

(11) EP 3 855 085 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

28.07.2021 Patentblatt 2021/30

(51) Int CI.:

F24F 9/00 (2006.01)

F24F 13/08 (2006.01)

(21) Anmeldenummer: 20153093.8

(22) Anmeldetag: 22.01.2020

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

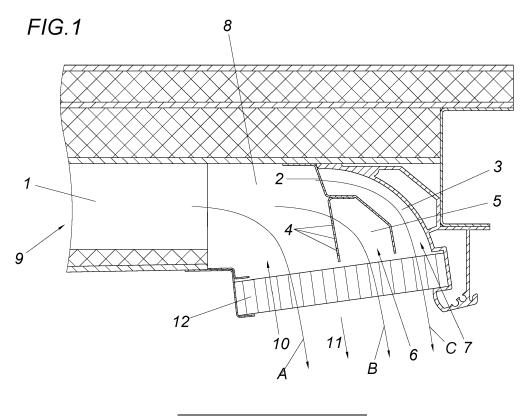
BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(71) Anmelder: Hauser GmbH 4113 St. Martin (AT)

(72) Erfinder:


- Reumüller, Werner 4120 Neufelden (AT)
- Koblmüller, Gerhard 4122 Arnreit (AT)
- (74) Vertreter: Hübscher & Partner Patentanwälte GmbH

Spittelwiese 4 4020 Linz (AT)

(54) VORRICHTUNG ZUR ERZEUGUNG EINES LUFTSCHLEIERS

(57) Es wird eine Vorrichtung zur Erzeugung eines Luftschleiers mit einem Luftkanal (1) und mehreren, je an den Luftkanal (1) anschließenden, Einlass (2, 4, 9)-und Auslassöffnungen (6, 7, 10) aufweisenden Strömungskammern (3, 5, 8), deren Auslassöffnungen (6, 7, 10) quer zu einer gemeinsamen Ausblasrichtung (11) aneinander angrenzen beschrieben. Um eine energieeffi-

ziente Vorrichtung der eingangs beschriebenen Art so auszugestalten, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass (2, 4, 9)- und der Auslassöffnungen (6, 7, 10) aneinander angrenzender Strömungskammern (3, 5, 8) von einer Hauptströmungskammer aus abnimmt.

[0001] Die Erfindung bezieht sich auf eine Vorrichtung zur Erzeugung eines Luftschleiers mit einem Luftkanal und mehreren, je an den Luftkanal anschließenden, Einlass- und Auslassöffnungen aufweisenden Strömungskammern, deren Auslassöffnungen quer zu einer gemeinsamen Ausblasrichtung aneinander angrenzen.

1

[0002] Aus dem Stand der Technik sind Vorrichtungen zur Erzeugung von Luftschleiern bekannt, bei denen sich die Luftschleier aus mehreren, im Wesentlichen parallel zueinander verlaufenden Luftströmen zusammensetzen. Der Zweck eines solchen Luftschleiers ist, einen Innenbereich, in dem beispielsweise zu kühlende Waren gelagert sind, vor Wärmeeintrag aus einem Außenbereich zu schützen. Die DE2402340B2 offenbart eine Kühlvitrine zur Kühlung von Waren, die eine Vorrichtung zur Erzeugung eines Luftschleiers mit vier Luftströmen umfasst, die sich in ihrer Temperatur voneinander unterscheiden. Der innerste, also der dem Innenbereich zugewandte, gekühlte Luftstrom hat zwei Funktionen. Einerseits kühlt er die Ware, indem der Luftstrom auf die Ware gelenkt wird und andererseits schirmt er die Ware von dem zweiten Luftstrom ab, sodass der zweite, kälteste Luftstrom nicht direkt gegen die Ware gerichtet ist und so zu deren Vereisung führt. Der zweite Luftstrom wird am stärksten gekühlt und dient als Temperaturreservoir der angrenzenden Luftströme. Der dritte Luftstrom weist im Wesentlichen dieselbe Temperatur wie der erste Luftstrom auf. Die DE2402340B2 schlägt darüber hinaus vor, einen vierten Luftstrom mit Umgebungstemperatur hinzuzufügen, um ein Vermischen der Umgebungsluft mit dem Luftschleier zu verhindern.

