

(11) **EP 3 858 497 A8**

(12) CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 2 (W2 A1) Corrections, see Bibliography INID code(s) 72

(48) Corrigendum issued on: **31.08.2022 Bulletin 2022/35**

(43) Date of publication: **04.08.2021 Bulletin 2021/31**

(21) Application number: 19867928.4

(22) Date of filing: 26.09.2019

(51) International Patent Classification (IPC):

806B 1/02 (2006.01)

H01L 41/09 (2006.01)

H01L 41/193 (2006.01)

H04R 17/00 (2006.01)

(52) Cooperative Patent Classification (CPC): B06B 1/0223; B06B 1/0292; H01L 41/09; H01L 41/193; H04R 17/00; B06B 2201/50; B06B 2201/70

(86) International application number: **PCT/JP2019/037785**

(87) International publication number: WO 2020/067252 (02.04.2020 Gazette 2020/14)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 27.09.2018 JP 2018181924

(71) Applicants:

 Zeon Corporation Tokyo 100-8246 (JP)

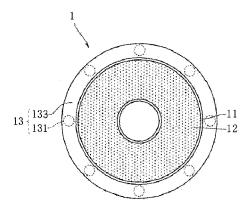
 Chiba, Seiki Tokyo 152-0023 (JP)

 Waki, Mikio Sakura-shi, Tochigi 329-1334 (JP) (72) Inventors:

 CHIBA, Seiki Tokyo 152-0023 (JP)

 WAKI, Mikio Sakura-shi, Tochigi 329-1334 (JP)

 ITO, Mitsuaki Ageo-shi, Saitama 362-8561 (JP)


 SAWADA, Makoto Ageo-shi, Saitama 362-8561 (JP)

(74) Representative: Schäflein, Christian Georg Maiwald Patentanwalts- und Rechtsanwaltsgesellschaft mbH Elisenhof Elisenstraße 3 80335 München (DE)

(54) DIELECTRIC ELASTOMER VIBRATION SYSTEM AND POWER SUPPLY DEVICE

(57)A dielectric elastomer vibration system A1 includes: a dielectric elastomer vibrator 1 including a dielectric elastomer layer 11 and a pair of electrode layers 12; and a power supply device 2 that produces a potential difference across the pair of electrode layers 12. The dielectric elastomer vibrator 1 exhibits a relationship between the potential difference across the pair of electrode layers 12 and an amount of deformation induced by the potential difference, the relationship having: a high-response region S1 in which a relatively large deformation is induced in response to change of the potential difference; a low-response region of lower-potential difference S2 corresponding to a lower potential difference than the high-response region S1 and in which a relatively small deformation is induced in response to change of the potential difference; and a low-response region of higher-potential difference S3 corresponding to a higher potential difference than the high-response region S1 and in which a relatively small deformation is induced in response to change of the potential difference or in which a break point of the dielectric elastomer layer 11 is included. The power supply device 2 produces the potential difference by applying a vibration signal voltage V across the pair of electrode layers 12. The vibration signal voltage V is generated by combining a waveform voltage V1 that is an alternating current voltage with a bias voltage V2 that is a direct current voltage corresponding to a potential difference falling in the high-response region S1. This configuration ensures the system to vibrate more appropriately.

FIG.2

