feed water, process and turbines
condensates), the acid gas removal unit pumps, the auxiliary steam generator, the
plant utilities (e.g. cooling water circuit).
[0014] The startup power is significant: it may have the same order of magnitude as the
power required during operation of the plant. In a large ammonia plant the startup
power is therefore of several megawatts. For example, an ammonia plant producing 3000
t/d of ammonia typically requires around 40 MW of electric power for operation and
around 15 MW for startup.
[0015] The prior-art solution of producing internally as much energy as possible, importing
the startup power from an external grid when needed, is made in an attempt to make
efficient use of steam in the turbo-generator and to reduce the overall fuel consumption;
however, it has important drawbacks.
[0016] The need of the startup power is temporary and unpredictable. For example a startup
may be needed after an unplanned shut down of the plant. The import of such a large
power for limited and unpredictable periods, if available, is very expensive.
[0017] Dedicated gas engines driving electricity generators have been installed in plants
of the prior art to power the start-up phase instead of importing electric energy
from the electric grid. This solution however is not satisfactory. It avoids costs
associated with large electric power import at start-up but introduces another cost
related to installation of large dedicated gas engines and generators, which are used
only for start-up.
[0018] Hence, there is still the need to find a solution for the provision of electric energy
during the start-up of an ammonia plant, which is easy to realize and low-cost while
still enabling to have a high efficiency for the plant.
Summary of the invention
[0019] The aim of the invention is to overcome the aforementioned drawbacks and limitations
of the prior art.
[0020] This aim is reached with a process for the synthesis of ammonia from a hydrocarbon
feedstock, wherein the process includes reforming the hydrocarbon feedstock to produce
a make-up gas and converting said make-up gas into ammonia, the process is performed
in an ammonia synthesis plant requiring a predetermined electric power for operation
and requiring a start-up power for start-up, and the process is characterized in that
a first amount of electric power is internally produced in the ammonia plant, and
in that a second amount of electric power is imported from a source of electric power
which is external to said plant, wherein said second electric power is equal to or
greater than said start-up power.
[0021] The start-up power is the power required during the start-up procedure of the process
and related plant. The start-up procedure identifies a transitional condition wherein
the plant passes from a shut-down condition to a steady-state operation. Also, the
start-up procedure can be identified by the fact that the product (in this case ammonia)
is not produced or is produced outside the required specification (e.g. in terms of
purity).
[0022] The steady-state operation is identified as a condition where relevant operating
parameters of the process remain constant or substantially constant, i.e. they vary
within a limited range. Said operating parameters may include for example the temperature
and pressure of the relevant steps of the process. Also, the steady-state operation
can be identified as a condition where the product is produced within the required
specification. In the steady-state operation, the process may deliver ammonia according
to a nominal capacity (full load) or in a different amount when running at a partial
load.
[0023] The start-up power may include the power supply to a primary reformer fan (or fans),
to steam net pumps (boiler feed water, process and turbines condensates), to the acid
gas removal unit pumps, to the auxiliary steam generator and to other utilities (e.g.
cooling water circuit).
[0024] Preferably said first electric power is internally produced by means of a generator
operated by a steam turbine, the generator and the turbine being part of said ammonia
plant.
[0025] Preferably the import of said second electric power, which is equal to or greater
than the start-up power, takes place for at least 80% of the operation time of said
ammonia plant on an annual basis, preferably for at least 90% thereof.
[0026] The internally produced electric power is also denoted with the symbol
P1. The power imported from said external source is also denoted with the symbol
P2. The start-up power is also denoted with the symbol
Ps. According to the present invention, said imported power
P2 is equal to or greater than the start-up power
Ps.
[0027] Preferably, said external source is an external electric network.
[0028] The invention provides that a relatively large amount of electric power is imported
from an external source. The internally produced electric power
P1 is therefore less than the prior art.
[0029] The prior art prompts to the electric power input required for operation being entirely
or substantially entirely produced internally in the ammonia process, typically in
a steam turbine and generator equipment. Compared to the prior art, the invention
provides that less steam is expanded in the steam turbine coupled to said generator.
