(11) **EP 3 871 741 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 01.09.2021 Bulletin 2021/35

(21) Application number: 19876019.1

(22) Date of filing: 25.10.2019

(51) Int Cl.: **A63B 21/22** (2006.01)

(86) International application number: **PCT/ES2019/070724**

(87) International publication number: WO 2020/084186 (30.04.2020 Gazette 2020/18)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 26.10.2018 ES 201831042

(71) Applicant: Micaton Ergonomics, S.L. 36212 Pontevedra (Vigo) (ES)

(72) Inventors:

- PAZ DOMONTE, Enrique 36212 PONTEVEDRA (Vigo) (ES)
- MEJÍAS SACALUGA, Ana 36212 PONTEVEDRA (Vigo) (ES)
- PÉREZ TRIGANO, Michael, William 36212 PONTEVEDRA (Vigo) (ES)
- MONTES PÉREZ, Manuel 36212 PONTEVEDRA (Vigo) (ES)
- (74) Representative: Herrero & Asociados, S.L. Cedaceros, 1 28014 Madrid (ES)

(54) COMPACT INERTIA DEVICE FOR STRENGTH TRAINING

(57) Compact inertial device for muscle training, consisting of a pulling body (1) and a drive rope (2). The pulling body (1) in turn comprises a rotating main shaft (4), a reel (8) mounted on the main shaft (4), an inertia element (6) linked solidly to one end of the main shaft (4) for accumulation of kinetic energy from the rotation of the main shaft (4), and a planetary gear (5), which in turn

comprises a central gear mounted on the main shaft (4), for multiplication of the transmission speed from the main shaft (4) driven by the reel (8) to the inertia element (6). In its preferred embodiment, the spool (8) is a conical spool with a smaller diameter sector to which one end of the rope (2) is solidly attached.

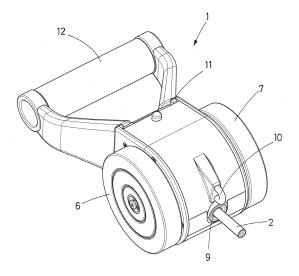


FIG.1

OBJECT OF THE INVENTION

[0001] The present invention falls within the technical field of gymnastic apparatus for strengthening muscles, more specifically those apparatus comprising resistant devices with rotating bodies, and refers in particular to a compact muscle training device based on resistance to a traction force exerted by inertia discs and which can be used either by a single user or by two users simultaneously.

1

[0002] More specifically, the present invention relates to a training, toning, muscle building and rehabilitation device for pulling resistance based on inertia discs or rings arranged on a rotating shaft. The device further comprises a grip handle, a transmission element for multiplying the revolutions of the shaft, and a connecting cord which is solidly linked at one end to a conical reel for driving the transmission.

BACKGROUND TO THE INVENTION

[0003] During the development of bodybuilding exercises, two phases of movement can be differentiated: a concentric or positive phase, in which the muscle insertions are brought closer together and the movement goes against gravity, so that the muscle is shortened or concentrated when contracting, and an eccentric or negative phase, where the muscle insertions are distanced and the movement is generated in favour of gravity, so that the muscle continues contracted, but lengthens.

[0004] Although the muscle is contracted in both phases, they are contractions with different effects. The main difference lies in the fact that eccentric contraction is more efficient from a neuromuscular point of view, because this lengthening produces a greater activation of actin-myosin bridges, generating a greater muscle contraction. Eccentric contractions also have a lower metabolic demand and produce greater hypertrophy, which makes them very effective when it comes to gaining muscle. On the downside, it is worth mentioning that they are very aggressive for muscle and connective tissue, and if performed inappropriately can cause injuries.

[0005] Within the technical field of gymnastic apparatus for muscle development, a plurality of devices are known. For example, the international PCT application with publication number WO2015019118 discloses a device for providing constant resistance values against displacement. The device comprises a cylinder connected to a cone or cam or variable diameter pulley, which engages and balances the preselected resistance value of one or more elastic means, such as springs, on one side (cylinder side) by the variable torque generated by an externally applied constant force, and on the other side (cone or cam or variable diameter pulley side) by appropriately varying the geometrical characteristics defining the torque, including radii, distances or angles.

[0006] European patent application publication number EP0364954 discloses a rowing machine for muscle training that incorporates a planetary or epicyclic gear in conjunction with an inertia disc to increase the speed of rotation.

[0007] On the other hand, small inertial devices are also known. For example, the US patent with publication number US2009093350 refers to a transportable sports training and rehabilitation system, based on a pulling body consisting of a handle, an inertia motor or discs and a cylindrical coil in which a rope is picked up and released, which is hooked at the opposite end to a point, which can be a part of the user's own body or another person. This system has two handles or attachment points, making it possible to reverse the active end from which the force is exerted.

