
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
85

9 
50

9
A

1
*EP003859509A1*

(11) EP 3 859 509 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
04.08.2021 Bulletin 2021/31

(21) Application number: 21152243.8

(22) Date of filing: 19.01.2021

(51) Int Cl.:
G06F 3/06 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(30) Priority: 27.01.2020 US 202062966443 P
20.03.2020 US 202016826016

(71) Applicant: Samsung Electronics Co., Ltd.
Suwon-si 16677 (KR)

(72) Inventor: MEHRA, Pankaj
San Jose, CA 95129 (US)

(74) Representative: Kuhnen & Wacker 
Patent- und Rechtsanwaltsbüro PartG mbB
Prinz-Ludwig-Straße 40A
85354 Freising (DE)

(54) LATENCY AND THROUGHPUT CENTRIC RECONFIGURABLE STORAGE DEVICE

(57) A storage device includes: a storage controller
to receive data from a host device, and to store the data
in storage memory; and a reconfigurable integrated cir-
cuit communicably connected to the storage controller,
and to accelerate logic operations executed on the data
stored in the storage memory, the reconfigurable inte-

grated circuit including: a first logic block to execute a
static logic operation from among the logic operations; a
second logic block to execute one or more dynamic logic
operations from among the logic operations; and a plu-
rality of memory buffers configured to store inputs and
outputs of the first and second logic blocks.



EP 3 859 509 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

CROSS-REFERENCE TO RELATED APPLICA-
TION(S)

[0001] This application claims priority to and the benefit
of U.S. Provisional Application No. 62/966,443, filed on
January 27, 2020, entitled "LATENCY AND THROUGH-
PUT CENTRIC RECONFIGURABLE STORAGE DE-
VICES," the entire content of which is incorporated by
reference herein.

FIELD

[0002] Aspects of one or more example embodiments
of the present disclosure relate to storage devices, and
more particularly, to a storage device for near-storage
acceleration of latency-critical and throughput-oriented
data-intensive operations.

BACKGROUND

[0003] A storage system generally includes a host de-
vice and one or more storage devices. Such storage de-
vices include, for example, magnetic storage devices
(e.g., hard disk drives (HDD), and the like), optical stor-
age devices (e.g., Blue-ray disc drives, compact disc
(CD) drives, digital versatile disc (DVD) drives, and the
like), flash memory devices (e.g., USB flash drives, solid-
state drives (SSD), and the like), and/or the like. Gener-
ally, in order to process data stored in the storage device,
the host device first reads the data from the storage de-
vice, such that the data is transferred from the storage
device into the main memory of the host device. The host
device (e.g., a host device including a host processor,
such as a central processing unit (CPU)) may then proc-
ess the data transferred from the storage device into the
main memory of the host device.
[0004] For example, in the context of a database man-
agement system, the host device may output a response
to an input database query by performing various data-
intensive operations on the data stored in the storage
device. As an illustrative example, the host device may
perform various operations (e.g., filtering, sorting, group-
ing, aggregating, and/or the like) on a table of data ele-
ments stored in the storage device by first reading the
data elements from the storage device and then process-
ing the data elements in order to identify and output a
subset of data elements from the table corresponding to
the input database query. Such operations may be data-
intensive, because they may require a large amount of
data (e.g., the table of data elements) to be transferred
from the storage device to the host device in order to be
processed by the host device. When data-intensive op-
erations are handled by the host device such that a large
amount of data is transferred between the storage device
and the host device in order to be processed, resources
of the host device (e.g., CPU usage, bandwidth, and/or

the like) may be over-utilized, latencies may be intro-
duced, and performance of the storage system may be
degraded.
[0005] Accordingly, a storage device for accelerating
data-intensive operations closer to storage may be de-
sired.
[0006] The above information disclosed in this Back-
ground section is for enhancement of understanding of
the background of the present disclosure, and therefore,
it may contain information that does not constitute prior
art.

SUMMARY

[0007] One or more example embodiments of the
present disclosure are directed to a storage device for
near-storage acceleration of latency-critical and through-
put-oriented data-intensive operations, and a method in-
cluding the same.
[0008] According to one or more example embodi-
ments of the present disclosure, a storage device in-
cludes: a storage controller configured to receive data
from a host device, and to store the data in storage mem-
ory; and a reconfigurable integrated circuit communica-
bly connected to the storage controller, and configured
to accelerate logic operations executed on the data
stored in the storage memory, the reconfigurable inte-
grated circuit including: a first logic block configured to
execute a static logic operation from among the logic
operations; a second logic block configured to execute
one or more dynamic logic operations from among the
logic operations; and a plurality of memory buffers con-
figured to store inputs and outputs of the first and second
logic blocks.
[0009] In an example embodiment, the logic opera-
tions may correspond to a pipeline workflow, the first logic
block may be configured to be statically configured with
the static logic operation for the pipeline workflow, and
the second logic block may be configured to be dynam-
ically reconfigured with the one or more dynamic logic
operations for at least one stage of the pipeline workflow.
[0010] In an example embodiment, the one or more
dynamic logic operations may include a first dynamic log-
ic operation and a second dynamic logic operation, the
second logic block may be configured with the first dy-
namic logic operation during a first stage of the pipeline
workflow, and the second logic block may be dynamically
reconfigured with the second dynamic logic operation
during a second stage of the pipeline workflow.
[0011] In an example embodiment, the plurality of
memory buffers may include: an input/output (I/O) buffer
configured to store the inputs and the outputs of the first
and second logic blocks; an intermediate I/O buffer con-
figured to store intermediate outputs of the second logic
block while the second logic block is being reconfigured;
and a configuration buffer configured to store configura-
tion files to reconfigure the second logic block.
[0012] In an example embodiment, the second logic

1 2 



EP 3 859 509 A1

3

5

10

15

20

25

30

35

40

45

50

55

block may be dynamically reconfigured by loading a con-
figuration file from among the configuration files stored
in the configuration buffer to the second logic block.
[0013] In an example embodiment, outputs of the sec-
ond logic block may be stored in the intermediate I/O
buffer during a first stage, the second logic block may be
reconfigured with a different dynamic logic instruction for
a second stage, and the intermediate I/O buffer may be
designated as the input buffer of the second logic block
during the second stage.
[0014] In an example embodiment, the static logic op-
eration may correspond to a latency-critical operation,
and the one or more dynamic logic operations may cor-
respond to a throughput-oriented operation.
[0015] In an example embodiment, the latency-critical
operation may be an operation having a completion time
that is less than a reconfiguration time of the second logic
block.
[0016] In an example embodiment, the storage device
may be a solid-state drive.
[0017] In an example embodiment, the reconfigurable
integrated circuit may be a field programmable gate array
(FPGA).
[0018] According to one or more example embodi-
ments of the present disclosure, a method for accelerat-
ing operations in a storage device comprising a storage
controller, storage memory, and a reconfigurable inte-
grated circuit comprising a first logic block, a second logic
block, and a buffer, includes: executing, by the first logic
block, a first logic operation on input data stored in the
storage memory; storing, by the first logic block, outputs
of the first logic operation in an intermediate output buffer
of the buffer; configuring, by the reconfigurable integrated
circuit, a second logic operation in the second logic block;
designating, by the reconfigurable integrated circuit, the
intermediate output buffer as an input buffer for the sec-
ond logic operation; and executing, by the second logic
block, the second logic operation on the outputs of the
first logic operation stored in the intermediate output buff-
er.
[0019] In an example embodiment, the second logic
operation may be configured in the second logic block
while the first logic operation is executing in the first logic
block.
[0020] In an example embodiment, the configuring of
the second logic operation in the second logic block may
include: monitoring a value of the intermediate output
buffer; determining that the value exceeds a threshold
value; and configuring the second logic operation in the
second logic block in response to the value exceeding
the threshold value.
[0021] In an example embodiment, the threshold value
may be a high water mark of the intermediate output buff-
er.
[0022] In an example embodiment, the buffer may in-
clude a configuration buffer configured to store configu-
ration files for configuring the second logic block.
[0023] In an example embodiment, the configuring of

the second logic operation in the second logic block may
include: loading a bit file corresponding to the second
logic operation from among the configuration files stored
in the configuration buffer into the second logic block.
[0024] In an example embodiment, the designating of
the intermediate output buffer as the input buffer for the
second logic operation may include: determining whether
the first logic operation is suspended; designating the
intermediate output buffer as the input buffer for the sec-
ond logic operation in response to determining that the
first logic operation is suspended; and designating an
input buffer of the first logic operation as an output buffer
for the second logic operation.
[0025] In an example embodiment, the determining
whether the first logic operation is suspended may in-
clude: determining whether an end of the intermediate
output buffer is reached.
[0026] In an example embodiment, the method may
further include: determining that the second logic block
has processed all of the outputs of the first logic operation
stored in the intermediate output buffer; and designating
an output buffer of the second logic operation as a final
output buffer.
[0027] In an example embodiment, the storage device
may be a solid state drive, and the reconfigurable inte-
grated circuit may be a field programmable gate array
(FPGA).