[0030] Accordingly, the invention has the following advantages: the generator and the steam
turbine coupled to said generator are smaller; the start-up procedure is simplified
compared to the prior art because the imported power
P2 satisfies the requirement of the startup procedure; dedicated gas engines are not
required to generate the start-up power; it is possible to make a contract for importing
a fixed amount of electric power
P2 from an external source.
[0031] The process of the invention may comprise a step of primary reforming of the hydrocarbon
feedstock in the presence of steam and a step of secondary reforming of the so obtained
first reformed gas. The step of primary reforming is performed in a fired steam reformer.
The step of secondary reforming includes a step of air-fired secondary reforming of
at least a portion of said first reformed gas; in some embodiments, part of the reforming
is performed as gas heated reforming (GHR), arranged either in series or in parallel
to the step of secondary reforming.
[0032] The process of the invention can also include the purification of a raw product gas,
obtaining a make-up synthesis gas; conversion of said make-up synthesis gas into ammonia
in a synthesis loop. Said primary reforming is preferably performed at a temperature
of at least 790 °C and absolute pressure of at least 50 bar; said step of secondary
reforming is carried out substantially in absence of excess air relative to the stoichiometric
amount, and said make-up synthesis gas has a H
2 to N
2 molar ratio in the range 2.5 to 3.
[0033] Said primary reforming is advantageously carried out in a bundle of externally heated
tubes filled with a catalyst (catalytic tubes) and said values of temperature and
pressure are referred to the process gas at the exit of the catalytic tubes of the
primary reforming.
[0034] The above mentioned temperature of at least 790 °C is preferably greater than 800
°C, more preferably greater than 810 °C.
[0035] Preferably, said H
2 to N
2 molar ratio is in the range 2.6 to 2.8.
[0036] The stoichiometric amount of air is understood as the amount which is necessary to
achieve the H
2 to N
2 molar ratio of 3 in the make-up gas admitted to the synthesis loop, i.e. it depends
substantially on the amount of hydrogen H
2 of said make-up gas. The substantially absence of excess air shall be understood
as an amount of air which results in the H
2 to N
2 molar ratio being 2.5 or greater.
[0037] According to a preferred embodiment, the reforming process, including the primary
reforming and secondary reforming, is operated with a global steam-to-carbon ratio
equal to or greater than 2.9, preferably greater than 3. The global steam-to-carbon
ratio denotes the overall ratio of steam and carbon admitted to the reforming process.
Such relatively high steam-to-carbon ratio is beneficial to the conversion of the
feedstock. It is also synergistic with the elevated pressure of the primary reforming,
namely at least 50 bar absolute.
[0038] According to a preferred embodiment, the purification of said raw product gas comprises
a step of high temperature shift (HTS) in at least one shift converter. Steam used
to feed the steam turbines of the plant and steam used in the primary reforming (also
called process steam) is recovered by thermal recovery from various process streams,
mostly from the primary reforming and from the HTS.
[0039] Since part of the power input of the plant is imported from an external source and
less steam is expanded in the steam turbine driving the electric generator, some of
the steam generated via thermal recovery is advantageously superheated. The heat source
for said steam superheating is the process gas before or after the HTS, i.e. feeding
or leaving the HTS converter. This embodiment reduces the steam production in the
front-end section and, therefore, the steam in excess, which otherwise would be too
much due to the high pressure and the relatively high steam-to-carbon ratio of the
reforming process. Accordingly, steam superheating is maximized, thus minimizing steam
production in the plant.
[0040] In another embodiment, the heat contained in the process gas leaving the secondary
reformer is conveniently used to reform part of the mixed feed in a gas heated reformer.
In this way, steam production in the plant is reduced accordingly.
[0041] The gas heated reforming is preferably arranged in parallel with the secondary reforming,
i.e. the gas reformed in the gas heated reforming mixes with that reformed in the
secondary reforming. Alternatively, the gas heated reforming may be arranged in series
with the secondary reforming, i.e. the gas reformed in the gas heated reforming is
fed to the secondary reforming.
