

(11) **EP 3 875 481 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

08.09.2021 Bulletin 2021/36

(51) Int CI.:

C07K 16/10 (2006.01)

(21) Application number: 21158309.1

(22) Date of filing: 13.11.2015

(84) Designated Contracting States:

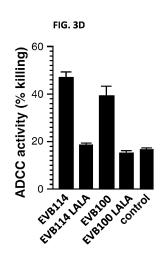
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 14.11.2014 US 201462080094 P 03.12.2014 US 201462087087 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 15797815.6 / 3 218 397

(71) Applicants:

- The U.S.A. as represented by the Secretary, Department of Health and Human Services Bethesda, Rockville 20892-7660 (US)
- The United States Government, as represented by The Secretary of The Army Fort Detrick. MD 21702 (US)
- Humabs Biomed SA 6500 Bellinzona (CH)
- Institute for Research in Biomedicine 6500 Bellinzona (CH)
- (72) Inventors:
 - CORTI, Davide 6500 Bellinzona (CH)


- LANZAVECCHIA, Antonio 6500 Bellinzona (CH)
- TREFRY, John Frederick, Maryland 210702 (US)
- SULLIVAN, Nancy Bethesda, Maryland 20892 (US)
- MULANGU, Sabue Bethesda, Maryland 20892 (US)
- GRAHAM, Barney
 Bethesda, Maryland 20892 (US)
- MUYEMBE-TAMFUN, Jean-Jacques B.P. 1197 Kinshasa (CG)
- LEDGERWOOD, Julie
 Bethesda, Maryland 20892 (US)
- STANLEY, Daphne Bethesda, Maryland 20892 (US)
- (74) Representative: Docherty, Robert Charles Symbiosis IP Limited York Biotech Campus Office 14FA05 Sand Hutton York, YO41 1LZ (GB)

Remarks:

This application was filed on 20-02-2021 as a divisional application to the application mentioned under INID code 62.

(54) NEUTRALIZING ANTIBODIES TO EBOLA VIRUS GLYCOPROTEIN AND THEIR USE

(57) Neutralizing antibodies and antigen binding fragments that specifically bind to Ebola virus glycoprotein are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. Methods for detecting Ebola virus using the antibodies and antigen binding fragments are disclosed. The antibodies, antigen binding fragments, nucleic acids, and vectors, can be used, for example, to prevent and/or treat Ebola virus infection in a subject.

P 3 875 481 A1

Description

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/087,087, filed December 3, 2014, and U.S. Provisional Application No. 62/080,094, filed November 14, 2014; each of the provisional applications is incorporated by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] This relates to monoclonal antibodies and antigen binding fragments that specifically bind to Ebola virus (EBOV) glycoprotein (GP) and their use, for example, in methods of treating or preventing EBOV infection or EBOV disease (EVD) in a subject.

15 PARTIES TO A JOINT RESEARCH AGREEMENT

[0003] This invention was made under Research Collaboration Agreement No. 2007-0166 between the National Institutes of Health National Institute of Allergy and Infectious Disease and Institute for Research in Biomedicine.

20 BACKGROUND

10

[0004] EVD is a disease in humans, chimpanzees, and monkeys, caused by infection with EBOV. This virus was first recognized in Zaire, Africa in 1976. EBOV is a member of the *Filoviridae* family of RNA viruses and causes a severe hemorrhagic fever with a high mortality rate. For example, infection with the Ebola virus Zaire (ZEBOV) strain of the virus is associated with a mortality rate of up to 90% in humans. Currently, there are no licensed vaccines or therapeutics approved for human use.

[0005] An enveloped virus, EBOV hides from humoral recognition behind a wide array of protective mechanisms. EBOV GP, the major envelope glycoprotein of EBOV is approximately 165 kD in size. During infection proteases of the host cell cleave a precursor of GP, termed GPo, into GP_1 and GP_2 . GP_1 is an integral membrane protein, while GP_1 protrudes from the mature virus. Together GP_1 and GP_2 make up the EBOV envelope spike, which is a target for neutralizing antibodies. Although certain EBOV neutralizing antibodies that bind to the EBOV GP have been identified, there is a need to develop additional neutralizing antibodies for EBOV with varying EBOV GP recognition profiles and increased neutralization potency.

35 SUMMARY

30

50

[0006] Isolated monoclonal antibodies and antigen binding fragments that specifically bind to an epitope on EBOV GP are provided herein. The antibodies and antigen binding fragments can neutralize EBOV infection.

[0007] In some embodiments, the antibody or antigen binding fragment comprises a heavy chain variable region (V_H) comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 1 (EVB114 VH) and/or a light chain variable region (V_L) comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 2 (EVB114 VL) and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment comprises a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 3 (EVB100 VH) and/or a V_L comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 4 (EVB100 VL) and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment comprises a V_H and a V_L comprising the amino acid sequences set forth as SEQ ID NOs: 1 and 2, respectively, or SEQ ID NOs: 3 and 4, respectively.

[0008] In additional embodiments, the glycosylation (for example, fucosylation) or sequence of a disclosed antibody or antigen binding fragment can be altered compared to that observed in nature. For example the glycosylation or sequence of a disclosed of the antibody or antigen binding fragment can be altered compared to that of native antibodies to increase half-life, antibody-dependent cell-mediated cytotoxic activity, and/or EBOV neutralization or EBOV GP binding profile.

[0009] Also disclosed are compositions including the antibodies and antigen binding fragments, nucleic acids encoding the antibodies and antigen binding fragments, expression vectors comprising the nucleic acids, and isolated host cells that comprise the nucleic acids. In several embodiments, the nucleic acid molecule encoding a disclosed antibody or antigen binding fragment can be a cDNA molecule that encodes the antibody or antigen binding fragment. In additional embodiments, the nucleic acid molecule can be a bicistronic expression construct encoding the antibody or antigen binding fragment.

[0010] Surprisingly, the disclosed antibodies and antigen binding fragments potently neutralize EBOV infection *in vitro* and *in vivo*. Accordingly, a method is disclosed for treating or preventing an EBOV infection (e.g., ZEBOV infection) in a subject comprising administering a therapeutically effective amount of one or more of the disclosed antibodies or antigen binding fragments to the subject, for example to a subject at risk of or having an EBOV infection.

[0011] The antibodies, antigen binding fragments, nucleic acid molecules, vectors, and compositions disclosed herein can be used for a variety of additional purposes, such as for detecting an EBOV infection or diagnosing EVD in a subject, or detecting EBOV GP in a sample.

[0012] The foregoing and other features and advantages of this disclosure will become more apparent from the following detailed description of several embodiments which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE FIGURES

[0013]

10

15

20

25

30

35

40

45

50

55

FIGs. 1A-1D are a set of graphs concerning isolation of antigen-specific monoclonal antibodies from an Ebola virus disease survivor. (1A) Plasma obtained from two human survivors, an uninfected human donor and a non-human primate (NHP) vaccinated against EBOV GP were serially diluted and analyzed by GP ELISA, A450 (n=1). (1B) Lentivirus particles expressing luciferase and bearing EBOV GP were incubated in the presence of heat inactivated serum for 1 hour prior to addition to HEK293T. Infection was determined by measuring relative luminescence (RLU) after 3 days. Infection % = (RLU with serum / RLU without serum) X 100% (n=3). (1C) Immortalized B cell supernatants isolated from Survivor 1 were screened by EBOV GP ELISA A450 (n=1). (1D) Immortalized B cell supernatants from (1C) were diluted 1:50, incubated with Lentivirus particles pseudotyped with EBOV GP and infection determined as in (1B). Infection % = (RLU with supernatant / RLU without supernatant) X 100% (n=1).

FIGs. 2A-2I are a set of graphs and tables concerning characterization of purified EBOV GP monoclonal antibodies. (2A) EBOV GP ELISA in the presence of purified monoclonal antibodies as indicated, A450. (2B) Lentivirus particles pseudotyped EBOV GP particles were incubated with increasing amounts of purified monoclonal antibodies and infection measured as in FIG. 1B. Infection % = (RLU with antibody / RLU without antibody) x 100% (n=3). (2C) V gene usage, sequence analysis and IgG subclass of antibodies from Survivor 1. (2D-2G) Amino acid sequence of EVB100, EVB114 and variants descended from a putative unmutated common ancestor (UCA) for heavy and light chains. Shaded regions represent complementary determination regions 1-3. (2H) and (21) Binding to EBOV GP expressed on the surface of MDCK-SIAT cells by different EVB100 (2H) and EVB114 (21) versions in which all or subsets of somatic mutations in the wild type sH, sL (EVB100) or sK (EVB114) chain were reverted to the germline sequence. Shown is the ratio between the EC50 values of the variants and EC50 values of the wild-type sH/sL (EVB100) or sH/sK (EVB114). UCA, unmutated common ancestor; gH or gL, germline V-gene revertants of sH, sL, or sK in which the HCDR or LCDR3 are mature; gH-FR or gL-FR, germline V347 gene revertants of sH, sL or sK in which the HCDRs or LCDRs are mature; gH-FR1-2-4, germline V-gene revertants of sH in which the HCDRs and HFR3 are mature; gH-FR3, germline V-gene revertants of sH in which the HCDRs and HFR1, HFR2 and HFR4 are mature: wild type, somatically mutated are sH, sL, or sK. EC50 ratio values above 100 indicate lack of detectable bindina.

FIGs. 3A-3D are a set of graphs and tables concerning the binding region and effector function of EBOV GP specific antibodies. (3A) Inhibition of binding of biotinylated EVB114 (left) and EVB100 (right) to GP-expressing MDCK-SIAT cells by pre-incubation with increasing amounts of homologous or heterologous unlabeled antibodies. Shown is the percentage of binding of biotinylated antibodies as measured by flow cytometry using fluorophore-conjugated streptavidin. (3B) and (3C) Biolayer interferometry competitive binding assay to soluble EBOV GP using EVB100, EVB114, KZ52, 13C6 and isotype negative control. Biosensors were preloaded with GP followed by the competitor and analyte antibodies as indicated. Analyte binding curves (3B) and quantitated % inhibition (3C) are reported (n=3). (3D) Antibody-dependent cell-mediated cytotoxicity (ADCC) assay was determined at 31.6 ng/mL of EVB100, EVB114 (n=3), control antibody or derivative antibodies with LALA mutations that abrogate Fc365 mediated killing (n=1).

FIGs. 4A-4I are a set of graphs showing that passive transfer of EBOV GP-specific antibodies can inhibit EBOV disease. (4A) Experimental challenge. Animals were challenged with a lethal dose of EBOV GP on Day 0 and given injections of antibody totaling 50 mg/kg at 24, 48 and 72 hours post-exposure. Surviving animals were euthanized at the conclusion of the study (Day 28). Challenge data from monoclonal antibody EVB114/EVB100 mixture (4B-4E), or EVB114 monotherapy (4F-4I). Treatment animal in black, untreated control in grey. (4B) and (4F) Ebola GP specific ELISA titer (EC90). (4C) and (4G) Viremia in blood by qRT-PCR expressed as genome equivalents (ge) per mL. (4D) and (4H) Survival. (4E) and (41) Selected hematologic and chemistry data. Platelets (PLT), alanine transaminase (ALT), creatinine (CRE). "nt" is used to indicate data concerning the no treatment (control) animal. FIG. 5 is a graph illustrating inhibition of EBOV Makona variant by EVB100 and EVB114. Lentivirus particles bearing

GPs from EBOV Makona variant were incubated with serially diluted EVB100, EVB114 or isotype control. Infection

measured as in FIG. 2B (n=3).

- **FIGs. 6-8** are a set of graphs showing clinical data from the EBOV challenge study using passive transfer of a combination of EVB114 and EVB100. "nt" is used to indicate data concerning the no treatment (control) animal.
- **FIGs. 9-11** are a set of graphs showing clinical data from the EBOV challenge study using passive transfer of a monotherapy using EVB114. "nt" is used to indicate data concerning the no treatment (control) animal.
- **FIG. 12** shows a graph illustrating the neutralization properties of the EVB100, EVB114, EVB165, and EVB166 antibodies in the presence of soluble GP (sGP), which is believed to interfere with the natural immune response to EBOV in human subjects. sGP is a GP splice variant that lacks a transmembrane domain and is therefore secreted from infected cells. Pseudotyped lentiviral vectors expressing EBOV GP were incubated with the IC50 concentration of each antibody (as shown in FIG. 2B) and sGP prior to infection of 293T cells, and infection inhibition was calculated as a percent of infection in the absence of antibody.
- **FIG. 13** shows a Western blot indicating that the EVB100, EVB114, EVB165, and EVB166 antibodies can immunoprecipitate several different forms of EBOV GP, including the GPo, GP_1 , GP_2 , pre- GP_{er} , and GP_{CatL} forms of GP. KZ52 was used as a positive control.
- **FIGs. 14A and 14B** are a set of diagrams illustrating EBOV GP and regions thereof (FIG. 4A) and several deletion mutants of EBOV GP used herein (FIG. 4B).
 - **FIGs. 15 and 16** are a set of Western blots illustrating the ability of the EVB100, EVB114, EVB165, and EVB166 antibodies to immunoprecipitate the GP dMUC and GP dGP2 deletion mutants illustrated in FIG. 4B.
 - **FIGs. 17A and 17B** are a set of Western blots illustrating the ability of the EVB100, EVB114, EVB165, and EVB166 antibodies to immunoprecipitate the sGP form of EBOV GP (FIG. 7A) and to recognize the sGP form by direct Western blot (FIG. 7B).
 - **FIG. 18** is a set of graphs illustrating the cross-species neutralization properties of the EVB100, EVB114, EVB165, and EVB166 antibodies. Pseudotyped lentiviral vectors expressing EBOV GP from the Bundibugyo or Sudan EBOV strains were incubated with antibody prior to infection of 293T cells, and infection inhibition was calculated as a percent of infection in the absence of antibody.

SEQUENCES

5

10

15

20

25

30

35

40

- **[0014]** The nucleic and amino acid sequences are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII text file in the form of the file named "Sequence.txt" (~60kb), which was created on November 13, 2015, which is incorporated by reference herein.
- **SEQ ID NO: 1** is the amino acid sequence of the V_H of the EVB114 mAb.
- EVQLVESGGGLIQPGGSLRLSCAASgfalrmydMHWVRQTIDKRLEWVSAvgpsgdtYYADSVKGRFAVSR ENAKNSLSLQMNSLTAGDTAIYYCvrsdrgvaglfdsWGQGILVTVSS
 - **SEQ ID NO: 2** is the amino acid sequence of the V_1 of the EVB114 mAb.
- DIQMTQSPSSLSASVGDRITITCRASqafdnyVAWYQQRPGKVPKLLISaasALHAGVPSRFSGSGSGTHF

 TLTISSLQPEDVATYYCqnynsapltFGGGTKVEIK
 - **SEQ ID NO: 3** is the amino acid sequence of the V_H of the EVB100 mAb.
- QVQLQESGPGLVKPSDTLSLTCTVS**ggslssfy**WSWIRQPPGKGLEWIGY**iyysgsp**NYSPSLESRVTMSV DTTRNQISLKLDSVTAADTAVYYC**vrasrsyywgsyrptafds**WGQGTLVTVSS
 - **SEQ ID NO: 4** is the amino acid sequence of the $\rm V_L$ of the EVB100 mAb.
- 55 SYELTQPLSVSVSPGQTAIFTCSGD**nlgdky**VCWFQQRPGQSPMLLIY**qdn**KRPSGIPERFSGSNSGNTAT LTISGTQSTDEADYYC**qtwdstvv**FGGGTKLTVL

SEQ ID NO: 5 is the amino acid sequence of the V_H of the EVB166 mAb.

QVQLVQSGAEVKKPGSSVKVSCKTS**ggtlsnya**ISWVRQAPGQGLEWMGG**tiptlgms**TYAPNFQGRVAIT ADKSTSTAYMELSSLRSDDTAVYYC**atmqsadtsfyfymdv**WGKGTTVTVSS

SEQ ID NO: 6 is the amino acid sequence of the $\rm V_{\rm L}$ of the EVB166 mAb.

5

50

55

EIVLTQSPGTLSLSPGERATLSCRASqsvsssyLAWYQQKPGQAPRLLIYgtsSRATGIPDRFSGSASGTD FTLTISRLEPEDFAVYYCqqyayspftFGPGTKVDIK

SEQ ID NO: 7 is an exemplary nucleotide sequence encoding the V_H of the EVB114 mAb.

gaggtgcagctggtggagtctggggggggtttaattcagccgggggggtccctgagactctcctgtgcagcctctCtGGATTCGCCCTCAGAATGTACGACatgcactgggtccgtcagacaatagataaacgtctcgagtgggtctcagctGTGGGTCCTTCTGGTGACACCtactatgcagactccgtgaagggccgattcgccgtctccagagagaatgccaagaactccttgtctcttcagatgaacagcctgacagcggggacacggctatatactattgtGTAAGGTCTGACCGAGGAGTGGCTGGCCTTTTTGACAGCtggggccagggaatcctggtcaccgtctcttcag

SEQ ID NO: 8 is an exemplary nucleotide sequence encoding the V_L of the EVB114 mAb.

gacatccagatgacccagtctccatcatccctgtctgcatctgtgggagacagaatcaccatcacttgccg ggcgagtCAGGCCTTTGACAATTATgtagcctggtatcaacagagaccagggaaggttcctaagctcctga tctctGCTGCATCCgctttgcacgcaggggtcccatctcgcttcagcggcagtggctctgggacacatttc actctcaccatcagcagcctgcagcctgaagatgttgcaacttattactgtCAAAACTATAACAGTGCCCC GCTCACTttcqqcqqaqqqaccaaggtqqaqatcaaac

SEQ ID NO: 9 is an exemplary nucleotide sequence encoding the V_H of the EVB100 mAb.

caggtgcagctgcaggagtcgggcccaggactggtgaagccttcggataccctgtccctcacctgtactgt ctctGGTGCTCCCTCAGTAGTTTCTACtggagctggatccggcagcccccagggaagggactggagtgga ttgggtatATCTATTACAGTGGGAGCCCCaactacagcccctccctcgagagtcgagtcaccatgtcagta gacacgaccaggaaccagatctccctgaagttggactctgtgaccgcgggacacggccgtgtattactg tGTGAGAGCCTCCCGAAGTTACTATTGGGGGAGTTATCGCCCAACGGCTTTTGACTCCtggggccagggaa ccctggtcaccgtctcctcag

SEQ ID NO: 10 is an exemplary nucleotide sequence encoding the V₁ of the EVB100 mAb.

tectatgagetgaeteagecaeteteagtgteegtgteeceaggeeagaeageeatetteaeetgetetgg
agatAATTTGGGGGATAAGTATgtttgetggttteaacagaggeeaggeeagteecetatgetgeteatet
atCAAGACAATaageggeeeteggggateeetgagegattetetggeteeaaetetgggaaeaeageeaet
etgaetateagegggaeeeagtetaeagatgaggetgaetattaetgtCAGACGTGGGACAGCACCGTGGT
Gtteggeggagggaeeaaaetgaeegteetgg

SEQ ID NO: 11 is an exemplary nucleotide sequence encoding the V_H of the EVB166 mAb.

caggtccagctggtgcagtctggggctgaggtgaagaagcctgggtcctcggtgaaagtctcctgcaagactcct**GGAGGCACCTCAGCAACTATGCT**atcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaggaggagagacCCATTCCTACCCTTGGTATGTCCacctacgcaccgaacttccagggcagagtcgcgattaccgcggacaaatccacgagcacagcctacatggagttgagtagtctgaggtctgacgacacggccgtttattattgt**GCGACTATGGCAGTGCGGACACTAGTTTCTACTTCTACATGGACGTC**tggggcaaagggaccacggtcaccggtcaccqtctcctcaq

SEQ ID NO: 12 is an exemplary nucleotide sequence encoding a variant V_L of the EVB166 mAb that includes a K104T substitution.

Gaaattgtgttgacgcagtctccaggcaccctgtctttgtctccaggggagagagccaccctctcctgcag ggccagt**CAGAGTGTTAGTAGCAGCTAC**ttagcctggtaccagcagaaacctggccaggctcccagactcc tcatctat**GGTACATCC**agcagggccactggcatcccagacaggttcagtggcagtgcgtctgggacagac ttcactctcaccatcagcagactggagcctgaagattttgcagtgtattactgt**CAGCAGTATGCTTACTC ACCATTCACT**ttcqqccctqqqaccacaqtqqatatcaaac

SEQ ID NO: 13 is an exemplary amino acid sequence of a precursor of the GP from Bundibugyo EBOV (GENBANK Acc. No. ACI28624.1, which is incorporated by reference herein in its entirety).

MVTSGILQLPRERFRKTSFFVWVIILFHKVFPIPLGVVHNNTLQVSDIDKLVCRDKLSSTSQLKSVGLNLE
GNGVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGSECLPEAPEGVRGFPRCRYVHKVS
GTGPCPEGYAFHKEGAFFLYDRLASTIIYRSTTFSEGVVAFLILPETKKDFFQSPPLHEPANMTTDPSSYY
HTVTLNYVADNFGTNMTNFLFQVDHLTYVQLEPRFTPQFLVQLNETIYTNGRRSNTTGTLIWKVNPTVDTG
VGEWAFWENKKNFTKTLSSEELSVIFVPRAQDPGSNQKTKVTPTSFANNQTSKNHEDLVPEDPASVVQVRD
LQRENTVPTPPPDTVPTTLIPDTMEEQTTSHYEPPNISRNHQERNNTAHPETLANNPPDNTTPSTPPQDGE
RTSSHTTPSPRPVPTSTIHPTTRETHIPTTMTTSHDTDSNRPNPIDISESTEPGPLTNTTRGAANLLTGSR
RTRREITLRTQAKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAEGIYTEGIMHNQNGLICGLRQLANETTQA
LQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPHDWTKNITDKIDQIIHDFIDKPLPDQT
DNDNWWTGWROWVPAGIGITGVIIAVIALLCICKFLL

SEQ ID NO: 14 is an exemplary amino acid sequence of a precursor of the GP from Sudan EBOV (GENBANK Acc. No. ACR33190.1, which is incorporated by reference herein in its entirety).

MEGLSLLQLPRDKFRKSSFFVWVIILFQKAFSMPLGVVTNSTLEVTEIDQLVCKDHLASTDQLKSVGLNLE
GSGVSTDIPSATKRWGFRSGVPPKVFSYEAGEWAENCYNLEIKKPDGSECLPPPPDGVRGFPRCRYVHKAQ
GTGPCPGDYAFHKDGAFFLYDRLASTVIYRGVNFAEGVIAFLILAKPKETFLQSPPIREAVNYTENTSSYY
ATSYLEYEIENFGAQHSTTLFKINNNTFVLLDRPHTPQFLFQLNDTIHLHQQLSNTTGKLIWTLDANINAD
IGEWAFWENKKNLSEQLRGEELSFETLSLNETEDDDATSSRTTKGRISDRATRKYSDLVPKDSPGMVSLHV
PEGETTLPSQNSTEGRRVDVNTQETITETTATIIGTNGNNMQISTIGTGLSSSQILSSSPTMAPSPETQTS
TTYTPKLPVMTTEESTTPPRNSPGSTTEAPTLTTPENITTAVKTVLPQESTSNGLITSTVTGILGSLGLRK
RSRRQVNTRATGKCNPNLHYWTAQEQHNAAGIAWIPYFGPGAEGIYTEGLMHNQNALVCGLRQLANETTQA
LQLFLRATTELRTYTILNRKAIDFLLRRWGGTCRILGPDCCIEPHDWTKNITDKINQIIHDFIDNPLPNQD
NDDNWWTGWRQWIPAGIGITGIIIAIIALLCVCKLLC

SEQ ID NO: 15 is an exemplary amino acid sequence of a precursor of the GP from Zaire EBOV (GENBANK Acc. No. AIO11753.1, which is incorporated by reference herein in its entirety).

50

10

15

20

30

40

MGVTGILQLPRDRFKKTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSSTNQLRSVGLNLE
GNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGSECLPAAPDGIRGFPRCRYVHKVS
GTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEGVVAFLILPQAKKDFFSSHPLREPVNATEDPSSGY
YSTTIRYQATGFGTNETEYLFEVDNLTYVQLESRFTPQFLLQLNETIYTSGKRSNTTGKLIWKVNPEIDTT
IGEWAFWETKKNLTRKIRSEELSFTAVSNRAKNISGQSPARTSSDPGTNTTTEDHKIMASENSSAMVQVHS
QGREAAVSHLTTLATISTSPQPPTTKPGPDNSTHNTPVYKLDISEATQAEQHHRRTDNDSTTSDTPPAMTA
AGPPKAENTNTSKGTDLPDPATTTSPQNHSETAGNNNTHHQDTGEESASSGKLGLITNTIAGVAGLITGGR
RTRREAIVNAQPKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAEGIYTEGLMHNQDGLICGLRQLANETTQA
LQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPHDWTKNITDKIDQIIHDFVDKTLPDQG
DNDNWWTGWRQWIPAGIGVTGVIIAVIALFCICKFVF

5

10

15

20

25

30

35

45

50

55

SEQ ID NO: 16 is an exemplary amino acid sequence of a precursor of the GP from Reston EBOV (GENBANK Acc. No. AAC54891.1, which is incorporated by reference herein in its entirety).