[0003] Nachteilig am Stand der Technik ist jedoch, dass die Luftströme unterschiedliche Temperaturen aufweisen müssen, um ihre jeweiligen Funktionen zu erfüllen. Um die Luftströme mit unterschiedlichen Temperaturen zu beaufschlagen ist es konstruktionsbedingt notwendig, dass jeder Luftstrom einen anderen Kühlkreislauf durchläuft. Dies erhöht den Konstruktions - und Platzaufwand der Vorrichtung und demzufolge die Kosten. Die verschiedenen Temperaturen der Luftströme müssen darüber hinaus genau abgestimmt werden, um beispielswiese eine Vereisung der Ware sowie Verwirbelungen und Wärmeeinträge aus dem Außenbereich zu verringern. Die Temperaturdifferenzen der Luftströme zueinander und zum Außenbereich führen aber zwangsläufig zu Verwirbelungen an den Grenzschichten, was zu einem Wärmeeintrag führt, die Stabilität des Luftschleiers vermindert und somit den Energiebedarf er-

[0004] Der Erfindung liegt somit die Aufgabe zugrunde, einen energieeffizienten, über einen größeren Abschnitt stabilen Luftschleier mit möglichst einfachen Konstruktionsbedingungen zu erreichen.

[0005] Die Erfindung löst die gestellte Aufgabe dadurch, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnun-

gen aneinander angrenzender Strömungskammern von einer Hauptströmungskammer aus abnimmt. Je nach Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen wirken die Strömungskammern entweder als Düsen oder als Diffusoren, wobei diese Querschnittsverhältnisse direkt proportional zu den Geschwindigkeiten der jeweiligen Luftströme beim Verlassen der Ausblassöffnungen sind, wobei andere Eigenschaften, wie beispielsweise die Temperatur der Luftströme zur Kühlung des Innenbereiches, im Wesentlichen ident sein können. Da insbesondere durch großen Geschwindigkeitsunterschied angrenzender Luftströme hervorgerufene Verwirbelungen für einen Wärmeeintrag aus dem Außenbereich verantwortlich 15 sind, werden die Geschwindigkeitsunterschiede benachbarter Luftströme durch die abnehmenden Querschnittsverhältnisse zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern gesenkt. Die Hauptströmungskammer erzeugt durch das größte Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen den schnellsten Luftstrom, der die eigentliche Abschirmung des Innenbereiches vom Außenbereich erzeugt. Durch die Abnahme der Querschnittsverhältnisse zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern nimmt also auch die Geschwindigkeit der Luftströme ab. Durch die Anzahl der Strömungskammern und die Dimensionierung der Querschnittsverhältnisse kann also die Geschwindigkeitsabnahme benachbarter Luftströme verringert und dadurch Verwirbelungen und der Wärmeeintrag vom Außenbereich minimiert werden.

[0006] Der Energieverbrauch der Vorrichtung kann gesenkt werden, indem das Querschnittsverhältnis der Strömungskammern zwischen 0,05 und 1,5 liegt. Bei der Dimensionierung der Bauteile eines Luftschleiers gilt es, die Leistung der beteiligten Komponenten so zu wählen. dass durch die Geschwindigkeit des Luftschleiers eine kontinuierliche Luftzirkulation und Wärmeabschirmung ermöglicht wird. Andererseits führen aber zu hohe Leistungen und Geschwindigkeiten dazu, dass der Luftschleier anfällig für Turbulenzen und damit energetisch ineffizient wird. Versuche haben gezeigt, dass in der Kühltechnik ein Querschnittsverhältnis der Strömungskammern zwischen 0,05 und 1,5 zu einem optimierten Zustand im Hinblick auf den Energieverbrauch der Vorrichtung und der Stabilität des erzeugten Luftschleiers führt.