[0008] Likewise, document US3841627 discloses a transportable sports training and rehabilitation system comprising two pulling bodies, one of which integrates, in addition to a handle, an inertia disc and a cylindrical coil in which a rope is picked up and released, which is hooked at its opposite end to the second handle.

[0009] However, currently existing devices comprise inertia elements of high weight and dimensions, which also limit the versatility of such a device, not allowing it to adapt to different forces and types of shooting.

DESCRIPTION OF THE INVENTION

[0010] The object of the invention consists of a compact inertial device for muscle training, which is basically made up of a pulling body and a transmitter cord or belt, which is solidly linked at one end to the pulling body, while it can be attached at the opposite end to a fixed point or to a fastening element.

[0011] The pulling body in turn consists of a rotating main shaft, to the ends of which inertia elements, preferably inertia discs, are solidly attached. A reel, on which the rope is wound, is mounted solidly and coaxially on the main shaft. In the preferred embodiment of the device, the reel is conical, and one end of the rope is solidly attached to its smaller diameter base. The pulling body also incorporates an epicyclic or planetary gear, the central gear of which is solidly mounted on the main shaft, with the interposition of a torque-limiting clutch.

[0012] An outer casing surrounds and contains the above-mentioned elements of the pulling body. This housing has an eyelet-type through-hole opening through which the rope is taken up and released during winding and unwinding on the reel, and a coupling element, intended to house a handle for gripping the pulling body for manual operation by a user.

[0013] The rotary motion of the reel, driven by the rope, is transferred to the inertia discs via the planetary gearing, with a transmission ratio that causes the inertia disc to rotate "R" turns with a single turn of the reel.

[0014] The device is based on the "flywheel training" devices known as inertial pulley training, but differs from

them thanks to its reduced size and weight, due to the fact that it has a high-capacity "R" ratio speed multiplier gear internally, which allows the inertia discs to rotate R times more than the devices without planetary gearing. As a result, the apparent moment of inertia of the discs is \mathbb{R}^2 compared to that of an ungeared device.

[0015] Thus, with inertia discs of very small dimensions, but rotating at many revolutions, the same inertia is achieved as with the large discs commonly used in current "flywheel training" devices, which means a great reduction in material, transport and storage costs. These smaller inertia discs also lower the centre of mass and the volume of the device, allowing for much lower, lighter and more economical fixture platforms than current device platforms.

[0016] The main advantage of a conical rope reel is that, when starting to unwind the rope, the pulling force required is lower, as it starts to unwind from the part with the largest diameter. The resistance exerted by the reel, and therefore the pulling force required to unwind the rope, increases progressively as the radius of the cone decreases. Likewise, the conical reel facilitates the correct winding of the rope when it is reeled in.

[0017] In order for the user to use the device, he must initially sufficiently pre-load the conical reel by winding onto it a quantity of the transmitter rope, immobilise this rope by means of a ratchet, and fix the opposite end of the rope, on which an anchoring element is located, to a static point against which the opposite pull is to be made. [0018] The device allows both individual use and shared use. In individual use there are two modes of operation: in the first mode, a single user operates the device through the pulling body, the rope being attached at one end to a static element through the anchoring element, so that the pulling body held by the user moves and the opposite end of the rope remains fixed. Alternatively, in the second mode, the pulling body is held anchored by an attachment to a static element in the environment and the user pulls on the free end of the rope by means of a handle linked to the anchoring element. [0019] In the case of shared use, two users, one operating the pulling body and the other holding the free end of the rope by means of a handle linked to the anchorage element, simultaneously pull the transmitting rope in opposite directions, so that both users share the

[0020] In the case of individual use of the device, and with the device already preloaded, the exercise starts with a pulling phase or concentric phase, in which the user pulls the pulling body through the handle by means of a concentric muscular contraction in which his muscle is shortened. The transmitter rope begins to unwind, rotating the conical reel on which it is wound, which in turn rotates the main shaft on which it is solidly mounted. As mentioned above, as the main shaft is linked to the central gear of the planetary gear, the inertia element rotates at a speed "R" times greater than that of the bevel spool, "R" being the reduction ratio.

efforts according to the pulling force applied.

[0021] In this pulling phase, the user makes a physical effort to pull the rope by means of which a progressive acceleration is obtained, both in the movement of the device and in the angular acceleration of the inertia discs. As a result, the inertia discs themselves are loaded with angular momentum, and this phase ends when the user reaches the final position of this phase of the exercise, corresponding to the maximum pulling distance.

