FIELD
[0001] The present disclosure relates to a hearing aid. More particularly, the disclosure
relates to a hearing aid where an induction coil is arranged in the hearing aid, the
coil being used at least for charging a battery of the hearing aid, and the present
disclosure furthermore relates to corresponding method and systems.
BACKGROUND
[0002] In particular the size of an in-the-ear hearing aid may be considered an important
parameter, e.g., as it dictates the amount of users the instruments can fit and/or
because a smaller size is advantageous for reducing or eliminating the visual appearance
of the hearing aid when placed in an ear canal of the user/wearer. A smaller size,
and optionally custom shaped ear shell, however, might also increase demands for vision
and dexterity required for providing power to the hearing aid (such as replacing or
recharging a discharged battery). Introducing a fixed shaped connection interface
may often increase size and/or complexity of the instrument thereby making it less
attractive and/or more expensive to make. Further, as hearing aids are often exposed
to harsh environments at or in the ear, it is advantageous if the hearing aid has
as few as possible openings. As in particular in-the-ear hearing aids are individually
shaped, it is not always possible to predict where fixed sized and shaped elements
are placed optimally without prior knowledge of each ear canal.
[0003] Therefore, there is a need to provide a flexible solution that enables reducing size
and/or facilitates (easily and/or simply) providing a variety of functions to the
hearing aid.
SUMMARY
[0004] According to a first aspect, there is provided a hearing aid configured to be arranged
at least partly in the ear canal of a specific person. The hearing aid may comprise
a faceplate, or at least a first outer part configured to face the environment if
the hearing aid is to be positied at least partly in the ear canal. The hearing aid
may comprise a custom ear shell, adapted to fit the ear canal of a specific person/user.
The custom ear shell may then be connected to the faceplate or first part. The hearing
aid may comprise a rechargeable battery. The hearing aid may comprise an induction
coil, such as a hearing aid induction coil, for wireless charging of the rechargeable
battery. The inductive coil may serve other purposes as well, such as communication,
programming etc.
[0005] When charging a custom made Hearing Instrument with a rechargeable battery, the very
small and individually shaped instruments may be difficult to connect to either by
electrical contact or without contact. Other than making the charging difficult to
do from a technical perspective, it may also make it increasingly difficult for the
user to handle the charging situation because better vision and dexterity is required
in turn. Introducing a well defined connection interface may often increase size and/or
complexity of the instrument thereby making it less attractive and/or more expensive
to make.
[0006] Hearing aid may be referred to interchangeably with Hearing Instrument or Instrument.
[0007] At least some, such as all, hearing aids, such as custom styles e.g. IIC (Invisibly
In Canal) and Completely In Canal (CIC), have shapes which are wider than higher that
causes the instrument to naturally fall on one face, and if an induction coil is placed
in the same plane as this face, inductive charging is made possible if an induction
coil is placed in the Instrument, and more efficitnt if the coil is located at this
face. The orientation is important because it allow a better and more suitable coupling
between the one or more induction coils in the (external) charger and the Instrument;
as parallely orientated planes are typically desirable. It might be of advantage if
the hearing aid induction coil is thin and flexible and free floating to allow it
to adapt to the many shapes custom instruments have.
[0008] It may thus be seen as an advantage of the present invention that it facilitates
charging in an easy and simple manner, where the requirements to vision and dexterity
may be seen as limited or low, e.g., since it may only be required to place the hearing
aid on or in a charger, and since the induction coil may then - being fixed to or
by the ear shell - be oriented in an appropriate position for charging. This may dispense
with the need for carefully placing electrical leads in contact with charging pads
or carefully positioning and/or orienting the hearing instrument into a suitable position
and/or orientation for charging.
[0009] Additionally, when designing a custom Hearing Instrument, each Hearing Instrument
is made to fit the individual user's ear canal. As it needs to have room for all the
parts that the Hearing Instrument is made from, the shape of the parts and their placements
become a restriction in the design and subsequently size of the Instrument. The Instrument
size is an important parameter as it dictates the amount of users the instruments
can fit. An advantage of fixing the induction coil to the ear shell may be that there
may then be no restrictions with respect to the orientation of the induction coil,
such as the orientation of the induction coil with respect to the faceplate, which
may in turn entail that the position and/or orientation of the induction coil may
be optimized with respect to a size of the hearing aid, which may then in turn enable
that the hearing aid may be less visible or not visible at all during use. Alternatively,
or in combination therewith, the coil may be fixed by the shell, meaning that the
coil may be placed inside the ear shell at a location or volume or area where at least
part of the coil abut the inner surface of the ear shell so that this or these parts
help hold the coil in position. Additionally, an optional adhesive may be applied
in either of both cases. The adhesive may be in the form of or include a gel or pad,
or other suitable form. Support for holding the induction coil in a desired position
and/or orientation may be part of the ear shell, such as the ear shell being a custom
made outer shell of the hearing aid, and/or a formable part interfacing the faceplate.