[0007] Der Luftschleier wird gegen Eingriffe von außen zusätzlich stabilisiert, wenn das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen einer ersten Strömungskammer zwischen 1 und 1,4, einer zweiten Strömungskammer zwischen 0,11 und 0,15 und einer dritten Strömungskammer zwischen 0,05 und 0,1 liegt. Insbesondere Eingriffe von außen, also das Eintreten eines physischen Objektes, wie beispielsweise einer Hand, in den Luftschleier kön-

45

nen die Stabilität des Luftschleiers gefährden und Tur-

bulenzen auslösen. Bei diesen Parametern herrschen jedoch durch die resultierenden Geschwindigkeiten der Luftströme zusätzlich zum beschriebenen verringerten Energiebedarf, verbesserte Übergangsbedingungen zwischen den Luftströmen untereinander, sowie dem Außenbereich vor, sodass in diesem Wertebereich die Unempfindlichkeit des langsameren Luftstromes der dritten Strömungskammer gegenüber äußerer Eingriffe mit dem Wärmeschutzeffekt des schnellen Luftstromes der ersten Strömungskammer zusammenwirkt. Der Luftstrom der zweiten Strömungskammer, dessen Geschwindigkeit zwischen der des ersten und dritten Luftstromes liegt, dient hierbei als Puffer um Verwirbelungen, hervorgerufen durch zu hohe Geschwindigkeitsdifferenzen an der Grenzschicht, zwischen dem ersten und dritten Luftstrom zu verhindern. Dadurch stützen sich die drei Luftströme gegenseitig gegen Verwirbelungen und Wärmeeintrag. [0008] Die Geschwindigkeit, Homogenität und Stabilität des Luftschleiers kann erhöht werden, wenn wenigstens drei Strömungskammern vorgesehen sind. Versuche haben gezeigt, dass wenigstens drei Strömungskammern notwendig sind, um die ausreichend geringe Geschwindigkeitsdifferenzen zwischen den Luftströmen umzusetzen um bei ausreichend hohen Geschwindigkeiten der Luftströme Verwirbelungen zu vermeiden. Sind zusätzliche Strömungskammern vorgesehen, lässt sich die Geschwindigkeitsdifferenz bei gegebenen Rahmengeschwindigkeiten immer weiter verringern. In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung, ist der schnellste Luftstrom aus der Hauptströmungskammer der dem Innenbereich am nächsten gelegene, wobei das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern in Richtung Außenbereich abnimmt. So schützt der Luftschleier vor Verwirbelungen und Wärmeeintrag vom Außenbereich. Dadurch, dass der schnellste Luftstrom direkt an die ruhende Luftschicht des Innenbereiches angrenzt, kommt es zwar zwischen diesen beiden Schichten zu Verwirbelungen, diese führen aber zu keinem Wärmeaustausch, wenn die Temperatur des schnellsten Luftstromes im Wesentlichen der Temperatur des Innenbereichs entspricht.

[0009] Um die Vorrichtung besonders materialschonend und kompakt auszugestalten, wird vorgeschlagen, dass eine Strömungskammer durch den Luftkanal selbst gebildet ist. Zufolge dieser Maßnahme können die übrigen Strömungskammern als Einbauten in den Strömungskanal vorgesehen werden, während sich eine Strömungskammer aus dem verbleibenden, zu den übrigen Strömungskammern parallelgeschalteten freien Volumen des Luftkanales ergibt. Es muss lediglich für den Luftkanal eine eigene Auslassöffnung aufweisen, die quer zur gemeinsamen Ausblasrichtung an die übrigen Auslassöffnungen angrenzt. Durch die Dimensionierung dieser Auslassöffnung in Abstimmung mit den Strömungskammern können weiterhin die gewünschten

Querschnittsverhältnisse realisiert werden, wodurch nicht nur Material, sondern auch Platz eingespart werden kann.

[0010] Besonders praktische Betriebs- und Instandhaltungsbedingungen ergeben sich, wenn den Auslassöffnungen in Strömungsrichtung eine gemeinsame Ausblaswabe nachgelagert ist. Eine gemeinsame Ausblaswabe stabilisiert und lenkt die ausströmenden Luftströme unter uniformen Bedingungen, sodass ein optimiertes Ausblasen erleichtert wird. Außerdem sinken die Materialkosten und die Reinigung wird erleichtert, da nur ein Bauteil ausgetauscht werden muss.

[0011] Um den Platzbedarf der Vorrichtung zu verringern, wird vorgeschlagen, dass je Strömungskammer die Einblasrichtung quer zur Ausblasrichtung verläuft. Da die Geschwindigkeit der Luftströme nur vom Querschnittsverhältnis der Einlass- zu den Auslassöffnungen abhängt, kann die relative Ausrichtung der Einlass- zu den Auslassöffnungen frei gewählt werden. Dadurch kann auf bauliche Rahmenbedingen besser eingegangen, beziehungsweise ein begrenztes Raumangebot besser ausgenutzt werden.