[0042] Advantages of embodiments featuring a GHR include: the duty of the fired primary
reformer is reduced, which is an advantage to reach high capacity in terms of production
of ammonia; the production of steam is reduced, which is an advantage particularly
for standalone plants.
[0043] The process gas used for steam superheating has a temperature preferably higher than
400 °C, more preferably higher than 450 °C, and even more preferably higher than 500
°C.
[0044] Preferably, the conversion of the make-up synthesis gas into ammonia is carried out
at a loop pressure which is 2 to 3.5 times the pressure of the process gas at the
exit of the primary reforming catalytic tubes. Said loop pressure is understood as
the delivery pressure of a circulator of the loop. More preferably said loop pressure
is in the range 100 to 200 bar, and even more preferably 120 to 160 bar.
[0045] Accordingly, the make-up synthesis gas is compressed to the loop pressure in a suitable
gas compressor. Preferably, the delivery of the main gas compressor is sent to the
suction side of the circulator of the loop. This results in the duty of the gas compressor
being reduced since part of the compression is given by the circulator. The power
absorbed by the compressor, for a given capacity, is reduced accordingly.
[0046] Preferably, said gas compressor is driven by a condensing steam turbine with no steam
extraction and said turbine is fed with medium pressure steam. Said turbine is much
simpler and cheaper. The terms "medium pressure" refers to a pressure which is few
bars higher than the pressure of the reforming process.
[0047] Preferably, said gas compressor is a single casing machine with one compression section.
This is possible due to the relatively high pressure of the reforming process. Said
gas compressor can run at lower speed (revolutions per minute), is more efficient
and has a simplified design. This allows a significant reduction of the footprint
and the cost of the plant.
[0048] An air feed directed to the secondary reforming is advantageously compressed in an
air compressor powered by a steam turbine. In some embodiments of the invention, the
air compressor (instead of the syngas compressor) becomes the largest power user.
Accordingly, the highest pressure available steam is used to drive the steam turbine
coupled to said air compressor; steam discharged by, or extracted from, said turbine
is preferably used for the primary reforming.
[0049] This is advantageous as regards the efficiency of the process, because air compression
can be achieved much more efficiently than syngas compression. This is mainly due
to the possibility to use, in some embodiments, an air compressor of the integrally
geared type (IG), which is unsuitable for the synthesis gas.
[0050] Moreover, the steam turbine can be easily coupled to the air compressor with a dedicated
pinion shaft at the desired speed: hence there is no limitation to the size of the
steam turbine coupled to the air compressor.
[0051] As mentioned, the air compressor is preferably an integrally geared turbomachine
(IG). An integrally geared turbomachine is typically designed to operate at fixed
speed and is usually controlled acting on the inlet guide vanes (IGV) installed at
suction. The efficiency of said compressor is affected by fluctuations of the volumetric
flowrate of the air feed, which are due to temperature fluctuations of the air feed
between day and night, summer and winter.
[0052] In order to work close to the point of maximum efficiency and to remain inside the
range of control given by the IGV, the air feed could be heated or cooled at the suction
of the air compressor, thus maintaining the inlet temperature of the air compressor
within a target range.
[0053] Preferably the heater and/or the cooler are integrated with an air filter at the
suction of the air compressor so as to reduce the footprint and save costs.
[0054] This embodiment provides an efficient way to properly control the air compressor
and to keep the compressor operating within its optimal range, i.e. assuring the most
efficient performance. This is particularly advantageous because even small variations
of the air compressor efficiency have a significant impact on the energy consumption
of the entire plant.
[0055] According to a preferred embodiment, the conversion of the make-up synthesis gas
into ammonia is carried out in two reactors arranged in series so that the effluent
of a first reactor is further reacted in a second reactor.
[0056] Preferably, the effluent of the first reactor is cooled before admission to the second
reactor in a suitable heat exchanger placed between the two reactors. This is advantageous
because allows to generate steam in said heat exchanger by cooling the product gas
from the first reactor.