[0010] In case the induction coil is to be fastened inside the hearing aid housing, the
induction coil may be fixed to the ear shell by any conceivable means, such as glued
to the ear shell and/or fixed to the ear shell via an interference fit and/or via
a protruding structure on the inner surface of the ear shell and/or via a structure
attached to the inner surface of the ear shell. The induction coil may be attached
to the faceplate or exclusively to the ear shell. The induction coil may thus be positioned
in the space created or established by the custom shell and the faceplate. The induction
coil may be formed entirely on a single piece of substrate, with connection(s) to
an energy storage to be charged and/or communication interface as descripbed in more
detail later.
[0011] By 'hearing aid' may generally be understood a hearing device adapted to improve
or augment the hearing capability of a user by receiving an acoustic signal from a
user's surroundings, generating a corresponding audio signal, possibly modifying the
audio signal and providing the possibly modified audio signal as an audible signal
to at least one of the user's ears. In general, a hearing device includes i) an input
unit such as a microphone for receiving an acoustic signal from a user's surroundings
and providing a corresponding input audio signal, and/or ii) a receiving unit for
electronically receiving an input audio signal. The hearing device further includes
a signal processing unit for processing the input audio signal and an output unit
for providing an audible signal to the user in dependence on the processed audio signal.
A 'hearing aid' may be understood as is common in the art, such as a hearing aid adapted
to be worn entirely or partly in the pinna and/or in the ear canal of the user.
[0012] The hearing aid may be an in-the-ear hearing aid, such as the in-the-ear hearing
aid may be an 'In-the-Canal' hearing aid and/or a 'Completely-in-Canal' hearing aid
and/or a Invisibly In Canal (IIC) hearing aid and/or a Completely In Canal (CIC) hearing
aid. An 'in-the-ear' type hearing aid may be understood to encompass also an 'In-the-Canal'
hearing aid and/or a 'Completely-in-Canal' hearing aid and/or a Invisibly In Canal
(IIC) hearing aid and/or a Completely In Canal (CIC) hearing aid.
[0013] The induction coil may be further configured for communication, such as being operable
between the two states (charging and communication), such operation might be dependent
on one or more wireless interfaces in the hearing aid. The operation may be shifted
intermittently, according to a schedule, dependent on detected conditions. During
a charinging process, the communication coil may be operated to transmit data from
the hearing aid to a charger device in certain time slots, or via a return channel
'on top of'/parallel to the carge being received.
[0014] According to the present disclosure, in a hearing aid, an induction coil, such as
described herein, may be arranged as a printed material on, or otherwise deposited
on, a flexible substrate, such as the substrate being bendable and/or deformable and/or
elastic. An advantage of this may be that it enables pushing the coil into a position
which does not accommodate its original size, but then due to the flexibility of the
substarte, the substrate may bend and/or fold and (slightly) change size/volume thereby
enabling fitting the coil into a position in the ear shell previously not suitable
to hold a coil (such as without damaging the ear shell).
[0015] Advatageously the flexible substrate and the battery are provided as separate components.
Eventhough they may be provided as separate components, it may be arranged so that
at least part of them may be attached or connected.
[0016] In a hearing aid according to the present disclosure, the material of the flexible
substrate may have a Young's modulus being lower than a Young's modulus of the material
of the ear shell, such as wherein the substrate deforms when pressed against the ear
shell (such as not the opposite way around). This may ensure that the ear shell is
not damaged, or at least lower the risk of damaging the shell. The flexibility of
the substrate may, alternatively or additionally, be achieved by appropriately choosing
a thickness of the substrate that allow for beinding or shaping. The flexible substrate
may for instance be based on or include a PI (polyimide) film and a PET (polyester)
film, with a flexible copper clad laminate, or other suitable printed circuit board
technology.
[0017] In a hearing aid according to the present disclosure, the induction coil may be arranged
with respect to the ear shell so that, when the hearing aid is placed on a planar
horizontal surface in an orientation resulting in the center of gravity being closest
to the surface, then the induction coil has an orientation being an orientation resulting
in maximum (such as maximum being understood to be within an angle of 10°, such as
5°, such as 2°, such as 1°, from an absolutely optimal angle) induced current for
a varying, vertical magnetic field. The orientation may be less than optimal, the
orientation should at least provide for an adequate field strength so that the battery
may be charged. This could be less than maximum induced current. The charger could
be confgirued so at to receive information about the induced current in the coil and/or
the charge current for the battery so that when the hearing aid is lying still in/on
the charger, the field strength could be increased and/or decreased dependent on a
(current) need of the hearing aid.