[0012] Die Vorrichtung kann effizienter in einem Kühlmöbel verbaut werden, wenn der Luftkanal im Bereich vor den Strömungskammern quer zur Ausblasrichtung verläuft. Um die Energie- und Kühleffizienz zu erhöhen, kann in einem Kühlregal die Luft des Kühlschleiers einem Kreislauf zugeführt werden. Hierbei wird gegenüber den Ausblassöffnungen, beispielsweise mit Hilfe eines Ventilators, der Luftschleier wieder angesaugt. Um diesen Luftstrom wieder dem Luftkanal zuzuführen, muss der Luftstrom umgelenkt werden. Verläuft der Luftkanal im Bereich vor den Strömungskammern quer zur Ausblasrichtung, kann diese Umlenkung bautechnisch einfach umgesetzt werden, da der Luftstrom erst in den Strömungskammern umgelenkt wird und davor einer gemeinsamen Behandlung, wie beispielsweise einer Kühlung, zugeführt werden kann. Zusätzlich dazu ist die Berechnung und Dimensionierung der Querschnittsflächen und deren Verhältnisse einfacher zu bewerkstelligen, da die notwendige Umlenkung der Luft erst nach der Einleitung in die Strömungskammern stattfindet, wo sie die Austrittsgeschwindigkeit und - richtung des Luftstromes nicht beeinflusst. Dadurch werden die strömungsmechanischen Überlegungen zur Versorgung der Strömungskammern mit Luft vereinfacht.

[0013] In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen

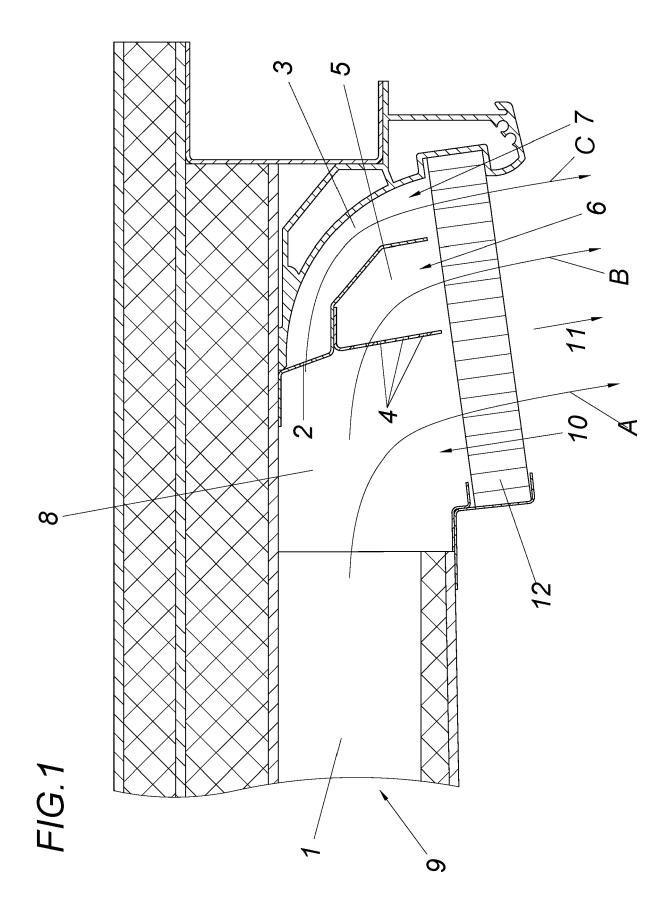
- Fig.1 einem Schnitt durch eine erfindungsgemäße Vorrichtung parallel zur Ausblasrichtung und
 - Fig. 2 eine schematische Darstellung der Vorrichtung in einem Kühlkreislauf.
- **[0014]** Eine Vorrichtung umfasst einen Luftkanal 1, bei der die Einlassöffnung 2 die Strömungskammer 3, und die Einlassöffnung 4 die Strömungskammer 5 anströmt. Innerhalb der Strömungskammern 3, 5 wird die Luft um-