[0057] This solution is also advantageous because the cold product gas can be conveniently
used to flush the pressure vessel of the second converter. The gas temperature is
cold enough to avoid the nitriding attack zone, assuring safe operation of the second
reactor.
[0058] Another aspect of the invention is a plant for the synthesis of ammonia according
to the annexed claims.
[0059] Another aspect of the invention is a method of operating an ammonia plant wherein
the ammonia plant requires a predetermined power for operation and requires a predetermined
start-up power for start-up, the method being
characterized in that a first amount of electric power is internally produced in the ammonia plant by means
of a generator of the plant operated by a steam turbine, and in that a second amount
of electric power, is imported from a source of electric power which is external to
said plant, wherein said second electric power is equal to or greater than said start-up
power.
1. A process for the synthesis of ammonia from a hydrocarbon feedstock, wherein the process
includes reforming the hydrocarbon feedstock to produce a make-up gas and converting
said make-up gas into ammonia, the process is performed in an ammonia synthesis plant
requiring a predetermined electric power for operation and requiring a start-up power
(Ps) for start-up, the process is characterized in that a first amount of electric power (P1) is internally produced in the ammonia plant,
and in that a second amount of electric power (P2) is imported from a source of electric power
which is external to said plant, wherein said second electric power is equal to or
greater than said start-up power (Ps).
2. A process according to claim 1, wherein said first electric power (P1) is internally
produced by means of a generator operated by a steam turbine, the generator being
part of said ammonia plant.
3. A process according to claim 1 or 2, wherein the importing of said second electric
power, which is equal to or greater than the start-up power, takes place for at least
80% of the operation time of said ammonia plant on an annual basis, preferably for
at least 90% thereof.
4. A process according to any of claims 1 to 3, wherein reforming the hydrocarbon feedstock
for the production of said make-up gas includes a step of primary reforming of at
least part of said hydrocarbon feedstock with steam obtaining a first partially reformed
gas, and a step of air-fired secondary reforming of said first partially reformed
gas, thus obtaining a raw product gas, and a purification process of said raw product
gas.
5. A process according to claim 4, wherein said primary reforming is performed at a temperature
of at least 790 °C and absolute pressure of at least 50 bar; said step of secondary
reforming is carried out substantially in absence of excess air relative to the stoichiometric
amount, and said make-up synthesis gas has a H2 to N2 molar ratio in the range 2.5 to 3.
6. A process according to claim 5, wherein the reforming process is operated with a global
steam-to-carbon ratio equal to or greater than 2.9.
7. A process according to any of the claims 4 to 6, wherein the purification of said
raw product gas comprises a step of high temperature shift (HTS) in at least one HTS
converter and wherein steam produced by a step of thermal recovery from the primary
reforming or from the at least one HTS converter is superheated, the heat source for
steam superheating being the process gas feeding or leaving the at least one HTS converter.
8. A process according to any of the previous claims 4 to 7, comprising compression of
an air feed directed to the secondary reforming within an air compressor, wherein
said air feed is heated or cooled at the suction of the air compressor to maintain
the inlet temperature of the air compressor within a target range.
9. A process according to any of the previous claims 4 to 8, wherein said conversion
of make-up synthesis gas into ammonia is carried out at a pressure which is 2.0 to
3.5 times the pressure of the primary reforming and said method comprises a step of
compression of said make-up gas in a gas compressor, said gas compressor being driven
by a condensing steam turbine with no steam extraction.
10. A process according to any of the previous claims 4 to 9, wherein the reforming process
further includes that a part of said hydrocarbon feedstock with steam is reformed
in a step of gas-heated reforming in a gas-heated reformer, arranged either in series
or in parallel with said air-fired secondary reforming.