MGSGYQLLQLPRERFRKTSFLVWVIILFQRAISMPLGIVTNSTLKATEIDQLVCRDKLSSTSQLKSVGLNL EGNGIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGSECLPLPPDGVRGFPRCRYVHKV QGTGPCPGDLAFHKNGAFFLYDRLASTVIYRGTTFTEGVVAFLILSEPKKHFWKATPAHEPVNTTDDSTSY YMTLTLSYEMSNFGGKESNTLFKVDNHTYVQLDRPHTPQFLVQLNETLRRNNRLSNSTGRLTWTLDPKIEP DVGEWAFWETKKNFSQQLHGENLHFQILSTHTNNSSDQSPAGTVQGKISYHPPTNNSELVPTDSPPVVSVL TAGRTEEMSTQGLTNGETITGFTANPMTTTIAPSPTMTSEVDNNVPSEQPNNTASIEDSPPSASNETIDHS EMNPIQGSNNSAQSPQTKTTPAPTASPMTQDPQETANSSKLGTSPGSAAEPSQPGFTINTVSKVADSLSPT RKQKRSVRQNTANKCNPDLHYWTAVDEGAAVGLAWIPYFGPAAEGIYIEGVMHNQNGLICGLRQLANETTQ ALQLFLRATTELRTYSLLNRKAIDFLLQRWGGTCRILGPSCCIEPHDWTKNITDEINQIKHDFIDNPLPDH GDDLNLWTGWRQWIPAGIGIIGVIIAIIALLCICKILC

SEQ ID NO: 17 is an exemplary amino acid sequence of a precursor of the GP from Taï Forest EBOV (GENBANK Acc. No. ACI28632.1, which is incorporated by reference herein in its entirety).

MGASGILQLPRERFRKTSFFVWVIILFHKVFSIPLGVVHNNTLQVSDIDKFVCRDKLSSTSQLKSVGLNLE GNGVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGSECLPEAPEGVRDFPRCRYVHKVS GTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEGVIAFLILPKARKDFFQSPPLHEPANMTTDPSSYY HTTTINYVVDNFGTNTTEFLFQVDHLTYVQLEARFTPQFLVLLNETIYSDNRRSNTTGKLIWKINPTVDTS MGEWAFWENKKNFTKTLSSEELSFVPVPETQNQVLDTTATVSPPISAHNHAAEDHKELVSEDSTPVVQMQN IKGKDTMPTTVTGVPTTTPSPFPINARNTDHTKSFIGLEGPQEDHSTTQPAKTTSQPTNSTESTTLNPTSE PSSRGTGPSSPTVPNTTESHAELGKTTPTTLPEQHTAASAIPRAVHPDELSGPGFLTNTIRGVTNLLTGSR RKRRDVTPNTQPKCNPNLHYWTALDEGAAIGLAWIPYFGPAAEGIYTEGIMENQNGLICGLRQLANETTQA LQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPQDWTKNITDKIDQIIHDFVDNNLPNQN DGSNWWTGWKQWVPAGIGITGVIIAIIALLCICKFML

SEQ ID NO: 18 is an exemplary amino acid sequence of a precursor of the soluble form of GP from Zaire EBOV (GENBANK Acc. No. AAD14584.1, which is incorporated by reference herein in its entirety).

MGVTGILQLPRDRFKRTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSSTNQLRSVGLNLE GNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGSECLPAAPDGIRGFPRCRYVHKVS GTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEGVVAFLILPQAKKDFFSSHPLREPVNATEDPSSGY YSTTIRYQATGFGTNETEYLFEVDNLTYVQLESRFTPQFLLQLNETIYTSGKRSNTTGKLIWKVNPEIDTT IGEWAFWETKKTSLEKFAVKSCLSQLYQTEPKTSVVRVRRELLPTQGPTQQLKTTKSWLQKIPLQWFKCTV KEGKLQCRI

SEQ ID NO: 19 is the amino acid sequence of the V_H of the EVB165 mAb.

 $\label{thm:constraint} DVQLVESGGGVVQPGGSLKLACVVS \textbf{gfrfsdyw} MSWVRQAPGKGLEWVANikqdgsgkYYVDSVKGRFTVS\\ RDNAKNSLYLHMTSLGAEDTAVYFCaraaptgsytnilvdnvhfdyWGQGILVAVSS$

SEQ ID NO: 20 is the amino acid sequence of the V_L of the EVB165 mAb.

GIQLTQSPGSLSASVGDSVTITCRPNqniatyINWYQQTPGKAPKLLIYaasILQSGVPSRFSGAGSGTHF TLIISTLQPEDSATYYCqqsystpwtFGQGTKVEIK

SEQ ID NO: 21 is an exemplary nucleotide sequence encoding the V_H of the EVB165 mAb.

gatgtgcagttggtggagtctgggggggggtgtccagccgggggggtccctgaaactcgcctgtgtagt ctct**GGATTCAGGTTTAGTGACTACTGG**atgagttgggtccgccaggcccagggaaggggctggaatggg tggccaac**ATAAAACAAGATGGAAGTGGGAAG**tactatgtggactccgtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtatctacacatgaccagcctgggagccgaggacacggccgtatactt ctgc**GCGAGAGCAGCCCCCACCGGCTCCTACACTAATATCCTAGTCGACAACGTCCACTTCGACTAC**tggg gccagggaatcctggtcgccgtctcctcag

SEQ ID NO: 22 is an exemplary nucleotide sequence encoding the V_L of the EVB165 mAb.

ggcatccagctgacccagtctccaggctccctgtctgcatctgtaggagacagtgtcaccatcacttgccg gccaaatCAGAACATCGCCACCTATataaattggtatcagcagacaccagggaaagcccctaagctcctga tctatGCCGCATCCattttgcagagtggggtcccatcaaggttcagtggcgctggatctgggacacatttc actctcatcatcagtaccctacaacctgaggattctgcaacttactactgcCAACAGAGTTACAGTACCCC GTGGACAttcggccaagggaccaaagtggaaatcaaac

SEQ ID NO: 23 is the amino acid sequence of the V_H of the EVB167 mAb.

25

30

AVQLVQSGAEVKKPGTTVKISCKVSgytfiqeyIHWVQQAPGKGLVWMGLgdpennetLYSEDFQGRVTMT ADTSSDTAYLELRSLTFADTAVYFCtsrkswWGQGTLVTVAS

SEQ ID NO: 24 is the amino acid sequence of the V_L of the EVB167 mAb.

35 ELVLTQSPGTLSLSPGESATLSCRASqslssdsVSWFQQKPGQAPRLVIHgtsKRATGIPDRFSGGGSGTD FTLTIARLEPEDFAVYYCqrsqyqmsvtwtFGQGTTVEIK

SEQ ID NO: 25 is an exemplary nucleotide sequence encoding the V_H of the EVB167 mAb.

gcggtccagttggtacaatctggggctgaggtgaagaagcctgggaccaccgtcaaaatctcctgcaaagt tctt**GGATACACCTTCATTCAAGAATAC**atacactgggtgcaacaggcccctggaaaagggcttgtgtgga tgggactt**GGTGACCCTGAAAATAATGAGACT**ctatattcagaggatttccaaggcagagtcaccatgacc gcggacacatcctcagacacagcctatctggaactgcgcagcctgacatttgcagacacggccgtctattt ctgt**ACATCACGAAAGTCCTGG**tggggccagggaaccctggtcaccgtcgctcag

SEQ ID NO: 26 is an exemplary nucleotide sequence encoding the V_L of the EVB167 mAb.

gaacttgtgttgacgcagtctccaggcaccctgtctttgtctccaggggaaagcgccaccctctc ctgtagggccagtCAGAGTCTTAGCAGCGACTCTgtatcttggttccagcagaaacctggccagg ctcccaggctcgtcatccatGGTACATCAaagagggccactggcatcccagacaggttcagtggc ggtgggtctgggacagacttcactctcaccatcgccagactggagcctgaggattttgcagtcta ttattgtCAGCGGTCTGGGTATGGTATGTCAGTCACGTGGACGttcggccaagggaccacggtgg agatcaaac

SEQ ID NO: 27 is an exemplary nucleotide sequence encoding the V_I of the EVB167 mAb.

 $\label{eq:gaacttgtgttgacgcagtctccaggcaccctttttgtctccaggggaaagcgccaccctctc} ctgtagggccagt \textbf{CAGAGTCTTAGCAGCGACTCT} \\ \text{gttagggccagtcagcagaaacctggccagg} \\ \text{ctcccaggctcgtcatccat}\\ \textbf{GGTACATCA} \\ \text{aagagggccactggcatcccagacaggttcagtggc} \\ \text{ggtgggtctgggacagacttcactctcaccatcgccagactggagcctgaggattttgcagtcta} \\ \text{ttattgt}\\ \textbf{CAGCGGTCTGGGTATGGTATGTCAGTCACGTGGACG} \\ \text{ttaggccaagggaccacggtgg} \\ \text{agatcaaac} \\ \end{aligned}$

SEQ ID NO: 28 is the amino acid sequence of the V_H of the EVB114 version 2 mAb.

EVQLVESGGGLIQPGGSLRLSCAASgfalrsydMHWVRQTIDKRLEWVSAvgpsgdtYYADSVKGRFAVSR ENAKNSLSLQMNSLTAGDTAIYYCvrsdrqvaqlfdsWGQGILVTVSS

SEQ ID NO: 29 is the amino acid sequence of the V_L of the EVB114 version 2 mAb.

DIQMTQSPSSLSASVGDRITITCRASqafsnyVAWYQQRPGKVPKLLISaasALHAGVPSRFSGSGSGTHF TLTISSLQPEDVATYYCqnynsapltFGGGTKVEI

SEQ ID NO: 30 is an exemplary nucleotide sequence encoding the V_H of the EVB114 version 2 mAb.

gaagtgcagctggtggagtctggagggtctgattcagcccgggggttccctgcgtctgagttgtgccgc atct**GGATTTGCTCTGCGAAGCTACGAC**atgcactgggtgagacagactatcgataagcgcctggagtggg tgtctgct**GTCGGCCCCAGTGGAGCACC**tactatgcagattcagtgaaggggaggttcgcagtctcccgg gaaaacgccaaaaattccctgagcctgcagatgaactctctgaccgccggcgacacagctatctactattg c**GTCAGGAGCGATAGAGGGGTCGCAGGACTGTTTGATTCA**tggggtcagggtattctggtcaccgtgtctt ca

SEQ ID NO: 31 is an exemplary nucleotide sequence encoding the V_L of the EVB114 version 2 mAb.

gatattcagatgactcagagcccttcctcactgtccgcatccgtgggagaccgtattactattacttgtag agcttctCAGGCTTTTTCTAACTACgtggcttggtatcagcagaggcccggcaaggtccctaaactgctga tctccGCCGCTTCTgcactgcatgctggagtgccaagccggttctctggaagtggatcagggactcacttc accctgacaatttccagcctgcagcccgaggatgtcgcaacctactattgcCAGAACTACAACAGTGCTCC CCTGACAttcggtggtggaacaaaggtcgagatc

SEQ ID NOs: 32-61 are amino acid sequences of antibody heavy and light chain CDRs by IMGT positioning. **SEQ ID NO: 62** is the amino acid sequence of a variant V_I of the EVB166 mAb that includes a K104T substitution.

EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSASGTD FTLTISRLEPEDFAVYYCQQYAYSPFTFGPGTTVDIK

SEQ ID NOs: 63-65 are primer and probe sequences.

SEQ ID NO: 66 is the amino acid sequence of a modified fragment of EBOV GP.

[0015] For SEQ ID NOs: 1-6, 19-20, 23-24, and 28-29 the amino acid sequence of the IMGT CDRs are shown in bold and lower case letters. For SEQ ID NOs: 7-12, 21-22, 25-27, and 30-31, the nucleotide sequences encoding IMGT CDRs are shown in bold and upper case letters.

55

50

40

15

20

DETAILED DESCRIPTION

I. Summary of Terms

20

25

30

35

40

50

[0016] Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, Genes X, published by Jones & Bartlett Publishers, 2009; and Meyers et al. (eds.), The Encyclopedia of Cell Biology and Molecular Medicine, published by Wiley-VCH in 16 volumes, 2008; and other similar references.

[0017] As used herein, the singular forms "a," "an," and "the," refer to both the singular as well as plural, unless the context clearly indicates otherwise. For example, the term "an antigen" includes single or plural antigens and can be considered equivalent to the phrase "at least one antigen." As used herein, the term "comprises" means "includes." It is further to be understood that any and all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for descriptive purposes, unless otherwise indicated. Although many methods and materials similar or equivalent to those described herein can be used, particular suitable methods and materials are described herein. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. To facilitate review of the various embodiments, the following explanations of terms are provided:

Administration: The introduction of a composition into a subject by a chosen route. Administration can be local or systemic. For example, if the chosen route is intravenous, the composition is administered by introducing the composition into a vein of the subject. Exemplary routes of administration include, but are not limited to, oral, injection (such as subcutaneous, intramuscular, intradermal, intraperitoneal, and intravenous), sublingual, rectal, transdermal (for example, topical), intranasal, vaginal, and inhalation routes.

Agent: Any substance or any combination of substances that is useful for achieving an end or result; for example, a substance or combination of substances useful for inhibiting EBOV infection in a subject. Agents include proteins, antibodies, nucleic acid molecules, compounds, small molecules, organic compounds, inorganic compounds, or other molecules of interest. An agent can include a therapeutic agent, a diagnostic agent or a pharmaceutical agent. In some embodiments, the agent is a polypeptide agent (such as an EBOV-neutralizing antibody), or an anti-viral agent. Some agents may be useful to achieve more than one result.

Amino acid substitution: The replacement of one amino acid in peptide with a different amino acid.

Antibody: An immunoglobulin, antigen-binding fragment, or derivative thereof, that specifically binds and recognizes an analyte (antigen) such as EBOV GP. The term "antibody" is used herein in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, so long as they exhibit the desired antigen-binding activity.

[0018] Non-limiting examples of antibodies include, for example, intact immunoglobulins and variants and fragments thereof known in the art that retain binding affinity for the antigen. Examples of antibody fragments include but are not limited to Fv, Fab, Fab', Fab'-SH, F(ab')₂; diabodies; linear antibodies; single-chain antibody molecules (e.g. scFv); and multispecific antibodies formed from antibody fragments. Antibody fragments include antigen binding fragments either produced by the modification of whole antibodies or those synthesized *de novo* using recombinant DNA methodologies (see, e.g., Kontermann and Dubel (Ed), Antibody Engineering, Vols. 1-2, 2nd Ed., Springer Press, 2010).

[0019] A single-chain antibody (scFv) is a genetically engineered molecule containing the V_H and V_L domains of one or more antibody(ies) linked by a suitable polypeptide linker as a genetically fused single chain molecule (see, for example, Bird et al., Science, 242:423-426, 1988; Huston et al., Proc. Natl. Acad. Sci., 85:5879-5883, 1988; Ahmad et al., Clin. Dev. Immunol., 2012, doi: 10.1155/2012/980250; Marbry, IDrugs, 13:543-549, 2010). The intramolecular orientation of the V_H -domain and the V_L -domain in a scFv, is typically not decisive for scFvs. Thus, scFvs with both possible arrangements (V_H -domain-linker domain- V_L -domain; V_L -domain-linker domain- V_H -domain) may be used.

[0020] In a dsFv the V_H and V_L have been mutated to introduce a disulfide bond to stabilize the association of the chains. Diabodies also are included, which are bivalent, bispecific antibodies in which V_H and V_L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see, for example, Holliger et al., Proc. Natl. Acad. Sci., 90:6444-6448, 1993; Poljak et al., Structure, 2:1121-1123, 1994).

[0021] Antibodies also include genetically engineered forms such as chimeric antibodies (such as humanized murine antibodies) and heteroconjugate antibodies (such as bispecific antibodies). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, IL); Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York, 1997. [0022] An "antibody that binds to the same epitope" as a reference antibody refers to an antibody that blocks binding

of the reference antibody to its antigen in a competition assay by 50% or more, and conversely, the reference antibody blocks binding of the antibody to its antigen in a competition assay by 50% or more. Antibody competition assays are known, and an exemplary competition assay is provided herein.

[0023] An antibody may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or may be different. For instance, a naturally-occurring immunoglobulin has two identical binding sites, a single-chain antibody or Fab fragment has one binding site, while a bispecific or bifunctional antibody has two different binding sites.

[0024] Typically, a naturally occurring immunoglobulin has heavy (H) chains and light (L) chains interconnected by disulfide bonds. Immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable domain genes. There are two types of light chain, lambda (λ) and kappa (κ). There are five main heavy chain classes (or isotypes) which determine the functional activity of an antibody molecule: IgM, IgD, IgG, IgA and IgE.

10

30

35

50

55

[0025] Each heavy and light chain contains a constant region (or constant domain) and a variable region (or variable domain; see, e.g., Kindt et al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007).) In several embodiments, the V_H and V_L combine to specifically bind the antigen. In additional embodiments, only the V_H is required. For example, naturally occurring camelid antibodies consisting of a heavy chain only are functional and stable in the absence of light chain (see, e.g., Hamers-Casterman et al., Nature, 363:446-448, 1993; Sheriff et al., Nat. Struct. Biol., 3:733-736, 1996). Any of the disclosed antibodies can include a heterologous constant domain. For example the antibody can include constant domain that is different from a native constant domain, such as a constant domain including one or more modifications (such as the "LS" mutations) to increase half-life.

[0026] References to " V_H " or "VH" refer to the variable region of an antibody heavy chain, including that of an antigen binding fragment, such as Fv, scFv, dsFv or Fab. References to " V_L " or "VL" refer to the variable domain of an antibody light chain, including that of an Fv, scFv, dsFv or Fab.

[0027] The V_H and V_L contain a "framework" region interrupted by three hypervariable regions, also called "complementarity-determining regions" or "CDRs" (see, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services, 1991). The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three-dimensional space.

[0028] The CDRs are primarily responsible for binding to an epitope of an antigen. The amino acid sequence boundaries of a given CDR can be readily determined using any of a number of well-known schemes, including those described by Kabat et al. ("Sequences of Proteins of Immunological Interest," 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991; "Kabat" numbering scheme), Al-Lazikani et al., (JMB 273,927-948, 1997; "Chothia" numbering scheme), and Lefranc et al. ("IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains," Dev. Comp. Immunol., 27:55-77, 2003; "IMGT" numbering scheme). The CDRs of each chain are typically referred to as CDR1, CDR2, and CDR3 (from the N-terminus to C-terminus), and are also typically identified by the chain in which the particular CDR is located. Thus, a V_H CDR3 is the CDR3 from the V_H of the antibody in which it is found, whereas a V_L CDR1 is the CDR1 from the V_L of the antibody in which it is found. Light chain CDRs are sometimes referred to as LCDR1, LCDR2, and LCDR3. Heavy chain CDRs are sometimes referred to as HCDR1, HCDR2, and HCDR3.

[0029] A "monoclonal antibody" is an antibody obtained from a population of substantially homogeneous antibodies, that is, the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variant antibodies, for example, containing naturally occurring mutations or arising during production of a monoclonal antibody preparation, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies may be made by a variety of techniques, including but not limited to the hybridoma method, recombinant DNA methods, phage-display methods, and methods utilizing transgenic animals containing all or part of the human immunoglobulin loci, such methods and other exemplary methods for making monoclonal antibodies being described herein. In some examples monoclonal antibodies are isolated from a subject. Monoclonal antibodies can have conservative amino acid substitutions which have substantially no effect on antigen binding or other immunoglobulin functions. (See, for example, Harlow & Lane, Antibodies, A Laboratory Manual, 2nd ed. Cold Spring Harbor Publications, New York (2013).)

[0030] A "humanized" antibody or antigen binding fragment includes a human framework region and one or more CDRs from a non-human (such as a mouse, rat, or synthetic) antibody or antigen binding fragment. The non-human antibody or antigen binding fragment providing the CDRs is termed a "donor," and the human antibody or antigen binding fragment providing the framework is termed an "acceptor." In one embodiment, all the CDRs are from the donor immu-

noglobulin in a humanized immunoglobulin. Constant regions need not be present, but if they are, they can be substantially identical to human immunoglobulin constant regions, such as at least about 85-90%, such as about 95% or more identical. Hence, all parts of a humanized antibody or antigen binding fragment, except possibly the CDRs, are substantially identical to corresponding parts of natural human antibody sequences.

[0031] A "chimeric antibody" is an antibody which includes sequences derived from two different antibodies, which typically are of different species. In some examples, a chimeric antibody includes one or more CDRs and/or framework regions from one human antibody and CDRs and/or framework regions from another human antibody.

[0032] A "fully human antibody" or "human antibody" is an antibody which includes sequences from (or derived from) the human genome, and does not include sequence from another species. In some embodiments, a human antibody includes CDRs, framework regions, and (if present) an Fc region from (or derived from) the human genome. Human antibodies can be identified and isolated using technologies for creating antibodies based on sequences derived from the human genome, for example by phage display or using transgenic animals (see, e.g., Barbas et al. Phage display: A Laboratory Manuel. 1st Ed. New York: Cold Spring Harbor Laboratory Press, 2004. Print.; Lonberg, Nat. Biotech., 23: 1117-1125, 2005; Lonenberg, Curr. Opin. Immunol., 20:450-459, 2008)

10

30

35

40

45

50

55

[0033] Antibody or antigen binding fragment that neutralizes EBOV: An antibody or antigen binding fragment that specifically binds to EBOV GP (such as ZEBOV GP) in such a way as to inhibit a biological function associated with EBOV GP (such as binding to its target receptor). In several embodiments, an antibody or antigen binding fragment that neutralizes EBOV reduces the infectious titer of EBOV. In some embodiments, an antibody or antigen binding fragment that specifically binds to EBOV GP can neutralize two or more (such as 3, 4, 5, 6, 7, 8, 9, 10, or more) strains of EBOV.

[0034] Biological sample: A sample obtained from a subject. Biological samples include all clinical samples useful for detection of disease or infection (for example, EVD or EBOV infection) in subjects, including, but not limited to, cells, tissues, and bodily fluids, such as blood, derivatives and fractions of blood (such as serum), cerebrospinal fluid; as well as biopsied or surgically removed tissue, for example tissues that are unfixed, frozen, or fixed in formalin or paraffin. In a particular example, a biological sample is obtained from a subject having or suspected of having an Ebola infection.

[0035] Bispecific antibody: A recombinant molecule composed of two different antigen binding domains that consequently binds to two different antigenic epitopes. Bispecific antibodies include chemically or genetically linked molecules of two antigen-binding domains. The antigen binding domains can be linked using a linker. The antigen binding domains can be monoclonal antibodies, antigen-binding fragments (e.g., Fab, scFv), or combinations thereof. A bispecific antibody can include one or more constant domains, but does not necessarily include a constant domain.

[0036] Conditions sufficient to form an immune complex: Conditions which allow an antibody or antigen binding fragment to bind to its cognate epitope to a detectably greater degree than, and/or to the substantial exclusion of, binding to substantially all other epitopes. Conditions sufficient to form an immune complex are dependent upon the format of the binding reaction and typically are those utilized in immunoassay protocols or those conditions encountered *in vivo*. See Harlow & Lane, Antibodies, A Laboratory Manual, 2nd ed. Cold Spring Harbor Publications, New York (2013) for a description of immunoassay formats and conditions. The conditions employed in the methods are "physiological conditions" which include reference to conditions (e.g., temperature, osmolarity, pH) that are typical inside a living mammal or a mammalian cell. While it is recognized that some organs are subject to extreme conditions, the intra-organismal and intracellular environment normally lies around pH 7 (e.g., from pH 6.0 to pH 8.0, more typically pH 6.5 to 7.5), contains water as the predominant solvent, and exists at a temperature above 0°C and below 50°C. Osmolarity is within the range that is supportive of cell viability and proliferation.

[0037] The formation of an immune complex can be detected through conventional methods, for instance immuno-histochemistry, immunoprecipitation, flow cytometry, immunofluorescence microscopy, ELISA, immunoblotting (for example, Western blot), magnetic resonance imaging, CT scans, X-ray and affinity chromatography. Immunological binding properties of selected antibodies may be quantified using methods well known in the art.

[0038] Conjugate: A complex of two molecules linked together, for example, linked together by a covalent bond. In one embodiment, an antibody is linked to an effector molecule; for example, an antibody that specifically binds to EBOV GP covalently linked to an effector molecule. The linkage can be by chemical or recombinant means. In one embodiment, the linkage is chemical, wherein a reaction between the antibody moiety and the effector molecule has produced a covalent bond formed between the two molecules to form one molecule. A peptide linker (short peptide sequence) can optionally be included between the antibody and the effector molecule. Because conjugates can be prepared from two molecules with separate functionalities, such as an antibody and an effector molecule, they are also sometimes referred to as "chimeric molecules."