[0018] A hearing aid with a shell shaped for a specific ear canal may include an area specifically
shaped so as to achieve that the center of gravity of the hearing aid results in an
optimized orientation of the coil relative to a charing coil of an external charger
device. This could for instance be one or more areas that together form one or more
legs or supports that the hearing aid will rest on while the hearing aid is to be
charged.
[0019] A possible advantage of this embodiment is that when an external charging magnetic
field has vertical field lines, such as is, or includes, a vertical magnetic field,
then a maximum charging current is induced when the hearing aid is in its lowest (potential)
energy orientation (an orientation resulting in the center of gravity being closest
to the surface, i.e., with the minium potential/gravitational energy), which might
typically be the case when the hearing aid is simply (carelessly) laid on a surface,
such as a surface of an external charger. This may be beneficial for enabling simply
placing the hearing aid on a surface, i.e., without requiring very much of vision
and dexterity, and an optimal charging may ensue.
[0020] The coil and/or hearing aid may be formed so that an area vector of the hearing aid
induction loop has an area vector making an acute angle with vertical of less than
10°, such as less than 5°, such as less than 2°, such as less than 1°, when the hearing
aid is placed on a planar surface in an orientation resulting in the center of gravity
being closest to the surface.
[0021] In a hearing aid according to the present disclosure, the induction coil may be fixed
to the ear shell independently of the faceplate , such as glued to the ear shell and/or
fixed to the ear shell via an interference fit and/or via a protruding structure on
the inner surface of the ear shell and/or via a structure attached to the inner surface
of the ear shell. By 'fixed to the ear shell independently of the faceplate' may be
understood that the induction coil is fixed to the ear shell and said fixation is
independent of the faceplate, such as the faceplate may be removed while the induction
coil is still fixed to the ear shell. It is still encompassed that the induction coil
may also be fixed to the faceplate, i.e., the induction coil may be fixed both to
the ear shell and the faceplate or fixed exclusively to the ear shell. An advantage
of the induction coil being fixed to the ear shell independently of the faceplate
may be that it enables removing or mounting the faceplate while the induction coil
is (or remains) fixed to the ear shell. Another advantage of having the induction
coil fixed to the ear shell independently of the faceplate may be that it enables
positioning and/or orienting the induction coil optimally with a view to reduce or
minimize a size of the in-the-ear hearing aid.
[0022] In a hearing aid according to the present disclosure, the induction coil may be fixed
exclusively to the ear shell, such as glued to the ear shell and/or fixed to the ear
shell via an interference fit and/or via a protruding structure on the inner surface
of the ear shell and/or via a structure attached to the inner surface of the ear shell.
An advantage of the induction coil being fixed exclusively to the ear shell may be
that it enables removing or mounting other parts, such as the faceplate, while the
induction coil is (or remains) fixed to the ear shell. Another advantage of having
the induction coil fixed to the ear shell independently of the faceplate may be that
it enables positioning and/or orienting the induction coil optimally with a view to
reduce or minimize a size of the in-the-ear hearing aid. By an 'interference fit'
may also be known as a press fit or a friction fit and may be understood as a fastening
between two parts, which is achieved by friction after the parts are pushed together,
rather than by any other means of fastening.
[0023] In a hearing aid according to the present disclosure, a main axis of the induction
coil, such as an axis for which the induction coil may have a minimum moment of inertia,
being neither orthogonal nor parallel with a plane of the faceplate, such as a best-fit
mathematical plane with respect to the faceplate, such as wherein an angle between
said axis and said plane is within [5°; 85°], such as within [10°; 80°], such as within
[20°; 70°], such as within [30°; 60°]. A possible advantage of the main axis of the
induction coil being neither orthogonal to nor parallel with a plane of the faceplate,
may be that it enables an improved orientation of the induction coil for the purpose
of reducing or minimizing a size of the in-the-ear hearing aid.
[0024] In a hearing aid according to the present disclosure, the faceplate may comprise
an antenna configured for radiowave communication with an external unit, such as comprises
an antenna configured for high frequency wireless communication, such as comprises
an antenna configured with an operating frequency of 2.4 GHz or 5.8 GHz, or other
suitable high frequency. A possible advantage of this may be that it yields an, such
as another, channel of communication. By 'configured with an operating frequency of
2.4 GHz' may be understood suitable for the 2.4 GHz industrial, scientific and medical
(ISM) radio band. By 'antenna configured with an operating frequency of 2.4 GHz' may
be understood an antenna suitable for transmission and/or receipt of electromagnetic
signals within the 2.4 GHz ISM band and/or within the wavelength range [2.4; 2.5]
GHz. By 'configured with an operating frequency of 5.8 GHz' may be understood suitable
for the 5.8 GHz industrial, scientific and medical (ISM) radio band. By 'antenna configured
with an operating frequency of 5.8 GHz' may be understood an antenna suitable for
transmission and/or receipt of electromagnetic signals within the 5.8 GHz ISM band
and/or within the wavelength range [5.725; 5.875] GHz.