[0022] The next phase of the exercise, known as the intermediate dead centre phase, begins when the transmitter rope has been fully unwound from the conical reel, which stops rotating. At this point, the inertia discs are fully loaded to their maximum angular velocity, and continue to rotate in the same direction.

[0023] The discs, rotating at their maximum speed, drag the planetary gear and this, in turn, drag the conical reel, which continues to rotate in the same direction. The rope begins to wind around it, starting at the end with the smallest radius, and in the opposite direction to the previous one, thus beginning the collection or eccentric phase, in which the user must make an eccentric muscular effort to hold the rope so that the reel slows down and stops at the same point at which the exercise began. Thus, the length of rope wound on the reel determines the total exercise distance to be performed.

[0024] In the last phase of the exercise or end dead centre phase, the main shaft stops, as well as the gear and the reel to which it is solidly linked, the value of the angular velocity of the inertia discs being equal to zero. However, the bevel spool is sufficiently loaded with rope to allow the user to restart a new exercise in the pull or concentric phase, except that the shaft and gearing will rotate in the opposite direction on this occasion.

[0025] In the case of simultaneous use of the device by two users, the same sequence of the above-mentioned four phases is maintained, but with the difference that one of them holds one end of the rope through a handle linked to the coupling element while the other grips the pulling body through the handle, in order to pull in the opposite direction.

DESCRIPTION OF THE DRAWINGS

[0026] In order to complement the description being made and in order to assist in a better understanding of the features of the invention, in accordance with a preferred example of a practical embodiment thereof, a set of drawings is attached hereto as an integral part of the said description, in which the following is illustratively and non-limitingly depicted:

Figure 1.- Shows a front perspective view of the pulling body and the rope of the inertial device.

Figure 2.- Shows a rear perspective view of the pulling body.

Figure 3.- Shows a detail view of a cross-section of

50

the pulling body.

Figure 4.- Shows a detailed exploded view of the drawbar body.

Figure 5.- Shows a detail view of the ratchet for the rope of the device.

Figure 6.- Shows a view of the device in individual use according to a first option.

Figure 7.- Shows a view of the device in individual use according to a second option.

Figure 8.- Shows a view of the device in shared use.

Figure 9.- Shows a detail view of a support platform.

Figure 10.- Shows a detail view of the device in use with an incorporated pulley.

Figure 11.- Shows a view of the device in individual use according to a third option.

PREFERRED EMBODIMENT OF THE INVENTION

[0027] A detailed explanation of an example of a preferred embodiment of the subject matter of the present invention is given below with the aid of the figures referred to above.

[0028] The described compact inertial muscle training device, shown in figure 1, basically consists of a pulling body (1) and a transmitter rope (2), which is solidly linked at one end to the pulling body (1), from which it is wound and unwound.

[0029] The pulling body (1), the exploded view of which is shown in figure 4, comprises an external casing (3) inside which is housed a transversely oriented rotating main shaft (4). A central gear of a planetary gear (5), which in turn comprises external gears or planets, is solidly coupled to this main shaft (4).

[0030] Likewise, an inertia element (6), consisting in this case of an inertia disc, is solidly coupled to said main shaft (4). In the preferred embodiment described here, the opposite end of the main shaft (4) incorporates an additional inertia element (7), consisting of another inertia disc solidly linked through its centre to said main shaft (4), without the interposition of any type of intermediate gear or multiplier element.

[0031] Mounted solidly and coaxially on a central sector of the main shaft (4) is a reel (8), which in the preferred embodiment described here is a conical reel, which in turn has a sector of smaller diameter, to which one end of the rope (2) is solidly attached. This rope (2) is automatically wound and unwound on the reel (8), thus producing a rotation on the main shaft (4) on which the reel (8) is solidly mounted.

[0032] The inertia element (6) accumulates rotational

energy from the rotation of the main shaft (4). As the device incorporates the planetary gear (5), the rotational energy transmitted by the main shaft (4) is multiplied in the planetary gear (5) before being transmitted to the inertia element (6), to which it is solidly coupled. Thus, with an inertia element (6) of small dimensions, high values of moment of inertia are achieved thanks to the intermediate action of the planetary gear (5).

[0033] In the preferred embodiment described here, the planetary gear (5) used has a transmission ratio of 13,5, so that one revolution of the spool (8) causes the inertia element (6) to rotate 13,5 turns.

[0034] The casing (3) includes a through opening (9) through which the rope (2) passes for its deployment and retraction on the reel (8), as well as a hook (10) which projects from the casing (3) in the vicinity of the through opening (9). The casing (3) also comprises a coupling (11) for temporary attachment of the pulling body (1) to various external elements. For example, as shown in Figures 1 to 4, a grip handle (12) is temporarily attachable to said coupling (11) for manual actuation of the pulling body (1).