[0039] Conservative variants: "Conservative" amino acid substitutions are those substitutions that do not substantially affect or decrease a function of a protein, such as the ability of the protein to interact with a target protein. For example, an EBOV-specific antibody can include up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 conservative substitutions compared to a reference antibody sequence and retain specific binding activity for EBOV antigen, and/or EBOV neutralization activity. The term conservative variation also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid.

[0040] Furthermore, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids (for instance less than 5%, in some embodiments less than 1%) in an encoded sequence are conservative variations where the alterations result in the substitution of an amino acid with a chemically similar amino acid.

- 5 **[0041]** Conservative amino acid substitution tables providing functionally similar amino acids are known. The following six groups are examples of amino acids that are considered to be conservative substitutions for one another:
 - 1) Alanine (A), Serine (S), Threonine (T);
 - 2) Aspartic acid (D), Glutamic acid (E);
 - 3) Asparagine (N), Glutamine (Q);
 - 4) Arginine (R), Lysine (K);

10

30

35

40

45

50

- 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
- [0042] Non-conservative substitutions are those that reduce an activity or function of the EBOV-specific antibody, such as the ability to specifically bind to EBOV GP. For instance, if an amino acid residue is essential for a function of the protein, even an otherwise conservative substitution may disrupt that activity. Thus, a conservative substitution does not alter the basic function of a protein of interest.
 - **[0043]** Contacting: Placement in direct physical association; includes both in solid and liquid form, which can take place either *in vivo* or *in vitro*. Contacting includes contact between one molecule and another molecule, for example the amino acid on the surface of one polypeptide, such as an antigen, that contacts another polypeptide, such as an antibody. Contacting can also include contacting a cell for example by placing an antibody in direct physical association with a cell.
 - **[0044] Control:** A reference standard. In some embodiments, the control is a negative control sample obtained from a healthy patient. In other embodiments, the control is a positive control sample obtained from a patient diagnosed with EBOV infection. In still other embodiments, the control is a historical control or standard reference value or range of values (such as a previously tested control sample, such as a group of EBOV patients with known prognosis or outcome, or group of samples that represent baseline or normal values).
 - [0045] A difference between a test sample and a control can be an increase or conversely a decrease. The difference can be a qualitative difference or a quantitative difference, for example a statistically significant difference. In some examples, a difference is an increase or decrease, relative to a control, of at least about 5%, such as at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 150%, at least about 200%, at least about 200%, at least about 500%, at least about 500%, or greater than 500%.
 - **[0046]** Degenerate variant: In the context of the present disclosure, a "degenerate variant" refers to a polynucleotide encoding a protein (for example, an antibody that specifically binds EBOV GP) that includes a sequence that is degenerate as a result of the genetic code. There are twenty natural amino acids, most of which are specified by more than one codon. Therefore, all degenerate nucleotide sequences are included as long as the amino acid sequence of the antibody that binds EBOV GP encoded by the nucleotide sequence is unchanged.
- [0047] Detectable marker: A detectable molecule (also known as a label) that is conjugated directly or indirectly to a second molecule, such as an antibody, to facilitate detection of the second molecule. For example, the detectable marker can be capable of detection by ELISA, spectrophotometry, flow cytometry, microscopy or diagnostic imaging techniques (such as CT scans, MRIs, ultrasound, fiberoptic examination, and laparoscopic examination). Specific, nonlimiting examples of detectable markers include fluorophores, chemiluminescent agents, enzymatic linkages, radioactive isotopes and heavy metals or compounds (for example super paramagnetic iron oxide nanocrystals for detection by MRI). In one example, a "labeled antibody" refers to incorporation of another molecule in the antibody. For example, the label is a detectable marker, such as the incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (for example, streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (such as ³⁵S or ¹³¹I), fluorescent labels (such as fluorescein isothiocyanate (FITC), rhodamine, lanthanide phosphors), enzymatic labels (such as horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (such as a leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), or magnetic agents, such as gadolinium chelates. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance. Methods for using detectable markers and guidance in the choice of detectable markers appropriate for various purposes are discussed for example in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 4th ed, Cold Spring Harbor, New York, 2012) and Ausubel et al. (In

Current Protocols in Molecular Biology, John Wiley & Sons, New York, through supplement 104, 2013).

[0048] Detecting: To identify the existence, presence, or fact of something. General methods of detecting are known and may be supplemented with the protocols and reagents disclosed herein. For example, included herein are methods of detecting a cell that expresses EBOV GP in a subject.

- **[0049] Ebola Virus (EBOV):** An enveloped, non-segmented, negative, single-stranded RNA virus that causes Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever (EHF), in humans. EBOV spreads through human-to-human transmission, with infection resulting from direct contact with blood, secretions, organs or other bodily fluids of infected people, and indirect contact with environments contaminated by such fluids (see, e.g., Baize et al., N Engl J Med., 371, 1418-1425, 2014, which is incorporated by reference herein).
- [0050] The symptoms of EBOV infection and disease are well-known. Briefly, in humans, EBOV has an initial incubation period of 2 to 21 days (7 days on average, depending on the strain) followed by a rapid onset of non-specific symptoms such as fever, extreme fatigue, gastrointestinal complaints, abdominal pain, anorexia, headache, myalgias and/or arthralgias. These initial symptoms last for about 2 to 7 days after which more severe symptoms related to hemorrhagic fever occur, including hemorrhagic rash, epistaxis, mucosal bleeding, hematuria, hemoptysis, hematemesis, melena, conjunctival hemorrhage, tachypnea, confusion, somnolence, and hearing loss. In general, the symptoms last for about 7 to 14 days after which recovery may occur. Death can occur 6 to 16 days after the onset of symptoms (Geisbert and Jahrling, Nat Med., 10, S110-21. 2004; Hensley et al., Curr Mol Med, 5, 761-72, 2005). People are infectious as long as their blood and secretions contain the virus; the virus was isolated from semen 61 days after onset of illness in a man who was infected in a laboratory (Baize et al., N Engl J Med., 371, 1418-1425,2014).
- **[0051]** Immunoglobulin M (IgM) antibodies to the virus appear 2 to 9 days after infection whereas immunoglobulin G (IgG) antibodies appear approximately 17 to 25 days after infection, which coincides with the recovery phase. In survivors of EVD, both humoral and cellular immunity are detected, however, their relative contribution to protection is unknown (Sullivan, Yang, and Nabel, J Virol, 77, 9733-7, 2003).
 - **[0052]** Five distinct EBOV species are known, including Bundibugyo (BDBV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), and Zaire (ZEBOV) (Kuhn, J.H., et al., Arch Virol, 2013. 158(1): p. 301-11). BDBV, EBOV, and SUDV have been associated with large outbreaks of EVD in Africa and reported case fatality rates of up to 90%. Exemplary amino acid sequences of EBOV GP from the BDBV, RESTV, SUDV, TAFV, and ZEBOV strains are set forth as SEQ ID NOs: 13-17.
- **[0053]** The EBOV genome includes about 19K nucleotides, which encode seven structural proteins including NP (a nucleoprotein), VP35 (a polymerase cofactor), VP30 (a transcription activator), VP24, L (a RNA polymerase), and GP (a glycoprotein).

30

35

50

- **[0054] EBOV glycoprotein (GP):** The virion-associated transmembrane glycoprotein of EBOV is initially synthesized as a precursor protein of about 675 amino acids in size, designated GP_0 . Individual GP_0 polypeptides form a homotrimer and undergo glycosylation within the Golgi apparatus as well as processing to remove the signal peptide, and cleavage by a cellular protease between approximately positions 500/501 to generate separate GP_1 and GP_2 polypeptide chains, which remain associated as GP_1/GP_2 protomers within the homotrimer. The extracellular GP_1 polypeptide (approx. 140 kDa) is derived from the amino-terminal portion of the GP_0 precursor, and the GP_2 polypeptide (approx. 26 kDa), which includes extracellular, transmembrane, and cytosolic domains, is derived from the carboxyl-terminal portion of the GP_0 precursor. GP_1 is responsible for attachment to new host cells while GP_2 mediates fusion with those cells.
- 40 [0055] A splice variant of the gene encoding EBOV GP encodes a soluble glycoprotein (sGP) that is secreted from the viral host cell. (Volchkov et al., Virology, 245, 110-119, 1998). sGP and GP₁ are identical in their first 295 N-terminal amino acids, whereas the remaining 69 C-terminal amino acids of sGP and 206 amino acids of GP₁ are encoded by different reading frames. It has been suggested that secreted sGP may effectively bind antibodies that might otherwise be protective (see, e.g., Sanchez et al., Proc. Natl. Acad. Sci. U.S.A., 93, 3602-3607, 1996; and Volchkov et al., Virology, 245, 110-119, 1998, each of which is incorporated by reference herein in its entirety).
 - **[0056]** Comparisons of the predicted amino acid sequences for the GPs of the different EBOV strains show conservation of amino acids in the amino-terminal and carboxy-terminal regions with a highly variable region in the middle of the protein (Feldmann et al., Virus Res. 24: 1-19,1992). The GP of Ebola viruses are highly glycosylaled and contain both N-linked and O-linked carbohydrates that contribute up to 50% of the molecular weight of the protein. Most of the glycosylation sites are found in the central variable region of GP.
 - **[0057]** The numbering used in the disclosed EBOV GPs and fragments thereof is relative to the EBOV GP protein from the Zaire strain set forth as SEQ ID NO: 15, unless context indicates otherwise.
 - **[0058] Effector molecule:** A molecule intended to have or produce a desired effect; for example, a desired effect on a cell to which the effector molecule is targeted. Effector molecules can include, for example, polypeptides and small molecules. In one non-limiting example, the effector molecule is a toxin. Some effector molecules may have or produce more than one desired effect.
 - **[0059] Epitope:** An antigenic determinant. These are particular chemical groups or peptide sequences on a molecule that are antigenic, *i.e.* that elicit a specific immune response. An antibody specifically binds a particular antigenic epitope

on a polypeptide. In some examples a disclosed antibody specifically binds to an epitope on EBOV GP.

10

15

20

30

35

40

50

[0060] Expression: Transcription or translation of a nucleic acid sequence. For example, an encoding nucleic acid sequence (such as a gene) can be expressed when its DNA is transcribed into an RNA or RNA fragment, which in some examples is processed to become mRNA. An encoding nucleic acid sequence (such as a gene) may also be expressed when its mRNA is translated into an amino acid sequence, such as a protein or a protein fragment. In a particular example, a heterologous gene is expressed when it is transcribed into an RNA. In another example, a heterologous gene is expressed when its RNA is translated into an amino acid sequence. Regulation of expression can include controls on transcription, translation, RNA transport and processing, degradation of intermediary molecules such as mRNA, or through activation, inactivation, compartmentalization or degradation of specific protein molecules after they are produced.

[0061] Expression Control Sequences: Nucleic acid sequences that regulate the expression of a heterologous nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the transcription and, as appropriate, translation of the nucleic acid sequence. Thus expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (ATG) in front of a protein-encoding gene, splicing signal for introns, maintenance of the correct reading frame of that gene to permit proper translation of mRNA, and stop codons. The term "control sequences" is intended to include, at a minimum, components whose presence can influence expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences. Expression control sequences can include a promoter.

[0062] A promoter is a minimal sequence sufficient to direct transcription. Also included are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for cell-type specific, tissue-specific, or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the gene. Both constitutive and inducible promoters are included (see for example, Bitter et al., Methods in Enzymology 153:516-544, 1987). For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage lambda, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used. In one embodiment, when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (such as metallothionein promoter) or from mammalian viruses (such as the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) can be used. Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the nucleic acid sequences.

[0063] A polynucleotide can be inserted into an expression vector that contains a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells.

[0064] Expression vector: A vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis- acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.

[0065] Fc polypeptide: The polypeptide including the constant region of an antibody excluding the first constant region immunoglobulin domain. Fc region generally refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM. An Fc region may also include part or all of the flexible hinge N-terminal to these domains. For IgA and IgM, an Fc region may or may not include the tailpiece, and may or may not be bound by the J chain. For IgG, the Fc region includes immunoglobulin domains Cgamma2 and Cgamma3 ($C\gamma2$ and $C\gamma3$) and the lower part of the hinge between Cgamma1 ($C\gamma1$) and Cy2. Although the boundaries of the Fc region may vary, the human IgG heavy chain Fc region is usually defined to include residues C226 or P230 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat. For IgA, the Fc region includes immunoglobulin domains Calpha2 and Calpha3 ($C\alpha2$ and $C\alpha3$) and the lower part of the hinge between Calpha1 ($C\alpha1$) and $C\alpha2$.

[0066] Heterologous: Originating from a different genetic source. A nucleic acid molecule that is heterologous to a cell originated from a genetic source other than the cell in which it is expressed.

[0067] IgA: A polypeptide belonging to the class of antibodies that are substantially encoded by a recognized immunoglobulin alpha gene. In humans, this class or isotype comprises IgA₁ and IgA₂. IgA antibodies can exist as monomers, polymers (referred to as pIgA) of predominantly dimeric form, and secretory IgA. The constant chain of wild-type IgA contains an 18-amino-acid extension at its C-terminus called the tail piece (tp). Polymeric IgA is secreted by plasma cells with a 15-kDa peptide called the J chain linking two monomers of IgA through the conserved cysteine residue in the tail piece.

[0068] IgG: A polypeptide belonging to the class or isotype of antibodies that are substantially encoded by a recognized

immunoglobulin gamma gene. In humans, this class comprises IgG_1 , IgG_2 , IgG_3 , and IgG_4 . In mice, this class comprises IgG_1 , IgG_{2a} , IgG_{2b} , IgG_3 .

[0069] Immune complex: The binding of antibody or antigen binding fragment (such as a scFv) to a soluble antigen forms an immune complex. The formation of an immune complex can be detected through conventional methods, for instance immunohistochemistry, immunoprecipitation, flow cytometry, immunofluorescence microscopy, ELISA, immunoblotting (for example, Western blot), magnetic resonance imaging, CT scans, X-ray and affinity chromatography. Immunological binding properties of selected antibodies may be quantified using methods well known in the art.

[0070] Isolated: A biological component (such as a nucleic acid, peptide, protein or protein complex, for example an antibody) that has been substantially separated, produced apart from, or purified away from other biological components in the cell of the organism in which the component naturally occurs, that is, other chromosomal and extra-chromosomal DNA and RNA, and proteins. Thus, isolated nucleic acids, peptides and proteins include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids, peptides and proteins prepared by recombinant expression in a host cell, as well as, chemically synthesized nucleic acids. A isolated nucleic acid, peptide or protein, for example an antibody, can be at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% pure.

10

20

30

35

50

55

[0071] Linker: A bi-functional molecule that can be used to link two molecules into one contiguous molecule, for example, to link an effector molecule to an antibody. In some embodiments, the provided conjugates include a linker between the effector molecule or detectable marker and an antibody. In some cases, a linker is a peptide within an antigen binding fragment (such as an Fv fragment) which serves to indirectly bond the variable heavy chain to the variable light chain. Non-limiting examples of peptide linkers include glycine, serine, and glycine-serine linkers.

[0072] The terms "conjugating," "joining," "bonding," or "linking" can refer to making two molecules into one contiguous molecule; for example, linking two polypeptides into one contiguous polypeptide, or covalently attaching an effector molecule or detectable marker radionuclide or other molecule to a polypeptide, such as an scFv. In the specific context, the terms include reference to joining a ligand, such as an antibody moiety, to an effector molecule. The linkage can be either by chemical or recombinant means. "Chemical means" refers to a reaction between the antibody moiety and the effector molecule such that there is a covalent bond formed between the two molecules to form one molecule.

[0073] Nucleic acid (molecule or sequence): A deoxyribonucleotide or ribonucleotide polymer or combination thereof including without limitation, cDNA, mRNA, genomic DNA, and synthetic (such as chemically synthesized) DNA or RNA. The nucleic acid can be double stranded (ds) or single stranded (ss). Where single stranded, the nucleic acid can be the sense strand or the antisense strand. Nucleic acids can include natural nucleotides (such as A, T/U, C, and G), and can include analogs of natural nucleotides, such as labeled nucleotides. "Encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA produced by that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and non-coding strand, used as the template for transcription, of a gene or cDNA can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns. "cDNA" refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.

[0074] Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter, such as the CMV promoter, is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame.

[0075] Pharmaceutically acceptable carriers: The pharmaceutically acceptable carriers of use are conventional. Remington's Pharmaceutical Science, 22th ed., Pharmaceutical Press, London, UK (2012), describes compositions and formulations suitable for pharmaceutical delivery of the disclosed agents.

[0076] In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually include injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (e.g., powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, added preservatives (such as on-natural preservatives), and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate. In particular examples, the pharma-

ceutically acceptable carrier is sterile and suitable for parenteral administration to a subject for example, by injection. In some embodiments, the active agent and pharmaceutically acceptable carrier are provided in a unit dosage form such as a pill or in a selected quantity in a vial. Unit dosage forms can include one dosage or multiple dosages (for example, in a vial from which metered dosages of the agents can selectively be dispensed).

[0077] Polypeptide: A polymer in which the monomers are amino acid residues that are joined together through amide bonds. When the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used, the L-isomers being preferred. The terms "polypeptide" or "protein" as used herein are intended to encompass any amino acid sequence and include modified sequences such as glycoproteins. A polypeptide includes both naturally occurring proteins, as well as those that are recombinantly or synthetically produced. A polypeptide has an amino terminal (N-terminal) end and a carboxy-terminal end. In some embodiments, the polypeptide is a disclosed antibody or a fragment thereof

10

20

30

35

40

50

55

[0078] Purified: The term purified does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified peptide preparation is one in which the peptide or protein (such as an antibody) is more enriched than the peptide or protein is in its natural environment within a cell. In one embodiment, a preparation is purified such that the protein or peptide represents at least 50% of the total peptide or protein content of the preparation, such as at least 80%, at least 90%, at least 95% or greater of the total peptide or protein content.

[0079] Recombinant: A recombinant nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination can be accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, for example, by genetic engineering techniques. A recombinant protein is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. In several embodiments, a recombinant protein is encoded by a heterologous (for example, recombinant) nucleic acid that has been introduced into a host cell, such as a bacterial or eukaryotic cell. The nucleic acid can be introduced, for example, on an expression vector having signals capable of expressing the protein encoded by the introduced nucleic acid or the nucleic acid can be integrated into the host cell chromosome.

[0080] Sequence identity: The similarity between amino acid or nucleic acid sequences is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. Homologs or variants of a polypeptide or nucleic acid molecule will possess a relatively high degree of sequence identity when aligned using standard methods.

[0081] Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith and Waterman, Adv. Appl. Math. 2:482, 1981; Needleman and Wunsch, J. Mol. Biol. 48:443, 1970; Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988; Higgins and Sharp, Gene 73:237, 1988; Higgins and Sharp, CABIOS 5:151, 1989; Corpet et al., Nucleic Acids Research 16:10881, 1988; and Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988. Altschul et al., Nature Genet. 6:119, 1994, presents a detailed consideration of sequence alignment methods and homology calculations.

[0082] The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, MD) and on the internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. A description of how to determine sequence identity using this program is available on the NCBI website on the internet.

[0083] Homologs and variants of a polypeptide (such as an insect ferritin heavy or light chain) are typically characterized by possession of at least about 75%, for example at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity counted over the full length alignment with the amino acid sequence of interest. Proteins with even greater similarity to the reference sequences will show increasing percentage identities when assessed by this method, such as at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% sequence identity. When less than the entire sequence is being compared for sequence identity, homologs and variants will typically possess at least 80% sequence identity over short windows of 10-20 amino acids, and may possess sequence identities of at least 85% or at least 90% or 95% depending on their similarity to the reference sequence. Methods for determining sequence identity over such short windows are available at the NCBI website on the internet. One of skill in the art will appreciate that these sequence identity ranges are provided for guidance only; it is entirely possible that strongly significant homologs could be obtained that fall outside of the ranges provided.

[0084] As used herein, reference to "at least 90% identity" refers to "at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or even 100% identity" to a specified reference sequence.

[0085] Specifically bind: When referring to an antibody or antigen binding fragment, refers to a binding reaction which determines the presence of a target protein, peptide, or polysaccharide in the presence of a heterogeneous population of proteins and other biologies. Thus, under designated conditions, an antibody binds preferentially to a particular target protein, peptide or polysaccharide (such as an antigen present on the surface of a pathogen, for example EBOV GP)

and does not bind in a significant amount to other proteins or polysaccharides present in the sample or subject. With reference to an antibody-antigen complex, specific binding of the antigen and antibody has a K_d of less than about 10^{-7} Molar, such as less than about 10^{-8} Molar, 10^{-9} , or even less than about 10^{-10} Molar.

[0086] K_d refers to the dissociation constant for a given interaction, such as a polypeptide ligand interaction or an antibody antigen interaction. For example, for the bimolecular interaction of an antibody or antigen binding fragment (such as EVB114 or an antigen binding fragment thereof) and an antigen (such as EBOV GP) it is the concentration of the individual components of the bimolecular interaction divided by the concentration of the complex.

10

15

20

30

35

50

55

[0087] The antibodies disclosed herein specifically bind to a defined target (or multiple targets, in the case of a bispecific antibody). Thus, an antibody that specifically binds to an epitope on EBOV GP is an antibody that binds substantially to EBOV GP, including cells or tissue expressing EBOV GP, substrate to which the EBOV GP is attached, or EBOV GP in a biological specimen. It is, of course, recognized that a certain degree of non-specific interaction may occur between an antibody or conjugate including an antibody (such as an antibody that specifically binds EBOV GP or conjugate including such antibody) and a non-target (such as a cell that does not express EBOV GP). Typically, specific binding results in a much stronger association between the antibody and protein or cells bearing the antigen than between the antibody and protein or cells lacking the antigen. Specific binding typically results in greater than 2-fold, such as greater than 5-fold, greater than 10-fold, or greater than 100-fold increase in amount of bound antibody (per unit time) to a protein including the epitope or cell or tissue expressing the target epitope as compared to a protein or cell or tissue lacking this epitope. Specific binding to a protein under such conditions requires an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats are appropriate for selecting antibodies or other ligands specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow & Lane, Antibodies, A Laboratory Manual, 2nd ed., Cold Spring Harbor Publications, New York (2013), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.

[0088] Subject: Living multi-cellular vertebrate organisms, a category that includes human and non-human mammals. In an example, a subject is a human. In an additional example, a subject is selected that is in need of inhibiting of an EBOV infection. For example, the subject is either uninfected and at risk of EBOV infection or is infected in need of treatment.

[0089] Therapeutically effective amount: The amount of agent, such as a disclosed EBOV GP specific antibody or antigen binding fragment that is sufficient to prevent, treat (including prophylaxis), reduce and/or ameliorate the symptoms and/or underlying causes of a disorder or disease, for example to prevent, inhibit, and/or treat EBOV infection. In some embodiments, a therapeutically effective amount is sufficient to reduce or eliminate a symptom of a disease, such as EVD. For instance, this can be the amount necessary to inhibit or prevent EBOV replication or to measurably alter outward symptoms of the EBOV infection. Ideally, a therapeutically effective amount provides a therapeutic effect without causing a substantial cytotoxic effect in the subject.

[0090] In some embodiments, a desired response is to inhibit or reduce or prevent EBOV infection. The EBOV infection does not need to be completely eliminated or reduced or prevented for the method to be effective. For example, administration of a therapeutically effective amount of the agent can reduce or inhibit the EBOV infection (for example, as measured by infection of cells, or by number or percentage of subjects infected by EBOV, or by an increase in the survival time of infected subjects) by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 90%, at least 95%, at least 98%, or even at least 100% (elimination or prevention of detectable EBOV infection, as compared to a suitable control.

[0091] A therapeutically effective amount of an antibody or antigen binding fragment that specifically binds EBOV GP that is administered to a subject will vary depending upon a number of factors associated with that subject, for example the overall health and/or weight of the subject. A therapeutically effective amount encompasses a fractional dose that contributes in combination with previous or subsequent administrations to attaining a therapeutic response. For example, a therapeutically effective amount of an agent can be administered in a single dose, or in several doses, for example daily, during a course of treatment lasting several days or weeks. However, the therapeutically effective amount can depend on the subject being treated, the severity and type of the condition being treated, and the manner of administration. A unit dosage form of the agent can be packaged in a therapeutic amount, or in multiples of the therapeutic amount, for example, in a vial (e.g., with a pierceable lid) or syringe having sterile components.

[0092] Transformed: A transformed cell is a cell into which a nucleic acid molecule has been introduced by molecular biology techniques. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of DNA by electroporation, lipofection, and particle gun acceleration.