[0025] A wireless interface in communication with the antenna may be configured to communicate
using a communication protocol, such as Bluetooth, such as Bluetooth low energy, a
proprietary protocol or other suitable communication protocol.
[0026] In a hearing aid according to the present disclosure, the hearing aid may comprises
one or more microphones, such as one microphone, such as two microphones. The microphones,
or input transducers, may be positioned at or in a faceplate of the hearing aid, or
generally in the area of the hearing aid that is configured to face the environment
when the hearing aid is worn at least partially in the ear canal of the user/wearer.
Each microphone may comprise one, two or more microphone elements, such as two element
constituting a directional microphone or one microphone element constituting an omnidirectional
microphone, so that a hearing aid comprising two single element microphones together
form a directional microphone.
[0027] In a hearing aid according to the present disclosure, the induction coil may be placed
out of contact with the faceplate, such as not in contact with the faceplate. A possible
advantage of placing the induction coil out of contact with the faceplate may be that
the position and/or the orientation of the induction coil may be kept independent
of the faceplate. Another possible advantage of placing the induction coil out of
contact with the faceplate may be that the face plate can be removed without interfering
with the position and/or orientation of the induction coil. Another possible advantage
of placing the induction coil out of contact with the faceplate may be that the ear
shell and induction coil may be assembled prior to mounting of the faceplate.
[0028] In a hearing aid according to the present disclosure, the induction coil may float
relative to the faceplate or the end of the hearing aid configured to face the environment
when the hearing aid is positioned in the ear canal. If the induction coil in the
hearing aid is not fixed to the face plate but can float freely to fit optimally the
ear canal; e.g. rotate and/or tilt relative to faceplate, hearing aids can be made
smaller and a better fitrate obtained, i.e. more users can be fitted with the hearing
aids. A floating induction coil is possible. By 'the induction coil floats relative
to the faceplate' may be understood that the position and/or orientation of the induction
coil may be varied with respect to the faceplate.
[0029] In a hearing aid according to the present disclosure the induction coil may be fixed
to the ear shell via protrusions monolithically integrated with the ear shell. Said
protrusions may enable an interference fit.
[0030] In a hearing aid according to the present disclosure, a substrate carrying at least
one electronic component may be included, wherein said substrate may carry at least
one electronic component which floats relative to the faceplate or is attached to
the faceplate.
[0031] In a hearing aid according to the present disclosure, a protection layer may be applied
to at least one electronic component in the hearing aid. If a protection layer, such
as a thin layer of liquid protection, such as epoxy or silicone or polyurethane (PU))
is applied on at least one electronic component, such as the integrated circuites
(ICs), such as especially the edges of the ICs, the risk of damage may be dramatically
reduced. The effect of the protection layer may vary with the properties, such as
the effects being one or more of the effects in the following non-exhaustive list:
Stabilisation through filling of (micro-)cracks and/or added force distribution layer
and/or cushioning...
[0032] In a hearing aid according to the present disclosure, the ear shell maybe formed
monolithic, such as made in one part, such as 3D printed. A possible advantage of
having the ear shell monolithic may be that it enables one or more of simplified production,
simplified assembly and or increased resistance against moisture and liquids.
[0033] In a hearing aid according to the present disclosure, the hearing aid may comprise
a housing, said housing comprising a faceplate and an ear shell, and wherein the hearing
aid further comprises a telecoil arranged within the housing. According to the present
disclosure, the induction coil is not a telecoil.
[0034] According to the present disclosure, there is presented a plurality of the hearing
aids each having to the one or more features of a hearing aid as disclosed in the
present disclosure, such as wherein electronic components within each hearing aid
of the plurality of hearing aid are identical across the plurality of hearing aids,
wherein the shape and/or size of the ear shells are different with respect to each
other, such as wherein the shape and/or size of the ear shells are shaped for respective
left and right ears of a specific person or group of persons, wherein the ear shells
have different geometries with respect to each other, and wherein the positions and/or
orientations of the induction coils with respect to the repective faceplate are different
with respect to each other hearing aid.
[0035] A possible advantage of having the shape and/or size of the ear shells being different
with respect to each other may be that the hearing aids may then fit different users,
such as each hearing aid may be optimized to a specific user. A possible advantage
of having the positions and/or orientations of the induction coils with respect to
the faceplates being different with respect to each other may be that it enables minimizing
or reducing a size of each individual hearing aid.
[0036] According to the present disclosure, there is presented a binaural system comprising
two hearing aids according to the present dislcosure. The hearing aid may be a "binaural
(hearing) system", such as a system comprising two hearing aids where the two hearing
aids are adapted or configured to cooperatively provide audible signals to a respective
one of the user's ears.