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The above and other aspects and features of
the present disclosure will become more apparent to
those skilled in the art from the following detailed descrip-
tion of the example embodiments with reference to the
accompanying drawings.

FIG. 1 is a system diagram of a storage system, ac-
cording to one or more example embodiments of the
present disclosure.
FIG. 2 is a block diagram illustrating a reconfigurable
processing device of a storage device, according to
one or more example embodiments of the present
disclosure.
FIG. 3 is a block diagram illustrating extended mem-
ory of the reconfigurable processing device of the
storage device, according to one or more example
embodiments of the present disclosure.
FIG. 4 is an illustrative example of a pipeline work-
flow, according to one or more example embodi-
ments of the present disclosure.
FIG. 5A illustrates a comparative example of stati-
cally configuring a storage device with the operations
associated with the pipeline workflow of FIG. 4.
FIG. 5B is an illustrative example of configuring the
storage device in accordance with one or more em-
bodiments of the present disclosure with the opera-
tions associated with the pipeline workflow of FIG. 4.
FIGS. 6A and 6B illustrate a method of accelerating

3 4 



EP 3 859 509 A1

4

5

10

15

20

25

30

35

40

45

50

55

data-intensive operations by a storage device, ac-
cording to one or more example embodiments of the
present disclosure.

DETAILED DESCRIPTION

[0029] Hereinafter, example embodiments will be de-
scribed in more detail with reference to the accompany-
ing drawings, in which like reference numbers refer to
like elements throughout. The present disclosure, how-
ever, may be embodied in various different forms, and
should not be construed as being limited to only the il-
lustrated embodiments herein. Rather, these embodi-
ments are provided as examples so that this disclosure
will be thorough and complete, and will fully convey the
aspects and features of the present disclosure to those
skilled in the art. Accordingly, processes, elements, and
techniques that are not necessary to those having ordi-
nary skill in the art for a complete understanding of the
aspects and features of the present disclosure may not
be described. Unless otherwise noted, like reference nu-
merals denote like elements throughout the attached
drawings and the written description, and thus, descrip-
tions thereof may not be repeated.
[0030] One or more example embodiments of the
present disclosure are directed to a storage device for
accelerating data-intensive operations of a host device
closer to storage (e.g., near storage or in-storage). For
example, the host device may off-load the data-intensive
operations to the storage device, such that the storage
device processes data stored therein according to the
data-intensive operations. In this case, in some embod-
iments, the storage device may process raw data stored
therein to output a reduced amount of data, and may
transfer the reduced amount of data to the host device,
instead of transferring the raw data (e.g., an entirety of
the raw data) to be processed by the host device. Thus,
rather than having the host device read data from the
storage device and process the freshly fetched data, a
bulk of the operations that would otherwise be performed
on the freshly fetched data by the host device may be
off-loaded to the storage device, such that the resources
of the host device (e.g., CPU usage, bandwidth, and/or
the like) may be used, for example, for cross-device op-
erations (e.g., such as joining information from tables
stored in multiple storage devices). Accordingly, perform-
ance of the storage system may be improved, for exam-
ple, by reducing the amount of traffic between the host
device and the storage device.
[0031] In some embodiments, when the data-intensive
operations are off-loaded to the storage device, scalabil-
ity of the storage device may be improved, for example,
by reducing resources of the host device that would oth-
erwise be used to process the fetched data stored in the
storage device. For example, when the host device han-
dles the data-intensive operations, the host device may
become a bottleneck to efficient scalability. As an illus-
trative example, a scale-out cluster used in modern data

processing systems may generally use a server including
one or two low to moderate core count CPUs that may
handle processing of data from 4 to 8 SSDs before reach-
ing a maximum limit on its interfaces. In this case, to scale
storage of such data processing systems, additional
servers may generally be added to the scale-out cluster
in order to handle additional processing of data from ad-
ditional SSDs, rather than scaling the number of SSDs
that the core CPUs of existing servers in the cluster may
handle. On the other hand, the storage device, according
to one or more example embodiments, may accelerate
the data-intensive operations of the host device, such
that each server may handle more data. For example, if
the data is first filtered by the storage device, such that
the smallest filtered table is transmitted to the host device
to join with information from other tables (e.g., stored on
the same or other storage devices within a server), then
the overall performance of a given decision support
benchmark may be improved without requiring additional
servers in the cluster.
[0032] In some embodiments, the storage device may
be, at least partially, dynamically (e.g., in real-time or
near real-time) reconfigurable (e.g., reprogrammable) to
process the data stored therein. For example, in some
embodiments, the storage device may include a plurality
of logic blocks that are configured to execute the data-
intensive operations that are off-loaded to the storage
device. In some embodiments, the logic blocks may in-
clude static logic blocks and dynamic logic blocks. The
static logic blocks may correspond to logic blocks that
are statically configured in the storage device for at least
an entirety of a pipeline workflow. The dynamic logic
blocks may correspond to logic blocks that may be dy-
namically reconfigured as needed or desired for one or
more stages of the pipeline workflow. As used herein, a
pipeline workflow refers to a series of operations (e.g.,
processes) performed (e.g., concurrently and/or sequen-
tially) on data in stages, such that the data read from the
storage device may be an input to a first operation of a
first stage of the pipeline workflow, an output of the first
operation of the first stage may be an input to a second
operation of a second stage of the pipeline workflow, and
so on, until an output of a final operation of a final stage
of the pipeline workflow is a final result of the series of
operations.
[0033] In some embodiments, the operations corre-
sponding to a given pipeline workflow may include one
or more operations that are latency-critical operations
and/or one or more operations that are throughput-ori-
ented operations. As used herein, latency-critical oper-
ations can refer to operations that seek to optimize or
reduce the time it takes from the beginning of a read
operation on the data to the end of the operation per-
formed on the read data, whereas throughput-oriented
operations can refer to operations that seek to optimize
or increase a rate parameter, for example, such as the
number of operations performed per unit time or the
amount of data processed per unit time, but not neces-

5 6 



EP 3 859 509 A1

5

5

10

15

20

25

30

35

40

45

50

55

sarily the latency of any one operation. In this case, the
latency-critical operations (which may not be able to tol-
erate the time it takes to reconfigure the storage device)
may correspond to the static logic blocks, and the
throughput-oriented operations (which may be able to
tolerate the time it takes to reconfigure the storage de-
vice) may correspond to the dynamic logic blocks.
[0034] For example, in some embodiments, reconfig-
uring the dynamic logic blocks may require a reconfigu-
ration time (e.g., about 1 milli-second (ms)), whereas us-
er requirements (e.g., service level agreements (SLAs))
may require certain latency-critical operations to be per-
formed in less time (e.g., about 25 micro-seconds (ms))
as compared with the reconfiguration time. In this case,
the latency-critical operations may be unable to tolerate
the time it takes to reconfigure the dynamic logic blocks
(e.g., may be an operation having a completion time that
is less than a reconfiguration time), and thus, the latency-
critical operations may be configured in the static logic
blocks. On the other hand, when the storage device in-
cludes only the static logic blocks, the operations that
may be off-loaded to the storage device may be limited
according to the fixed resources of the storage device.
For example, in this case, the data-intensive operations
may be configured concurrently (e.g., simultaneously or
at the same time) on the storage device, and thus, the
amount of data processed and/or the type of operations
that may be configured concurrently on the storage de-
vice may be limited to the fixed resources of the storage
device.
[0035] In some embodiments, the storage device may
be configured (e.g., reconfigured or reprogrammed) as
needed or desired at start-time and/or at runtime (e.g.,
in real-time or near real-time) according to various user
requirements (e.g., service level agreements (SLAs)
and/or the like), available resources of the storage device
(e.g., available memory, available look-up table (LUT)
count, and/or the like), pipeline workflows, acceleration
performance, data size, selectivity of data reduction op-
erations, and/or the like. For example, in some embodi-
ments, the latency-critical and/or throughput-centric op-
erations may be configured in the static and dynamic
logic blocks as needed or desired considering the SLAs
(e.g., operations deemed latency-critical), a reconfigura-
tion time of the logic blocks, available resources of the
storage device (e.g., the reconfigurable integrated circuit
thereof), pipeline workflows, and/or the like. In another
example, the storage device may operate in various
modes according to an acceleration performance and/or
selectivity of data reduction operations thereof. For ex-
ample, in some embodiments, if the data-intensive op-
erations that are offloaded to the storage device do not
reduce the size of the data that is ultimately returned to
the host device, then the data-intensive operations that
were offloaded to the storage device may be performed
by the host device instead, such that the storage device
is dynamically reconfigured to operate in a normal mode
(e.g., a mode where the data is read and processed by