[0093] Treating or preventing a disease: Inhibiting the full development of a disease or condition, for example, in a subject who is at risk of or has an EBOV infection. "Treatment" refers to a therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition after it has begun to develop. The term "ameliorating," with reference to a disease or pathological condition, refers to any observable beneficial effect of the treatment. The beneficial

effect can be evidenced, for example, by a delayed onset of clinical symptoms of the disease in a susceptible subject, a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease, a reduction in the viral load, an improvement in the overall health or well-being of the subject, or by other parameters well known in the art that are specific to the particular disease. A "prophylactic" treatment is a treatment administered to a subject who does not exhibit signs of a disease for the purpose of reducing the risk of developing pathology.

[0094] The term "reduces" is a relative term, such that an agent reduces a disease or condition (or a symptom of a disease or condition) if the disease or condition is quantitatively diminished following administration of the agent, or if it is diminished following administration of the agent, as compared to a reference agent. Similarly, the term "prevents" does not necessarily mean that an agent completely eliminates the disease or condition, so long as at least one characteristic of the disease or condition is eliminated. Thus, an antibody that reduces or prevents an infection, can, but does not necessarily completely, eliminate such an infection, so long as the infection is measurably diminished, for example, by at least about 50%, such as by at least about 70%, or about 80%, or even by about 90% the infection in the absence of the agent, or in comparison to a reference agent.

[0095] Under conditions sufficient for: A phrase that is used to describe any environment that permits a desired activity. In one example the desired activity is formation of an immune complex. In particular examples the desired activity is treatment of EBOV infection.

[0096] Vector: Recombinant DNA vectors are vectors having recombinant DNA. A vector can include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication. A vector can also include one or more selectable marker genes and other genetic elements known in the art. Viral vectors are recombinant nucleic acid vectors having at least some nucleic acid sequences derived from one or more viruses. In some embodiments, a viral vector is provided that comprises one or more nucleic acid molecules encoding a disclosed antibody or antigen binding fragment that specifically binds to EBOV GP and neutralizes EBOV. In some embodiments, the viral vector can be an adeno-associated virus (AAV) vector. A replication deficient viral vector is a vector that requires complementation of one or more regions of the viral genome required for replication due to a deficiency in at least one replication-essential gene function. For example, such that the viral vector does not replicate in typical host cells, especially those in a human patient that could be infected by the viral vector in the course of a therapeutic method.

II. Description of Several Embodiments

40

50

[0097] Isolated monoclonal antibodies and antigen binding fragments that specifically bind an epitope on EBOV GP protein are provided. The antibodies and antigen binding fragments can be fully human. In several embodiments, the antibodies and antigen binding fragments can be used to neutralize EBOV infection. Also disclosed herein are compositions including the antibodies and antigen binding fragments and a pharmaceutically acceptable carrier. Nucleic acids encoding the antibodies or antigen binding fragments, expression vectors including these nucleic acids, and isolated host cells that express the nucleic acids are also provided.

[0098] The antibodies, antigen binding fragments, nucleic acid molecules, host cells, and compositions can be used for research, diagnostic and therapeutic purposes. For example, the monoclonal antibodies and antigen binding fragments can be used to diagnose or treat a subject with an EBOV, or can be administered prophylactically to prevent EBOV infection in a subject. In some embodiments, the antibodies can be used to determine EBOV titer in a subject.

A. Neutralizing Monoclonal Antibodies and Antigen Binding Fragments

[0099] This disclosure provides the novel EVB114, EVB114 version 2, EVB100, EVB165, EVB166, and EVB167 antibodies and variants thereof (including antigen binding fragments), which specifically bind to EBOV GP. The disclosed antibodies and antigen binding fragments are surprisingly effective for neutralization of EBOV. For example, as discussed in Example 1, the EVB114 antibody or a combination of EVB114 and EVB100 neutralize EBOV in *in vitro* assays and were 100% effective in preventing lethality in a primate model of human EBOV infection.

[0100] In some embodiments, the antibodies and antigen binding fragments include a V_H and a V_L and specifically bind to EBOV GP and neutralize EBOV infection. In several embodiments, the antibody or antigen binding fragment can include a V_H comprising a HCDR1, a HCDR2 and a HCDR3, and a V_L comprising a LCDR1, a LCDR2, and a LCDR3, and specifically bind to EBOV GB and neutralize EBOV infection. In several embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3, respectively, of one of the EVB114, EVB114 version 2, EVB100, EVB165, EVB166, or EVB167 antibodies, and can specifically bind to EBOV GP and neutralize EBOV.

[0101] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3 comprising amino acid sequences that are at least 90% (for example, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to the amino acid sequences of the CDRs of one of the EVB114, EVB114 version 2, EVB100, EVB165, EVB166, or

EVB167 antibodies, and can specifically bind to EBOV GP and neutralize EBOV.

[0102] Various CDR numbering schemes (such as the Kabat, Chothia or IMGT numbering schemes) can be used to determine CDR positions. The discussion of monoclonal antibodies below refers to monoclonal antibodies that include a V_H and a V_L including CDRs with reference to the IMGT numbering scheme (unless the context indicates otherwise). The amino acid sequence and the CDR positions of the heavy and light chain of the EVB114, EVB114 version 2, EVB100, EVB165, EVB166, or EVB167 antibodies according to the IMGT numbering scheme are shown in Table 1. In several embodiments, an antibody or antigen binding fragment is provided that includes the IMGT CDRs of an antibody listed in Table 1, and can specifically bind to EBOV GP and neutralize EBOV.

Table 2. IMGT CDR sequences of EBOV GP specific antibodies

EVB114 V _H				
V _H	SEQ ID NO: 1 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GFALRMYD	32	
HCDR2	51-57	VGPSGDT	33	
		VRSDRGVAGLFDS		
HCDR3	96-108		34	
EVB114 V _L				
V _L	SEQ ID NO: 2 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	27-32	QAFDNY	35	
LCDR2	50-52	AAS	36	
LCDR3	89-97	QNYNSAPLT	37	
EVB114 version 2 V _H				
V_{H}	SEQ ID NO: 28 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GFALRSYD	38	
HCDR2	51-57	VGPSGDT	33	
HCDR3	96-108	VRSDRGVAGLFDS	34	
EVB114 version 2 V _L				
V _L	SEQ ID NO: 29 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	27-32	QAFSNY	39	
LCDR2	50-52	AAS	36	
LCDR3	89-97	QNYNSAPLT	37	
EVB100 V _H				
V _H	SEQ ID NO: 3 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GGSLSSFY	40	
HCDR2	51-57	IYYSGSP	41	
HCDR3	96-114	VRASRSYYWGSYRPTAFDS	42	
EVBb100 V _L				
V_{L}	SEQ ID NO: 4 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	26-31	NLGDKY	43	
LCDR2	49-51	QDN	44	
LCDR3	88-95	QTWDSTVV	45	
EVB165 V _H				
V _H	SEQ ID NO: 19 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GFRFSDYW	46	

(continued)

EVB165 V _H				
V _H	SEQ ID NO: 19 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR2	51-58	IKQDGSGK	47	
HCDR3	97-117	ARAAPTGSYTNILVDNVHFDY	48	
EVB165 V _L				
V _L	SEQ ID NO: 20 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	27-32	QNIATY	49	
LCDR2	50-52	AAS	36	
LCDR3	89-97	QQSYSTPWT	50	
EVB166 V _H				
V _H	SEQ ID NO: 5 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GGTLSNYA	51	
HCDR2	51-58	TIPTLGMS	52	
HCDR3	97-112	ATMGSADTSFYFYMDV	53	
EVB166 V _L				
V_L	SEQ ID NO: 6 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	27-33	QSVSSSY	54	
LCDR2	51-53	GTS	55	
LCDR3	90-98	QQYAYSPFT	56	
EVB167 V _H				
V_{H}	SEQ ID NO: 23 positions	A.A. Sequence	CDR SEQ ID NO	
HCDR1	26-33	GYTFIQEY	57	
HCDR2	51-58	GDPENNET	58	
HCDR3	97-102	TSRKSW	59	
EVB167 V _L				
V_L	SEQ ID NO: 24 positions	A.A. Sequence	CDR SEQ ID NO	
LCDR1	27-33	QSLSSDS	60	
LCDR2	51-53	GTS	55	
LCDR3	90-101	QRSGYGMSVTWT	61	

[0103] In several embodiments, the antibody or antigen binding fragment includes IMGT CDRs, such as those listed in Table 1, and can specifically bind to EBOV GP and neutralize EBOV.

EVB114

[0104] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB114 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments, the antibody or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 1 (EVB114 V_H), and a V_H comprising a LCDR1, a LCDR2, and a LCDR3 of the V_H set forth as SEQ ID NO: 2 (EVB114 V_H), and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-108 of SEQ ID NO: 1, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3

including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 2, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-108 of SEQ ID NO: 1, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 2, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0105] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-108, respectively, of SEQ ID NO: 1, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 2, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-108, respectively, of SEQ ID NO: 1, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 2, and can specifically bind to EBOV GP and neutralize EBOV.

[0106] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 1, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 2, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 1, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 2, and can specifically bind to EBOV GP and neutralize EBOV.

[0107] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 1, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 2, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 1 and 2, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0108] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 32, 33, and 34, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 35, 36, and 37, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 32, 33, 34, 35, 36, and 37, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0109] In some embodiments, the V_H of any of the disclosed antibodies or antigen binding fragments based on the EVB114 antibody can further include a M31S substitution (kabat numbering) and/or the V_L of any of the disclosed antibodies or antigen binding fragments based on the EVB114 antibody can further include a D30S substitution (kabat numbering), and can specifically bind to EBOV GP and neutralize EBOV. For example, the antibody or antigen binding fragment can includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 38, 33, 34, 35, 36, and 37, respectively, SEQ ID NOs: 32, 33, 34, 39, 36, and 37, respectively, or SEQ ID NOs: 38, 33, 34, 39, 36, and 37, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment can include a V_H comprising the amino acid sequence set forth as SEQ ID NO: 1 further including a M31S substitution, and a V_L comprising the amino acid sequence set forth as SEQ ID NO: 2 further comprising a D30S substitution.

[0110] In some embodiments, the V_H of any of the disclosed antibodies or antigen binding fragments based on the EVB114 antibody can comprise a valine residue at kabat position 96 and a serine residue at kabat position 108.

55 EVB114 version 2

30

35

50

[0111] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB114 version 2 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments,

the antibody or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 28 (EVB114 version 2 V_H), and a V_L comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 29 (EVB114 version 2 V_L). In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-108 of SEQ ID NO: 28, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 29, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-108 of SEQ ID NO: 28, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 29, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0112] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-108, respectively, of SEQ ID NO: 28, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 29, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-108, respectively, of SEQ ID NO: 28, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 29, and can specifically bind to EBOV GP and neutralize EBOV.

[0113] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 28, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 29, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 28, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 29, and can specifically bind to EBOV GP and neutralize EBOV.

[0114] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 28, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 29, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 28 and 29, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0115] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 38, 33, and 34, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 39, 36, and 37, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 38, 33, 34, 39, 36, and 37, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0116] In some embodiments, the V_H of any of the disclosed antibodies or antigen binding fragments based on the EVB114 version 2 antibody can further include a S31M substitution (kabat numbering) and/or the V_L of any of the disclosed antibodies or antigen binding fragments based on the EVB114 antibody can further include a S30D substitution (kabat numbering). For example, in some embodiments, the antibody or antigen binding fragment can include a V_H comprising the amino acid sequence set forth as SEQ ID NO: 28 further including a S31M substitution, and a V_L comprising the amino acid sequence set forth as SEQ ID NO: 29 further comprising a S30D substitution.

⁵⁵ EVB100

30

35

50

[0117] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB100 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments, the antibody

or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 3 (EVB 100 V_H), and a V_I comprising a LCDR1, a LCDR2, and a LCDR3 of the V_I set forth as SEQ ID NO: 4 (EVB100 V_L). In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-114 of SEQ ID NO: 3, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_I including a LCDR1, a LCDR2, and a LCDR3 including amino acids 26-31, 49-51, and 88-95 of SEQ ID NO: 4, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-57, and 96-114 of SEQ ID NO: 3, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 26-31, 49-51, and 88-95 of SEQ ID NO: 4, respectively, and can specifically bind to EBOV GP and neutralize EBOV. [0118] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-114, respectively, of SEQ ID NO: 3, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V₁ including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 26-31, 49-51, and 88-95, respectively, of SEQ ID NO: 4, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a $V_{
m H}$ including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-57, and 96-114, respectively, of SEQ ID NO: 3, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 26-31, 49-51, and 88-95, respectively, of SEQ ID NO: 4, and can specifically bind to EBOV GP and neutralize EBOV.

[0119] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 3, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 4, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 3, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 4, and can specifically bind to EBOV GP and neutralize EBOV.

[0120] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 3, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 4, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 3 and 4, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0121] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 40, 41, and 42, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 43, 44, and 45, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 40, 41, 42, 43, 44, and 45, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0122] In some embodiments, the V_H of any of the disclosed antibodies or antigen binding fragments based on the EVB100 antibody can comprise a valine residue at kabat position 96, a tyrosine residue at kabat position 103 and a serine residue at kabat position 114.

EVB165

30

35

50

[0123] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB165 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments, the antibody or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 19 (EVB165 V_H), and a V_L comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 20 (EVB165 V_L). In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-117 of SEQ ID NO: 19, respectively, and can

specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 20, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-117 of SEQ ID NO: 19, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 20, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0124] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-117, respectively, of SEQ ID NO: 19, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 20, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-117, respectively, of SEQ ID NO: 19, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acids amino acids 27-32, 50-52, and 89-97, respectively, of SEQ ID NO: 20, and can specifically bind to EBOV GP and neutralize EBOV.

[0125] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 19, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 20, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 19, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 20, and can specifically bind to EBOV GP and neutralize EBOV.

[0126] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 19, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 20, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 19 and 20, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0127] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 46, 47, and 48, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 49, 36, and 50, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 46, 47, 48, 49, 36, and 50, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

⁴⁵ EVB166

30

35

50

[0128] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB166 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments, the antibody or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 5 (EVB166 V_H), and a V_L comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 6 (EVB166 V_L). In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-112 of SEQ ID NO: 5, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-33, 51-53, and 90-98 of SEQ ID NO: 6, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-112 of SEQ ID NO: 5, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-33, 51-53, and 90-98 of SEQ ID NO: 6, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0129] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-112, respectively, of SEQ ID NO: 5, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-33, 51-53, and 90-98, respectively, of SEQ ID NO: 6, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-112, respectively, of SEQ ID NO: 5, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acids amino acids 27-33, 51-53, and 90-98, respectively, of SEQ ID NO: 6, and can specifically bind to EBOV GP and neutralize EBOV.

[0130] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 5, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V₁ including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 6, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 62, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 5, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 6, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 5, and a V₁ including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 62, and can specifically bind to EBOV GP and neutralize EBOV. [0131] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 5, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 6, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V₁ including the amino acid sequence set forth as SEQ ID NO: 62, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 5 and 6, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V₁ including the amino acid sequences set forth as SEQ ID NOs: 5 and 62, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0132] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 51, 52, and 53, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 54, 55, and 56, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 51, 52, 53, 54, 55, and 56, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

EVB167

30

35

[0133] In some embodiments, the antibody or antigen binding fragment can be based on or derived from the EVB167 antibody, and can specifically bind to EBOV GP and neutralize EBOV. For example, in some embodiments, the antibody or antigen binding fragment can comprise a V_H comprising a HCDR1, a HCDR2, and a HCDR3 of the V_H set forth as SEQ ID NO: 23 (EVB167 V_H), and a V_L comprising a LCDR1, a LCDR2, and a LCDR3 of the V_L set forth as SEQ ID NO: 24 (EVB167 V_L). In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-102 of SEQ ID NO: 23, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In further embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-33, 51-53, and 90-101 of SEQ ID NO: 24, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the

antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acids 26-33, 51-58, and 97-102 of SEQ ID NO: 23, respectively, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acids 27-33, 51-53, and 90-101 of SEQ ID NO: 24, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0134] In some embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-102, respectively, of SEQ ID NO: 23, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-33, 51-53, and 90-101, respectively, of SEQ ID NO: 24, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including a HCDR1, a HCDR2, and a HCDR3 including amino acid sequences at least 90% (such as at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids 26-33, 51-58, and 97-102, respectively, of SEQ ID NO: 23, and a V_L including a LCDR1, a LCDR2, and a LCDR3 including amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 99%) identical to amino acid sequences at least 90% (such as at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to amino acids amino acids 27-33, 51-53, and 90-101, respectively, of SEQ ID NO: 24, and can specifically bind to EBOV GP and neutralize EBOV.

[0135] In some embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 23, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 24, and can specifically bind to EBOV GP and neutralize EBOV. In additional embodiments, the antibody or antigen binding fragment includes a V_H including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 23, and a V_L including an amino acid sequence at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence set forth as SEQ ID NO: 24, and can specifically bind to EBOV GP and neutralize EBOV.

[0136] In additional embodiments, the antibody or antigen binding fragment includes a V_H including the amino acid sequence set forth as one of SEQ ID NO: 23, and can specifically bind to EBOV GP and neutralize EBOV. In more embodiments, the antibody or antigen binding fragment includes a V_L including the amino acid sequence set forth as SEQ ID NO: 24, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a V_H and a V_L including the amino acid sequences set forth as SEQ ID NOs: 23 and 24, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

[0137] In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, and a HCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 57, 58, and 59, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 60, 55, and 61, respectively, and can specifically bind to EBOV GP and neutralize EBOV. In some embodiments, the antibody or antigen binding fragment includes a HCDR1, a HCDR2, a HCDR3, a LCDR1, a LCDR2, and a LCDR3, comprising the amino acid sequences set forth as SEQ ID NOs: 57, 58, 59, 60, 55, and 61, respectively, and can specifically bind to EBOV GP and neutralize EBOV.

1. Additional Description of Antibodies and Antigen Binding Fragments

30

35

40

50

[0138] The antibody or antigen binding fragment can be a human antibody or fragment thereof. Chimeric antibodies are also provided. The antibody or antigen binding fragment can include any suitable framework region, such as (but not limited to) a human framework region. Human framework regions, and mutations that can be made in a human antibody framework regions, are known in the art (see, for example, in U.S. Patent No. 5,585,089, which is incorporated herein by reference). Alternatively, a heterologous framework region, such as, but not limited to a mouse or monkey framework region, can be included in the heavy or light chain of the antibodies. (See, for example, Jones et al., Nature 321:522, 1986; Riechmann et al., Nature 332:323, 1988; Verhoeyen et al., Science 239:1534, 1988; Carter et al., Proc. Natl. Acad. Sci. U.S.A. 89:4285, 1992; Sandhu, Crit. Rev. Biotech. 12:437, 1992; and Singer et al., J. Immunol. 150:2844, 1993.)

[0139] The antibody can be of any isotype. The antibody can be, for example, an IgM or an IgG antibody, such as IgG_1 , IgG_2 , IgG_3 , or IgG_4 . The class of an antibody that specifically binds EBOV GP can be switched with another. In one aspect, a nucleic acid molecule encoding V_L or V_H is isolated using methods well-known in the art, such that it does not include any nucleic acid sequences encoding the constant region of the light or heavy chain, respectively. A nucleic acid molecule encoding V_L or V_H is then operatively linked to a nucleic acid sequence encoding a C_L or C_H from a different class of immunoglobulin molecule. This can be achieved using a vector or nucleic acid molecule that comprises

a C_L or C_H chain, as known in the art. For example, an antibody that specifically binds EBOV GP, that was originally IgM may be class switched to an IgG. Class switching can be used to convert one IgG subclass to another, such as from IgG₁ to IgG₂, IgG₃, or IgG₄.

[0140] In some examples, the disclosed antibodies are oligomers of antibodies, such as dimers, trimers, tetramers, pentamers, hexamers, septamers, octomers and so on.

(a) Binding affinity

10

30

35

45

50

[0141] In several embodiments, the antibody or antigen binding fragment can specifically bind EBOV GP with an affinity (e.g., measured by K_d) of no more than 1.0x 10⁻⁸ M, no more than 5.0 x 10⁻⁸ M, no more than 1.0 x 10⁻⁹ M, no more than 5.0 x 10^{-9} M, no more than 1.0 x 10^{-10} M, no more than 5.0 x 10^{-10} M, or no more than 1.0 x 10^{-11} M. K_d can be measured, for example, by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen using known methods. In one assay, solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of (1251)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (see, e.g., Chen et al., J. Mol. Biol. 293:865-881, 1999, which is incorporated by reference herein in its entirety). To establish conditions for the assay, MICROTITER® multi-well plates (Thermo Scientific) are coated overnight with 5 μg/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23° C.). In a non-adsorbent plate (Nunc #269620), 100 μM or 26 pM [125]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of the anti-VEGF antibody, Fab-12, in Presta et al., Cancer Res. 57:4593-4599 (1997)). The Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% polysorbate 20 (TWEEN-20®) in PBS. When the plates have dried, 150 µl/well of scintillant (MICROSCINT-20™; Packard) is added, and the plates are counted on a TOPCOUNT™ gamma counter (Packard) for ten minutes. Concentrations of each Fab that give less than or equal to 20% of maximal binding are chosen for use in competitive binding assays.

[0142] In another assay, K_d can be measured using surface plasmon resonance assays using a BIACORE®-2000 or a BIACORE®-3000 (BIAcore, Inc., Piscataway, N.J.) at 25°C with immobilized antigen CM5 chips at ~10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIACORE®, Inc.) are activated with N-ethyl-N'-(3dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 μg/ml (~0.2 μM) before injection at a flow rate of 5 1/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% polysorbate 20 (TWEEN-20™) surfactant (PBST) at 25°C at a flow rate of approximately 25 l/min. Association rates (k_{on}) and dissociation rates (k_{off}) are calculated using a simple one-to-one Langmuir binding model (BIACORE® Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams. The equilibrium dissociation constant (Kd) is calculated as the ratio k_{off}/k_{on} . See, e.g., Chen et al., J. Mol. Biol. 293:865-881 (1999). If the on-rate exceeds 106 M-1 s-1 by the surface plasmon resonance assay above, then the on-rate can be determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation=295 nm; emission=340 nm, 16 nm band-pass) at 25°C of a 20 nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-AMINCO™ spectrophotometer (ThermoSpectronic) with a stirred cuvette.

(b) Neutralization

[0143] In several embodiments, the antibodies and antigen binding fragments disclosed herein can neutralize EBOV infection by at least two, at least three, at least four, or at least five strains of EBOV, such as the Bundibugyo (BDBV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), and Zaire (ZEBOV), with an IC50 of less than 50 μ g/ml. In more embodiments, the antibodies and antigen binding fragments disclosed herein can neutralize EBOV infection by at least two, at least three, at least four, or at least five strains of EBOV, such as the BDBV, RESTV, SUDV, TAFV, and ZEBOV, with an IC50 of less than 10 μ g/ml. In several embodiments the antibodies and antigen binding fragments disclosed herein can neutralize infection by ZEBOV, with an IC50 of less than 50 μ g/ml or less than 10 μ g/ml. Exemplary methods of assaying EBOV neutralization are provided in the Examples. In some embodiments, neutralization assays can be performed using a single-round EBOV GP-pseudoviruses infection of 293-T cells. In some embodiments, methods to assay for neutralization activity includes a single-cycle infection assay as described in Martin et al. (2003) Nature Biotechnology 21:71-76. In this assay, the level of viral activity is measured via a selectable marker whose activity is reflective

of the amount of viable virus in the sample, and the IC_{50} is determined.

(c) Multispecific antibodies

[0144] In some embodiments, the antibody or antigen binding fragment is included on a multispecific antibody, such as a bi-specific antibody. Such multispecific antibodies can be produced by known methods, such as crosslinking two or more antibodies, antigen binding fragments (such as scFvs) of the same type or of different types. Exemplary methods of making multispecific antibodies include those described in PCT Pub. No. WO2013/163427, which is incorporated by reference herein in its entirety. Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (such as m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (such as disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, I11.

[0145] Various types of multi-specific antibodies are known. Bispecific single chain antibodies can be encoded by a single nucleic acid molecule. Examples of bispecific single chain antibodies, as well as methods of constructing such antibodies are known in the art (see, e.g., U.S. Pat. Nos. 8,076,459, 8,017,748, 8,007,796, 7,919,089, 7,820,166, 7,635,472, 7,575,923, 7,435,549, 7,332,168, 7,323,440, 7,235,641, 7,229,760, 7,112,324, 6,723,538, incorporated by reference herein). Additional examples of bispecific single chain antibodies can be found in PCT application No. WO 99/54440; Mack, J. Immunol., 158:3965-3970, 1997; Mack, PNAS, 92:7021-7025, 1995; Kufer, Cancer Immunol. Immunother., 45:193-197, 1997; Loffler, Blood, 95:2098-2103, 2000; and Bruhl, J. Immunol., 166:2420-2426, 2001. Production of bispecific Fab-scFv ("bibody") molecules are described, for example, in Schoonjans et al. (J. Immunol. 165:7050-57, 2000) and Willems et al. (J. Chromatogr B Analyt Technol Biomed Life Sci. 786:161-76, 2003). For bibodies, a scFv molecule can be fused to one of the VL-CL (L) or VH-CH1 chains, e.g., to produce a bibody one scFv is fused to the C-term of a Fab chain.