[0037] According to the present discourse, there is further presented a system comprising
a hearing aid according to the present discosure, a charger comprising a charger induction
coil wherein, when the hearing aid may be positioned on/in the charger, the orientation
of the hearing aid induction coil with respect to the ear shell may be arranged so
that the hearing aid induction coil may have or has an orientation being substantially
identical to, such as identical to, an orientation resulting in maximum induced current
for a magnetic charging field from the charger induction coil upon said magnetic charging
field changing magnitude. An advantage of this system may be that it facilitates charging
in an easy and simple manner, where the requirements to vision and dexterity may be
seen as limited or low, e.g., since it may only be required to place the hearing aid
on or in the charger, and since the induction coil may then - being fixed to the ear
shell -be oriented in an appropriate position for charging. This may dispense with
the need for carefully placing electrical leads in contact with charging pads or carefully
positioning and/or orienting the hearing instrument into a suitable position and/or
orientation for charging. By 'substantially identical to' may be understood deviating
less than 20°, such as less than 10°, such as less than 5°, such as less than 2°,
such as less than 1° from said orientation.
[0038] According to the present disclosure, there is presented a method for providing a
hearing aid, said method may comprise obtaining data, such as three-dimensional data,
representative of a shape and/or size of an ear canal of a specific person, such as
an ear canal running at least partially from the outer ear to the middle ear. The
method may comprise establishing a digital model of the custom shell of the hearing
aid for said ear canal based on said data. The method may comprise said providing
including determining a position and/or orientation of an induction coil in an inner
space of said ear shell, which position and/or orientation increases or maximizes
a distance from the outer ear to the face plate. This method may be beneficial for
receiving information regarding the geometry of the ear canal and providing information,
such as a computer aided design (CAD) model or another digital model, of an ear shell
for said ear canal, wherein a position and/or orientation of a induction coil is optimized
with a view to minimize or reduce a size of said ear shell (and/or maximize a distance
from the outer ear to the faceplate, which maximization may reduce or eliminate the
visibility of the in-the-ear hearing aid during use). A result of this method may
be information relating to an ear shell, such as a digital model of the ear shell.
[0039] The position and/or orientation of the induction coil may advantageously be optimized
during the design of the in-the-ear hearing aid, such as at least during the design
of a custom designed part (such as the ear shell) of the hearing aid, and that this
optimization may be carried out with a view to minimize or reduce a size of said ear
shell (and/or maximize a distance from the outer ear to the faceplate, which maximization
may reduce or eliminate the visibility of the in-the-ear hearing aid during use).
It may be understood that during the design process, the induction coil may 'float'
with respect to the faceplate, such as the position and/or oritentation of the induction
coil may be optimized independently of the position and/or orientation of the faceplate.
This may enable an improved design of the in-the-ear hearing aid with respect to a
situation where there is a restriction on the orientation and/or position of the induction
coil, such as where the induction coil is in a fixid spatial relationship with the
faceplate.
[0040] According to the present disclosure a method may be provided for providing a hearing
aid and may comprise, such as comprise in this order:
Obtaining the data, such as three-dimensional data, representative of an ear shell
for said ear canal,
Providing the ear shell, such as via three-dimensional printing (optionally with protrusions
enabling interference fit with induction coil) according to said data representative
of an ear shell for said ear canal,
Attaching, such as via gluing or interference fit, the induction coil (108) to the
ear shell, Attaching a faceplate to the ear shell.
[0041] A result of this method may be an in-the-ear hearing aid.
[0042] The features and/or technical details outlined above may be combined in any suitable
ways.
[0043] According to a first alternative aspect, such as an aspect not necessarily limited
by the features of the appended claims, there is presented a hearing aid configured
to be arranged at least partly in the ear canal of a specific person, the hearing
aid comprising:
- A faceplate
- A custom ear shell, adapted to fit the ear canal of a specific person, the custom
ear shell connected to the faceplate,
- A rechargeable battery,
- An induction coil, such as a hearing aid induction coil, for wireless charging of
the rechargeable battery,
wherein the induction coil is fixed to the faceplate. This first alternative aspect
may be combined with any embodiment of the present disclosure and/or the features
of any one of the dependent claims (such as not necessarily including the subject-matter
of the independent claim to which the dependent claim refers).
[0044] According to the first alternative aspect, there may be provided a hearing aid wherein
a main axis of the induction coil, such as an axis for which the induction coil has
a minimum moment of inertia, is neither orthogonal nor parallel with a plane of the
faceplate, such as a best-fit mathematical plane with respect to the faceplate, such
as wherein an angle between said axis and said plane is within [5°; 85°], such as
within [10°; 80°], such as within [20°; 70°], such as within [30°; 60°].