the host device instead of being offloaded to the storage
device).
[0036] These and other aspects and features of the
present disclosure will be described in more detail here-
inafter with reference to the accompanying figures.
[0037] FIG. 1 is a system diagram of a storage system,
according to one or more example embodiments of the
present disclosure.
[0038] In brief overview, the storage system 100 ac-
cording to one or more embodiments of the present dis-
closure may include a host device (e.g., a host computer)
102 and a storage device 104. The host device 102 may
off-load various data-intensive operations to the storage
device 104, such that the storage device 104 accelerates
the data-intensive operations of the host device 102. For
example, the host device 102 may be communicably con-
nected to the storage device 104, and may transfer data
to the storage device 104 to store data in the storage
device 104. The host device 102 may transmit various
commands to the storage device 104, such that the stor-
age device 104 processes the data stored therein ac-
cording to the commands, rather than transmitting an en-
tirety of the data to a host memory (e.g., a main memory)
108 to be processed by a host processor (e.g., a CPU)
106. For example, rather than transmitting a large
amount of raw data stored in the storage device 104 to
the host memory 108 to be mostly filtered out by the host
processor 106, the storage device 104 may process the
raw data stored therein to output a reduced amount of
processed data (e.g., a sub-set of the raw data) to the
host device 102 in response to the commands. Accord-
ingly, a bulk of the operations performed on freshly
fetched data may be off-loaded to the storage device 104
to be performed closer to storage (e.g., near storage or
in-storage), such that resources of the host device 102
(e.g., CPU usage, I/O bus bandwidth, CPU cache capac-
ity, cache to memory bandwidth, memory capacity,
and/or the like) may be used for other operations, for
example, such as in-memory operations and cross-de-
vice operations (e.g., joining data stored on a plurality of
storage devices).
[0039] In more detail, referring to FIG. 1, the host de-
vice 102 may include the host processor 106 and the
host memory 108. The host processor 106 may be a gen-
eral purpose processor, for example, such as a CPU core
of the host device 102. The host memory 108 may be
considered as high performing main memory (e.g., pri-
mary memory) of the host device 102. For example, in
some embodiments, the host memory 108 may include
(or may be) volatile memory, for example, such as dy-
namic random-access memory (DRAM). However, the
present disclosure is not limited thereto, and the host
memory 108 may include (or may be) any suitable high
performing main memory (e.g., primary memory) re-
placement for the host device 102 as would be known to
those skilled in the art. For example, in other embodi-
ments, the host memory 108 may be relatively high per-
forming non-volatile memory, such as NAND flash mem-

7 8 



EP 3 859 509 A1

6

5

10

15

20

25

30

35

40

45

50

55

ory, Phase Change Memory (PCM), Resistive RAM,
Spin-transfer Torque RAM (STTRAM), any suitable
memory based on PCM technology, memristor technol-
ogy, and/or resistive random access memory (ReRAM)
and can include, for example, chalcogenides, and/or the
like.
[0040] The storage device 104 may be considered as
secondary memory that may persistently store data ac-
cessible by the host device 102. In this context, the stor-
age device 104 may include (or may be) relatively slower
memory when compared to the high performing memory
of the host memory 108. For example, in some embod-
iments, the storage device 104 may be secondary mem-
ory of the host device 102, for example, such as an SSD.
However, the present disclosure is not limited thereto,
and in other embodiments, the storage device 104 may
include (or may be) any suitable storage device, for ex-
ample, such as an HDD, a USB flash drive, a Blue-ray
disc drive, and/or the like. In some embodiments, the
storage device 104 may conform to a large form factor
standard (e.g., a 3.5 inch hard drive form-factor), a small
form factor standard (e.g., a 2.5 inch hard drive form-
factor), an M.2 form factor, and/or the like. In other em-
bodiments, the storage device 104 may conform to any
suitable or desired derivative of these form factors.
[0041] In some embodiments, the storage device 104
may include a storage interface 110, a storage controller
112, storage memory 114, a reprogrammable integrated
circuit (RIC) device 116, a direct (or a private) intercon-
nect 118 between the storage controller 112 and the RIC
device 116, and RIC extended memory 120. The storage
interface 110 may facilitate communications (e.g., using
a connector and a protocol) between the host device 102
and the storage device 104. For example, in some em-
bodiments, the storage interface 110 may expose to the
host device 102, data communications with the storage
controller 112 and/or the RIC device 116. In some em-
bodiments, the storage interface 110 may facilitate the
exchange of storage requests and responses between
the host device 102 and the storage device 104. In some
embodiments, the storage interface 110 may facilitate
data transfers by the storage device 104 to and from the
host memory 108 of the host device 102. For example,
in some embodiments, the storage interface 110 (e.g.,
the connector and the protocol thereof) may include (or
may conform to) Peripheral Component Interconnect Ex-
press (PCIe), remote direct memory access (RDMA) over
Ethernet, Serial Advanced Technology Attachment
(SATA), Fiber Channel, Serial Attached SCSI (SAS), Non
Volatile Memory Express (NVMe), and/or the like. In oth-
er embodiments, the storage interface 110 (e.g., the con-
nector and the protocol thereof) may include (or may con-
form to) various general-purpose interfaces, for example,
such as Ethernet, Universal Serial Bus (USB), and/or the
like. In yet other embodiments, the storage interface 110
may support additional acceleration or coherence proto-
col, such as CCIX, CAPI, OpenCAPI, nvLink, or CXL, on
top of its own connector and associated protocol (such

as PCIe or Ethernet).
[0042] The storage controller 112 is connected to the
storage interface 110, and responds to input/output (I/O)
requests received from the host device 102 through the
storage interface 110. The storage controller 112 may
provide an interface to control, and to provide access to
and from, the storage memory 114. For example, the
storage controller 112 may include at least one process-
ing circuit embedded thereon for interfacing with the host
device 102 and the storage memory 114. The processing
circuit may include, for example, a digital circuit (e.g., a
microcontroller, a microprocessor, a digital signal proc-
essor, a field programmable gate array (FPGA), an ap-
plication-specific integrated circuit (ASIC), and/or the
like) capable of executing data access instructions to pro-
vide access to and from the data stored in the storage
memory 114 according to the data access instructions.
For example, the data access instructions may include
any suitable data storage and retrieval algorithm (e.g.,
read/write) instructions, encryption/decryption algorithm
instructions, compression algorithm instructions, and/or
the like. The storage memory 114 may persistently store
the data received from the host device 102. For example,
in the context of a database management system, the
storage memory 114 may store the data in any suitable
self-describing columnar format, for example, such as
AVRO, ORC, PARQUET, and/or the like. However, the
present disclosure is not limited thereto, and the storage
memory 114 may store the data in any suitable format
according to the application of the storage system 100.
For example, in the context of a media system, the stor-
age memory 114 may store the data in any suitable media
format, for example, such as H.264, H.265, MPEG, AVI,
and/or the like. In some embodiments, the storage mem-
ory 114 may store the data received from the host device
102 in an encrypted and/or compressed format. The stor-
age memory 114 may include non-volatile memory, for
example, such as NAND flash memory. However, the
present disclosure is not limited thereto, and the storage
memory 114 may include any suitable memory depend-
ing on a type of the storage device 104, such as phase
change memory, magnetic memory, ferroelectric mem-
ory, and/or the like.
[0043] The RIC device 116 may process the data
stored on the storage memory 114 according to the com-
mands from the host device 102. For example, in some
embodiments, the RIC device 116 may be communicably
connected to the storage controller 112 (e.g., via the di-
rect interconnect 118) to access (e.g., to read) the data
stored on the storage memory 114, and may process
(e.g., may reduce, filter, sort, group, aggregate, dedupli-
cate, and/or the like) the read data such that a reduced
amount of processed data (e.g., a sub-set of the retrieved
data stored in the storage memory 114) is transmitted to
the host device 102. In this case, the RIC device 116 may
include a plurality of logic blocks having various suitable
configurations to process the data stored in the storage
memory 114 according to the commands from the host