(d) Fragments

25

30

35

40

45

[0146] Antigen binding fragments are encompassed by the present disclosure, such as Fab, F(ab')₂, and Fv which include a heavy chain and light chain variable region and specifically bind EBOV GP. These antibody fragments retain the ability to selectively bind with the antigen and are "antigen-binding" fragments. Non-limiting examples of such fragments include:

- (1) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule, can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain:
- (2) Fab', the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule:
- (3) $(Fab')_2$, the fragment of the antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; $F(ab')_2$ is a dimer of two Fab' fragments held together by two disulfide bonds;
- (4) Fv, a genetically engineered fragment containing the V_H and V_L expressed as two chains; and
- (5) Single chain antibody (such as scFv), defined as a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule. A scFv is a fusion protein in which a V_L of an immunoglobulin and a V_H of an immunoglobulin are bound by a linker (see, e.g., Ahmad et al., Clin. Dev. Immunol., 2012, doi: 10.1155/2012/980250; Marbry, IDrugs, 13:543-549, 2010). The intramolecular orientation of the V_H -domain and the V_L -domain in a scFv, is not decisive for the provided antibodies (e.g., for the provided multispecific antibodies). Thus, scFvs with both possible arrangements (V_H -domain-linker domain- V_L -domain; V_L -domain-linker domain- V_H -domain) may be used. (6) A dimer of a single chain antibody (scFV₂), defined as a dimer of a scFV. This has also been termed a "miniantibody."

[0147] Methods of making these fragments are known in the art (see for example, Harlow and Lane, Antibodies: A Laboratory Manual, 2nd, Cold Spring Harbor Laboratory, New York, 2013).

[0148] In some embodiments, the antigen binding fragment can be an Fv antibody, which is typically about 25 kDa and contain a complete antigen-binding site with three CDRs per each heavy chain and each light chain. To produce F_V antibodies, the V_H and the V_L can be expressed from two individual nucleic acid constructs in a host cell.

[0149] If the V_H and the V_L are expressed non-contiguously, the chains of the Fv antibody are typically held together by noncovalent interactions. However, these chains tend to dissociate upon dilution, so methods have been developed to crosslink the chains through glutaraldehyde, intermolecular disulfides, or a peptide linker. Thus, in one example, the

29

50

Fv can be a disulfide stabilized Fv (dsFv), wherein the V_H and the V_L are chemically linked by disulfide bonds.

[0150] In an additional example, the Fv fragments comprise V_H and V_L chains connected by a peptide linker. These single-chain antigen binding proteins (scFv) are prepared by constructing a nucleic acid molecule encoding the V_H and V_L domains connected by an oligonucleotide. The nucleic acid molecule is inserted into an expression vector, which is subsequently introduced into a host cell such as a mammalian cell. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing scFvs are known in the art (see Whitlow et al., Methods: a Companion to Methods in Enzymology, Vol. 2, page 97, 1991; Bird et al., Science 242:423, 1988; U.S. Patent No. 4,946,778; Pack et al., Bio/Technology 11:1271, 1993; Ahmad et al., Clin. Dev. Immunol., 2012, doi: 10.1155/2012/980250; Marbry, IDrugs, 13:543-549, 2010). Dimers of a single chain antibody (scFV₂), are also contemplated.

[0151] Antigen binding fragments can be prepared by proteolytic hydrolysis of the antibody or by expression in a host cell (such as an *E. coli* cell) of DNA encoding the fragment. Antigen binding fragments can also be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antigen binding fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly (see U.S. Patent No. 4,036,945 and U.S. Patent No. 4,331,647, and references contained therein; Nisonhoff et al., Arch. Biochem. Biophys. 89:230, 1960; Porter, Biochem. J. 73:119, 1959; Edelman et al., Methods in Enzymology, Vol. 1, page 422, Academic Press, 1967; and Coligan *et al.* at sections 2.8.1-2.8.10 and 2.10.1-2.10.4).

[0152] Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.

[0153] Antigen binding single V_H domains, called domain antibodies (dAb), have also been identified from a library of murine V_H genes amplified from genomic DNA of immunized mice (Ward et al. Nature 341:544-546, 1989). Human single immunoglobulin variable domain polypeptides capable of binding antigen with high affinity have also been described (see, for example, PCT Publication Nos. WO 2005/035572 and WO 2003/002609). The CDRs disclosed herein can also be included in a dAb.

[0154] In some embodiments, one or more of the heavy and/or light chain complementarity determining regions (CDRs) from a disclosed antibody (such as the EVB100, EVB114, or EVB166 antibody) is expressed on the surface of another protein, such as a scaffold protein. The expression of domains of antibodies on the surface of a scaffolding protein are known in the art (see e.g. Liu et al., J. Virology 85(17): 8467-8476, 2011). Such expression creates a chimeric protein that retains the binding for EBOV GP. In some specific embodiments, one or more of the heavy chain CDRs is grafted onto a scaffold protein, such as one or more of heavy chain CDR1, CDR2, and/or CDR3. One or more CDRs can also be included in a diabody or another type of single chain antibody molecule.

30

35

50

(e) Additional antibodies that bind to the EVB114, EVB100, EVB165, EVB166, or EVB167 epitope on EBOV GP.

[0155] Also included are antibodies that bind to the same epitope on EBOV GP to which the EVB114, EVB100, EVB165, EVB166, or EVB167 antibody binds. Antibodies that bind to such an epitope can be identified based on their ability to cross-compete (for example, to competitively inhibit the binding of, in a statistically significant manner) with the EVB114, EVB100, EVB165, EVB166, or EVB167 antibodies provided herein in EBOV GP binding assays (such as those described in the Examples). An antibody "competes" for binding when the competing antibody inhibits EBOV GP binding of the EVB114, EVB100, EVB165, EVB166, or EVB167 antibody by more than 50%, in the presence of competing antibody concentrations higher than 10^6 x K_D of the competing antibody. In a certain embodiment, the antibody that binds to the same epitope on EBOV GP as the EVB114, EVB100, EVB165, EVB166, or EVB167antibody is a human monoclonal antibody. Human antibodies that bind to the same epitope on EBOV GP to which the EVB114, EVB100, EVB165, EVB166, or EVB167 antibody binds can be produced using various techniques known in the art. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008). Such antibodies may be prepared, for example, by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge. Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated. For review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005). See also, e.g., U.S. Pat. Nos. 6,075,181 and 6,150,584 describing XENOMOUSE™ technology; U.S. Pat. No. 5,770,429 describing HUMAB® technology; U.S. Pat. No. 7,041,870 describing K-M MOUSE® technology, and U.S. Patent Application Publication No. US 2007/0061900, describing VELOCIMOUSE® technology). Human var-

iable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.

[0156] Human antibodies that bind to the same epitope on EBOV GP to which the EVB114, EVB100, EVB165, EVB166, or EVB167 antibody binds can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006). Additional methods include those described, for example, in U.S. Pat. No. 7,189,826 (describing production of monoclonal human IgM antibodies from hybridoma cell lines) and Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (describing human-human hybridomas). Human hybridoma technology (Trioma technology) is also described in Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005) and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3): 185-91 (2005). Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain.

[0157] Antibodies and antigen binding fragments that specifically bind to the same epitope on EBOV GP as EVB114, EVB100, EVB165, EVB166, or EVB167 can also be isolated by screening combinatorial libraries for antibodies with the desired binding characteristics. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001) and further described, e.g., in the McCafferty et al., Nature 348:552-554; Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Marks and Bradbury, in Methods in Molecular Biology 248:161-175 (Lo, ed., Human Press, Totowa, N.J., 2003); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al., J. Immunol. Methods 284(1-2): 119-132 (2004).

[0158] In certain phage display methods, repertoires of V_H and V_L genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Phage typically display antibody fragments, either as single-chain Fv (scFv) fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993). Finally, naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). Patent publications describing human antibody phage libraries include, for example: U.S. Pat. No. 5,750,373, and US Patent Publication Nos. 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936, and 2009/0002360.

(f) Variants

10

30

35

40

50

[0159] In certain embodiments, amino acid sequence variants of the antibodies provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of an antibody may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen-binding.

[0160] In certain embodiments, antibody variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the CDRs and the framework regions. Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved ADCC or CDC.

[0161] The variants typically retain amino acid residues necessary for correct folding and stabilizing between the V_H and the V_L regions, and will retain the charge characteristics of the residues in order to preserve the low pl and low toxicity of the molecules. Amino acid substitutions can be made in the V_H and the V_L regions to increase yield.

[0162] In some embodiments, the heavy chain of the antibody includes up to 10 (such as up to 1, up to 2, up to 3, up to 4, up to 5, up to 6, up to 7, up to 8, or up to 9) amino acid substitutions (such as conservative amino acid substitutions) compared to the amino acid sequence set forth as one of SEQ ID NOs: 1, 3, 5, 19, 23, or 28. In some embodiments, the light chain of the antibody includes up to 10 (such as up to 1, up to 2, up to 3, up to 4, up to 5, up to 6, up to 7, up

to 8, or up to 9) amino acid substitutions (such as conservative amino acid substitutions) compared to the amino acid sequence set forth as one of SEQ ID NOs: 2, 4, 6, 20, 24, or 29.

[0163] In some embodiments, the antibody or antigen binding fragment can include up to 10 (such as up to 1, up to 2, up to 3, up to 4, up to 5, up to 6, up to 7, up to 8, or up to 9) amino acid substitutions (such as conservative amino acid substitutions) in the framework regions of the heavy chain of the antibody, or the light chain of the antibody, or the heavy and light chains of the antibody, compared to a known framework region, or compared to the framework regions of the EVB114, EVB100, EVB165, EVB166, or EVB167 antibody, and maintain the specific binding activity for EBOV GP. **[0164]** In certain embodiments, substitutions, insertions, or deletions may occur within one or more CDRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen. For example, conservative alterations (e.g., conservative substitutions as provided herein) that do not substantially reduce binding affinity may be made in CDRs. In certain embodiments of the variant V_H and V_L sequences provided above, each CDR either is unaltered, or contains no more than one, two or three amino acid substitutions.

10

30

35

50

[0165] To increase binding affinity of the antibody, the V_L and V_H segments can be randomly mutated, such as within HCDR3 region or the LCDR3 region, in a process analogous to the *in vivo* somatic mutation process responsible for affinity maturation of antibodies during a natural immune response. Thus *in vitro* affinity maturation can be accomplished by amplifying V_H and V_L regions using PCR primers complementary to the HCDR3 or LCDR3, respectively. In this process, the primers have been "spiked" with a random mixture of the four nucleotide bases at certain positions such that the resultant PCR products encode V_H and V_L segments into which random mutations have been introduced into the V_H and/or V_L CDR3 regions. These randomly mutated V_H and V_L segments can be tested to determine the binding affinity for EBOV GP. In particular examples, the V_H amino acid sequence is one of SEQ ID NOs: 1, 3, 5, 19, 23, or 28. In other examples, the V_L amino acid sequence is one of SEQ ID NOs: 2, 4, 6, 20, 24, or 29. Methods of in vitro affinity maturation are known (see, e.g., Chowdhury, Methods Mol. Biol. 207:179-196 (2008)), and Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., (2001).)

[0166] In certain embodiments, an antibody or antigen binding fragment is altered to increase or decrease the extent to which the antibody or antigen binding fragment is glycosylated. Addition or deletion of glycosylation sites may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites is created or removed.

[0167] Where the antibody comprises an Fcregion, the carbohydrate attached thereto may be altered. Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH₂ domain of the Fc region. See, e.g., Wright et al. TIBTECH 15:26-32 (1997). The oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc), galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the "stem" of the biantennary oligosaccharide structure. In some embodiments, modifications of the oligosaccharide in an antibody may be made in order to create antibody variants with certain improved properties.

[0168] In one embodiment, antibody variants are provided having a carbohydrate structure that lacks fucose attached (directly or indirectly) to an Fc region. For example, the amount of fucose in such antibody may be from 1% to 80%, from 1% to 65%, from 5% to 65% or from 20% to 40%. The amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e.g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546, for example. Asn297 refers to the asparagine residue located at about position 297 in the Fc region; however, Asn297 may also be located about ±3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L.); US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd). Examples of publications related to "defucosylated" or "fucose-deficient" antibody variants include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US 2003/0115614; US 2002/0164328; US 2004/0093621; US 2004/0132140; US 2004/0110704; US 2004/0110282; US 2004/0109865; WO 2003/085119; WO 2003/084570; WO 2005/035586; WO 2005/035778; WO2005/053742; WO2002/031140; Okazaki et al. J. Mol. Biol. 336:1239-1249 (2004); Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004). Examples of cell lines capable of producing defucosylated antibodies include Lec 13 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. Biophys. 249:533-545 (1986); US Pat Appl No US 2003/0157108 A1, Presta, L; and WO 2004/056312 A1, Adams et al., especially at Example 11), and knockout cell lines, such as alpha-1,6-fucosyltransferase gene, FUT8, knockout CHO cells (see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004); Kanda, Y. et al., Biotechnol. Bioeng., 94(4):680-688 (2006); and

[0169] Antibodies variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the antibody is bisected by GlcNAc. Such antibody variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet et al.); U.S. Pat. No. 6,602,684 (Umana et al.); and US 2005/0123546 (Umana et al.). Antibody variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided. Such antibody

variants may have improved CDC function. Such antibody variants are described, e.g., in WO 1997/30087 (Patel et al.); WO 1998/58964 (Raju, S.); and WO 1999/22764 (Raju, S.).

[0170] In several embodiments, the constant region of the antibody includes one or more amino acid substitutions to optimize *in vivo* half-life of the antibody. The serum half-life of IgG Abs is regulated by the neonatal Fc receptor (FcRn). Thus, in several embodiments, the antibody includes an amino acid substitution that increases binding to the FcRn. Several such substitutions are known, such as substitutions at IgG constant regions T250Q and M428L (see, e.g., Hinton et al., J Immunol., 176:346-356, 2006); M428L and N434S (the "LS" mutation, see, e.g., Zalevsky, et al., Nature Biotechnology, 28:157-159, 2010); N434A (see, e.g., Petkova et al., Int. Immunol., 18:1759-1769, 2006); T307A, E380A, and N434A (see, e.g., Petkova et al., Int. Immunol., 18:1759-1769, 2006); and M252Y, S254T, and T256E (see, e.g., Dall'Acqua et al., J. Biol. Chem., 281:23514-23524, 2006). The disclosed antibodies and antigen binding fragments can be linked to a Fc polypeptide including any of the substitutions listed above, for example, the Fc polypeptide can include the M428L and N434S substitutions.

[0171] In some embodiments, the constant region of the antibody includes one of more amino acid substitutions to optimize antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC is mediated primarily through a set of closely related Fcγ receptors. In some embodiments, the antibody includes one or more amino acid substitutions that increase binding to FcyRIIIa. Several such substitutions are known, such as substitutions at IgG constant regions S239D and I332E (see, e.g., Lazar et al., Proc. Natl., Acad. Sci. U.S.A., 103:4005-4010, 2006); and S239D, A330L, and I332E (see, e.g., Lazar et al., Proc. Natl., Acad. Sci. U.S.A., 103:4005-4010, 2006).

[0172] Combinations of the above substitutions are also included, to generate an IgG constant region with increased binding to FcRn and FcyRIIIa. The combinations increase antibody half-life and ADCC. For example, such combination include antibodies with the following amino acid substitution in the Fc region:

- (1) S239D/I332E and T250Q/M428L;
- (2) S239D/I332E and M428L/N434S;
- (3) S239D/I332E and N434A;

25

30

35

50

55

- (4) S239D/I332E and T307A/E380A/N434A;
- (5) S239D/I332E and M252Y / S254T/T256E;
- (6) S239D/A330L/I332E and T250Q/M428L;
- (7) S239D/A330L/I332E and M428L/N434S;
- (8) S239D/A330L/I332E and N434A;
- (9) S239D/A330L/I332E and T307A/E380A/N434A; or
- (10) S239D/A330L/I332E and M252Y/S254T/T256E.

[0173] In some examples, the antibodies, or an antigen binding fragment thereof is modified such that it is directly cytotoxic to infected cells, or uses natural defenses such as complement, antibody dependent cellular cytotoxicity (ADCC), or phagocytosis by macrophages.

[0174] In certain embodiments, an antibody provided herein may be further modified to contain additional nonprotein-aceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the antibody include but are not limited to water soluble polymers. Non-limiting examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight, and may be branched or unbranched. The number of polymers attached to the antibody may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.

[0175] The antibody or antigen binding fragment can be derivatized or linked to another molecule (such as another peptide or protein). In general, the antibody or antigen binding fragment is derivatized such that the binding to EBOV GP is not affected adversely by the derivatization or labeling. For example, the antibody or antigen binding fragment can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (for example, a bi-specific antibody or a diabody), a detectable marker, an effector molecule, or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).

B. Conjugates

10

20

30

35

40

45

50

55

[0176] The monoclonal antibodies and antigen binding fragments that specifically bind to an epitope on EBOV GP can be conjugated to an agent, such as an effector molecule or detectable marker, using any number of means known to those of skill in the art. Both covalent and noncovalent attachment means may be used. One of skill in the art will appreciate that various effector molecules and detectable markers can be used, including (but not limited to) toxins and radioactive agents such as ¹²⁵I, ³²P, ¹⁴C, ³H and ³⁵S and other labels, target moieties and ligands, etc. The choice of a particular effector molecule or detectable marker depends on the particular target molecule or cell, and the desired biological effect.

[0177] The choice of a particular effector molecule or detectable marker depends on the particular target molecule or cell, and the desired biological effect. Thus, for example, the effector molecule can be a cytotoxin that is used to bring about the death of a particular target cell (such as an EBOV infected cell). In other embodiments, the effector molecule can be a cytokine, such as IL-15; conjugates including the cytokine can be used, e.g., to stimulate immune cells locally. [0178] The procedure for attaching an effector molecule or detectable marker to an antibody or antigen binding fragment varies according to the chemical structure of the effector. Polypeptides typically contain a variety of functional groups; such as carboxylic acid (COOH), free amine (-NH2) or sulfhydryl (-SH) groups, which are available for reaction with a suitable functional group on a polypeptide to result in the binding of the effector molecule or detectable marker. Alternatively, the antibody or antigen binding fragment is derivatized to expose or attach additional reactive functional groups. The derivatization may involve attachment of any of a number of known linker molecules such as those available from Pierce Chemical Company, Rockford, IL. The linker can be any molecule used to join the antibody or antigen binding fragment to the effector molecule or detectable marker. The linker is capable of forming covalent bonds to both the antibody or antigen binding fragment and to the effector molecule or detectable marker. Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers. Where the antibody or antigen binding fragment and the effector molecule or detectable marker are polypeptides, the linkers may be joined to the constituent amino acids through their side groups (such as through a disulfide linkage to cysteine) or to the alpha carbon amino and carboxyl groups of the terminal amino acids.

[0179] In view of the large number of methods that have been reported for attaching a variety of radiodiagnostic compounds, radiotherapeutic compounds, labels (such as enzymes or fluorescent molecules), toxins, and other agents to antibodies one skilled in the art will be able to determine a suitable method for attaching a given agent to an antibody or antigen binding fragment or other polypeptide. For example, the antibody or antigen binding fragment can be conjugated with effector molecules such as small molecular weight drugs such as Monomethyl Auristatin E (MMAE), Monomethyl Auristatin F (MMAF), maytansine, maytansine derivatives, including the derivative of maytansine known as DM1 (also known as mertansine), or other agents to make an antibody drug conjugate (ADC). In several embodiments, conjugates of an antibody or antigen binding fragment and one or more small molecule toxins, such as a calicheamicin, maytansinoids, dolastatins, auristatins, a trichothecene, and CC1065, and the derivatives of these toxins that have toxin activity, are provided.

[0180] The antibody or antigen binding fragment can be conjugated with a detectable marker; for example, a detectable marker capable of detection by ELISA, spectrophotometry, flow cytometry, microscopy or diagnostic imaging techniques (such as computed tomography (CT), computed axial tomography (CAT) scans, magnetic resonance imaging (MRI), nuclear magnetic resonance imaging NMRI), magnetic resonance tomography (MTR), ultrasound, fiberoptic examination, and laparoscopic examination). Specific, non-limiting examples of detectable markers include fluorophores, chemiluminescent agents, enzymatic linkages, radioactive isotopes and heavy metals or compounds (for example super paramagnetic iron oxide nanocrystals for detection by MRI). For example, useful detectable markers include fluorescent compounds, including fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-1-napthalenesulfonyl chloride, phycoerythrin, lanthanide phosphors and the like. Bioluminescent markers are also of use, such as luciferase, Green fluorescent protein (GFP), Yellow fluorescent protein (YFP). An antibody or antigen binding fragment can also be conjugated with enzymes that are useful for detection, such as horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase, glucose oxidase and the like. When an antibody or antigen binding fragment is conjugated with a detectable enzyme, it can be detected by adding additional reagents that the enzyme uses to produce a reaction product that can be discerned. For example, when the agent horseradish peroxidase is present the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is visually detectable. An antibody or antigen binding fragment may also be conjugated with biotin, and detected through indirect measurement of avidin or streptavidin binding. It should be noted that the avidin itself can be conjugated with an enzyme or a fluorescent label.

[0181] The antibody or antigen binding fragment can be conjugated with a paramagnetic agent, such as gadolinium. Paramagnetic agents such as superparamagnetic iron oxide are also of use as labels. Antibodies can also be conjugated with lanthanides (such as europium and dysprosium), and manganese. An antibody or antigen binding fragment may also be labeled with a predetermined polypeptide epitopes recognized by a secondary reporter (such as leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags).

[0182] The antibody or antigen binding fragment can also be conjugated with a radiolabeled amino acid. The radiolabel may be used for both diagnostic and therapeutic purposes. For instance, the radiolabel may be used to detect EBOV GP and EBOV GP expressing cells by x-ray, emission spectra, or other diagnostic techniques. Examples of labels for polypeptides include, but are not limited to, the following radioisotopes or radionucleotides: ³H, ¹⁴C, ¹⁵N, ³⁵S, ⁹⁰Y, ⁹⁹Tc, ¹¹¹In ¹²⁵I. ¹³¹I.

[0183] Means of detecting such detectable markers are well known to those of skill in the art. Thus, for example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted illumination. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.

[0184] The average number of effector molecule or detectable marker moieties per antibody or antigen binding fragment in a conjugate can range, for example, from 1 to 20 moieties per antibody or antigen binding fragment. In certain embodiments, the average number of effector molecule or detectable marker moieties per antibody or antigen binding fragment in a conjugate range from about 1 to about 2, from about 1 to about 3, about 1 to about 8; from about 2 to about 6; from about 3 to about 5; or from about 3 to about 4. The loading (for example, effector molecule/antibody ratio) of an conjugate may be controlled in different ways, for example, by: (i) limiting the molar excess of effector molecule-linker intermediate or linker reagent relative to antibody, (ii) limiting the conjugation reaction time or temperature, (iii) partial or limiting reductive conditions for cysteine thiol modification, (iv) engineering by recombinant techniques the amino acid sequence of the antibody such that the number and position of cysteine residues is modified for control of the number or position of linker-effector molecule attachments.

C. Polynucleotides and Expression

30

35

50

[0185] Nucleic acids molecules (for example, cDNA molecules) encoding the amino acid sequences of antibodies, antigen binding fragments, and conjugates that specifically bind EBOV GP are provided. Nucleic acids encoding these molecules can readily be produced by one of skill in the art, using the amino acid sequences provided herein (such as the CDR sequences and V_H and V_L sequences), sequences available in the art (such as framework or constant region sequences), and the genetic code. In several embodiments, a nucleic acid molecules can encode the V_H , the V_L , or both the V_H and V_L (for example in a bicistronic expression vector) of a disclosed antibody or antigen binding fragment. In several embodiments, the nucleic acid molecules can be expressed in a host cell (such as a mammalian cell) to produce a disclosed antibody or antigen binding fragment.

[0186] One of skill in the art can readily use the genetic code to construct a variety of functionally equivalent nucleic acids, such as nucleic acids which differ in sequence but which encode the same antibody sequence, or encode a conjugate or fusion protein including the V_L and/or V_H nucleic acid sequence.

[0187] In a non-limiting example, an isolated nucleic acid molecule encodes the V_H of a disclosed antibody or antigen binding fragment and includes the nucleic acid sequence set forth as any one of SEQ ID NOs: 7, 9, 11, 21, 25, or 30. In a non-limiting example, an isolated nucleic acid molecule encodes the V_L of a disclosed antibody or antigen binding fragment and includes the nucleic acid sequence set forth as any one of SEQ ID NOs: 8, 10, 12, 22, 26, 27, or 31. In a non-limiting example, an isolated nucleic acid molecule encodes the V_H and V_L of a disclosed antibody or antigen binding fragment and includes the nucleic acid sequences set forth as any one of SEQ ID NOs: 7 and 8, respectively, 9 and 11, respectively, 11 and 12, respectively, 21 and 22, respectively, 25 and 26, respectively, 25 and 27, respectively, or 30 and 31, respectively.