[0045] According to the first alternative aspect, there may be provided an in-the-ear hearing
aid wherein the induction coil is attached to the faceplate via protrusions monolithically
integrated with the faceplate or via an insert.
[0046] According to the first alternative aspect, there may be provided an in-the-ear hearing
aid wherein the induction coil is attached exclusively to the faceplate, such as wherein
the induction coil is not attached to the ear shell.
[0047] According to a second alternative aspect, such as an aspect not necessarily limited
by the features of the appended claims, there may be presented a hearing aid configured
to be arranged at least partly in the ear canal of a specific person, the hearing
aid comprising:
- A faceplate
- A custom ear shell, adapted to fit the ear canal of a specific person, the custom
ear shell connected to the faceplate, - A rechargeable battery,
- An induction coil, such as a hearing aid induction coil, for wireless charging of
the rechargeable battery,
wherein the induction coil floats relative to the faceplate. This second alternative
aspect may be combined with any embodiment of the invention and/or the features of
any one of the dependent claims (such as not necessarily including the subject-matter
of the independent claim to which the dependent claim refers).
[0048] According to a third alternative aspect, such as an aspect not necessarily limited
by the features of the appended claims, there may be presented a hearing aid configured
to be arranged at least partly in the ear canal of a specific person, the hearing
aid comprising:
- A faceplate,
- A custom ear shell, adapted to fit the ear canal of a specific person, the custom
ear shell connected to the faceplate, such as a custom ear shell,
- A rechargeable battery,
- An induction coil, such as a hearing aid induction coil, for wireless charging of
the rechargeable battery,
- A substrate carrying at least one electronic component, such as said electronic component
being the induction coil,
wherein said substrate carrying at least one electronic component floats relative
to the faceplate or is attached to the faceplate. This third alternative aspect may
be combined with any embodiment of the invention and/or the features of any one of
the dependent claims (such as not necessarily including the subject-matter of the
independent claim to which the dependent claim refers).
[0049] The features and/or technical details outlined above may be combined in any suitable
ways.
BRIEF DESCRIPTION OF DRAWINGS
[0050] The aspects of the disclosure may be best understood from the following detailed
description taken in conjunction with the accompanying figures. The figures are schematic
and simplified for clarity, and they just show details to improve the understanding
of the claims, while other details are left out. Throughout, the same reference numerals
are used for identical or corresponding parts. The individual features of each aspect
may each be combined with any or all features of the other aspects. These and other
aspects, features and/or technical effect will be apparent from and elucidated with
reference to the illustrations described hereinafter in which:
Figure 1 is a schematic of an in-the-ear hearing aid 100 shown in a perspective view.
Figure 2 is a schematic of an in-the-ear hearing aid 100 shown in an end view.
Figure 3 is a schematic of an in-the-ear hearing aid 100 shown in a side view.
Figure 4 is a schematic showing a cross section of an example instrument.
Figure 5 illustrates a method according to an embodiment of the disclosure.
DETAILED DESCRIPTION
[0051] The detailed description set forth below in connection with the appended drawings
is intended as a description of various configurations. The detailed description includes
specific details for the purpose of providing a thorough understanding of various
concepts. However, it will be apparent to those skilled in the art that these concepts
may be practised without these specific details. Several aspects of the hearing aid,
plurality of hearing aids, binaural system, system and method are described by various
blocks, functional units, modules, components, circuits, steps, processes, algorithms,
etc. (collectively referred to as "elements"). Depending upon particular application,
design constraints or other reasons, these elements may be implemented using electronic
hardware, computer program, or any combination thereof.
[0052] The electronic hardware may include microprocessors, microcontrollers, digital signal
processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices
(PLDs), gated logic, discrete hardware circuits, and other suitable hardware configured
to perform the various functionality described throughout this disclosure. Computer
program shall be construed broadly to mean instructions, instruction sets, code, code
segments, program code, programs, subprograms, software modules, applications, software
applications, software packages, routines, subroutines, objects, executables, threads
of execution, procedures, functions, etc., whether referred to as software, firmware,
middleware, microcode, hardware description language, or otherwise.
[0053] Figure 1 is a schematic of an in-the-ear hearing aid 100 shown in a perspective view.