11. A plant for the synthesis of ammonia from a hydrocarbon feedstock according to the
process of claim 1, comprising:
a) a primary reforming section suitable for reforming a hydrocarbon feedstock with
steam at a temperature of at least 790 °C and pressure of at least 50 bar, obtaining
a first reformed gas,
b) an air-fired secondary reforming section suitable for secondary reforming of said
first reformed gas, obtaining a raw product gas,
c) an air compressor wherein an air feed for the secondary reforming section is compressed,
d) at least one electric generator for the internal production of electric power.
e) a steam turbine driving said air compressor and said generator,
f) a purification section of said raw product gas obtaining a make-up synthesis gas,
wherein the purification section comprises a high temperature shift reactor and a
steam super-heater placed directly upstream or downstream of said shift reactor, the
latter superheating at least part of the steam produced by cooling the first reformed
gas or the effluent of the shift reactor,
g) a conversion section including a synthesis loop, for conversion of said make-up
synthesis gas into ammonia, the plant requiring a start-up power, wherein said generator
is rated for producing a power which is less than the power required by the plant
for operation, and the plant imports the remaining power from an external source,
the imported power being equal to or greater than said start-up power of the plant.
12. Plant according to claim 11, comprising a gas-heated reformer which is in series or
in parallel with said secondary reforming section.
13. A method of operating an ammonia plant wherein the ammonia plant requires a predetermined
power for operation and requires a predetermined startup power (Ps) for startup, the
method being characterized in that a first amount of electric power (P1) is internally produced in the ammonia plant
by means of a generator of the plant operated by a steam turbine, and in that a second amount of electric power (P2), is imported from a source of electric power
which is external to said plant, wherein said second electric power is equal to or
greater than said start-up power (Ps).
1. Ein Verfahren zur Synthese von Ammoniak aus einem Kohlenwasserstoffausgangsmaterial,
wobei der Vorgang ein Reformieren des Kohlenwasserstoffausgangsmaterials, um ein Frischgas
zu produzieren, und ein Umwandeln von Frischgas in Ammoniak beinhaltet, wobei das
Verfahren in einer Ammoniaksyntheseanlage durchgeführt wird, die eine zuvor bestimmte
elektrische Leistung für einen Betrieb erfordert und eine Anlaufleistung (Ps) für
einen Anlauf erfordert, wobei der Vorgang dadurch gekennzeichnet ist, dass eine erste Menge an elektrischer Leistung (P1) intern in der Ammoniakanlage produziert
wird, und dass eine zweite Menge an elektrischer Leistung (P2) von einer Quelle von
elektrischer Leistung importiert wird, die außerhalb der Anlage liegt, wobei die zweite
elektrische Leistung gleich oder größer als die Anlaufleistung (Ps) ist.
2. Verfahren nach Anspruch 1, wobei die erste elektrische Leistung (P1) intern mittels
eines Generators produziert wird, der durch eine Dampfturbine betrieben wird, wobei
der Generator Teil der Ammoniakanlage ist.
3. Verfahren nach Anspruch 1 oder 2, wobei das Importieren der zweiten elektrischen Leistung,
die gleich oder größer als die Anlaufleistung ist, für wenigstens 80 % der Betriebszeit
der Ammoniakanlage auf einer jährlichen Basis, vorzugsweise für wenigstens 90 % davon
stattfindet.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Reformieren des Kohlenwasserstoffausgangsmaterials
für die Produktion des Frischgases einen Schritt des primären Reformierens von wenigstens
einem Teil des Kohlenwasserstoffausgangsmaterials mit Dampf, wobei ein erstes teilweise
reformiertes Gas erhalten wird, und einen Schritt des luftbefeuerten sekundären Reformierens
des ersten teilweise reformierten Gases, wobei dadurch ein Rohproduktgas erhalten
wird, und einen Reinigungsvorgang des Rohproduktgases beinhaltet.
5. Verfahren nach Anspruch 4, wobei das primäre Reformieren bei einer Temperatur von
wenigstens 790 °C und einem Absolutdruck von wenigstens 50 bar durchgeführt wird;
der Schritt des sekundären Reformierens im Wesentlichen in Abwesenheit von überschüssiger
Luft relativ zu der stöchiometrischen Menge durchgeführt wird und das Frischsynthesegas
ein Molverhältnis von H2 zu N2 in dem Bereich von 2,5 bis 3 aufweist.