[0188] Nucleic acid sequences encoding the of antibodies, antigen binding fragments, and conjugates that specifically bind EBOV GP can be prepared by any suitable method including, for example, cloning of appropriate sequences or by direct chemical synthesis by methods such as the phosphotriester method of Narang et al., Meth. Enzymol. 68:90-99, 1979; the phosphodiester method of Brown et al., Meth. Enzymol. 68:109-151, 1979; the diethylphosphoramidite method of Beaucage et al., Tetra. Lett. 22:1859-1862, 1981; the solid phase phosphoramidite triester method described by Beaucage & Caruthers, Tetra. Letts. 22(20):1859-1862, 1981, for example, using an automated synthesizer as described in, for example, Needham-VanDevanter et al., Nucl. Acids Res. 12:6159-6168, 1984; and, the solid support method of U.S. Patent No. 4,458,066. Chemical synthesis produces a single stranded oligonucleotide. This can be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.

[0189] Exemplary nucleic acids can be prepared by cloning techniques. Examples of appropriate cloning and sequencing techniques, and instructions sufficient to direct persons of skill through many cloning exercises are known (see, e.g., Sambrook et al. (Molecular Cloning: A Laboratory Manual, 4th ed, Cold Spring Harbor, New York, 2012) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley & Sons, New York, through supplement 104, 2013). Product information from manufacturers of biological reagents and experimental equipment also provide useful information. Such manufacturers include the SIGMA Chemical Company (Saint Louis, MO), R&D Systems (Minneapolis, MN), Pharmacia

Amersham (Piscataway, NJ), CLONTECH Laboratories, Inc. (Palo Alto, CA), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, WI), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersburg, MD), Fluka Chemica-Biochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), Invitrogen (Carlsbad, CA), and Applied Biosystems (Foster City, CA), as well as many other commercial sources known to one of skill.

[0190] Nucleic acids can also be prepared by amplification methods. Amplification methods include polymerase chain reaction (PCR), the ligase chain reaction (LCR), the transcription-based amplification system (TAS), the self-sustained sequence replication system (3SR). A wide variety of cloning methods, host cells, and *in vitro* amplification methodologies are well known to persons of skill.

[0191] The nucleic acid molecules can be expressed in a recombinantly engineered cell such as bacteria, plant, yeast, insect and mammalian cells. The antibodies, antigen binding fragments, and conjugates can be expressed as individual V_H and/or V_L chain (linked to an effector molecule or detectable marker as needed), or can be expressed as a fusion protein. Methods of expressing and purifying antibodies and antigen binding fragments are known and further described herein (see, e.g., Al-Rubeai (ed), Antibody Expression and Production, Springer Press, 2011). An immunoadhesin can also be expressed. Thus, in some examples, nucleic acids encoding a V_H and V_L , and immunoadhesin are provided. The nucleic acid sequences can optionally encode a leader sequence.

15

30

35

50

[0192] To create a scFv the V_{H^-} and V_L -encoding DNA fragments can be operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence $(Gly_4-Ser)_3$, such that the V_H and V_L sequences can be expressed as a contiguous single-chain protein, with the V_L and V_H domains joined by the flexible linker (see, e.g., Bird et al., Science 242:423-426, 1988; Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883, 1988; McCafferty et al., Nature 348:552-554, 1990; Kontermann and Dubel (Ed), Antibody Engineering, Vols. 1-2, 2nd Ed., Springer Press, 2010; Harlow and Lane, Antibodies: A Laboratory Manual, 2nd, Cold Spring Harbor Laboratory, New York, 2013,). Optionally, a cleavage site can be included in a linker, such as a furin cleavage site.

[0193] The nucleic acid encoding a V_H and/or the V_L optionally can encode an Fc domain (immunoadhesin). The Fc domain can be an IgA, IgM or IgG Fc domain. The Fc domain can be an optimized Fc domain, as described in U.S. Published Patent Application No. 20100/093979, incorporated herein by reference. In one example, the immunoadhesin is an IgG_1 Fc.

[0194] The single chain antibody may be monovalent, if only a single V_H and V_L are used, bivalent, if two V_H and V_L are used, or polyvalent, if more than two V_H and V_L are used. Bispecific or polyvalent antibodies may be generated that bind specifically to EBOV GP and another antigen. The encoded V_H and V_L optionally can include a furin cleavage site between the V_H and V_L domains.

[0195] Those of skill in the art are knowledgeable in the numerous expression systems available for expression of proteins including *E. coli*, other bacterial hosts, yeast, and various higher eukaryotic cells such as the COS, CHO, HeLa and myeloma cell lines.

[0196] One or more DNA sequences encoding the antibodies, antigen binding fragments, or conjugates can be expressed *in vitro* by DNA transfer into a suitable host cell. The cell may be prokaryotic or eukaryotic. The term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. Methods of stable transfer, meaning that the foreign DNA is continuously maintained in the host, are known in the art. Hybridomas expressing the antibodies of interest are also encompassed by this disclosure.

[0197] The expression of nucleic acids encoding the antibodies and antigen binding fragments described herein can be achieved by operably linking the DNA or cDNA to a promoter (which is either constitutive or inducible), followed by incorporation into an expression cassette. The promoter can be any promoter of interest, including a cytomegalovirus promoter and a human T cell lymphotrophic virus promoter (HTLV)-1. Optionally, an enhancer, such as a cytomegalovirus enhancer, is included in the construct. The cassettes can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression cassettes contain specific sequences useful for regulation of the expression of the DNA encoding the protein. For example, the expression cassettes can include appropriate promoters, enhancers, transcription and translation terminators, initiation sequences, a start codon (*i.e.*, ATG) in front of a protein-encoding gene, splicing signal for introns, sequences for the maintenance of the correct reading frame of that gene to permit proper translation of mRNA, and stop codons. The vector can encode a selectable marker, such as a marker encoding drug resistance (for example, ampicillin or tetracycline resistance).

[0198] To obtain high level expression of a cloned gene, it is desirable to construct expression cassettes which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation (internal ribosomal binding sequences), and a transcription/translation terminator. For *E. coli*, this includes a promoter such as the T7, trp, lac, or lambda promoters, a ribosome binding site, and preferably a transcription termination signal. For eukaryotic cells, the control sequences can include a promoter and/or an enhancer derived from, for example, an immunoglobulin gene, HTLV, SV40 or cytomegalovirus, and a polyadenylation sequence, and can further include splice donor and/or acceptor sequences (for example, CMV and/or HTLV splice acceptor and donor sequences). The cassettes can be transferred into the chosen host cell by well-known methods such as transformation or electroporation for *E. coli*

and calcium phosphate treatment, electroporation or lipofection for mammalian cells. Cells transformed by the cassettes can be selected by resistance to antibiotics conferred by genes contained in the cassettes, such as the amp, gpt, neo and hyg genes.

[0199] When the host is a eukaryote, such methods of transfection of DNA as calcium phosphate coprecipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes, or virus vectors may be used. Eukaryotic cells can also be cotransformed with polynucleotide sequences encoding the antibody, labeled antibody, or antigen biding fragment, and a second foreign DNA molecule encoding a selectable phenotype, such as the herpes simplex thymidine kinase gene. Another method is to use a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papilloma virus, to transiently infect or transform eukaryotic cells and express the protein (see for example, Viral Expression Vectors, Springer press, Muzyczka ed., 2011). One of skill in the art can readily use an expression systems such as plasmids and vectors of use in producing proteins in cells including higher eukaryotic cells such as the COS, CHO, HeLa and myeloma cell lines.

[0200] Also provided is a population of cells comprising at least one host cell described herein. The population of cells can be a heterogeneous population comprising the host cell comprising any of the recombinant expression vectors described, in addition to at least one other cell, e.g., a host cell (e.g., a T cell), which does not comprise any of the recombinant expression vectors, or a cell other than a T cell, e.g., a B cell, a macrophage, a neutrophil, an erythrocyte, a hepatocyte, an endothelial cell, an epithelial cell, a muscle cell, a brain cell, etc. Alternatively, the population of cells can be a substantially homogeneous population, in which the population comprises mainly host cells (e.g., consisting essentially of) comprising the recombinant expression vector. The population also can be a clonal population of cells, in which all cells of the population are clones of a single host cell comprising a recombinant expression vector, such that all cells of the population comprise the recombinant expression vector. In one embodiment, the population of cells is a clonal population comprising host cells comprising a recombinant expression vector as described herein

[0201] Modifications can be made to a nucleic acid encoding a polypeptide described herein without diminishing its biological activity. Some modifications can be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, termination codons, a methionine added at the amino terminus to provide an initiation, site, additional amino acids placed on either terminus to create conveniently located restriction sites, or additional amino acids (such as poly His) to aid in purification steps. In addition to recombinant methods, the immunoconjugates, effector moieties, and antibodies of the present disclosure can also be constructed in whole or in part using standard peptide synthesis well known in the art.

[0202] Once expressed, the antibodies, antigen binding fragments, and conjugates can be purified according to standard procedures in the art, including ammonium sulfate precipitation, affinity columns, column chromatography, and the like (see, generally, Simpson ed., Basic methods in Protein Purification and Analysis: A laboratory Manual, Cold Harbor Press, 2008). The antibodies, antigen binding fragment, and conjugates need not be 100% pure. Once purified, partially or to homogeneity as desired, if to be used therapeutically, the polypeptides should be substantially free of endotoxin.

[0203] Methods for expression of the antibodies, antigen binding fragments, and conjugates, and/or refolding to an appropriate active form, from mammalian cells, and bacteria such as *E. coli* have been described and are well-known and are applicable to the antibodies disclosed herein. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, 2nd, Cold Spring Harbor Laboratory, New York, 2013, Simpson ed., Basic methods in Protein Purification and Analysis: A laboratory Manual, Cold Harbor Press, 2008, and Ward et al., Nature 341:544, 1989.

[0204] Often, functional heterologous proteins from *E. coli* or other bacteria are isolated from inclusion bodies and require solubilization using strong denaturants, and subsequent refolding. During the solubilization step, as is well known in the art, a reducing agent must be present to separate disulfide bonds. An exemplary buffer with a reducing agent is: 0.1 M Tris pH 8, 6 M guanidine, 2 mM EDTA, 0.3 M DTE (dithioerythritol). Reoxidation of the disulfide bonds can occur in the presence of low molecular weight thiol reagents in reduced and oxidized form, as described in Saxena et al., Biochemistry 9: 5015-5021, 1970,

[0205] In addition to recombinant methods, the antibodies, antigen binding fragments, and/or conjugates can also be constructed in whole or in part using standard peptide synthesis. Solid phase synthesis of the polypeptides can be accomplished by attaching the C-terminal amino acid of the sequence to an insoluble support followed by sequential addition of the remaining amino acids in the sequence. Techniques for solid phase synthesis are described by Barany & Merrifield, The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A. pp. 3-284; Merrifield et al., J. Am. Chem. Soc. 85:2149-2156, 1963, and Stewart et al., Solid Phase Peptide Synthesis, 2nd ed., Pierce Chem. Co., Rockford, Ill., 1984. Proteins of greater length may be synthesized by condensation of the amino and carboxyl termini of shorter fragments. Methods of forming peptide bonds by activation of a carboxyl terminal end (such as by the use of the coupling reagent N, N'-dicylohexylcarbodimide) are well known in the art.

55

10

30

35

40

45

D. Methods and Composition

10

30

35

40

45

50

55

1. Methods of inhibiting, treating, and preventing EBOV infection and disease

[0206] Methods are disclosed herein for the prevention or treatment of an EBOV infection or EVD, such as a ZEBOV infection, in a subject. Prevention can include inhibition of infection with EBOV. The method can include administering to a subject a therapeutically effective amount of a disclosed antibody, antigen binding fragment, or conjugate that specifically binds EBOV GP, or a nucleic acid encoding such an antibody, antigen binding fragment, conjugate. In some examples, the antibody, antigen binding fragment, conjugate, or nucleic acid molecule, can be used pre-exposure (for example, to prevent or inhibit EBOV infection). In some examples, the antibody, antigen binding fragment, conjugate, or nucleic acid molecule, can be used in post-exposure prophylaxis. In some examples, the antibody, antigen binding fragment, conjugate, or nucleic acid molecule, can be used to eliminate or reduce the viral load of EBOV in a subject infected with EBOV. For example a therapeutically effective amount of an antibody, antigen binding fragment, conjugate, or nucleic acid molecule, can be administered to a subject with an EBOV infection. In some examples the antibody, antigen binding fragment, conjugate, or nucleic acid molecule is modified such that it is directly cytotoxic to infected cells (e.g., by conjugation to a toxin), or uses natural defenses such as complement, antibody dependent cellular cytotoxicity (ADCC), or phagocytosis by macrophages, or can be modified to increase the natural defenses.

[0207] The EVD or EBOV infection in the subject does not need to be completely eliminated for the method to be effective. For example, the method can reduce or ameliorate EVD or EBOV infection by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or even at least 100% (elimination of detectable EBOV infection or EVD), as compared to EBOV infection or EVD in the absence of the treatment.

[0208] In one non-limiting example, the method reduces viral titer in a subject with an EBOV infection. For example, administration of a therapeutically effective amount of a disclosed EBOV GP-specific antibody or antigen binding fragment or conjugate can reduce viral titer by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 95%, at least 98%, or even at least 100% (elimination of detectable EBOV) in the subject. Methods of determining the EBOV viral titer in the subject are known, and include, for example, obtaining a blood sample from the subject and assaying the sample for EBOV activity.

[0209] In several embodiments, administration of a therapeutically effective amount of a disclosed antibody, antigen binding fragment, conjugate, or nucleic acid molecule, results in a reduction in the establishment of EBOV infection and/or reducing subsequent EVD progression in a subject. A reduction in the establishment of EBOV infection and/or a reduction in subsequent EVD progression encompass any statistically significant reduction in EBOV activity.

[0210] In several embodiments, the subject can be selected for treatment, for example, a subject at risk of EBOV infection, or known to have an EBOV infection. In some embodiments, a subject can be selected that is at risk of or known to have an infection with a particular strain of EBOV, such as BDBV, RESTV, SUDV, TAFV, or ZEBOV.

[0211] In several embodiments, a method of preventing or inhibiting EBOV infection (e.g., ZEBOV infection) of a cell is provided. The method includes contacting the cell with an effective amount of an antibody or antigen binding fragment as disclosed herein. For example the cell can be incubated with the effective amount of the antibody or antigen binding fragment prior to or contemporaneous with incubation with the EBOV. EBOV infection of the cell does not need to be completely eliminated for the method to be effective. For example, a method can reduce EBOV infection by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or even at least 100% (elimination of detectable EBOV infected cells), as compared to EBOV infection in the absence of the treatment. In some embodiments, the cell is also contacted with an effective amount of an additional agent, such as anti-viral agent. The cell can be *in vivo* or *in vitro*.

[0212] Studies in have shown that cocktails of EBOV neutralizing antibodies that target different epitopes of EBOV GP can treat macaques infected with ZEBOV (Qiu et al., Sci. Transl. Med., 4, 138ra81, 2012). Accordingly, in some examples, a subject is further administered one or more additional antibodies that bind EBOV GP and that can neutralize EBOV infection. For example, the subject can be administered a therapeutically effective amount of a set of antibodies including two or more of the EVB100, EVB114 and EVB166 antibodies disclosed herein. The antibodies can be administered as a cocktail (that is, as a single composition including the two or more antibodies), or can be administered in sequence.

[0213] In some examples, a subject is administered the DNA encoding the antibody or antigen binding fragments thereof, to provide *in vivo* antibody production, for example using the cellular machinery of the subject. Immunization by nucleic acid constructs is well known in the art and taught, for example, in U.S. Patent No. 5,643,578, and U.S. Patent No. 5,593,972 and U.S. Patent No. 5,817,637. U.S. Patent No. 5,880,103 describes several methods of delivery of nucleic acids encoding to an organism. One approach to administration of nucleic acids is direct administration with plasmid DNA, such as with a mammalian expression plasmid. The nucleotide sequence encoding the disclosed antibody, or antigen binding fragments thereof, can be placed under the control of a promoter to increase expression. The methods

include liposomal delivery of the nucleic acids. Such methods can be applied to the production of an antibody, or antigen binding fragments thereof. In some embodiments, a disclosed antibody or antigen binding fragment is expressed in a subject using the pVRC8400 vector (described in Barouch et al., J. Virol, 79 ,8828-8834, 2005, which is incorporated by reference herein).

[0214] The nucleic acid molecules encoding the disclosed antibodies or antigen binding fragments can be included in a viral vector, for example for expression of the antibody or antigen binding fragment in a host cell, or a subject (such as a subject with or at risk of EBOV infection). A number of viral vectors have been constructed, that can be used to express the disclosed antibodies or antigen binding fragments, such as a retroviral vector, an adenoviral vector, or an adeno-associated virus (AAV) vector. In several examples, the viral vector can be replication-competent. For example, the viral vector can have a mutation in the viral genome that does not inhibit viral replication in host cells. The viral vector also can be conditionally replication-competent. In other examples, the viral vector is replication-deficient in host cells. [0215] In several embodiments, a subject (such as a human subject with or at risk of HIV-1 infection) can be administered a therapeutically effective amount of an adeno-associated virus (AAV) viral vector that includes one or more nucleic acid molecules encoding a disclosed antibody or antigen binding fragment. The AAV viral vector is designed for expression of the nucleic acid molecules encoding a disclosed antibody or antigen binding fragment, and administration of the therapeutically effective amount of the AAV viral vector to the subject leads to expression of a therapeutically effective amount of the antibody or antigen binding fragment in the subject. Non-limiting examples of AAV viral vectors that can be used to express a disclosed antibody or antigen binding fragment in a subject include those provided in Johnson et al ("Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys," Nat. Med., 15(8):901-906, 2009) and Gardner et al. ("AAV-expressed eCD4-lg provides durable protection from multiple SHIV challenges," Nature, 519(7541): 87-91, 2015), each of which is incorporated by reference herein in its entirety.

[0216] In one embodiment, a nucleic acid encoding a disclosed antibody, or antigen binding fragments thereof, is introduced directly into cells. For example, the nucleic acid can be loaded onto gold microspheres by standard methods and introduced into the skin by a device such as Bio-Rad's HELIOS™ Gene Gun. The nucleic acids can be "naked," consisting of plasmids under control of a strong promoter.

[0217] Typically, the DNA is injected into muscle, although it can also be injected directly into other sites. Dosages for injection are usually around 0.5 μ g/kg to about 50 mg/kg, and typically are about 0.005 mg/kg to about 5 mg/kg (see, e.g., U.S. Patent No. 5,589,466).

2. Dosages

30

35

40

45

50

55

10

[0218] A therapeutically effective amount of an EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, will depend upon the severity of the disease and/or infection and the general state of the patient's health. A therapeutically effective amount is that which provides either subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer. The EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, can be administered in conjunction with another therapeutic agent, either simultaneously or sequentially.

[0219] Single or multiple administrations of a composition including a disclosed EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, can be administered depending on the dosage and frequency as required and tolerated by the patient. Compositions including the EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, should provide a sufficient quantity of at least one of the EBOV GP-specific antibodies, antigen binding fragments, conjugates, or nucleic acid molecules to effectively treat the patient. The dosage can be administered once, but may be applied periodically until either a therapeutic result is achieved or until side effects warrant discontinuation of therapy. In one example, a dose of the antibody or antigen binding fragment is infused for thirty minutes every other day. In this example, about one to about ten doses can be administered, such as three or six doses can be administered every other day. In a further example, a continuous infusion is administered for about five to about ten days. The subject can be treated at regular intervals, such as daily, weekly, or monthly, until a desired therapeutic result is achieved. Generally, the dose is sufficient to treat or ameliorate symptoms or signs of disease without producing unacceptable toxicity to the patient.

[0220] Data obtained from cell culture assays and animal studies can be used to formulate a range of dosage for use in humans. The dosage normally lies within a range of circulating concentrations that include the ED₅₀, with little or minimal toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The therapeutically effective dose can be determined from cell culture assays and animal studies. **[0221]** In certain embodiments, the antibody or antigen binding fragment that specifically binds EBOV GP, or conjugate thereof, or a nucleic acid molecule or vector encoding such a molecule, can be administered at a dose in the range of from about 1 to about 100 mg/kg, such as about 5-50 mg/kg, about 25-75 mg/kg, or about 40-60 mg/kg. In some embodiments, the dosage can be administered at about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

150, 200, or 300 mg/kg, or other dose deemed appropriate by the treating physician. Further, the doses described herein can be administered according to the dosing frequency or frequency of administration described herein, including without limitation daily, every other day, 2 or 3 times per week, weekly, every 2 weeks, every 3 weeks, monthly, etc. In some embodiments, the dosage is administered daily beginning at the time of diagnosis with EBOV and until EBOV symptoms are alleviated. Additional treatments, including additional courses of therapy with a disclosed agent can be performed as needed.

3. Modes of Administration

[0222] The EBOV GP-specific antibody, antigen binding fragment, conjugate, nucleic acid molecule, or composition, as well as additional agents, can be administered to subjects in various ways, including local and systemic administration, such as, e.g., by injection subcutaneously, intravenously, intra-arterially, intraperitoneally, intramuscularly, intradermally, or intrathecally. In an embodiment, a therapeutic agent is administered by a single subcutaneous, intravenous, intra-arterial, intraperitoneal, intramuscular, intradermal or intrathecal injection once a day. The therapeutic agent can also be administered by direct injection at or near the site of disease.

[0223] The therapeutic agent may also be administered orally in the form of microspheres, microcapsules, liposomes (uncharged or charged (e.g., cationic)), polymeric microparticles (e.g., polyamides, polylactide, polyglycolide, poly(lactide-glycolide)), microemulsions, and the like.

[0224] A further method of administration is by osmotic pump (e.g., an Alzet pump) or mini-pump (e.g., an Alzet mini-osmotic pump), which allows for controlled, continuous and/or slow-release delivery of the therapeutic agent or pharmaceutical composition over a pre-determined period. The osmotic pump or mini-pump can be implanted subcutaneously, or near a target site.

[0225] It will be apparent to one skilled in the art that the therapeutic agent or compositions thereof can also be administered by other modes. The therapeutic agent can be administered as pharmaceutical formulations suitable for, e.g., oral (including buccal and sub-lingual), rectal, nasal, topical, pulmonary, vaginal or parenteral (including intramuscular, intraarterial, intrathecal, subcutaneous and intravenous) administration, or in a form suitable for administration by inhalation or insufflation. Depending on the intended mode of administration, the pharmaceutical formulations can be in the form of solid, semi-solid or liquid dosage forms, such as tablets, suppositories, pills, capsules, powders, liquids, suspensions, emulsions, creams, ointments, lotions, and the like. The formulations can be provided in unit dosage form suitable for single administration of a precise dosage. The formulations comprise an effective amount of a therapeutic agent, and one or more pharmaceutically acceptable excipients, carriers and/or diluents, and optionally one or more other biologically active agents.

4. Composition

30

35

40

45

50

55

[0226] Compositions are provided that include one or more of the disclosed EBOV GP-specific antibodies, antigen binding fragments, conjugates, or nucleic acid molecules, in a carrier. The compositions are useful, for example, for the treatment or detection of an EBOV infection. The compositions can be prepared in unit dosage forms for administration to a subject. The amount and timing of administration are at the discretion of the treating physician to achieve the desired purposes. The EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules can be formulated for systemic or local administration. In one example, the EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, is formulated for parenteral administration, such as intravenous administration.

[0227] In some embodiments, the compositions comprise an antibody, antigen binding fragment, or conjugate thereof, in at least 70%, at least 75%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% purity. In certain embodiments, the compositions contain less than 10%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1% or less than 0.5% of macromolecular contaminants, such as other mammalian (e.g., human) proteins.

[0228] The compositions for administration can include a solution of the EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, dissolved in a pharmaceutically acceptable carrier, such as an aqueous carrier. A variety of aqueous carriers can be used, for example, buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of antibody in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the subject's needs.

[0229] A typical composition for intravenous administration includes about 0.01 to about 30 mg/kg of antibody or antigen binding fragment or conjugate per subject per day (or the corresponding dose of a conjugate including the antibody or antigen binding fragment). Actual methods for preparing administrable compositions will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's Pharmaceutical Science, 22th ed., Pharmaceutical Press, London, UK (2012). In some embodiments, the composition can be a liquid formulation including one or more antibodies, antigen binding fragments (such as an antibody or antigen binding fragment that specifically binds to EBOV GP), in a concentration range from about 0.1 mg/ml to about 20 mg/ml, or from about 0.5 mg/ml to about 20 mg/ml, or from about 1 mg/ml to about 10 mg/ml, or from about 10 mg/ml, or from about 10 mg/ml, or from about 10 mg/ml.