15

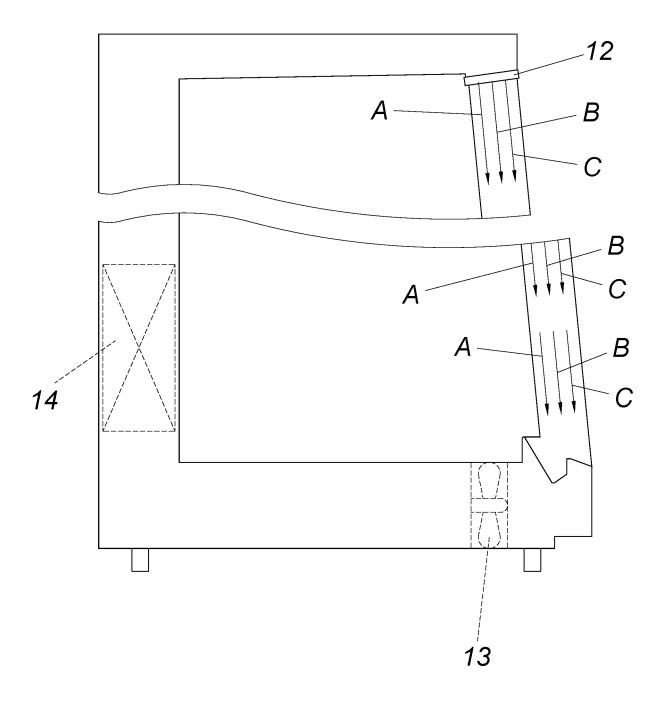
35

40

gelenkt und tritt über die Auslassöffnungen 6, 7 der Strömungskammern 3, 5 als mehrere, einen Luftschleier bildende, Luftströme A, B, C aus. In der gezeigten, besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung bildet der Luftkanal 1 selbst eine Strömungskammer 8 mit der Einlassöffnung 9 und der Auslassöffnung 10. Die Auslassöffnungen 6, 7, 10 grenzen dabei quer zu einer gemeinsamen Ausblasrichtung 11 aneinander an. Das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlassöffnungen 2, 4, 9 und der Auslassöffnungen 6, 7, 10 aneinander angrenzender Strömungskammern 3, 5, 10 nimmt von einer Hauptströmungskammer, die in der dargestellten Ausführungsform von der Strömungskammer 8 des Luftkanals 1 gebildet wird, ab. Wie insbesondere aus Fig. 1 ersichtlich ist, ist der in der Strömungskammer 8 gebildete Luftstrom A mindestens so schnell wie die Luft im Luftkanal 1, da das Querschnittsverhältnis der Einlassöffnung 9 zur Auslassöffnung 10 zwischen 1 und 1,4 liegt. Der Luftstrom B ist aufgrund des Querschnittsverhältnisses der Einlassöffnung 4 zur Auslassöffnung 6, welches zwischen 0,11 und 0,15 liegt, langsamer als der Luftstrom A. Analog ist der Luftstrom C durch das Querschnittsverhältnis der Einlassöffnung 2 zur Auslassöffnung 7, welches zwischen 0,05 und 0,1 liegt, der langsamste der drei Luftströme A, B und C. Den Auslassöffnungen 6, 7, 10 ist eine gemeinsame Ausblaswabe 12 nachgelagert, die die ausströmenden Luftströme stabilisiert. In der gezeigten, besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung verläuft überdies der Luftkanal 1 quer zur Ausblasrichtung 11, was die Dimensionierung und Anwendbarkeit der Vorrichtung für ein Kühlregal erleichtert, wie insbesondere in der Fig. 2 gezeigt wird. Die den Luftschleier bildenden Luftströme A, B und C werden gegenüber der Vorrichtung, beispielsweise mittels eines Ventilators 13, angesaugt. Der Ventilator 13 dient dabei einerseits zum Ansaugen der Luft der Luftströme A, B und C, sowie andererseits zum Aufrechterhalten der Luftzirkulation im Kühlregal, sodass die Luft wieder der Vorrichtung zugeführt werden kann. Nach dem Ventilator 13 passiert die Luft der Luftströme A, B und C einen Wärmetauscher 14, der der Vorrichtung vorgelagert ist. Dadurch, dass die Luftströme A, B und C dem Kühlkreislauf über den Ventilator 13 wieder zugeführt werden, lassen sich Energie zur Kühlung der Luft und somit Kosten sparen.