9 10 



EP 3 859 509 A1

7

5

10

15

20

25

30

35

40

45

50

55

device 102. As used herein, a logic block can include a
logic component of the RIC device 116, and may include
gates and flip-flops with the connections therebetween
being configured (e.g., as defined in look-up tables
(LUTs) in the case of some field programmable gate ar-
rays (FPGAs)) to perform various logic operations (e.g.,
filter, sort, aggregate, deduplicate, and/or the like). Be-
cause the RIC device 116 may include the logic blocks
to execute various operations on the freshly fetched data
instead of the host device 102, resource utilization (e.g.,
CPU usage, PCI bandwidth, and/or the like) of the host
device 102 may be reduced.
[0044] Accordingly, the RIC device 116 may be con-
sidered as a separate and distinct processor from that of
the host device 102 (e.g., from the host processor 106).
For example, in some embodiments, the RIC device 116
may be implemented as an integrated circuit (IC). In some
embodiments, the RIC device 116 may be implemented
on the storage device 104 (e.g., may be embedded on
the same board or the same circuit board as that of the
storage device 104). For example, the RIC device 116
may be implemented on (e.g., may be attached to or
mounted on) the storage device 104 as a system on chip
(SOC). In this case, because the RIC device 116 may be
implemented on the storage device 104, the data stored
in the storage device 104 may be processed closer to
the storage memory 114. Accordingly, latencies that may
be caused when transferring the data stored in the stor-
age memory 114 over long distances and/or over exter-
nal interfaces may be reduced or minimized. The storage
system 100 may additionally benefit from the extra inter-
nal data transfer bandwidth between RIC device 116 and
Storage Controller 112 introduced by each additional
storage device 104. Accordingly, net data transfer
throughput of storage system 100 is no longer con-
strained by Host to Storage Interface. However, the
present disclosure is not limited thereto, and in other em-
bodiments, the RIC device 116 may be implemented on
a separate board (e.g., a separate circuit board) from that
of the storage device 104 and may be communicably
connected to the storage device 104. In some embodi-
ments, the RIC device 116 may include (or may be) a
Field Programmable Gate Array (FPGA) configured to
support dynamic partial reconfiguration (DPR), such that
at least a portion thereof is dynamically reconfigurable
as needed or desired, but the present disclosure is not
limited thereto. For example, in other embodiments, the
RIC device 116 may include (or may be) an Application
Specific Integrated Circuit (ASIC), a Graphical Process-
ing Unit (GPU), a Complex Programmable Logic Device
(CPLD), a Coarse-Grained Reconfigurable Array
(CGRA), and/or the like.
[0045] In some embodiments, the RIC device 116 may
be considered as a supplemental processor of the stor-
age device 104 that is separate and distinct from the stor-
age controller 112. For example, in some embodiments,
unlike the storage controller 112, which may not be easily
reprogrammable, the RIC device 116 may support DPR

in which the RIC device 116 may be at least partially
dynamically reconfigurable (e.g., dynamically repro-
grammable) as needed or desired depending on the com-
mands from the host device 102. However, the present
disclosure is not limited thereto, and in other embodi-
ments, the RIC device 116 may be implemented as part
of the storage controller 112, for example, when all or
part of the storage controller 112 is reprogrammable
(e.g., configured to support DPR). As will be described
in more detail below with reference to FIG. 2, in some
embodiments, the RIC device 116 may include static log-
ic blocks and dynamically reconfigurable logic blocks
(e.g., dynamic logic blocks) to perform various operations
on the data stored in the storage memory 114 according
to the commands from the host device 102.
[0046] Still referring to FIG. 1, in some embodiments,
the RIC device 116 may be communicably connected to
the storage controller 112 via the direct (or the private)
interconnect 118. For example, in some embodiments,
the RIC device 116 may read the data stored in the stor-
age memory 114 by directly communicating with the stor-
age controller 112 via the direct interconnect 118 using
peer-to-peer (P2P) communications without involving the
host device 102. For example, instead of first loading the
data from the storage memory 114 to the host memory
108, and then sending the data to the RIC device 116 for
further processing, the RIC device 116 may directly com-
municate with the storage controller 112 to access or
receive the data from the storage memory 114 without
involving the host device 102. P2P communications be-
tween the RIC device 116 and the storage controller 112
via the direct interconnect 118 may further reduce or elim-
inate overhead of reading/writing from the host memory
108, and may reduce operational latency that may be
caused when communicating data via the host device
102. The data transfer bandwidth of each direct intercon-
nect 118 adds to overall data transfer throughput of stor-
age system 100 in proportion to the amount of data in
the storage memories 114 even as additional storage
devices 104 are placed in the storage system 100. Such
scalability benefit of the present disclosure allows stor-
age system 100 to scale up to hold much more data with-
out loss of performance per unit of storage memory ca-
pacity than comparative systems. After processing the
data by the RIC device 116, the processed data may be
provided to the host device 102. By virtue of the proc-
essed data either being rendered smaller through filtering
operation performed by RIC device 116, or easier to proc-
ess by host through reformatting operation performed by
RIC device 116, or more suitable for viewing by a client
of storage system 100 through transcoding operation
performed by RIC device 116, for instance, additional
performance and utility benefits accrue to the consumer
of functions realized by storage system 100 due to incor-
poration of processing capability of RIC device 116 inside
storage device 104, but the present disclosure is not lim-
ited thereto.
[0047] The RIC extended memory 120 may be com-

11 12 



EP 3 859 509 A1

8

5

10

15

20

25

30

35

40

45

50

55

municably connected to the RIC device 116, and may be
implemented on the storage device 104 as a memory
chip (e.g., as a dynamic random-access memory
(DRAM) chip) connected to a channel (e.g., double data
rate (DDR) memory interface) of the RIC device 116. For
example, in some embodiments, the RIC extended mem-
ory 120 may be embedded on the storage device 104 as
a plurality of memory devices (e.g., a plurality of DRAM
memory chips) connected to a DDR port of the RIC device
116. As used herein, a "memory device" refers to the
smallest functional replaceable unit of memory capable
of storing data. For example, a DRAM memory device
may contain thirty six billion bits of data, each bit realized
by a capacitor for storing an electric charge, and a tran-
sistor for selectively charging the capacitor with the one
bit of data. However, the present disclosure is not limited
thereto, and the RIC extended memory 120 may include
any suitable type of memory to extend the main memory
(e.g., the internal memory) of the RIC device 116. For
example, in other embodiments, RIC extended memory
120 may include (or may be) any suitable volatile memory
or non-volatile memory as would be known to those
skilled in the art, such as SRAM, MRAM, NAND, Tightly-
Coupled Memory (TCM), PCM, Resistive RAM, ST-
TRAM, any suitable memory based on PCM technology,
memristor technology, and/or resistive random access
memory (ReRAM) and can include, for example, chalco-
genides, and/or the like.
[0048] In some embodiments, the RIC extended mem-
ory 120 may be relatively slower memory when com-
pared to the main memory (e.g., the internal memory) of
the RIC device 116 (e.g., see FIG. 2), but may have more
capacity (e.g., more storage space) than that of the main
on-chip memories of the RIC device 116, such as any
Block RAM or Unified RAM in an example embodiment
where the RIC device 116 is a Xilinx UltraScale+ FPGA.
In this case, as discussed in more detail below with ref-
erence to FIG. 3, the off-chip RIC extended memory 120
may be used as staging memory in which the RIC ex-
tended memory 120 is partitioned to store intermediate
inputs/outputs, as well as to store configuration files to
dynamically reconfigure the dynamic logic blocks as
needed or desired. For example, in some embodiments,
the RIC device 116 may include the gates and flip-flops
(e.g., the logic blocks), and the functions and/or connec-
tions between the gates and/or flip-flops (e.g., the LUTs
in the case of an FPGA) may be configured by loading
configuration data (e.g., an object file, or a bit file in the
case of an FPGA) into the RIC device 116, which may
be referred to hereinafter as a configuration file, that is
stored in the RIC extended memory 120 to be quickly
retrieved as needed or desired. However, the present
disclosure is not limited thereto, and in other embodi-
ments, the RIC extended memory 120 may be omitted,
for example, when the main memory of the RIC device
116 has sufficient capacity to perform the functions of
the RIC extended memory 120 described herein (e.g.,
sufficient capacity to be partitioned for the intermediate

staging memory).
[0049] FIG. 2 is a block diagram illustrating the RIC
device 116 of FIG. 1 in more detail, according to one or
more example embodiments of the present disclosure.
FIG. 3 is a block diagram illustrating the RIC extended
memory 120 of FIG. 1 in more detail, according to one
or more example embodiments of the present disclosure.
Hereinafter, for convenience, the RIC device 116 will be
described in more detail in the context of an FPGA, but
the present disclosure is not limited thereto.
[0050] Referring to FIGS. 1 to 3, the RIC device 116
may process the data stored on the storage memory 114
according to commands from the host device 102. For
example, in some embodiments, the RIC device 116 may
include a RIC accelerator 202 and RIC memory (e.g.,
main memory or internal memory) 204. In brief overview,
the RIC device 116 may receive data from the storage
memory 114 over the direct interconnect 118, and may
process the read data according to a configuration of the
RIC accelerator 202. The inputs/outputs of the data proc-
essed by the RIC accelerator 202 may be stored in the
RIC memory 204 (and/or the RIC extended memory 120).
Once the data is fully processed (e.g., by the RIC accel-
erator 202), the processed data may be transferred to
the host device 102. In some embodiments, the RIC ac-
celerator 202 may be, at least partially, dynamically
reconfigured (e.g., in real-time or near real-time) accord-
ing to the available resources of the RIC device 116, user
requirements (e.g., service level agreements (SLAs)),
pipeline workflows, size of data transferred between
stages, acceleration performance, selectivity of data re-
duction operations, and/or the like.
[0051] For example, the RIC accelerator 202 may in-
clude static logic blocks 206 and dynamic logic blocks
208. The static logic blocks 206 may correspond to logic
blocks that are configured in the RIC accelerator 202 for
at least an entirety of a pipeline workflow, and the dy-
namic logic blocks 208 may correspond to logic blocks
that are dynamically reconfigured as needed or desired
for one or more stages corresponding to the pipeline
workflow. For example, the pipeline workflow may be di-
vided into a plurality of stages, and each of the stages
may include one or more operations that are executed
(e.g., concurrently for maximum throughput or least la-
tency, or sequentially for maximum throughput per RIC
accelerator resource) on the data (e.g., the data read
from the storage memory 114 or output from a previous
stage). For each of the stages of the pipeline workflow,
the RIC accelerator 202 may maintain the static logic
blocks 206 configured therein, but for any particular one
or more of the stages, the RIC accelerator 202 may dy-
namically reconfigure the dynamic logic blocks 208 as
needed or desired. For example, as will be discussed in
more detail below with reference to FIGS. 4 to 5B, the
static logic blocks 206 and the dynamic logic blocks 208
may be configured in the RIC accelerator 202 according
to (e.g., depending on) critical latency requirements of
the operations and/or the amount of available resources