[0230] The disclosed antibodies, antigen binding fragments, conjugates, and nucleic acid encoding such molecules, can be provided in lyophilized form and rehydrated with sterile water before administration, although they are also provided in sterile solutions of known concentration. The antibody solution, or an antigen binding fragment or a nucleic acid encoding such antibodies or antigen binding fragments, can then be added to an infusion bag containing 0.9% sodium chloride, USP, and administered according to standard protocols. Considerable experience is available in the art in the administration of antibody drugs, which have been marketed in the U.S. since the approval of RITUXAN® in 1997. Antibodies, antigen binding fragments, conjugates, or a nucleic acid encoding such molecules, can be administered by slow infusion, rather than in an intravenous push or bolus. In one example, a higher loading dose is administered, with subsequent, maintenance doses being administered at a lower level. For example, an initial loading dose of 4 mg/kg may be infused over a period of some 90 minutes, followed by weekly maintenance doses for 4-8 weeks of 2 mg/kg infused over a 30 minute period if the previous dose was well tolerated.

[0231] Controlled-release parenteral formulations can be made as implants, oily injections, or as particulate systems. For a broad overview of protein delivery systems see, Banga, A.J., Therapeutic Peptides and Proteins: Formulation, Processing, and Delivery Systems, Technomic Publishing Company, Inc., Lancaster, PA, (1995). Particulate systems include microspheres, microparticles, microcapsules, nanospheres, and nanoparticles. Microcapsules contain the therapeutic protein, such as a cytotoxin or a drug, as a central core. In microspheres the therapeutic is dispersed throughout the particle. Particles, microspheres, and microcapsules smaller than about 1 μ m are generally referred to as nanoparticles, nanospheres, and nanocapsules, respectively. Capillaries have a diameter of approximately 5 μ m so that only nanoparticles are administered intravenously. Microparticles are typically around 100 μ m in diameter and are administered subcutaneously or intramuscularly. See, for example, Kreuter, J., Colloidal Drug Delivery Systems, J. Kreuter, ed., Marcel Dekker, Inc., New York, NY, pp. 219-342 (1994); and Tice & Tabibi, Treatise on Controlled Drug Delivery, A. Kydonieus, ed., Marcel Dekker, Inc. New York, NY, pp. 315-339, (1992).

[0232] Polymers can be used for ion-controlled release of the antibody compositions disclosed herein. Various degradable and nondegradable polymeric matrices for use in controlled drug delivery are known in the art (Langer, Accounts Chem. Res. 26:537-542, 1993). For example, the block copolymer, polaxamer 407, exists as a viscous yet mobile liquid at low temperatures but forms a semisolid gel at body temperature. It has been shown to be an effective vehicle for formulation and sustained delivery of recombinant interleukin-2 and urease (Johnston et al., Pharm. Res. 9:425-434, 1992; and Pec et al., J. Parent. Sci. Tech. 44(2):58-65, 1990). Alternatively, hydroxyapatite has been used as a microcarrier for controlled release of proteins (Ijntema et al., Int. J. Pharm. 112:215-224, 1994). In yet another aspect, liposomes are used for controlled release as well as drug targeting of the lipid-capsulated drug (Betageri et al., Liposome Drug Delivery Systems, Technomic Publishing Co., Inc., Lancaster, PA (1993)). Numerous additional systems for controlled delivery of therapeutic proteins are known (see U.S. Patent No. 5,055,303; U.S. Patent No. 5,188,837; U.S. Patent No. 4,235,871; U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; U.S. Patent No. 4,957,735; U.S. Patent No. 5,019,369; U.S. Patent No. 5,055,303; U.S. Patent No. 5,055,303; U.S. Patent No. 5,268,164; U.S. Patent No. 5,004,697; U.S. Patent No. 4,902,505; U.S. Patent No. 5,506,206; U.S. Patent No. 5,271,961; U.S. Patent No. 5,534,496).

5. Methods of detection and diagnosis

10

30

35

40

45

50

55

[0233] Methods are also provided for the detection of the expression of EBOV GP *in vitro* or *in vivo*. In one example, expression of EBOV GP is detected in a biological sample, and can be used to detect EBOV infection as the presence of EBOV in a sample. The sample can be any sample, including, but not limited to, tissue from biopsies, autopsies and pathology specimens. Biological samples also include sections of tissues, for example, frozen sections taken for histological purposes. Biological samples further include body fluids, such as blood, serum, plasma, sputum, spinal fluid or urine. The method of detection can include contacting a cell or sample, or administering to a subject, an antibody or antigen binding fragment that specifically binds to EBOV GP, or conjugate there of (e.g. a conjugate including a detectable marker) under conditions sufficient to form an immune complex, and detecting the immune complex (e.g., by detecting a detectable marker conjugated to the antibody or antigen binding fragment.

[0234] In several embodiments, a method is provided for detecting EBOV disease and/or an EBOV infection in a

subject. The disclosure provides a method for detecting EBOV in a biological sample, wherein the method includes contacting a biological sample from a subject with a disclosed antibody or antigen binding fragment under conditions sufficient for formation of an immune complex, and detecting the immune complex, to detect the EBOV GP in the biological sample. In one example, the detection of EBOV GP in the sample indicates that the subject has an EBOV infection. In another example, the detection of EBOV GP in the sample indicates that the subject has EVD. In another example, detection of EBOV GP in the sample confirms a diagnosis of EVD and/or an EBOV infection in the subject.

[0235] In some embodiments, the disclosed antibodies or antigen binding fragments are used to test vaccines. For example to test if a vaccine composition including EBOV GP assumes a conformation including the EBOV GP epitope to which EVB100, EVB114, or EVB166 antibody binds. Thus provided herein is a method for testing a vaccine, wherein the method includes contacting a sample containing the vaccine, such as an EBOV GP immunogen, with a disclosed antibody or antigen binding fragment under conditions sufficient for formation of an immune complex, and detecting the immune complex. Detection of the immune complex confirms that the EBOV GP vaccine includes the epitope to which EVB100, EVB114, or EVB166 antibody, respectively binds. In one example, the detection of the immune complex in the sample indicates that a vaccine component, such as an EBOV GP immunogen assumes a conformation capable of binding the antibody or antigen binding fragment.

[0236] In one embodiment, the antibody or antigen binding fragment is directly labeled with a detectable marker. In another embodiment, the antibody that binds EBOV GP (the first antibody) is unlabeled and a second antibody or other molecule that can bind the antibody that binds the first antibody is utilized for detection. As is well known to one of skill in the art, a second antibody is chosen that is able to specifically bind the specific species and class of the first antibody. For example, if the first antibody is a human IgG, then the secondary antibody may be an anti-human-IgG. Other molecules that can bind to antibodies include, without limitation, Protein A and Protein G, both of which are available commercially. [0237] Suitable labels for the antibody, antigen binding fragment or secondary antibody are described above, and include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, magnetic agents and radioactive materials. Non-limiting examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase. Non-limiting examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin. Non-limiting examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin. A non-limiting exemplary luminescent material is luminol; a non-limiting exemplary a magnetic agent is gadolinium, and non-limiting exemplary radioactive labels include 125I, 131I, 35S or 3H.

E. Kits

30

35

40

45

50

55

10

[0238] Kits are also provided. For example, kits for treating a subject with an EBOV infection, or for detecting EBOV GP in a sample or in a subject. The kits will typically include a disclosed EBOV GP-specific antibody, antigen binding fragment, or nucleic acid molecule encoding such molecules, or compositions including such molecules. More than one of the disclosed EBOV GP-specific antibody, antigen binding fragment, conjugate, or nucleic acid molecule encoding such molecules, or compositions including such molecules can be included in the kit.

[0239] In one embodiment, the kit is a diagnostic kit and includes an immunoassay. Although the details of the immunoassays may vary with the particular format employed, the method of detecting EBOV GP in a biological sample generally includes the steps of contacting the biological sample with an antibody which specifically reacts, under conditions sufficient to form an immune complex, to EBOV GP. The antibody is allowed to specifically bind under immunologically reactive conditions to form an immune complex, and the presence of the immune complex (bound antibody) is detected directly or indirectly.

[0240] The kit can include a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container typically holds a composition including one or more of the disclosed antibodies, antigen binding fragments, conjugates, nucleic acid molecules, or compositions. In several embodiments the container may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). A label or package insert indicates that the composition is used for treating the particular condition.

[0241] The label or package insert typically will further include instructions for use of the antibodies, antigen binding fragments, conjugates, nucleic acid molecules, or compositions included in the kit. The package insert typically includes instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. The instructional materials may be written, in an electronic form or may be visual. The kits may also include additional components to facilitate the particular application for which the kit is designed. Thus, for example, the kit may additionally contain means of detecting a label (such as enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a secondary antibody, or the like). The kits may additionally

include buffers and other reagents routinely used for the practice of a particular method. Such kits and appropriate contents are well known to those of skill in the art.

III. EXAMPLES

5

10

15

30

35

[0242] The following examples are provided to illustrate particular features of certain embodiments, but the scope of the claims should not be limited to those features exemplified.

EXAMPLE 1

EBOV GP-specific Monoclonal Antibodies that Neutralize EBOV Infection

[0243] This examples illustrates the isolation and characterization of the EVB100, EVB114, and EVB166 antibodies, which specifically bind to EBOV GP and can neutralize EBOV.

[0244] Ebola virus disease (EVD) causes severe illness characterized by rapid onset of fever, vomiting, diarrhea and bleeding diathesis, and was first described in the Democratic Republic of Congo in 1976. The 2014 outbreak in West Africa has affected over 27,000 and claimed at least 11,000 lives. The challenges of a large outbreak and the failure of traditional quarantine and contact tracing measures to control this outbreak highlights the urgency for therapies. The success in nonhuman primates (NHP) of ZMapp, a cocktail of three mouse-human chimeric mAbs derived from immunized mice (Qiu et al., Clin. Immunol. 141, 218-27, 2011; Wilson et al., Science. 287, 1664-6, 2000), illustrated the potential impact of monoclonal antibody therapies against EVD, and it is currently being evaluated in human trials. To date, efforts to simplify the ZMapp regimen to contain fewer mAbs have not been successful in the macaque EVD model (Qiu et al., Nature. 514, 47-53, 2014). Accordingly, mAbs were isolated from human survivors of Ebola virus infection, with the goal of identifying antibodies that confer clinical protection either as single or dual-combination agents.

[0245] Blood was obtained from two survivors of the 1995 Kikwit EVD outbreak (Muyembe-Tamfum et al., J. Infect. Dis. 179 Suppl , S259-S262, 1999) eleven years after infection. These subjects were the sole survivors of a family of 15 people who were infected during the outbreak. At the time of infection, subject 1 (S1) was a male 28-year-old who had severe laboratory-confirmed illness and, following recovery, worked for several months in the EVD ward caring for other patients. His sister (S2) was 20-years old and had moderate disease severity that was clinically diagnosed based on contact history and symptoms. To determine if the subjects retained circulating antibodies against Ebola virus (EBOV) glycoprotein (GP), GP-specific antibodies were assessed by ELISA (FIG. 1A). Reciprocal EC90 titers of 2,326 and 275 in the sera of S1 and S2 were observed, respectively. Moreover, the serum from S1, the more severely ill subject, displayed potent virus neutralizing activity (FIG. 1B). The results indicated that these survivors maintained serologic memory against EBOV GP more than a decade following infection, and suggested the potential to clone immunoglobulins with potent neutralizing activity from their memory B cells.

[0246] IgG memory B-cells were sorted from S1's peripheral blood mononuclear cells (PBMC), and immortalized individual clones with Epstein-Barr virus (using techniques described in Traggiai et al., Nat. Med. 10, 871-875, 2004). Forty immortalized clones whose supernatants displayed a range of GP-binding activity by ELISA were identified (FIG. 1C). Two mAb clones, mAb100 and mAb114 (termed EVB100 and EVB 114), expressed antibodies with markedly higher neutralizing activity than all others (FIG. ID).

[0247] A second immortalization yielded 21 clones, from which two additional GP-specific mAb clones, 165 and 166 (termed EVB165 and EVB166), were rescued (see the following table). In the second screening of immortalized memory B-cells from S1, 14 million PBMCs were used to isolate 59,500 IgG memory B cells which were immortalized as in FIGs. 1A-1D. After removal of non-specific binding, 21 culture supernatants were found to specifically bind Ebola GP as measured by ELISA. Shown are ELISA A450 values for undiluted and 1:27 dilutions of the supernatants. Amongst the 21 supernatants, only 2 B cell clones (EVB165, EVB166) were rescued for further analysis.

Cell line ID	Abs	450	Cell line ID	Abs 450		
Cell lille ID	Und.	1/27	Cell lille ID	Und.	1/27	
mAb151	1.119	0.162	mAb162	0.083	0.074	
mAb152	0.672	0.106	mAb163	3.099	1.805	
mAb153	0.854	0.131	mAb 164	0.076	0.069	
mAb154	2.361	0.95	EVB 165	3.171	1.722	
mAb155	0.115	0.08	EVB 166	2.894	2.4	

50

45

(continued)

Cell line ID	Abs	450	Cell line ID	Abs	450
Cell lille ID	Und.	1/27	Cen line ib	Und.	1/27
mAb156	1.111	0.161	EVB167	3.368	2.974
mAb157	2.256	0.554	mAb168	0.507	0.114
mAb158	0.074	0.075	mAb169	0.081	0.072
mAb159	3.298	2.529	mAb170	0.95	0.165
mAb 160	1.493	0.489	mAb171	1.998	0.895
mAb161	0.227	0.086			

5

10

15

30

35

40

50

55

[0248] Immunoglobulin sequences were PCR-amplified from the four clones and used to produce EVB100, EVB114, EVB165 and EVB166 by transient transfection. ELISA binding to EBOV GP was assessed and it was observed that one antibody, EVB114, stood apart from the others, displaying nearly 100% higher maximal binding (FIG. 2A). The remaining three antibodies, EVB100, EVB165 and EVB166, exhibited reduced levels of maximal binding compared to EVB114, but were comparable to each other and to KZ52, a prototype human EBOV GP-specific mAb (Maruyama et al., J. Virol. 73, 6024-6030, 1999). EVB114 achieved half maximal binding (EC50) at a concentration of 0.07 μg/mL, which was up to two orders of magnitude lower EC50 than the other mAbs. EVB100 and EVB166 had similar binding profile (0.26 μg/mL, 0.40 μg/mL) while EVB165 bound less well with an EC50 > 1 μg/mL.

[0249] To test potential functional properties of the mAbs the inhibition of GP mediated entry into HEK293T cells was evaluated in the absence of complement (FIG. 2B) A summary of in vitro neutralization IC data (obtained as described for Fig. 2B) is provided in the following table:

mAb	IC50 (μg/mL)	95% CI	IC90 (μg/mL)	95% CI	IC99 (μg/mL)	95% CI	n
KZ52	0.06	0.02 to 0.14	17.21	8.47 to 35.00	>>1000	54,868	6
EVB100	0.06	0.05 to 0.08	0.61	0.39 to 0.93	7.58	2.999 to 19.16	6
EVB114	0.09	0.07 to 0.11	0.71	0.44 to 1.16	7.19	2.588 to 19.96	6
EVB166	0.86	0.72 to 1.02	6.84	4.78 to 9.80	97.25	31.32 to 138.2	4
EVB165	1.77	1.43 to 2.18	19.46	13.23 to 28.61	267.00	124.9 to 570.8	4

[0250] EVB165 and EVB166 both neutralized well and exhibited similar potencies for half maximal inhibition (IC50) concentration of 1.77 and 0.86 μ g/ml, respectively. EVB100 and EVB114 resided in the strongest neutralizing group, with IC50 about one-log greater (0.06 and 0.09 μ g/ml, respectively) than EVB165 and EVB166. Notably, all four of the neutralizing antibodies inhibited 100% of the input virus unlike KZ52, which consistently displayed only 80-90% maximum inhibition, and 13C6 which neutralized < 20% at 10 μ g/mL. Importantly, neutralization of the 2014 West African Makona variant was achieved within similar concentration ranges seen for the Mayinga variant (FIG. 5).

[0251] Sequence analysis revealed EVB114 and EVB165 to be IgG1 isotypes, and EVB100 and EVB166 to be IgG3 isotypes. Immunoglobulins displayed between 85-95% and 89-97% germline identity for heavy and light chains, respectively (FIG. 2C). Analyses of germline gene usage and V(D)J recombination indicate that they originate from different B-cell lineages. Interestingly, EVB 114 utilizes *IGHV3-13*01*, a rarely used VH gene, and *-IGKV1-27*01*.

[0252] The role of somatic hypermutations for the two most potent antibodies, EVB 100 and EVB 114, was analyzed using variants that were partially or completely reverted to the unmutated common ancestors (UCAs) (FIGs. 2D to 2G). The fully reverted version of EVB100 (UCA/UCA), as well as a variant with germline VH and a VL with a single change from germline (A89T), recognized cells expressing GP with only a 2- to 4-fold weaker binding compared with the fully matured antibody (FIG. 2H). GP binding comparable to the fully matured EVB100 heavy and light chains (sH/sL) was observed when three HCDR3 mutations (A96V/V103Y/Y114S) were introduced in the reverted germline antibody (gH/UCA), illustrating that those mutations were sufficient to mediate binding observed with fully matured EVB100. The addition of all the other mutations did not contribute further to EVB100 binding to GP. In the case of the EVB114, the fully reverted version of EVB114 (UCA/UCA) demonstrated negligible binding to EBOV GP (FIG. 2I). Introduction of two mutations (A96V and Y108S) in the HCDR3 of EVB114 germline was sufficient to confer an increase in GP binding. It is intriguing that these mutations (A96V and Y108S) are located at the base of the HCDR3 loop which are most likely

not in direct contact with GP but may have a stabilizing effect on the whole HCDR3. Indeed, restoration to the binding equivalent of the mature antibody required a fully matured light chain in addition to the two HCDR3 mutations. Inherent uncertainty in determining the germline configuration of the HCDR3 does not appear to apply to this case since the two mutations are located in the V and J regions of the junction and no polymorphisms have been described at those positions. Importantly, the fully mutated light chain gene, as shown in the case of the EVB114 UCA/sK variant, can partially compensate for the lack of somatic mutation in the heavy chain (FIG. 2I). The presence of additional mutations on either VH or VK is required to achieve the level of the fully matured EVB114 binding. These results suggest a rapid pathway of EVB114 affinity maturation through one or two somatic mutations, which became redundant as further mutations accumulated, a finding that is reminiscent of what was recently observed for the generation of broadly neutralizing influenza antibodies (Pappas et al., Nature. 516, 418-22, 2014).

10

20

30

35

50

55

[0253] Since EVB100 and EVB114 were the most potently neutralizing antibodies, they were considered optimal candidates for further evaluation. The potential for synergy between these antibodies in the context of combination therapy was assessed. First, to possibility of cross-competition for antigen binding or targeting of a single immunodominant region of GP was assessed. It was found that each antibody bound to GP in the presence of the other, suggesting that they recognize distinct regions on GP (Fig. 3A) and therefore could be used together in combination immunotherapy to improve efficacy and diminish the likelihood of emergence viral escape mutants (Barouch et al., Nature. 503, 224-8, 2013; Shingai et al., Nature. 503, 277-80, 2013). To define the regions targeted by EVB100 and EVB114, biolayer interferometry was employed to assess GP binding in competition with mAbs KZ52 and 13C6, which have known epitopes in the GP base and glycan cap, respectively (Lee et al., Nature. 454, 177-82, 2008; Murin et al., Proc. Natl. Acad. Sci. U. S. A. 111, 17182-17187, 2014). It was found that EVB100 competes with KZ52 for binding at the base of GP, while EVB 114 recognizes at least in part the glycan cap region, as demonstrated by the partial competition observed with 13C6 (FIGs. 3B and 3C).

[0254] Since some EBOV GP antibodies have been suggested to mediate antibody dependent cell-mediated cytotoxicity (ADCC) (Olinger et al., Proc. Natl. Acad. Sci. U. S. A. 109, 18030-5, 2012) the ADCC activity of EVB100 and EVB114 were determined in a flow cytometry-based assay using GP-expressing target cells (FIG. 3D). It was found that both EVB100 and EVB114 mediated ADCC, and maximum activity was observed at a mAb concentration of 0.03 μg/ml, which is similar to the IC50 values for neutralization. Killing of target cells was demonstrated to be mediated through Fc receptors since LALA mutations in the mAb Fc regions (Hezareh et al., J. Virol. 75, 12161-12168, 2001) of the antibodies abrogated ADCC activity. Therefore, in addition to neutralization, these mAbs have the potential to induce direct killing of infected cells *in vivo*, a key viral clearance mechanism.

[0255] The presence of potent neutralizing and ADCC activity, and the absence of cross competition, supported testing EVB100 and EVB114 *in vivo* for protective efficacy in macaques. Four rhesus macaques (*Macaca mulatta*) were challenged with a lethal dose of Ebola virus, Kikwit 1995 variant. One day post-challenge, the treatment group (n=3) was given an intravenous injection with a mixture of EVB 100 and EVB 114 at a total combined dose of 50 mg/kg, and the treatment was repeated twice more at 24-hour intervals (FIG. 4A). Circulating Ebola GP-specific antibody titers in the mAb recipients peaked after the second mAb injection and reciprocal ELISA titers remained above 10⁵ throughout the study, suggesting minimal clearance of the mAbs during the observation period (FIG. 4B). The naive untreated macaque succumbed to EVD on day 10 with a circulating viral load exceeding 10⁸ ge/ml (FIGs. 4C and 4D). In contrast, all three mAb treated macaques survived challenge without detectable systemic viremia. Consistent with historic controls, the untreated animal displayed hallmark indicators of Ebola infection including hematologic, liver and renal dysfunction as indicated by thrombocytopenia and striking elevations in alanine transaminase (ALT) and creatinine from day 6 through the time of death (FIG. 4E, and 6-8). In contrast, macaques in the treatment group remained within normal ranges for these parameters, and remained free of all EVD symptoms.

[0256] Assays were also performed to determine if mAb monotherapy is sufficient for protection of NHP. Initial testing focused on EVB114, since it showed higher maximal binding than EVB100. As in the first experiment four macaques were exposed to a lethal dose of EBOV and administered 50 mg/kg of EVB114 (n=3) to the treatment group after a one-day delay, followed by two more doses at 24-hour intervals. All treated macaques survived, whereas the control animal succumbed to EVD on day 6 with a peak viral load of 10¹⁰ ge/ml (FIGs. 4F to 4H). In contrast to the previous experiment, transient viremia was observed in the treated animals, but it remained at levels less than 0.1% of the untreated control animal, and returned to undetectable levels. Despite transient viremia, treated animals remained free of clinical and laboratory abnormalities (FIG. 4I, and 9-11).

[0257] The neutralization activity of the EVB100, EVB114, EVB165, and EVB166 antibodies was further assayed in the presence of soluble GP (sGP), which is believed to interfere with the natural immune response to EBOV in human subjects (FIG. 12). The neutralization assay was performed as above and using the IC50 concentration of each antibody in the presence or absence of sGP. As shown in FIG. 12, the neutralization potency of EVB100 was not affected by the presence of sGP; however, neutralization by the EVB114, EVB165, and EVB166 antibodies was diminished in this *in vitro* assay.

[0258] EBOV GP is initially synthesized as precursor protein (GPo) that is cleaved by cellular furin to form the surface

glycoprotein GP₁ and the membrane anchoring protein GP₂. GP₁ and GP₂ are linked in the mature virion trimer by disulfide bonds. There are other GP forms created during cellular trafficking and processing that may also bind to antibodies in the infected host. Since binding specificity to the various GP forms may influence *in vivo* efficacy of the antibodies, the EVB100, EVB114, EVB165, and EVB166 antibodies were assayed to determine if they could immuno-precipitate GP (FIG. 13). KZ52 was used as a positive control. As shown in FIG. 13, each of the EVB100, EVB114, EVB165, and EVB166 antibodies can immunoprecipitate GP. EVB114 immunoprecipitated GP₁ and GP₂, suggesting that it binds to the mature, disulfide-linked trimer. EVB 114 also immunoprecipitated the lower molecular weight cathepsin-cleaved form of GP (GPCatL). The EVB100, EVB165, and EVB166 antibodies bind to precursor forms of GP present prior to furin or cathepsin cleavage.

[0259] To further assess the binding properties of the EVB100, EVB114, EVB165, and EVB166 antibodies for GP, several GP deletion mutants were assayed for binding to these antibodies (FIGs. 14 and 15). GP deletion mutants were constructed that lack the N-terminus (containing the putative receptor binding domain, (d47-277, "GP8RBS"), the highly glycosylated mucin-like PdMUC"), or the C terminus of EBOV GP (d494-635, "GP dGP2") (see FIG. 14). Additionally, binding to sGP was also assessed (FIGs. 17A and 17B).