[0035] In the preferred embodiment of the device, the coupling (11) consists of a prominent sector (13) of quadrangular geometry starting from the casing (3), which has a groove (14) that surrounds the prominent sector (13) perimetrically, designed to house the corresponding couplings of the handle (12) or of a fastening element (15) in which it is desired to immobilise the pulling body (1), as illustrated in figure 7.

[0036] The device also incorporates a ratchet (16), shown in detail in figure 5, which can be attached to the rope (2) for adjusting the length that can be rewound and unwound on the reel (8). As can be seen in the aforementioned figure 5, the ratchet (16) has a through hole (17) for coupling an anchoring element, such as a carabiner, which allows connection to external elements such as a handle (18), shown in figure 8, which allows it to be gripped by a second user. The ratchet (16) also incorporates a latching ring (19).

[0037] It is also envisaged that a pulley (20) is incorporated into the rope (2) to increase the pulling resistance, this pulley (20) being particularly suitable for performing exercises involving the work of large muscle groups, such as squats or weightlifting, without the need to modify the inertia elements (6, 7). For this purpose, the rope (2) must pass through the pulley (20) and return to the pulling body (1), as illustrated in figure 10, so that the ratchet (16) is fixed to it by means of a carabiner that can be inserted into the hook (10).

[0038] It is also envisaged that a number of additional elements will be incorporated to improve and add functionalities to the device. For example, first of all, it is envisaged to incorporate a safety element to prevent entrapment and return strokes at the start of the rope retraction phase (2). This element consists in its preferred version of a force limiting clutch, consisting of a pre-calibrated spring and two opposing wheels which disengage

15

20

35

40

the main shaft (4) from the central gear of the planetary gear (5), in the event of exceeding a pre-established limit force value.

[0039] It is also foreseen the additional incorporation of an externally operable gear change, linked to the central shaft (4) and designed to vary the transmission ratio of the planetary gear (5) to obtain different previously established reduction ratios. Optionally, it is also envisaged the inclusion of a remotely operated brake for blocking the rotation of the inertia element (6) and, if applicable, the additional inertia element (7), in the final dead centre phase, which allows the user to carry out additional isometric (static) exercises, thus increasing the versatility of the device.

[0040] It is also possible to incorporate electronic elements to increase the performance of the device. For example, a revolution counter consisting of an electronic module that detects, by means of a sensor, preferably optical, the revolutions and direction of rotation of the reel (8), in order to subsequently analyse the work curves and extract parameters such as caloric consumption, time, speed, force, performance, and other parameters. It is also foreseen to add a wireless transmitter connected to the lap counter to send the data collected by it to a mobile device equipped with a computer application that acts as an operational interface with the user.

[0041] It is also envisaged that various elements for attaching the pulling body (1) to the device will be incorporated into the device to enable various types of exercises to be carried out. For example, a support platform (21), shown in figure 6, equipped with elements for coupling with the coupling (11), and designed to support the feet during the execution of exercises such as squats or weightlifting. In its preferred embodiment, illustrated in figure 9, the platform (21) is foldable and has a curved geometry face, with a central sector higher than the perimeter edges.

[0042] It is also envisaged that additional inertia discs can be temporarily attached to the main shaft (4) by means of bolts or similar quick coupling means.

[0043] Figures 6, 7, 8 and 11 show the device in different uses, both individual use and shared use, which show its great versatility, as indicated in the description.

Claims

- A compact inertial muscle training device comprising:
 - a pulling body (1), further comprising:
 - a rotating main shaft (4),
 - a reel (8) mounted solidly and coaxially on the main shaft (4), and
 - an inertia element (6) solidly linked to one end of the main shaft (4) for accumulation of kinetic energy from the rotation of the

main shaft (4), and

- a drive rope (2), attached at one end to the reel (8), which can be rewound and unwound on the reel (8),

the inertial device being **characterised in that** it additionally comprises a planetary gear (5) which in turn comprises a central gear linked solidly to the main shaft (4) for multiplication of the transmission speed from the main shaft (4) to the inertia element (6).