13 14 



EP 3 859 509 A1

9

5

10

15

20

25

30

35

40

45

50

55

on the RIC accelerator 202 that may be configured con-
currently (e.g., simultaneously or at the same time) to
handle the operations.
[0052] The RIC memory 204 may be considered as
the main memory (e.g., may be the internal memory) of
the RIC device 116. The RIC memory 204 may include
an I/O buffer 210, first memory 212, and second memory
214. The I/O buffer 210 may be partitioned among the
first and second memory 212 and 214, and may serve
as a buffer for the inputs and outputs of the logic blocks
(e.g., the static logic blocks and/or the dynamic logic
blocks) executing in the RIC accelerator 202. The RIC
extended memory 120 may be extended memory (e.g.,
may be external memory or secondary memory) of the
RIC device 116. In some embodiments, the RIC extend-
ed memory 120 may serve as staging memory of the RIC
device 116. As shown in FIG. 3, in some embodiments,
the RIC extended memory 120 may include a read/write
buffer 302, an intermediate I/O buffer 304, a configuration
(config) buffer 306, and third memory 308. The read/write
buffer 302, the intermediate I/O buffer 304, and the config
buffer 306 may be partitioned on the third memory 308.
[0053] The read/write buffer 302 may store data that
is read from and written to the storage memory 114. The
intermediate I/O buffer 304 may serve as an intermediate
buffer for the inputs and outputs of the logic blocks be-
tween stages of the pipeline workflow. For example,
when the dynamic logic blocks are reconfigured between
stages of the pipeline workflow, the outputs of the dy-
namic logic blocks of the previous stage may be stored
in the intermediate I/O buffer 304 such that the dynamic
logic blocks may be reconfigured for a present stage, and
then the intermediate I/O buffer 304 may be designated
as the input buffer for the reconfigured dynamic logic
blocks for the present stage.
[0054] The config buffer 306 may store the configura-
tion files (e.g., object files, or bit files in the case of an
FPGA) of various different configurations for the dynamic
logic blocks. In this case, the dynamic logic blocks may
be reconfigured by loading different configuration files
(e.g., corresponding to the desired operations) from the
config buffer 306 into the RIC accelerator 202 as needed
or desired. When the configuration files are stored in the
config buffer 306 of the RIC extended memory 120,
reconfiguration time of the dynamic logic blocks may be
reduced (e.g., to about 1 ms) when compared to other
cases where the configuration files are stored externally
and/or provided from another device (e.g., the host de-
vice). However, the present disclosure is not limited
thereto, and in another embodiment, the config buffer
306 may be omitted. In this case, the configuration files
may be stored, for example, in the storage memory 114
or the RIC memory 204, or may be provided from an
external device (e.g., the host device and/or the like).
[0055] In some embodiments, the first memory 212
may be the fastest available memory of the RIC device
116, but may have low capacity (e.g., low storage space).
The second memory 214 may have a higher capacity

than that of the first memory 212, but may be slower than
the first memory 212. The third memory 308 may have
the largest capacity (e.g., the largest storage space), but
may be the slowest available memory of the RIC device
116. For example, in the context of an FPGA, the first
memory 212 may include Block Random Access Memory
(BRAM), the second memory 214 may include Unified
Random Access Memory (URAM), and the third memory
308 may include the DRAM. However, the present dis-
closure is not limited thereto, and in another embodiment,
one of the first and second memory 212 and 214 may be
omitted, or the first and second memory 212 and 214
may include any suitable type of memory depending on
a type of the RIC device 116. For example, in another
embodiment, in the context of an FPGA, the second
memory 214 (e.g., the URAM) may be omitted. In some
embodiments, the third memory 308 may include (e.g.,
may be) a 4 GB DRAM chip or an 8 GB DRAM chip, but
the present disclosure is not limited thereto.
[0056] According to an embodiment, the RIC acceler-
ator 202 may store inputs/outputs of the static logic blocks
206 and the dynamic logic blocks 208 in the first, second,
and/or third memory 212, 214, and 308 according to a
size of the data transferred between stages and/or de-
sired speed of the data. For example, if the amount of
data transferred between stages is relatively small,
and/or the operations performed by the logic block (e.g.,
the static logic block 206) of the RIC accelerator 202 is
latency-critical, then the inputs/outputs of such logic
block may be stored in the first memory 212 or the second
memory 214. On the other hand, if the data transferred
between stages is relatively large, and/or the operations
performed by the logic block (e.g., the dynamic logic block
208) is throughput-oriented, then the inputs/outputs of
such logic block may be stored in the third memory 308.
[0057] In an embodiment, when the data transferred
between stages is relatively large, then the outputs of the
operations performed by the logic blocks (e.g., the dy-
namic logic blocks 208) may be initially stored in the first
or second memory 212 and 214, and when the dynamic
logic blocks 208 are reconfigured (e.g., between stages),
the outputs may be transferred to the third memory 308
(e.g., the intermediate I/O buffer 304) such that the dy-
namic logic blocks 208 may be reconfigured. The outputs
stored in the third memory 308 may then be designated
as the input buffer for the reconfigured dynamic logic
blocks 208. In this case, the outputs of the reconfigured
dynamic logic blocks 208 may be stored in any suitable
one of the first, second, and third memory 212, 214, and
308 (e.g., according to speed, data size, and/or the like).
In another embodiment, when the data transferred be-
tween stages is relatively large, the outputs of the oper-
ations performed by the logic blocks (e.g., the dynamic
logic blocks 208) may be initially stored in the third mem-
ory 308 (e.g., the intermediate I/O buffer 304), and when
the dynamic logic blocks 208 are reconfigured, the out-
puts thereof stored from the previous stage in the third
memory 308 may be designated as the inputs of the

15 16 



EP 3 859 509 A1

10

5

10

15

20

25

30

35

40

45

50

55

reconfigured dynamic logic blocks 208 of the current
stage. However, the present disclosure is not limited to
these examples, and any suitable combinations of the
static logic blocks 206 and the dynamic logic blocks 208
may consume any suitable ones of the first, second, and
third memory 212, 214, and 308 resources as needed or
desired according to the amount of data transferred be-
tween stages, the speed of the data desired, and/or the
like.
[0058] FIG. 4 is an illustrative example of a pipeline
workflow, according to one or more example embodi-
ments of the present disclosure. FIG. 5A illustrates a
comparative example of statically configuring a storage
device with the operations associated with the pipeline
workflow of FIG. 4. FIG. 5B is an illustrative example of
configuring the storage device in accordance with one or
more embodiments of the present disclosure with the op-
erations associated with the pipeline workflow of FIG. 4.
For convenience, the pipeline workflow will be described
in the context of an illustrative database query in a data-
base application, but the present disclosure is not limited
thereto.
[0059] Referring to FIGS. 1 to 5B, a typical pipeline
workflow 400 in response to a database query may in-
clude a plurality of stages 402 to 412. For example, the
stages may include a first stage 402, a second stage 404,
a third stage 406, a fourth stage 408, a fifth stage 410,
and a sixth stage 412, and each of the stages 402 to 412
may include one or more operations that are performed
(e.g., concurrently or sequentially), starting with opera-
tions of the first stage 402 processing the data stored in
the storage memory 116 and received from storage con-
troller 112 as a first step in processing a database query,
thereafter operators in the second stage 404 processing
the output of the first stage 402 as a second step in
processing the database query, and so on. According to
one or more embodiments of the present disclosure, the
operations associated with any combination of the stages
402 to 412 may be off-loaded to the storage device 104,
rather than being performed by the host device 102. Ac-
cordingly, in this case, as shown by arrows having open-
ings with different widths between each of the stages 402
to 412, different sizes of data may be transferred between
different components of the storage device 104 to per-
form the operations associated with the stages. For ex-
ample, the operations associated with the first stage 402
may be performed by the storage controller 112, and the
operations associated with the second to sixth stages
404 to 412 may be performed by the RIC device 116, but
the present disclosure is not limited thereto. For example,
in another embodiments, all of the operations associated
with the first to sixth stages 402 to 412 may be performed
by the RIC device 116, or some of the operations (e.g.,
some of the latency-critical operations) associated with
the second to sixth stages 404 to 412 may be performed
by the storage controller 112.
[0060] As shown in FIG. 4, in the context of the data-
base application, tables of data may typically be stored