The hearing aid 100 has a battery drawer in a faceplate 102, an ear shell 104 and
a charge coil being an induction coil 108. However, as the hearing aid 100 may be
rechargable, the battery drawer need not be of a traditional openable battery draer
type as such, and may be dispensed with, and the battery simply mounted inside the
hearing aid 100, e.g. be fastening the battery to the faceplate 102 or elsewhere in
the interior of the hearing aid 100. The depicted hearing aid has a shape which is
wider than higher which causes the instrument to naturally fall on one face, and the
induction coil is placed in the same plane as this face, facilitating inductive charging
is made possible with the induction coil placed in the Instrument, which has an induction
current generated from a changing magnetic field with vertical field lines. The induction
coil 108 is arranged with respect to the ear shell 104 so that, when the hearing aid
is placed on a planar horizontal surface in an orientation resulting in the center
of gravity being closest to the surface, then the induction coil has an orientation
being an within an angle of 10° from vertical. The hearing aid induction coil is thin
and flexible and free floating to allow it to adapt to the many shapes custom instruments
have.
[0054] Figure 2 is a schematic of an in-the-ear hearing aid 100 shown in an end view. The
hearing aid 100 has an ear shell 104 and a flexible coil being an induction coil 108.
The figure shows the bending of the induction coil enabling it to be wedged into the
ear shell and be firmly attached there. The figure furthermore shows a speaker partially
around which the induction coil is placed, where the flexibility of the induction
coil enables it to fit into the space left in the ear shell after placement of the
speaker.
[0055] Figure 3 is a schematic of an in-the-ear hearing aid 100 shown in a side view. A
first induction coil, which in this case is a substrate with printed conductors (forming
a rectangle with sides being parallel with the sides of the paper and with the horizontal
axis) shows an orientation of the induction coil according to a restriction that the
induction coil must be placed in this orientation. This restriction may result in
an unnecessarily large in-the-ear hearing aid. A second induction coil 308 (forming
a rectangle being angled ca. 60° with respect to the rectangle formed by the first
induction coil) shows an alternative orientation of the induction coil 308 which may
be the result of an optimization with a view to reduce or minimize a size of the in-the-ear
hearing aid, and which may result in a smaller in-the-ear hearing aid than what is
possible to design with the restriction that the induction coil must be oriented as
indicated by the first induction coil.
[0056] Figure 4 is a schematic showing a cross section of an example instrument with charge
coil, being a charger induction coil, shown as a dotted rectangle (in the bottom of
the figure). The charger induction coil is placed in an external (to the hearing aid)
charger. The charger induction coil provides a varying magnetic field (with varying
magnitude) with field lines as shown by the curved dotted lines, such as substantially
vertical magnetic field lines. The figure furthermore shows a hearing aid (in the
full drawn rectangle with rounded corners) with (from left to right) a speaker, a
microphone, an amplifier (below the microphone) and a battery.
[0057] Figure 5 illustrates a method according to an embodiment of the disclosure, showing
a method for providing a hearing aid, such as a hearing aid according to the first
aspect, said method comprising:
- Obtaining 532 data, such as three-dimensional data, representative of a shape and/or
size of an ear canal of a specific person, such as an ear canal running at least partially
from the outer ear to the middle ear,
- establishing 534 a digital model of the custom shell of the hearing aid for said ear
canal based on said data,
wherein said providing includes determining 533 a position and/or orientation of an
induction coil 108 in an inner space of said ear shell 104, which position and/or
orientation increases or maximizes a distance from the outer ear to the faceplate
102, and wherein the method is further comprising, such as comprising in this order:
- Obtaining the data, such as three-dimensional data, representative of an ear shell
for said ear canal,
- Providing 536 the ear shell 104, such as via three-dimensional printing (optionally
with protrusions enabling interference fit with battery) according to said data representative
of an ear shell for said ear canal,
- Attaching 538 the induction coil 108 to the ear shell,
- Attaching 540, such as via gluing or interference fit, a faceplate 102 to the ear
shell.
[0058] As used, the singular forms "a," "an," and "the" are intended to include the plural
forms as well (i.e. to have the meaning "at least one"), unless expressly stated otherwise.
It will be further understood that the terms "includes," "comprises," "including,"
and/or "comprising," when used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. It will also be understood that when
an element is referred to as being "connected" or "coupled" to another element, it
can be directly connected or coupled to the other element but an intervening elements
may also be present, unless expressly stated otherwise. Furthermore, "connected" or
"coupled" as used herein may include wirelessly connected or coupled. As used herein,
the term "and/or" includes any and all combinations of one or more of the associated
listed items. The steps of any disclosed method is not limited to the exact order
stated herein, unless expressly stated otherwise.
[0059] It should be appreciated that reference throughout this specification to "one embodiment"
or "an embodiment" or "an aspect" or features included as "may" means that a particular
feature, structure or characteristic described in connection with the embodiment is
included in at least one embodiment of the disclosure. Furthermore, the particular
features, structures or characteristics may be combined as suitable in one or more
embodiments of the disclosure. The previous description is provided to enable any
person skilled in the art to practice the various aspects described herein. Various
modifications to these aspects will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other aspects.