6. Verfahren nach Anspruch 5, wobei der Reformierungsvorgang mit einem Gesamtverhältnis
von Dampf zu Kohlenstoff von gleich oder größer als 2,9 betrieben wird.
7. Verfahren nach einem der Ansprüche 4 bis 6, wobei die Reinigung des Rohproduktgases
einen Schritt einer Hochtemperatur-Shift (HTS) in wenigstens einem HTS-Konverter umfasst
und wobei Dampf, der durch einen Schritt einer thermischen Rückgewinnung aus dem primären
Reformieren oder aus dem wenigstens einen HTS-Konverter produziert wird, überhitzt
ist, wobei die Hitzequelle zum Überhitzen von Dampf das Prozessgas ist, das den wenigstens
einen HTS-Konverter speist oder verlässt.
8. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 7, das eine Kompression einer
Lufteinspeisung, die zu dem sekundären Reformieren geleitet wird, innerhalb eines
Luftkompressors umfasst, wobei die Lufteinspeisung an der Ansaugung des Luftkompressors
erhitzt oder gekühlt wird, um die Einlasstemperatur des Luftkompressors innerhalb
eines Zielbereichs zu halten.
9. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 8, wobei die Umwandlung von
Frischsynthesegas in Ammoniak bei einem Druck durchgeführt wird, der das 2,0-bis 3,5-Fache
des Drucks des primären Reformierens beträgt, und das Verfahren einen Schritt der
Kompression des Frischgases in einem Gaskompressor umfasst, wobei der Gaskompressor
durch eine kondensierende Dampfturbine ohne Dampfentnahme angetrieben wird.
10. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 9, wobei der Reformierungsvorgang
ferner beinhaltet, dass ein Teil des Kohlenwasserstoffausgangsmaterials mit Dampf
in einem Schritt des gasbeheizten Reformierens in einem gasbeheizten Reformer reformiert
wird, der entweder seriell oder parallel zu dem luftbefeuerten sekundären Reformieren
vorgesehen ist.
11. Anlage für die Synthese von Ammoniak aus einem Kohlenwasserstoffausgangsmaterial gemäß
dem Vorgang nach Anspruch 1, umfassend:
a) einen primären Reformierungsabschnitt, der zum Reformieren eines Kohlenwasserstoffausgangsmaterials
mit Dampf bei einer Temperatur von wenigstens 790 °C und einem Druck von wenigstens
50 bar geeignet ist, wobei ein erstes reformiertes Gas erhalten wird,
b) einen luftbefeuerten sekundären Reformierungsabschnitt, der zum sekundären Reformieren
des ersten reformierten Gases geeignet ist, wobei ein Rohproduktgas erhalten wird,
c) einen Luftkompressor, wobei eine Lufteinspeisung für den sekundären Reformierungsabschnitt
komprimiert wird,
d) wenigstens einen elektrischen Generator für die interne Produktion von elektrischer
Leistung,
e) eine Dampfturbine, die den Luftkompressor und den Generator antreibt,
f) einen Reinigungsabschnitt des Rohproduktgases, wobei ein Frischsynthesegas erhalten
wird, wobei der Reinigungsabschnitt einen Hochtemperatur-Shift-Reaktor und einen Dampfüberhitzer
umfasst, der direkt stromaufwärts oder stromabwärts des Shift-Reaktors platziert ist,
wobei letzterer wenigstens einen Teil des Dampfes überhitzt, der durch Kühlen des
ersten reformierten Gases oder des Ausflusses des Shift-Reaktors produziert wird,
g) einen Umwandlungsabschnitt, der eine Syntheseschleife beinhaltet, für die Umwandlung
des Frischsynthesegases in Ammoniak,
wobei die Anlage eine Anlaufleistung erfordert, wobei der Generator zum Produzieren
einer Leistung ausgelegt ist, die geringer als die Leistung ist, die durch die Anlage
für den Betrieb erforderlich ist, und die Anlage die verbleibende Leistung von einer
äußeren Quelle importiert, wobei die importierte Leistung gleich oder größer als die
Anlaufleistung der Anlage ist.