in the storage device 104 (e.g., the storage memory 114)
in a compressed and encrypted format. Thus, one or
more operations associated with the first stage 402 may
include an operation to decrypt the data. According to an
embodiment of the present disclosure, the one or more
operations associated with the first stage 402 may be
performed by the storage controller 112, for example. As
a result, the compressed data may be decrypted by the
storage controller 112, and the decrypted compressed
data may be transmitted to the RIC device 116 (e.g., via
the direct interconnect 118) for further processing. For
example, as shown in FIG. 4, the decrypted compressed
data may be transmitted from the storage controller 112
to the RIC device 116 at about 3.2 GB/s to about 6.4
GB/s, but the present disclosure is not limited thereto.
[0061] The decrypted data may then for instance be
parsed to identify desired compressed columns within
the tables of the data, and the desired compressed col-
umns of the tables of data may be decompressed during
the second stage 404. As an illustrative example, a da-
tabase query may correspond to operations that "identify
all male smokers living in zip code 95134 sorted by age
groups" in one or more tables of data stored in the storage
device 104, such that a column of the tables of data may
correspond to zip code, a column may correspond to gen-
der, a column may correspond to age, a column may
correspond to smoker/non-smoker, and/or the like. Thus,
one or more operations associated with the second stage
404 may include an operation to parse the stored data
format (e.g., which may be a self-describing columnar
format in the context of a database application), and an
operation to decompress the parsed data (e.g., to de-
compress the compressed columns corresponding to zip
code, gender, age, smoker/non-smoker, and/or the like)
using the inverse of the algorithm used to compress the
stored data in the first place. Thus for instance if the
stored data was compressed using the gzip algorithm
then upon reading that compressed data the second
stage 404 would accordingly include an operation to de-
compress the parsed data using the corresponding gun-
zip decompression algorithm. As a result, as shown by
the increase in width of the arrow between the second
stage 404 and the third stage 406 in FIG. 4, because
compression rates may typically have a factor of 2 to 2.5,
a size of the data may be increased from about 3.2 to
6.4 GB/s of the compressed data to about 6.4 to 16 GB/s
of the uncompressed data.
[0062] The uncompressed data may then be filtered
according to one or more conditions defined in the data-
base query. Thus, one or more operations associated
with the third stage 406 may include operations to filter
the decompressed data according to the conditions de-
fined in the database query. For example, the conditions
corresponding to the illustrative database query above
may include zip code 95134, gender male, and smoker
rather than non-smoker. In this case, for example, the
RIC device 116 may select from the columns correspond-
ing to zip code all rows that correspond to 95134, and

17 18 



EP 3 859 509 A1

11

5

10

15

20

25

30

35

40

45

50

55

may then fetch the remaining data of the other columns
(e.g., gender, smoker, age, and/or the like) of those
matching rows. Then the RIC device 116 may select from
the columns corresponding to gender of the matching
rows, all rows that correspond to male, and then may
fetch the remaining data of the other columns (e.g., smok-
er/non-smoker, age, and/or the like) of those rows match-
ing zip code 95134 and male. Similarly, the RIC device
116 may select from the columns corresponding to smok-
er/non-smoker of those matching rows, all rows corre-
sponding to smoker rather than non-smoker, and/or the
like, until all filter conditions are applied.
[0063] As a result, as shown by the decrease in width
of the arrow between the third stage 406 and the fourth
stage 408 in FIG. 4, the size of the data may be reduced
from the uncompressed data size to a filtered data size.
The size of the filtered data may depend on selectivity of
the conditions used to filter the data. For example, if the
conditions are such that only a few entries of the uncom-
pressed data match from among millions of entries in the
uncompressed data, then a size of the resulting filtered
data may be substantially smaller than the size of the
uncompressed data. As a result, traffic to the host device
102 may be substantially decreased. On the other hand,
if the conditions are not very selective such that most of
the uncompressed data remains (e.g., is not filtered out),
then the size of the filtered data may be substantially the
same as that of the uncompressed data. In this case,
because the amount of the filtered data is the same or
substantially the same as the uncompressed data, ac-
celeration by the storage device 104 may not be very
fruitful.
[0064] Accordingly, in some embodiments, depending
on a selectivity of a data reduction operation (e.g., the
filtering operation in the illustration of FIG. 4), control may
be passed back to the host device to perform remaining
operations when the conditions used to reduce the data
(e.g., filter the data) are not very selective. For example,
in some embodiments, selectivity of a data reduction op-
eration (e.g., a filtering operation) for a given pipeline
workflow may not be known ahead of time (e.g., during
a planning stage). In this case, during an execution time
(e.g., during a runtime), the selectivity of the data reduc-
tion operation that is executing in one or more of the logic
blocks may be monitored (e.g., by the host device 102
or by another device or system that is communicably con-
nected to the host device 102, for example, such as a
runtime service), and if the reduction in data size is less
than a threshold reduction size, then control may be
passed back to the host device 102 (e.g., along with the
reduced data) such that the host device 102 performs
the remaining operations on the data.
[0065] After the data has been filtered, in the context
of the illustrative database query, the filtered data may
be sorted at the fourth stage 408, grouped at the fifth
stage 410, and aggregated at the sixth stage 412. For
example, the filtered data may be sorted by age at the
fourth stage 408, may be grouped into different age

groups at the fifth stage 410, and the grouped data may
be aggregated at the sixth stage 412. Thus, one or more
operations associated with the fourth stage 408 may in-
clude operations to sort the filtered data, one or more
operations associated with the fifth stage 410 may in-
clude operations to group the sorted data, and one or
more operations associated with the sixth stage 412 may
be to aggregate the grouped data. As shown by the con-
stant widths of the arrows between fourth to sixth stages
408 to 412, sorting and grouping operations do not affect
the size of the data but aggregation can potentially reduce
the size. The aggregated data may then be transmitted
to the host device 102, as shown by the last arrow. Ac-
cordingly, a reduction in size of the data processed by
the RIC device 116 may depend on the selectivity of the
filter conditions during the filtering stage 406, the number
of distinct groups formed during the grouping stage 410,
and/or the degree to which operations in the aggregation
stage 412 summarize the data in each group.
[0066] As shown in FIG. 5A, resources needed to stat-
ically configure the RIC accelerator 202 with all of the
operations associated with the pipeline workflow 400 in
FIG. 4 may exceed the amount of available resources on
the RIC device 116. For example, in the context of an
FPGA, the connections between the gates and flip-flops
of the logic blocks (e.g., the static logic blocks 206 and
the dynamic logic blocks 208) that configure the opera-
tions of the logic blocks may be defined in look-up tables
(LUTs), for example, as truth tables. However, the
number of LUTs that may be configured in an FPGA at
any given time may be limited to a total maximum LUT
count of the FPGA. For example, a small FPGA may be
limited to a total maximum LUT count of 300K. In this
case, the total number of LUTs used by an implementa-
tion of the operations of each of the stages 404 to 412
may exceed the total maximum LUT count of the FPGA.
[0067] For example, as shown in FIG. 5A, the number
of LUTs used for parsing the stored data format (e.g., in
the second stage 404) may be about 25K, the number
of LUTs used for decompressing the parsed data (e.g.,
in the second stage 404) may be about 12K, the number
of LUTs used for filtering the decompressed data (e.g.,
in the third stage 406) now flowing at twice the rate of
the stored data supposing a compression factor of 2 may
be much larger (e.g., 90K), the number of LUTs used for
sorting the reduced data (e.g., in the fourth stage 408,
assuming that 90% of the data is filtered out for illustra-
tion) may be about 100K, and the number of LUTs used
to group and aggregate the data (e.g., in the fifth stage
410 and the sixth stage 412) may be about 100K (e.g.,
assuming that the data falls into 10 groups for illustration).
In this comparative example, the total number of LUTs
that are used to process the data according to the pipeline
workflow 400 of FIG. 4 is 327K, which exceeds the total
maximum LUT count on the FPGA (e.g., 300K in this
illustrative example). Thus, all of the operations associ-
ated with the pipeline workflow 400 may not fit the FPGA
resources concurrently (e.g., simultaneously or at the