[0060] The claims are not intended to be limited to the aspects shown herein, but is to
be accorded the full scope consistent with the language of the claims, wherein reference
to an element in the singular is not intended to mean "one and only one" unless specifically
so stated, but rather "one or more." Unless specifically stated otherwise, the term
"some" refers to one or more.
[0061] Accordingly, the scope should be judged in terms of the claims that follow.
1. A hearing aid configured to be arranged at least partly in the ear canal of a specific
person, the comprising:
- A faceplate,
- A custom ear shell, adapted to at least partly fit the ear canal of the specific
person, the custom ear shell being connected to the faceplate,
- A rechargeable battery enclosed in the faceplate and custom earshell, and
- An induction coil, such as a hearing aid induction coil, for wireless charging of
the rechargeable battery, the induction coil being arranged at least partly in contact
with the ear shell, wherein the induction coil is arranged as a printed material or
deposited material on a flexible substrate.
2. The hearing aid according to claim 1, wherein the induction coil is separate from
the rechargeable battery.
3. The hearing aid according to claim 1 or 2, wherein the material of the flexible substrate
has a Young's modulus being lower than a Young's modulus of the material of the ear
shell and/or the flexible substrate having thickness being smaller than a thickness
of the ear shell.
4. The hearing aid according to any one of the preceding claims, wherein the induction
coil is arranged with respect to the ear shell so that, when the hearing aid is placed
on a planar horizontal surface, an orientation of the hearing aid will have a preference
for resulting in the center of gravity being closest to the surface.
5. The hearing aid according to any one of the preceding claims, wherein the induction
coil is fixed to the ear shell independently of the faceplate, such as glued to the
ear shell and/or fixed to the ear shell via an interference fit and/or via a protruding
structure on the inner surface of the ear shell and/or via a structure attached to
the inner surface of the ear shell.
6. The hearing aid according to any one of the preceding claims, wherein the induction
coil is fixed exclusively to the ear shell, such as glued to the ear shell and/or
fixed to the ear shell via an interference fit and/or via a protruding structure on
the inner surface of the ear shell and/or via a structure attached to the inner surface
of the ear shell.
7. The hearing aid according to any one of the preceding claims, wherein a main axis
of the induction coil, such as an axis for which the induction coil has a minimum
moment of inertia, is neither orthogonal nor parallel with a plane of the faceplate,
such as a best-fit mathematical plane with respect to the faceplate, such as wherein
an angle between said axis and said plane is within [5°; 85°], such as within [10°;
80°], such as within [20°; 70°], such as within [30°; 60°].
8. The hearing aid according to any one of the preceding claims, wherein the hearing
aid comprises an antenna configured for radiowave communication with an external unit,
such as comprises an antenna configured for high frequency wireless communication,
such as comprises an antenna configured with an operating frequency of 2.4 GHz or
5.8 GHz.
9. The hearing aid according to any one of the preceding claims, wherein the faceplate
comprises one or more microphones, such as one microphone, such as two microphones.
10. A plurality or set of the hearing aids according to any one of the preceding claims,
such as wherein the electronic components are identical across the plurality of hearing
aids, wherein
- the shape and/or size of the ear shells are different with respect to each other,
such as wherein the shape and/or size of the ear shells are shaped for respective
left and right ears of a specific person, wherein the ear shells have different geometries
with respect to each other,
and wherein
- the positions and/or orientations of the induction coils with respect to the repective
faceplate are different with respect to each other.
11. A binaural hearing aid system comprising two hearing aids according to any one of
the preceding claims.
12. A system comprising:
- a hearing aid according to any one of claims 1-9,
- a charger comprising a charger induction coil,
wherein, when the hearing aid is positioned on/in the charger, the orientation of
the hearing aid induction coil with respect to the ear shell is arranged so that the
hearing aid induction coil have or has an orientation and/or placement being substantially
identical to, such as identical to, an orientation and/or placement resulting in maximum
induced current for a magnetic charging field from the charger induction coil upon
said magnetic charging field changing magnitude.
13. A method for providing a hearing aid, such as a hearing aid according to any one of
claims 1-9, said method comprising:
- Obtaining data, such as three-dimensional data, representative of a shape and/or
size of an ear canal of a specific person, such as an ear canal running at least partially
from the outer ear to the middle ear,
- establishing a digital model of the custom shell of the hearing aid for said ear
canal at least partly based on said data,
wherein said establishing includes determining a position and/or orientation of an
induction coil in an inner space of said ear shell.
14. A method for providing a hearing aid according to claim 13 and further comprising,
such as comprising in this order:
- Obtaining the data, such as three-dimensional data, representative of an ear shell
for said ear canal,
- Providing the ear shell, such as via three-dimensional printing according to said
data representative of an ear shell for said ear canal,
- Attaching the induction coil to the ear shell, or arranging the induction coil in
the ear shell
- Attaching a faceplate to/at the ear shell.