12. Anlage nach Anspruch 11, die einen gasbeheizten Reformer umfasst, der seriell oder
parallel zu dem sekundären Reformierungsabschnitt ist.
13. Verfahren zum Betreiben einer Ammoniakanlage, wobei die Ammoniakanlage eine zuvor
bestimmte Leistung für den Betrieb erfordert und eine zuvor bestimmte Anlaufleistung
(Ps) für den Anlauf erfordert, wobei das Verfahren dadurch gekennzeichnet ist, dass eine erste Menge an elektrischer Leistung (P1) intern in der Ammoniakanlage mittels
eines Generators der Anlage produziert wird, der durch eine Dampfturbine betrieben
wird, und dadurch, dass eine zweite Menge an elektrischer Leistung (P2) von einer
Quelle von elektrischer Leistung importiert wird, die außerhalb der Anlage liegt,
wobei die zweite elektrische Leistung gleich oder größer als die Anlaufleistung (Ps)
ist.
1. Processus pour la synthèse d'ammoniac à partir d'une charge d'alimentation hydrocarbonée,
le processus comportant le reformage de la charge d'alimentation hydrocarbonée pour
produire un gaz d'appoint et convertir ledit gaz d'appoint en ammoniac, le processus
étant réalisé dans une usine de synthèse d'ammoniac nécessitant une puissance électrique
prédéterminée pour le fonctionnement et nécessitant une puissance de démarrage (Ps)
pour le démarrage, le processus étant caractérisé en ce qu'une première quantité de puissance électrique (P1) est produite en interne dans l'usine
d'ammoniac, et en ce qu'une deuxième quantité de puissance électrique (P2) est importée à partir d'une source
de puissance électrique qui est externe à ladite usine, ladite deuxième puissance
électrique étant égale ou supérieure à ladite puissance de démarrage (Ps).
2. Processus selon la revendication 1, dans lequel ladite première puissance électrique
(P1) est produite en interne au moyen d'un générateur actionné par une turbine à vapeur,
le générateur faisant partie de ladite usine d'ammoniac.
3. Processus selon la revendication 1 ou 2, dans lequel l'importation de ladite deuxième
puissance électrique, qui est égale ou supérieure à la puissance de démarrage, a lieu
pendant au moins 80 % du temps de fonctionnement de ladite usine d'ammoniac sur une
base annuelle, de préférence pendant au moins 90 % celui-ci.
4. Processus selon l'une quelconque des revendications 1 à 3, dans lequel le reformage
de la charge d'alimentation hydrocarbonée pour la production dudit gaz d'appoint comporte
une étape de reformage primaire d'au moins une partie de ladite charge d'alimentation
hydrocarbonée avec de la vapeur obtenant un premier gaz partiellement reformé, et
une étape de reformage secondaire à l'air dudit premier gaz partiellement reformé,
obtenant ainsi un gaz produit brut, et un processus de purification dudit gaz produit
brut.
5. Processus selon la revendication 4, dans lequel ledit reformage primaire est réalisé
à une température d'au moins 790°C et à une pression absolue d'au moins 50 bar ; ladite
étape de reformage secondaire est effectuée sensiblement en l'absence d'un excès d'air
par rapport à la quantité stœchiométrique, et ledit gaz de synthèse d'appoint a un
rapport molaire H2/N2 dans la plage de 2,5 à 3.
6. Processus selon la revendication 5, dans lequel le processus de reformage est mis
en œuvre avec un rapport global vapeur/carbone égal ou supérieur à 2,9.