- Inertial device according to claim 1, wherein the reel (8) is a conical reel having a sector of smaller diameter to which one end of the rope (2) is solidly attached.
- 3. Inertial device according to claim 1 wherein the pulling body (1) additionally comprises an external casing (3) comprising in turn:
 - a through opening (9) for passage of the rope (2), and
 - a coupling (11).
- Inertial device according to claim 3, wherein the casing (3) additionally comprises an attachment hook (10).
- 5. Inertial device according to claim 3 characterised in that the coupling (11) comprises:
 - a prominent section (13) projecting from the casing (3), and
 - a groove (14) that surrounds the prominent area (13) perimetrically.
- 6. Inertial device according to claim 3, characterised in that it incorporates a handle (12) which can be temporarily inserted into the coupling (11) for gripping the pulling body (1).
- 7. Inertial device according to claim 1, **characterised**in that it additionally comprises a ratchet (16) attachable to the rope (2) for adjusting the length of the rope (2) windable and unwindable on the reel (8).
- 8. Inertial device according to claim 7 **characterised**50 **in that** the ratchet (16) comprises
 - a through hole (17) for attachment of an anchor element, and
 - an attachment ring (19) for attaching a pulley.
 - Inertial device according to claim 1, characterised in that it incorporates a pulley (20) linkable to the rope (2) to increase the pulling resistance.

- **10.** Inertial device according to claim 3, **characterised** in **that** it incorporates a support platform (21) linkable to the coupling (11) for fixing the pulling body (1).
- **11.** Inertial device according to claim 10 **characterised in that** the platform (21) is foldable.
- **12.** Inertial device according to claim 3 **characterised in that** it additionally comprises a fastening element (15) linkable to the coupling (11) for immobilisation of the pulling body (1).
- **13.** Inertial device according to claim 1, **characterised in that** it incorporates a force limiting clutch for decoupling the main shaft (4) from the central gear of the planetary gear (5).
- 14. Inertial device according to claim 13, characterised in that the force limiting clutch consists of a precalibrated spring and wheels facing the main shaft 20 (4).