19 20 



EP 3 859 509 A1

12

5

10

15

20

25

30

35

40

45

50

55

same time), and thus, may not be statically configured
on the FPGA all at once. In this case, the number of
operations associated with the pipeline workflow 400 that
may be off-loaded to the FPGA may be reduced or limited
according to the available resources of the FPGA.
[0068] On the other hand, as shown in FIG. 5B, when
at least some of the operations of the pipeline workflow
400 are dynamically configured when needed or desired,
then the operations associated with the pipeline workflow
400 may be offloaded to the FPGA. For example, if the
operations 502 associated with the parsing, the decom-
pressing, and the filtering stages (e.g., the second stage
404 and the third stage 406) are statically configured,
and the other remaining operations 504 and 506 associ-
ated with the sorting, grouping, and aggregating stages
(e.g., the fourth stage 408, the fifth stage 410, and the
sixth stage 412) are dynamically reconfigured as needed
or desired, then the maximum number of LUTs used at
any time may be 227K (e.g., 127K for the statically con-
figured logic blocks and 100K for the dynamically config-
ured logic blocks). Accordingly, the number of operations
that may be off-loaded to the FPGA may be increased
when at least some of the operations are dynamically
configured as needed or desired.
[0069] In some embodiments, a reconfiguration time
of the dynamic logic blocks may be reduced (e.g., to
about 1 ms), because the configuration files may be
stored in the config buffer 306 (e.g., see FIG. 3) for quick
retrieval when needed or desired. In this case, when a
different operation is to be performed by one of the dy-
namic logic blocks 208, a corresponding configuration
file may be loaded therein from the config buffer 306,
such that the dynamic logic block may be reconfigured
within 1 ms. However, even in this case, there may be
latency-critical operations that may be unable to tolerate
the amount of time it takes to reconfigure the dynamic
logic blocks. Accordingly, in some embodiments, the op-
erations in the pipeline workflow corresponding to laten-
cy-critical operations may be configured in the static logic
blocks, such that the reconfiguration time is not added
to those operations, and the dynamic logic blocks may
be configured with other operations (e.g., throughput-ori-
ented operations) of the pipeline workflow that may be
able to tolerate the time it takes to reconfigure the dy-
namic logic blocks, such that utilization of the resources
of the RIC device 116 may be improved. However the
present disclosure is not limited thereto. For example, as
discussed with reference to FIGS. 6A and 6B, in some
embodiments, the dynamic logic blocks may be recon-
figured while other logic operations are being executed,
such that the reconfiguration time of the dynamic logic
blocks may be hidden.
[0070] FIGS. 6A and 6B illustrate a method 600 of ac-
celerating data-intensive operations by a storage device,
according to one or more example embodiments of the
present disclosure. However, the present disclosure is
not limited to the sequence or number of the operations
of the method 600 shown in FIGS. 6A and 6B, and can

be altered into any desired sequence or number of op-
erations as recognized by a person having ordinary skill
in the art. For example, in some embodiments, the order
may vary, or the method may include fewer or additional
operations.
[0071] Referring to FIGS. 6A and 6B, the method starts
when one or more commands are received by the storage
device 104 from the host device 102 to process data
stored in the storage memory 114 (e.g., see FIG. 1). The
commands may be associated with a particular pipeline
workflow, such that the pipeline workflow may be divided
into a plurality of stages, each of the stages correspond-
ing to one or more data-intensive operations associated
with the commands. For each of the stages, one or more
logic operations may be dynamically configured in the
dynamic logic blocks 208 of the RIC device 116 (e.g.,
see FIG. 2) to execute the operations. For example, a
first logic operation may be configured in a logic block
(e.g., a dynamic logic block), and input data (e.g., stored
in the storage memory 114) may be transmitted into the
logic block actively executing the first logic operation at
operation 605. The logic block may be configured to store
outputs thereof in an intermediate output buffer (e.g., the
intermediate I/O buffer 304 in FIG. 3) at operation 610.
[0072] As the outputs of the logic block fill the interme-
diate output buffer, the intermediate output buffer is mon-
itored to determine whether a threshold (e.g. a high water
mark (HWM)) is reached at operation 615. If the HWM
is not hit at operation 615 (e.g., NO), then it is determined
whether the first logic operation has completed at oper-
ation 620. If the first logic operation has not completed
at operation 620 (e.g., NO), then the first logic operation
continues to execute until the HWM is reached at oper-
ation 615 or the first logic operation has completed at
operation 620. On the other hand, if the first logic oper-
ation has completed at operation 620 (e.g., YES), then
the process continues (A) at operation 625, which will be
discussed with reference to FIG. 6B below.
[0073] If the HWM is reached at operation 615 (e.g.,
YES), then a second logic operation is configured (e.g.,
in a second dynamic logic block) while the first logic op-
eration continues to execute at operation 630. In this
case, for example, the reconfiguration time of the second
logic operation in the second logic block may be hidden
(e.g., may be inconsequential), because the first logic
operation continues to be executed while the second log-
ic operation is being configured. In this case, in some
embodiments, the second logic operation may be an ex-
tension of the first operation. The method 600 may work
best when the first logic operation and the second logic
operation form a throughput-oriented pipeline (e.g., a
minimal version of the pipeline workflow 400), but the
present disclosure is not limited thereto.
[0074] The first logic operation continues to be execut-
ed until it reaches the end of the intermediate output (e.g.,
the intermediate output buffer is full) in which case it is
suspended, or the first logic operation runs out of the
input data in which case it is deemed completed. Accord-

21 22 



EP 3 859 509 A1

13

5

10

15

20

25

30

35

40

45

50

55

ingly, it is determined whether the first logic operation is
suspended at operation 635. If the first logic operation is
not suspended at operation 635 (e.g., NO), then the first
logic operation runs to completion, in which case, the
intermediate output buffer of the first logic operation is
designated as a final output buffer at operation 640. The
data stored in the final output buffer may be transmitted
to the host device 102.
[0075] On the other hand, if the first logic operation is
suspended at operation 635 (e.g., YES), then the inter-
mediate output buffer of the first logic operation is des-
ignated as an input buffer for the second logic operation
at operation 645, and the input buffer of the first logic
operation is designated as the output buffer for the sec-
ond logic operation at operation 650. The data in the in-
termediate output buffer (which is now designated as the
input buffer for the second logic operation) is processed
according to the second logic operation at operation 655.
The method 600 may repeat until no inputs remain, and
the entire pipeline workflow of operations are performed
on all the inputs.
[0076] Referring to FIG. 6B, if the first logic operation
has completed at operation 620 (e.g., YES), then the
process continues (A) at operation 625, where it is de-
termined whether there are any additional logic opera-
tions in the pipeline workflow to configure. If there are no
additional logic operations to configure for the pipeline
workflow at operation 625 (e.g., NO), then the interme-
diate output buffer of the first logic operation is designated
as a final output buffer at operation 660. The data stored
in the final output buffer may be transmitted to the host
device 102.
[0077] On the other hand, if there are additional logic
operations to configure for the pipeline workflow at op-
eration 625 (e.g., YES), then the next logic operation is
configured (e.g., in a second logic block) at operation
665. The intermediate output buffer of the first logic op-
eration is designated as an input buffer for the next logic
operation at operation 670, and the input buffer of the
first logic operation is designated as the output buffer for
the next logic operation at operation 675. The data in the
intermediate output buffer (which is now designated as
the input buffer for the next logic operation) is processed
according to the next logic operation at operation 680,
and the method 600 may repeat until no inputs remain,
and the entire pipeline workflow of operations are per-
formed on all the inputs.
[0078] Although some example embodiments have
been described with reference to the accompanying
drawings, the present disclosure may be embodied in
various different forms, and should not be construed as
being limited to only the illustrated embodiments herein.
Rather, these embodiments are provided as examples
so that this disclosure will be thorough and complete, and
will fully convey the aspects and features of the present
disclosure to those skilled in the art. Thus, description of
aspects and features within each example embodiment
should typically be considered as available for other sim-