7. Processus selon l'une quelconque des revendications 4 à 6, dans lequel la purification
dudit gaz produit brut comprend une étape de décalage à haute température (HTS) dans
au moins un convertisseur HTS et dans lequel la vapeur produite par une étape de récupération
thermique à partir du reformage primaire ou à partir de l'au moins un convertisseur
HTS est surchauffée, la source de chaleur pour la surchauffe de la vapeur étant le
gaz de traitement alimentant ou quittant l'au moins un convertisseur HTS.
8. Processus selon l'une quelconque des revendications précédentes 4 à 7, comprenant
la compression d'une alimentation en air dirigée vers le reformage secondaire à l'intérieur
d'un compresseur d'air, ladite alimentation en air étant chauffée ou refroidie à l'aspiration
du compresseur d'air pour maintenir la température d'entrée du compresseur d'air dans
une plage cible.
9. Processus selon l'une quelconque des revendications précédentes 4 à 8, dans lequel
ladite conversion du gaz de synthèse d'appoint en ammoniac est effectuée à une pression
qui fait de 2,0 à 3,5 fois la pression du reformage primaire et ledit procédé comprend
une étape de compression dudit gaz d'appoint dans un compresseur à gaz, ledit compresseur
à gaz étant entraîné par une turbine à vapeur à condensation sans extraction de vapeur.
10. Processus selon l'une quelconque des revendications précédentes 4 à 9, dans lequel
le processus de reformage comporte en outre le fait qu'une partie de ladite charge
d'alimentation hydrocarbonée avec de la vapeur est reformée dans une étape de reformage
chauffé au gaz dans un dispositif de reformage chauffé au gaz, agencé soit en série
soit en parallèle avec ledit reformage secondaire à l'air.
11. Usine pour la synthèse d'ammoniac à partir d'une charge d'alimentation hydrocarbonée
selon le processus de la revendication 1, comprenant :
a) une section de reformage primaire adaptée pour reformer une charge d'alimentation
hydrocarbonée avec de la vapeur à une température d'au moins 790°C et à une pression
d'au moins 50 bar, obtenant un premier gaz reformé,
b) une section de reformage secondaire à l'air adaptée pour un reformage secondaire
dudit premier gaz reformé, obtenant un gaz produit brut,
c) un compresseur d'air dans lequel une alimentation en air pour la section de reformage
secondaire est comprimée,
d) au moins un générateur électrique pour la production interne de puissance électrique,
e) une turbine à vapeur entraînant ledit compresseur d'air et ledit générateur,
f) une section de purification dudit gaz produit brut obtenant un gaz de synthèse
d'appoint, la section de purification comprenant un réacteur à décalage à haute température
et un surchauffeur de vapeur placé directement en amont ou en aval dudit réacteur
à décalage, ce dernier surchauffant au moins une partie de la vapeur produite en refroidissant
le premier gaz reformé ou l'effluent du réacteur à décalage,
g) une section de conversion comportant une boucle de synthèse, pour la conversion
dudit gaz de synthèse d'appoint en ammoniac,
l'usine nécessitant une puissance de démarrage, dans laquelle ledit générateur est
conçu pour produire une puissance qui est inférieure à la puissance requise par l'usine
pour son fonctionnement, et l'usine importe la puissance restante à partir d'une source
externe, la puissance importée étant égale ou supérieure à ladite puissance de démarrage
de l'usine.
12. Usine selon la revendication 11, comprenant un dispositif de reformage chauffé au
gaz qui est en série ou en parallèle avec ladite section de reformage secondaire.
13. Procédé d'exploitation d'une usine d'ammoniac dans lequel l'usine d'ammoniac nécessite
une puissance prédéterminée pour le fonctionnement et nécessite une puissance de démarrage
(Ps) prédéterminée pour le démarrage, le procédé étant caractérisé en ce qu'une première quantité de puissance électrique (P1) est produite en interne dans l'usine
d'ammoniac au moyen d'un générateur de l'usine actionné par une turbine à vapeur,
et en ce qu'une deuxième quantité de puissance électrique (P2) est importée à partir d'une source
de puissance électrique qui est externe à ladite usine, ladite deuxième puissance
électrique étant égale ou supérieure à ladite puissance de démarrage (Ps).