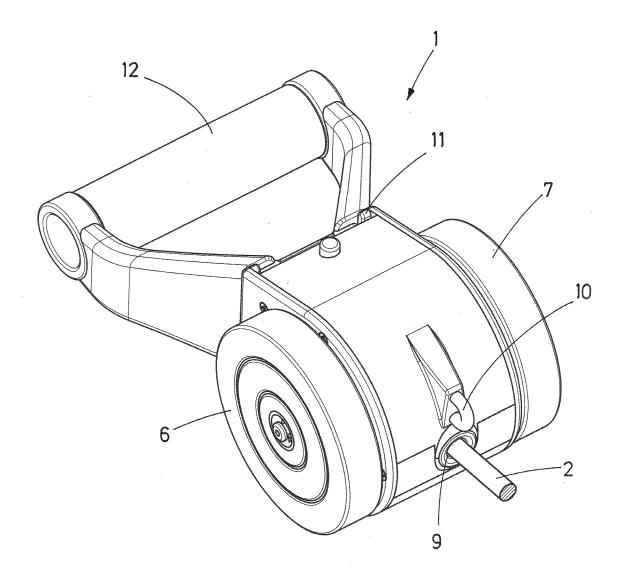


FIG.1

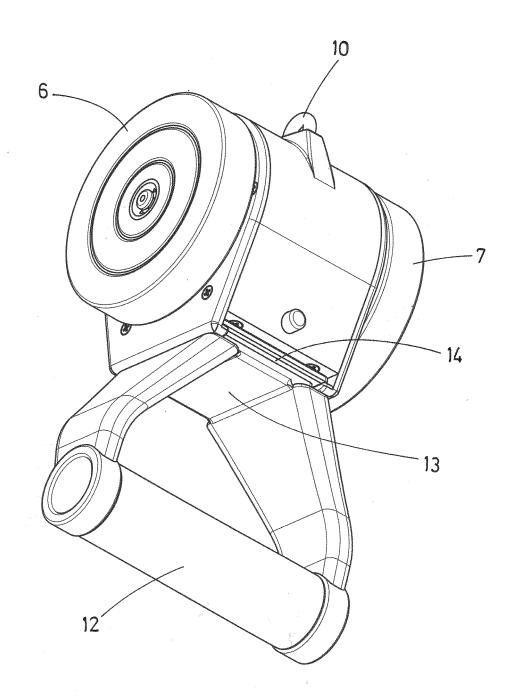


FIG.2

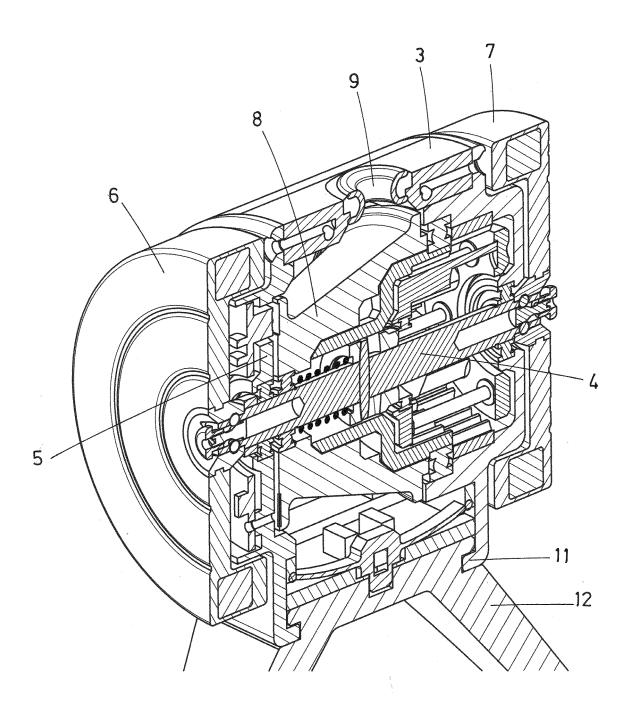
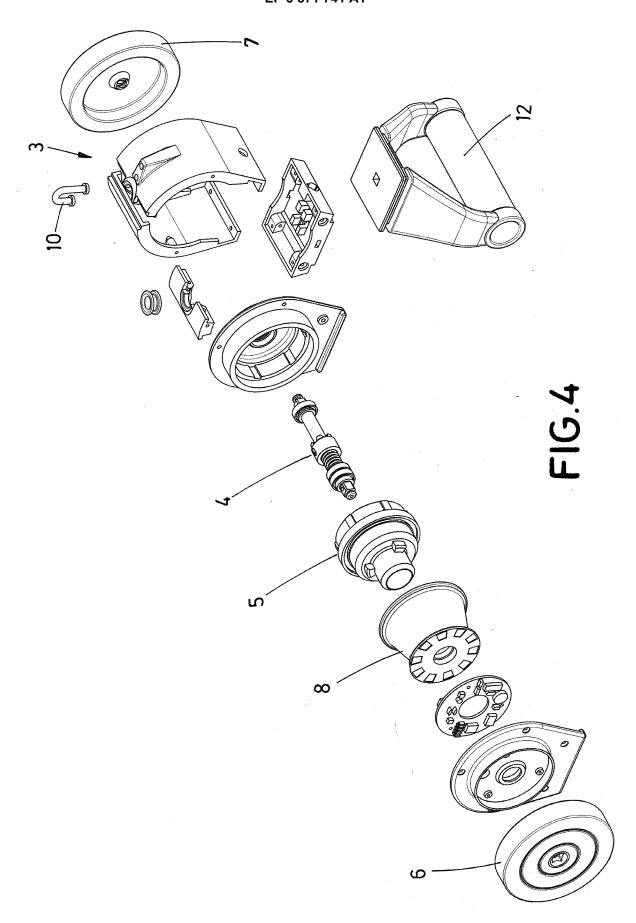



FIG.3

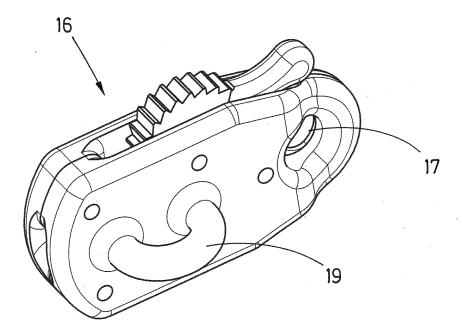
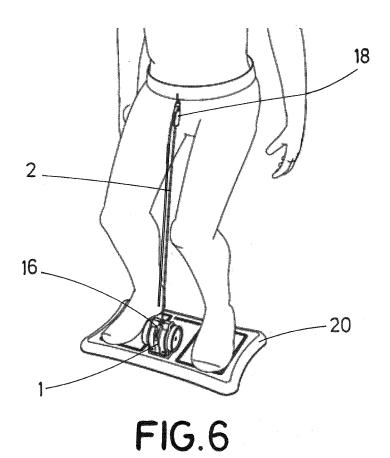