ilar aspects and features in other example embodiments,
unless otherwise specified.
[0079] It will be understood that, although the terms
"first," "second," "third," etc., may be used herein to de-
scribe various elements, components, regions, layers
and/or sections, these elements, components, regions,
layers and/or sections should not be limited by these
terms. These terms are used to distinguish one element,
component, region, layer or section from another ele-
ment, component, region, layer or section. Thus, a first
element, component, region, layer or section described
below could be termed a second element, component,
region, layer or section, without departing from the spirit
and scope of the present disclosure.
[0080] The terminology used herein is for the purpose
of describing particular embodiments and is not intended
to be limiting of the present disclosure. As used herein,
the singular forms "a" and "an" are intended to include
the plural forms as well, unless the context clearly indi-
cates otherwise. It will be further understood that the
terms "comprises," "comprising," "includes," and "includ-
ing," "has, " "have, " and "having," when used in this
specification, specify the presence of the stated features,
integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. As used
herein, the term "and/or" includes any and all combina-
tions of one or more of the associated listed items. Ex-
pressions such as "at least one of," when preceding a
list of elements, modify the entire list of elements and do
not modify the individual elements of the list.
[0081] As used herein, the term "substantially,"
"about," and similar terms are used as terms of approx-
imation and not as terms of degree, and are intended to
account for the inherent variations in measured or calcu-
lated values that would be recognized by those of ordi-
nary skill in the art. Further, the use of "may" when de-
scribing embodiments of the present disclosure refers to
"one or more embodiments of the present disclosure."
As used herein, the terms "use," "using," and "used" may
be considered synonymous with the terms "utilize," "uti-
lizing," and "utilized," respectively.
[0082] Unless otherwise defined, all terms (including
technical and scientific terms) used herein have the same
meaning as commonly understood by one of ordinary
skill in the art to which the present disclosure belongs. It
will be further understood that terms, such as those de-
fined in commonly used dictionaries, should be interpret-
ed as having a meaning that is consistent with their mean-
ing in the context of the relevant art and/or the present
specification, and should not be interpreted in an ideal-
ized or overly formal sense, unless expressly so defined
herein.
[0083] While Figures 1-3 show an example packaging,
it will be evident to one skilled in the art that various func-
tions and components may be arranged in other suitable
ways by application of semiconductor packaging, printed

23 24 



EP 3 859 509 A1

14

5

10

15

20

25

30

35

40

45

50

55

circuit board design, integrated circuit design, system de-
sign, and design of racks or clusters of systems as well,
depending on the number of components used or nec-
essary for processing data at scale.
[0084] Furthermore, any of the interconnects shown in
Figures 1-3 may be replaced by any suitable wired or
wireless connections ranging from as simple as conduc-
tive or optical linkage inside an integrated circuit, to
through silicon vias or other non-silicon optical, inductive,
conductive, or capacitive linkages between dies, pack-
ages or chiplets, to printed circuit board traces, wire
bonds, switched or direct cables or wires between chips,
packages and/or systems, or as complex as entire data
center scale or rack scale fabrics.
[0085] The inventive concepts of Figures 1-3 may be
applied to systems of any suitable scale, ranging from
single core host processor to multicore host processors,
from single channel of host memory to multiple channels
each containing multiple devices such as DIMMs, from
single host to hundreds of thousands or more, from one
storage device to many in each host or on a fabric at-
tached to many hosts, from devices with one storage
controller to those containing several controllers, from
those containing one RIC device to those containing
many perhaps of several different varieties.
[0086] Accordingly, although some example embodi-
ments have been described, those skilled in the art will
readily appreciate that various modifications are possible
in the example embodiments without departing from the
spirit and scope of the present disclosure. It will be un-
derstood that descriptions of features or aspects within
each embodiment should typically be considered as
available for other similar features or aspects in other
embodiments, unless otherwise described. Therefore, it
is to be understood that the foregoing is illustrative of
various example embodiments and is not to be construed
as limited to the specific example embodiments disclosed
herein, and that various modifications to the disclosed
example embodiments, as well as other example em-
bodiments, are intended to be included within the spirit
and scope of the present disclosure as defined in the
appended claims, and their equivalents.

Claims

1. A storage device comprising:

a storage controller configured to receive data
from a host device, and to store the data in stor-
age memory; and
a reconfigurable integrated circuit communica-
bly connected to the storage controller, and con-
figured to accelerate logic operations executed
on the data stored in the storage memory, the
reconfigurable integrated circuit comprising:

a first logic block configured to execute a

static logic operation from among the logic
operations;
a second logic block configured to execute
one or more dynamic logic operations from
among the logic operations; and
a plurality of memory buffers configured to
store inputs and outputs of the first and sec-
ond logic blocks.

2. The storage device of claim 1, wherein the logic op-
erations correspond to a pipeline workflow, the first
logic block is configured to be statically configured
with the static logic operation for the pipeline work-
flow, and the second logic block is configured to be
dynamically reconfigured with the one or more dy-
namic logic operations for at least one stage of the
pipeline workflow.

3. The storage device of claim 2, wherein the one or
more dynamic logic operations comprises a first dy-
namic logic operation and a second dynamic logic
operation, the second logic block is configured with
the first dynamic logic operation during a first stage
of the pipeline workflow, and the second logic block
is dynamically reconfigured with the second dynamic
logic operation during a second stage of the pipeline
workflow.

4. The storage device of claim 1, wherein the plurality
of memory buffers comprises:

an input/output (I/O) buffer configured to store
the inputs and the outputs of the first and second
logic blocks;
an intermediate I/O buffer configured to store
intermediate outputs of the second logic block
while the second logic block is being reconfig-
ured; and
a configuration buffer configured to store con-
figuration files to reconfigure the second logic
block.

5. The storage device of claim 4, wherein the second
logic block is dynamically reconfigured by loading a
configuration file from among the configuration files
stored in the configuration buffer to the second logic
block.

6. The storage device of claim 4, wherein outputs of
the second logic block is stored in the intermediate
I/O buffer during a first stage, the second logic block
is reconfigured with a different dynamic logic instruc-
tion for a second stage, and the intermediate I/O buff-
er is designated as the input buffer of the second
logic block during the second stage.

7. The storage device of claim 1, wherein the static logic
operation corresponds to a latency-critical operation,

25 26 



EP 3 859 509 A1

15

5

10

15

20

25

30

35

40

45

50

55

and the one or more dynamic logic operations cor-
respond to a throughput-oriented operation.

8. The storage device of claim 7, wherein the latency-
critical operation is an operation having a completion
time that is less than a reconfiguration time of the
second logic block.

9. The storage device of claim 1, wherein the storage
device is a solid-state drive.

10. The storage device of claim 9, wherein the reconfig-
urable integrated circuit is a field programmable gate
array (FPGA).

11. A method for accelerating operations in a storage
device comprising a storage controller, storage
memory, and a reconfigurable integrated circuit
comprising a first logic block, a second logic block,
and a buffer, the method comprising:

executing, by the first logic block, a first logic
operation on input data stored in the storage
memory;
storing, by the first logic block, outputs of the
first logic operation in an intermediate output
buffer of the buffer;
configuring, by the reconfigurable integrated cir-
cuit, a second logic operation in the second logic
block;
designating, by the reconfigurable integrated
circuit, the intermediate output buffer as an input
buffer for the second logic operation; and
executing, by the second logic block, the second
logic operation on the outputs of the first logic
operation stored in the intermediate output buff-
er.

12. The method of claim 11, wherein the second logic
operation is configured in the second logic block
while the first logic operation is executing in the first
logic block.

13. The method of claim 12, wherein the configuring of
the second logic operation in the second logic block
comprises:

monitoring a value of the intermediate output
buffer;
determining that the value exceeds a threshold
value; and
configuring the second logic operation in the
second logic block in response to the value ex-
ceeding the threshold value.

14. The method of claim 13, wherein the threshold value
is a high water mark of the intermediate output buffer.

15. The method of claim 12, wherein the buffer compris-
es a configuration buffer configured to store config-
uration files for configuring the second logic block.

16. The method of claim 15, wherein the configuring of
the second logic operation in the second logic block
comprises:
loading a bit file corresponding to the second logic
operation from among the configuration files stored
in the configuration buffer into the second logic block.

17. The method of claim 11, wherein the designating of
the intermediate output buffer as the input buffer for
the second logic operation comprises:

determining whether the first logic operation is
suspended;
designating the intermediate output buffer as the
input buffer for the second logic operation in re-
sponse to determining that the first logic opera-
tion is suspended; and
designating an input buffer of the first logic op-
eration as an output buffer for the second logic
operation.

18. The method of claim 17, wherein the determining
whether the first logic operation is suspended com-
prises:
determining whether an end of the intermediate out-
put buffer is reached.

19. The method of claim 11, further comprising:

determining that the second logic block has
processed all of the outputs of the first logic op-
eration stored in the intermediate output buffer;
and
designating an output buffer of the second logic
operation as a final output buffer.

20. The method of claim 11, wherein the storage device
is a solid state drive, and the reconfigurable integrat-
ed circuit is a field programmable gate array (FPGA).

27 28 



EP 3 859 509 A1

16



EP 3 859 509 A1

17



EP 3 859 509 A1

18



EP 3 859 509 A1

19



EP 3 859 509 A1

20



EP 3 859 509 A1

21



EP 3 859 509 A1

22



EP 3 859 509 A1

23

5

10

15

20

25

30

35

40

45

50

55



EP 3 859 509 A1

24

5

10

15

20

25

30

35

40

45

50

55



EP 3 859 509 A1

25

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 62966443 [0001]


	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