Patentansprüche

 Vorrichtung zur Erzeugung eines Luftschleiers mit einem Luftkanal (1) und mehreren, je an den Luftkanal (1) anschließenden, Einlass (2, 4, 9)- und Auslassöffnungen (6, 7, 10) aufweisenden Strömungskammern (3, 5, 8), deren Auslassöffnungen (6, 7, 10) quer zu einer gemeinsamen Ausblasrichtung (11) aneinander angrenzen, dadurch gekennzeichnet, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass (2, 4, 9)und der Auslassöffnungen (6, 7, 10) aneinander angrenzender Strömungskammern (3, 5, 8) von einer Hauptströmungskammer aus abnimmt.


6

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- (2, 4, 9) und der Auslassöffnungen (6, 7, 10) der Strömungskammern (3, 5, 8) zwischen 0,05 und 1,5 liegt.
- Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- (2, 4,9) und der Auslassöffnungen (6,7,10) einer ersten Strömungskammer (8) zwischen 1 und 1,4, einer zweiten Strömungskammer (5) zwischen 0,11 und 0,15 und einer dritten Strömungskammer (3) zwischen 0,05 und 0,1 liegt.
- **4.** Vorrichtung nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, **dass** wenigstens drei Strömungskammern (3, 5, 8) vorgesehen sind.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Strömungskammer (8) durch den Luftkanal (1) selbst gebildet ist.
 - 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass den Auslassöffnungen (6, 7, 10) in Ausblasrichtung (11) eine gemeinsame Ausblaswabe (13) nachgelagert ist.
 - Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass je Strömungskammer (3, 5, 8) die Einblasrichtung quer zur Ausblasrichtung verläuft.
 - 8. Kühlmöbel mit einer Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Luftkanal (1) im Bereich vor den Strömungskammern (3, 5, 8) quer zur Ausblasrichtung (11) verläuft.

50

FIG.2

5

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 20 15 3093

		EINSCHLÄGIGE					
	Kategorie	Konnzajahnung das Dakuma	nts mit Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)		
10	X	US 2017/038085 A1 (k 9. Februar 2017 (201 * das ganze Dokument	1-5,7,8	INV. F24F9/00 F24F13/08			
15	X	EP 1 462 730 A1 (KAM 29. September 2004 (* Absatz [0015] - Ab * Abbildungen *	2004-09-29)	1,5			
20	X	*	973-09-04) 5 - Spalte 6, Zeile 13	1,6			
		* Abbildungen 1,4,5					
25	X	US 3 935 803 A (BUSH 3. Februar 1976 (197 * Spalte 5, Zeile 22 * Abbildung 4 *	(6-02-03)	1			
30	X	DE 10 2009 032232 A1 13. Januar 2011 (201 * Absatz [0048] - Ab * Abbildungen 7,8 *	.1-01-13)	1	RECHERCHIERTE SACHGEBIETE (IPC)		
35							
40							
45							
1	Der vo	rliegende Recherchenbericht wurd					
		Recherchenort	Abschlußdatum der Recherche		Prüfer		
C	<u> </u>	München	2. Juli 2020	. Juli 2020 Mattias Grenbäck			
50 See 259 Fig. 1	X:von Y:von and A:teol O:niol						
55 G	A: tech O: nicl P: Zwi	nnologischer Hintergrund		& : Mitglied der gleichen Patentfamilie, übereinstimmendes			

EP 3 855 085 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 20 15 3093

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

02-07-2020

			_				
	Recherchenbericht hrtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US	2017038085	A1	09-02-2017	CN JP JP US	106440182 5881227 2017036871 2017038085	B1 A	22-02-2017 09-03-2016 16-02-2017 09-02-2017
EP	1462730	A1	29-09-2004	EP PL	1462730 1462730		29-09-2004 30-06-2016
US	3756038	Α	04-09-1973	KE	INE		
US	3935803	A	03-02-1976	KE]	INE		
DE	102009032232	A1	13-01-2011	DE EP	102009032232 2287537		13-01-2011 23-02-2011
EPO FORM P0461							

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 3 855 085 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 2402340 B2 [0002]