FIG.5

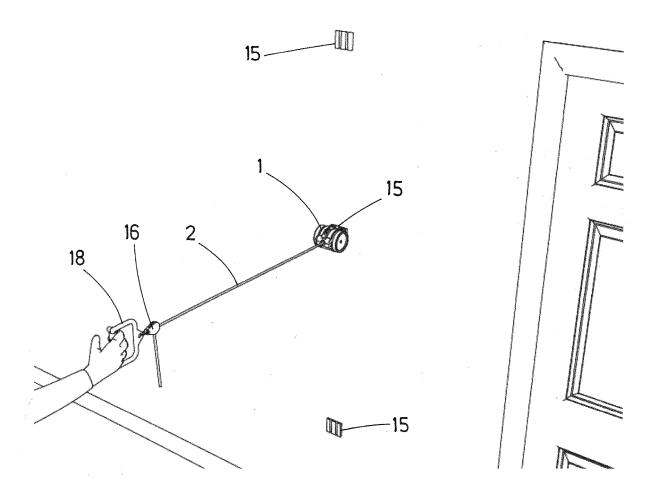


FIG.7

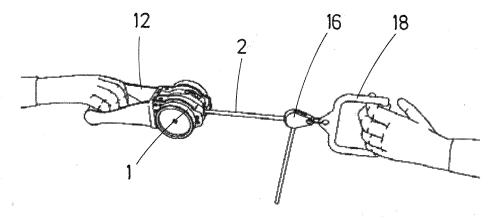
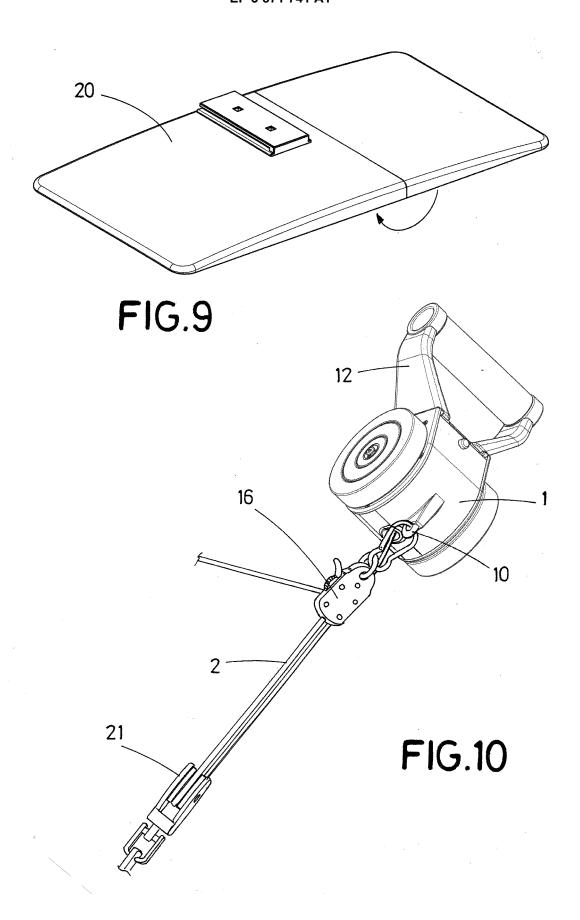



FIG.8

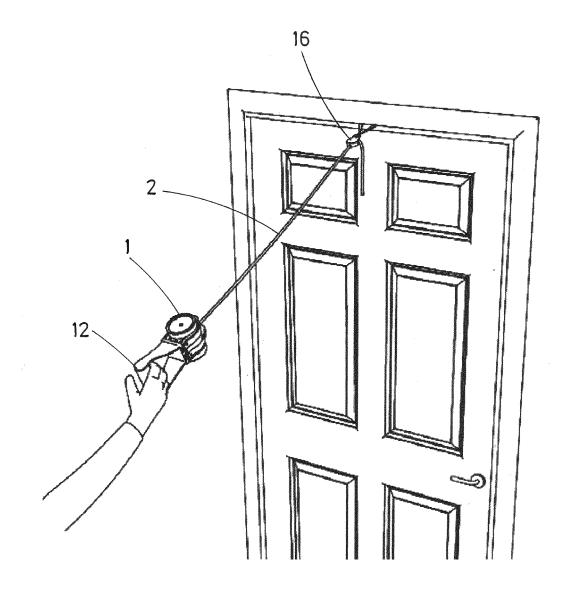


FIG.11

INTERNATIONAL SEARCH REPORT

International application No. PCT/ES2019/070724

PCT/ES2019/070724 5 A. CLASSIFICATION OF SUBJECT MATTER A63B21/22 (2006.01) According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) A63B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPODOC, INVENES, WPI C. DOCUMENTS CONSIDERED TO BE RELEVANT 20 Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y US 3841627 A (VETTER H) 15/10/1974, 1, 3-14 Column 3, line 41- column 4, line 43; figures 1-3 25 Y US 10080919 B1 (VUJICIC MARKO ET AL.) 25/09/2018, 1, 3-14 column 3, line 26 - column 13, line 64; figures 1, 6, 7. A US 2009093350 A1 (JAHNS HENNER) 09/04/2009, 1, 3-8, 13, 14 paragraphs [0040-0053]; figures. 30 US 2011195813 A1 (YOO HYUK ET AL.) 11/08/2011, A 1 paragraphs [0038-0112]; figures 1-4. US 4880224 A (JONAS WERNER ET AL.) 14/11/1989, A 1 the whole document 35 ☑ Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited "A" document defining the general state of the art which is not to understand the principle or theory underlying the considered to be of particular relevance. "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or "X" document of particular relevance; the claimed invention 45 which is cited to establish the publication date of another cannot be considered novel or cannot be considered to citation or other special reason (as specified) involve an inventive step when the document is taken alone document referring to an oral disclosure use, exhibition, or "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the other means. document is combined with one or more other documents, document published prior to the international filing date but such combination being obvious to a person skilled in the art later than the priority date claimed 50 document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 11/03/2020 (13/03/2020)Name and mailing address of the ISA/ Authorized officer M. Cañadas Castro OFICINA ESPAÑOLA DE PATENTES Y MARCAS Paseo de la Castellana, 75 - 28071 Madrid (España) 55 Facsimile No.: 91 349 53 04 Telephone No. 91 3495429

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No. PCT/ES2019/070724

5

5	C (continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
	Category *	Citation of documents, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
10	A	WO 2015019118 A1 (KALLITSIS ANASTASIOS) 12/02/2015, description, figure 1.	1, 2			
	A	US 5261864 A (FITZPATRICK PATRICK C) 16/11/1993, the whole document	9, 10			
15						
20						
25						
30						
35						
40						
45						
50						
55	Form PCT/IS	SA/210 (continuation of second sheet) (January 2015)				

	INTERNATIONAL SEARCH REPORT		International application No.	
_	Information on patent family memb	ers	PCT/ES2019/070724	
5	Patent document cited in the search report	Publication date	Patent family member(s)	Publication date
10	US3841627 A	15.10.1974	GB1388642 A FR2174898 A1 FR2174898 B1 DE2210249 A1 DE2210249 B2	26.03.1975 19.10.1973 18.02.1977 13.09.1973 13.01.1977
15	US10080919 B1	25.09.2018	TW201637691 A TWI603764B B CA2937468 A1 CA2937468 C	01.11.2016 01.11.2017 17.11.2011 12.06.2018
20			US9302148 B1 TW201244780 A TW1546107B B CN102893063 A CN102893063B B CA2799334 A1	05.04.2016 16.11.2012 21.08.2016 23.01.2013 15.03.2017 17.11.2011
25			CA2799334 C AU2011253038 A1 AU2011253038B B2 WO2011143439 A1 EP2569556 A1 EP2569556 A4 US2011281694 A1	20.09.2016 29.11.2012 09.04.2015 17.11.2011 20.03.2013 14.10.2015 17.11.2011
30	US2009093350 A1	09.04.2009	US8876669 B2 US8105214 B2	04.11.2014 31.01.2012
35	US2011195813 A1	11.08.2011	ZA201100951 B RU2011104057 A RU2463195 C1 BRPI1100171 A2 AR080153 A1 TW201127691 A TWI400177B B JP2011162184 A	26.10.2011 10.08.2012 10.10.2012 31.07.2012 14.03.2012 16.08.2011 01.07.2013 25.08.2011
40			JP5105562B B2 CN102145731 A CN102145731B B WO2011099679 A1 CA2730879 A1 US8727930 B2	26.12.2012 10.08.2011 29.05.2013 18.08.2011 09.08.2011 20.05.2014
45			EP2353990 A2 EP2353990 A3 KR100954300B B1	10.08.2011 22.04.2015 22.04.2010
50	US4880224 A	14.11.1989	JPH02189167 A EP0364954 A1 CA1275427 C	25.07.1990 25.04.1990 23.10.1990
	WO2015019118 A1	12.02.2015	GR1008313 B	02.10.2014
55	Form PCT/ISA/210 (patent family annex) (January 2015)			

Form PCT/ISA/210 (patent family annex) (January 2015)

	INTERNATIONAL SEARCH REPORT Information on patent family members		International application No. PCT/ES2019/070724		
5	Patent document cited in the search report	Publication date	Patent family member(s)	Publication date	
10	US5261864 A	16.11.1993	JPH0698948 A EP0507509 A2 EP0507509 A3 CN1065406 A CA2064601 A1	12.04.1994 07.10.1992 14.10.1992 21.10.1992 03.10.1992	
15					
20					
25					
30					
35					
40					
45					
50					
55	Form PCT/ISA/210 (patent family annex) (January 2015)				

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2015019118 A **[0005]**
- EP 0364954 A **[0006]**

- US 2009093350 A [0007]
- US 3841627 A [0008]