[0260] Gross epitope mapping was performed by expressing the GP mutants in mammalian cells, followed by immunoprecipitation using the EVB100, EVB114, EVB165, or EVB166 antibodies and detection of precipitated protein by Western blot with EBOV GP specific antibody (FIGs. 15-17). Deletion of the GP mucin-like domain reduced recognition by EVB100 in immunoprecipitation assays, but the other antibodies recognized GP in the absence of the mucin-like domain (FIG. 15). This finding indicates that deletion of the mucin-like domain alters (or deletes) at least part of the EVB100 epitope on EBOV GP. Further, deletion of GP₂ reduced recognition by EVB100 in immunoprecipitation assays, but the other antibodies recognized GP in the absence of the GP₂ polypeptide (FIG. 16). This finding indicates that deletion of the GP₂ polypeptide alters (or deletes) at least part of the EVB100 epitope on EBOV GP.

[0261] The EVB100, EVB114, EVB165, and EVB166 antibodies were also assessed for binding to soluble GP (sGP) by immunoprecipitation (FIG. 17A). sGP contains the GP receptor binding domain; therefore, the N-terminal portions of sGP and GP as found on the viral envelope are homologous in that they each contain putative receptor binding domain. EVB114, EVB165, and EVB166 all immunoprecipitated sGP indicating that each of these antibodies binds to an epitope within the N-terminal portion of the GP protein, which includes the receptor binding domain. Further, recognition by direct WB suggests that binding is to a linear, not conformation-dependent epitope (FIG. 17B). In contrast, EVB100 does not bind to N-terminal GP sequences by either direct WB or IP/WB that preserves conformation. This is consistent with the previous finding that EVB100 binding requires elements in the mucin and GP₂ regions of GP.

[0262] The EVB100, EVB114, EVB165, and EVB166 monoclonal antibodies were further assayed for neutralization of the Bundibugyo (BDBV) and Sudan (SUDV) Ebola virus strains, which have previously causes highly lethal outbreaks in humans (FIG. 18). Cross-species neutralization was assayed using a single-round replication assay with virus pseudotyped with the envelope glycoprotein (GP) from each species. As shown in FIG. 18, the EVB100 and EVB166 antibodies potently neutralized BDBV, while EVB114 and EVB165 displayed modest cross recognition and neutralization. EVB166 was additionally neutralized the SUDV pseudovirus.

[0263] EVB114 has several characteristics that may contribute to protection as a monotherapy compared to KZ52 and 13C6, which were non-protective in NHPs (Qiu et al., Nature. 514, 47-53, 2014; Oswald et al., PLoS Pathog. 3, e9, 2007). Firstly, both KZ52 and EVB114 neutralize with potent IC50s, however EVB114 neutralizes 100% of input virus whereas KZ52 plateaus at 80-90%. Secondly, EVB114 does not require complement for neutralizing activity in contrast to 13C6 (FIG. 2B) (Wilson et al., Science. 287, 1664-6, 2000). Based on these observations, one non-limiting conclusion is that protective monotherapy requires both potent binding and complete neutralization in the absence of complement. In addition, ADCC activity may contribute to the unique ability of EVB 114 to protect as a monotherapy against lethal Ebola infection of macaques.

10264] Data presented in this example shows that circulating functional antibodies as well as memory B cells specific to Ebola virus are maintained in survivors for more than a decade following infection. mAbs isolated from a survivor of the 1995 Kikwit EVD outbreak exhibited ADCC activity and showed potent neutralizing activity against two other Ebola variants, including one from the recent West Africa outbreak. Macaques who received EVB114 and EVB100 as combination therapy remained healthy with no signs of viremia after EBOV challenge. Strikingly, when a single antibody, EVB114, was therapeutically administered after lethal EBOV challenge of macaques, all treated animals were fully protected and asymptomatic, despite a low transient level of circulating virus being detected.

Materials and Methods

30

35

[0265] Isolation of monoclonal antibodies from EBOV survivors. Two subjects who survived the 1995 EBOV Kikwit variant outbreak in the Democratic Republic of Congo were identified and enrolled in VRC200 clinical trial #NCT00067054 after giving signed informed consent. Peripheral blood mononuclear cells (PBMCs) were obtained, stained with directly labeled antibodies to CD22 (Pharmingen) and to immunoglobulin IgM, IgD, and IgA. CD22+IgM-

IgD-IgA- B cells were isolated using FACS Aria, pulsed with Epstein-Barr Virus (50% B958 supernatant) and seeded at 30 cells/well (for a total of 2.7×105 purified cells) in replicate cultures in medium supplemented with CpG 2006 and irradiated allogeneic PBMCs, as previously described (Traggiai et al., Nat. Med. 10, 871-875, 2004). Culture supernatants were collected after 2 weeks and tested for binding to ELISA plates coated with EBOV GP (Mayinga variant), their specificity was confirmed using an unrelated antigen (tetanus toxoid) and positive cultures were further tested for their ability to neutralize EBOV pseudoviruses. Cultures that scored positive in the EBOV neutralization assay were subcloned by limiting dilution.

[0266] Antibody purification, labeling, genetic analysis, and reversion to germline. The usage of VH and VL gene segments was determined by sequencing, and analysis for homology to known human V, D, and J genes was performed using the IMGT database (http://www.imgt.org/). Human antibodies were affinity purified by protein A chromatography (GE Healthcare) and dialyzed against PBS. Selected antibodies were biotinylated using the EZ-Link NHS-PEO Solid Phase Biotinylation Kit (Pierce).

[0267] Antibodies were also produced recombinantly by cloning VH and VL genes via PCR into human $lg\gamma 1$, $lg\kappa$ (EVB114, 165, 166), and $lg\lambda$ (EVB100) expression vectors using gene specific primers (Tiller et al., J. Immunol. Methods. 329, 112-124, 2008). Antibodies used for animal studies were produced by transient transfection of suspension cultured 293FreeStyle cells (Invitrogen) with PEI or Expi cells with Expifectamine293 (Invitrogen). Supernatants from transfected cells were collected after 6-10 days of culture and lgGs were affinity purified by Protein A chromatography (GE Healthcare) and dialyzed against PBS. Purified mAbs were then concentrated with Amicon Ultra centrifugal filters and sterilized by 0.22 μ m filtration. The purity was assessed by SEC-HPLC and SDS-PAGE. Endotoxin content was measured with the Endpoint Chromogenic LAL assay (QCL-1000 TM assay, Lonza) according to manufacturing instructions and shown to be below 0.25 EU/ml. Antibody concentrations were determined using the BCA Protein Assay Kit (Thermo Scientific) using Rituximab (Roche) as internal standard or A280 using an Nanodrop (Thermo Scientific). Germlined VH and VL nucleotide sequences were synthesized by Genscript, and their accuracy was confirmed by sequencing.

[0268] Antibodies. KZ52 monoclonal antibody used in ELISA assay a kind gift from Dennis Burton. KZ52 used elsewhere and 13C6 was purchased from IBT Bioservices. Unless otherwise noted isotype control antibody was an anti-HIV gp120 IgG1.

[0269] Antibody neutralization assay. Supernatants or purified mAbs from immortalized B cell clones isolated from EVD survivor donors were assessed for neutralization potency using a single-round infection assay with EBOV GP-pseudotyped lentiviruses particles which express a luciferase reporter gene following entry (Sullivan et al., PLoSMed. 3, e177, 2006). Unless indicated, all experiments utilized particles bearing GP from the EBOV Mayinga variant. In brief, HEK293T cells were used as infection targets and incubated in a 96-well plate 1 day before infection with pseudovirus in the presence of serially diluted supernatant or purified mAbs. Infected target cells were lysed 72 hours after infection and assayed with the Luciferase Assay System or Bright Glo (Promega), using a Victor X3 Plate Reader (PerkinElmer) to detect luciferase activity.

30

35

40

45

50

55

[0270] ELISA for serum antibody titer and GP-binding. Binding of EVD survivor's polyclonal sera, monoclonal antibodies and antibody in non-human primates to EBOV GP was evaluated by enzyme-linked immunosorbent assay (ELISA) as described previously (Sullivan et al., PLoSMed. 3, e177, 2006). Titers for survivor and non-human primates were calculated as reciprocal EC90 values (Sullivan et al., PLoSMed. 3, e177, 2006).

[0271] Ebola virus GP vectors. Plasmid vector pVR1012 WT GP (Z) has been described previously (21). A vector expressing a soluble mucin deleted (ΔMuc) GP, GPΔMucΔTM-GCN4 HisSA (Δ309-505, Δ657-676), was made using codon optimization and then synthesized and directly cloned in frame to a GCN4 trimerization domain-His-Strep Tactin domains (MKQIEDKIEEILSKIYHIENEIARIKKLIGEVASSSIEGRGSHHHHHHSAWSHPQFEK, SEQ ID NO: 66) and sequence verified by Genscript. EBOV GP variant Makona-C05 (Acc#KJ660348) was codon optimized, synthesized and sequence verified by Genscript.

[0272] Antibody-dependent cell-mediated cytotoxicity (ADCC). rAd5 EBOV GP-transduced and non-transduced HEK293T cells were double labeled with membrane-bound and intracellular stains in order to detect ADCC activity. Cells were incubated with 8 μM Plum stain (Plum cell labeling kit M.T.T.I. CellVue) followed by FBS. The cells were then washed with RPMI 1640, incubated with 5 μM Carboxyflourescein Succinimidyl ester (CFSE) (Vybrant CFDA SE cell tracer kit, Invitrogen), incubated with FBS and washed again with RPMI 1640. Doubly labeled EBOV GP expressing cells were plated in a V-bottomed 96-well plate at 5,000 cells/well. Antibodies were added to duplicate samples at 31.6 ng/ml to the target cells for 20 minutes at room temperature. RSV antibody (palivizumab) was used as a control antibody. Effector cells resuspended in RPMI were then added to the target cells at the effector-to-target cell (ET) ratio 1:50 which was found to give the best signal to noise ratio. Each plate was incubated for 4 hr at 37°C/5% CO2. After 4 hr, plates were centrifuged at 250 x g and cells were fixed with 1% Paraformaldehyde (PFA) and analyzed via flow cytometry. As a control, labeled non-transduced HEK293T cells were also used as targets for ADCC activity. Thirty thousand nongated events were acquired within 6 hr after the ADCC assay using an LSRII cytometer (Becton Dickinson). The CFSE emission channel was read in B515 using a neutral density filter and Plum emission was read in R660. Following acquisition, analysis was performed using FlowJo software (Tree Star). Percent killing was obtained by quantifying dead

cells (Plum+,CFSE-) out of the total Plum positive population. For mAbs, ADCC killing was measured by subtracting percent killing of nontransduced cells from percent killing of transduced cells.

[0273] Antibody variants. UCA sequences of the isolated antibodies were determined with reference to the IMGT database (imgt.org). Antibody variants in which single or multiple mutations were reverted to the germline sequence were produced by gene synthesis (Genscript) and used to produce a large set of EVB114 and EVB100 antibody variants. [0274] Binding of antibody variants to transfected cells. EVB114 and EVB100 antibody variants were used to stain MDCK-SIAT1 cell lines transduced to express EBOV GP as a stable membrane protein (Makona variant). Binding of antibodies was analysed using a Becton Dickinson FACS Canto2 (BD Biosciences) with FlowJo software (TreeStar). The relative affinities of antibody binding to surface GP were determined by interpolating the concentration of antibody required to achieve 50% maximal binding (EC50) from the plotted binding curves using the mean-fluorescence intensity (MFI) fitted with a 4-parameter nonlinear regression with a variable slope.

10

30

35

40

45

50

55

[0275] Inhibition of binding assay on GP-expressing cells. EVB100 and EVB 114 were biotinylated using the EZ-Link NHS-PEO solid phase biotinylation kit (Pierce). Labeled antibodies were tested for binding to GP-expressing MDCK-SIAT-1 cells to determine the optimal concentration of each antibody to achieve 70-80% maximal binding. The biotin-labelled antibodies were then used as probes to assess, by flow cytometry, whether their binding (measured using fluorophore-conjugated streptavidin) was inhibited by preincubation of GP cells with homologous or heterologous unlabelled antibodies.

[0276] Production of purified GP. Expi (Invitrogen) cells were transfected with GP ΔMucΔTM-GCN4 HisSA and pCMV-Sport Furin (7:3 ratio) using 293Fection (Invitrogen) at a ratio of 2 mL 293Fectin: 1mg total DNA. 18-24 hours following transfection, 1/10th volume of AbBooster (ABI Scientific) was added and culture media collected 5 days later. Supernatant was filtered and protein purified as described previously (Côté et al., Nature. 477, 344-348, 2011).

[0277] Biolayer interferometry antibody cross-competition assay. Antibody cross competition was determined based on biolayer interferometry using a fortéBio Octet HTX instrument. EBOV GP Δ Muc protein was loaded onto HIS biosensors (AR2G, fortéBio) through amine coupling for 600 s. Biosensors were equilibrated for 120 s in 1% BSA in PBS (BSA-PBS) prior to capturing competitor mAbs. GP proteins were diluted to 10 μ g/mL; mAbs KZ52, EVB100, EVB114, 13C6, and IgG1 isotype control Ab were diluted to 35 μ g/mL in BSA-PBS. Binding of competitor mAbs was assessed for 300 s followed by a brief equilibration for 60 s prior to binding assessment of probing mAbs. Binding of probing mAbs was assessed for 300 s. Percent inhibition (PI) of probing mAbs binding to GP by competitor mAbs was carried out by an equation: PI =100 - [(probing mAb binding in the presence competitor mAb)/(probing mAb binding in the absence of competitor mAb)] \times 100. All the assays were performed in duplicate and with agitation set to 1,000 rpm at 30°C.

[0278] Animal study and safety. Research was conducted under an IACUC-approved protocol in compliance with the Animal Welfare Act, PHS Policy, and other Federal statutes and regulations relating to animals and experiments involving animals. The facilities where this research was conducted are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International and adhere to principles stated in the Guide for the Care and Use of Laboratory Animals, National Research Council, 2011. Animal study protocols were approved by both the Vaccine Research Center and United States Army Medical Research Institute of Infectious Diseases IACUCs. All animals were Vietnamese-origin rhesus macaques (*Macaca mulatta*), female, approximately 2-5 years of age and were obtained from Covance. Animals were randomly assigned to treatment groups based on sequential selection from a population inventory. Sample sizes of three animals per BSL4 EBOV challenge group provide 80% power to detect a difference in survival rates assuming 100% survival (3/3 treated survive) vs. 0% survival in negative controls at the 95% confidence level (1-tailed Fisher exact test). Prior to blood sampling or treatment, animals were anesthetized with ketamine or telazol.

[0279] Antibody administration. In the EVB100/EVB114 cocktail challenge, antibodies were mixed in PBS at 4 mg/mL of EVB100 and 46 mg/mL of EVB114 for a total antibody concentration of 50 mg/mL. In the second challenge, animals received 50 mg/mL of EVB114 in PBS. Antibodies were administered via intravenous injection in peripheral veins using ≤20 gauge butterfly needles over a period ≥ 15 minutes in a single bolus via syringe pump.

[0280] EBOV challenge. Animal studies conducted at USAMRIID were approved by the IACUC. Animals were transferred one week prior to challenge to the Bio-Safety Level-4 (BSL-4) facility for exposure to a lethal (1000 PFU) i.m. EBOV Kikwit variant challenge. Challenge studies included a single unvaccinated animal (control); the use of historical control (n>50) allows for one untreated control to be used in each challenge experiment. While at USAMRIID the monkeys were fed and checked daily. During the EBOV challenge study, blood was collected from the NHP for hematological, biochemical and virological analyses. Following the development of clinical signs, animals were checked multiple times daily. Institute scoring criteria were used to determine timing of humane euthanasia under anesthesia.

[0281] Detection of EBOV. RNA was isolated from plasma of EBOV-exposed NHP by real time qPCR as described previously (Malhotra et al., PLoS Negl. Trop. Dis. 7, e2171, 2013). EDTA plasma was added to TriReagent LS (Sigma), 1 part to 3 parts, in preparation for qRT-PCR. Inactivated samples were Extracted and eluted with AVE Buffer (QIAGEN, Valencia, CA) using a QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA). All samples were run on an Applied Biosystems 7500 Fast Dx Real-Time PCR instrument (Life Technologies, Grand Island, NY). Reactions were performed with Su-

perScript II One-Step RT-PCR System (Life Technologies, Grand Island, NY) with additional MgSO4 added to a final concentration of 3.0 mM. All samples were run in triplicate 5 μ L each. The average of the triplicates was multiplied by 200 to obtain genomes equivalents per mL, then multiplied by a dilution factor of 4 for the final reported value. The sequence of the primer and probes for the EBOV glycoprotein are described below. The genomic equivalents were determined using a synthetic RNA standard curve of known concentration. Forward primer: 5'- TTTTCAATCCTCAACCGTAAGGC (SEQ ID NO: 63) -3'; REVERSE PRIMER: 5'- CAGTCCGGTCCCAGAATGTG (SEQ ID NO: 64)-3'; PROBE: 6FAM - CATGTGCCGCCCCATCGCTGC (SEQ ID NO: 65) - TAMRA

EXAMPLE 2

10

Antibodies Specific to EBOV GP for Detecting EBOV in a Sample or a Subject

[0282] This example describes an exemplary use of EBOV monoclonal neutralizing antibodies specific to EBOV GP for the detection of EBOV in a sample or a subject. This example further describes the use of these antibodies to confirm the diagnosis of EBOV infection in a subject.

[0283] A biological sample, such as a blood sample, is obtained from the patient diagnosed with, undergoing screening for, or suspected of having, an EBOV infection. A blood sample can be taken from a patient who is not infected is used as a control, alternateively, a standard result can also be used as a control. An ELISA is performed to detect the presence of EBOV in the blood sample. Proteins present in the blood samples (the patient sample and control sample) are immobilized on a solid support, such as a 96-well plate, according to methods well known in the art (see, for example, Robinson et al., Lancet 362:1612-1616, 2003, incorporated herein by reference). Following immobilization, EBOV monoclonal neutralizing antibodies specific to EBOV GP that are directly labeled with a fluorescent marker are applied to the protein-immobilized plate. The plate is washed in an appropriate buffer, such as PBS, to remove any unbound antibody and to minimize non-specific binding of antibody. Fluorescence can be detected using a fluorometric plate reader according to standard methods. An increase in fluorescence intensity of the patient sample, relative to the control sample, indicates the EBOV GP antibody specifically bound proteins from the blood sample, thus detecting the presence of EBOV protein in the sample. Detection of EBOV protein in the patient sample indicates the patient has EBOV infection, or confirms diagnosis of EBOV in the subject.

EXAMPLE 3

30

35

40

50

55

EBOV monoclonal neutralizing antibodies specific for EBOV GP for the treatment of EBOV

[0284] This example describes a particular method that can be used to treat EBOV infection in a human subject by administration of one or more EBOV GP-specific neutralizing antibodies or antigen binding fragments. Although particular methods, dosages, and modes of administrations are provided, one skilled in the art will appreciate that variations can be made without substantially affecting the treatment.

Screening subjects

[0285] In particular examples, the subject is first screened to determine if they have an EBOV infection. Examples of methods that can be used to screen for EBOV infection include evaluating the patient for EBOV symptoms (e.g., hemorrhagic fever), determining prior exposure to EBOV infected subjects or EBOV materials (e.g., bodily fluids from an EBOV infected patient), and/or measuring the levels of one or more EBOV proteins or nucleic acid in a biological sample from the subject (e.g., assaying for EBOV sGP in a blood sample from the subject).

[0286] In some examples, EBOV testing consists of initial screening with an enzyme-linked immunosorbent assay (ELISA) to detect antibodies to an EBOV protein, such as to EBOV GP. Specimens with a reactive ELISA result are retested in duplicate. If the result of the duplicate test is reactive, the specimen is reported as repeatedly reactive and undergoes confirmatory testing with a more specific supplemental test (e.g., Western blot or an immunofluorescence assay (IFA)). Specimens that are repeatedly reactive by ELISA and positive by IFA or reactive by Western blot are considered EBOV-positive and indicative of EBOV infection. In additional examples, nucleic acid testing (e.g., viral RNA or proviral DNA amplification method) can also help diagnosis in certain situations.

[0287] The detection of EBOV protein in a subject's blood is indicative that the subject is infected with EBOV and is a candidate for receiving the therapeutic compositions disclosed herein. However, pre-screening is not required prior to administration of the therapeutic compositions disclosed herein.

Administration of therapeutic compositions

[0288] Following subject selection, a therapeutically effective amount of an EBOV GP-specific neutralizing mAb described herein (e.g., EVB114 or EVB100) or a combination of such mAbs is administered to the subject (such as an adult human either at risk for contracting EBOV or known to be infected with EBOV). Additional agents, such as antiviral agents, can also be administered to the subject simultaneously or prior to or following administration of the disclosed mAb. Typically the antibody is administered intravenously.

[0289] The amount of the antibody administered to prevent, reduce, inhibit, and/or treat EBOV or a condition associated with it depends on the subject being treated, the severity of the disorder, and the manner of administration of the therapeutic composition. Ideally, a therapeutically effective amount of an agent is the amount sufficient to prevent, reduce, and/or inhibit, and/or treat the condition (e.g., EBOV or EVD) in a subject without causing a substantial cytotoxic effect in the subject. An effective amount can be readily determined by one skilled in the art, for example using routine trials establishing dose response curves. As such, these compositions may be formulated with an inert diluent or with a pharmaceutically acceptable carrier.

[0290] In one specific example, a subject known to have an EBOV infection is administered 50 mg/kg of a disclosed antibody (or combination thereof) every day for 3 days following initial diagnosis of EBOV infection. In another example, the antibodies are administered continuously.

Assessment

20

10

15

25

30

[0291] Following the administration of one or more therapies, subjects with EBOV can be monitored for a reduction in EBOV levels (such as viral titer or the EBOV GP level in serum), or reductions in one or more clinical symptoms associated with EBOV infection. Subjects can be monitored using any method known in the art. For example, biological samples from the subject, including blood, can be obtained and alterations in EBOV levels evaluated.

Additional treatments

[0292] In particular examples, if subjects are stable or have a minor, mixed or partial response to treatment, they can be re-treated after re-evaluation with the same schedule and preparation of agents that they previously received for the desired amount of time, including the duration of a subject's lifetime. A partial response is a reduction, such as at least a 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 70% in EBOV infection (e.g., as measured by EBOV GP level or viral titer in serum), EBOV replication, or combination thereof.

[0293] It will be apparent that the precise details of the methods or compositions described may be varied or modified without departing from the spirit of the described embodiments. We claim all such modifications and variations that fall within the scope and spirit of the claims below.

40

35

45

50

SEQUENCE LISTING

5	<110>	Secret Sulliv Mulang Corti, Lanzav Graham Muyemb Trefry Ledger	ary, De an, Nar u, Sabu Davide ecchia, , Barne e-Tamfu	ne Antoni Y In, Jean Julie	t of	Heal								
15	<120>	NEUTRA	LIZING	ANTIBOD	IES '	го ен	BOLA	VIRU	JS GI	YCOE	PROTI	EIN 2	AND THEIR U	JSE
	<130>	4239-9	4058-03	3										
		62/087 2014-1												
20		62/080	•											
	<151>	2014-1	1-14											
	<160>	66												
25	<170>	Patent	In vers	sion 3.5	i									
30	<210> <211> <212> <213>	119	apiens											
	<400>	1												
35	Glu Va	l Gln L	eu Val 5	Glu Ser	Gly	Gly	Gly 10	Leu	Ile	Gln	Pro	Gly 15	Gly	
	Ser Le	u Arg L 2		Cys Ala	Ala	Ser 25	Gly	Phe	Ala	Leu	Arg 30	Met	Tyr	
40	Asp Me	t His T 35	rp Val	Arg Gln	Thr 40	Ile	Asp	Lys	Arg	Leu 45	Glu	Trp	Val	
45	Ser Ala		ly Pro	Ser Gly 55	Asp	Thr	Tyr	Tyr	Ala 60	Asp	Ser	Val	Lys	
50	Gly Arc	g Phe A	la Val	Ser Arg 70	Glu	Asn	Ala	Lys 75	Asn	Ser	Leu	Ser	Leu 80	
	Gln Me	t Asn S	er Leu 85	Thr Ala	Gly	Asp	Thr 90	Ala	Ile	Tyr	Tyr	Cys 95	Val	
55	Arg Se	_	rg Gly 00	Val Ala	Gly	Leu 105	Phe	Asp	Ser	Trp	Gly 110	Gln	Gly	

Ile Leu Val Thr Val Ser Ser

5	<210 <211 <212 <213	L> : 2> :	2 107 PRT homo	sapi	iens											
	<400)> :	2													
10	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
15	Asp	Arg	Ile	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ala	Phe	Asp 30	Asn	Tyr
20	Val	Ala	Trp 35	Tyr	Gln	Gln	Arg	Pro 40	Gly	Lys	Val	Pro	Lys 45	Leu	Leu	Ile
	Ser	Ala 50	Ala	Ser	Ala	Leu	His 55	Ala	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
25	Ser 65	Gly	Ser	Gly	Thr	His 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
30	Glu	Asp	Val	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Asn 90	Tyr	Asn	Ser	Ala	Pro 95	Leu
	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
35	<210 <211 <212 <213	L> : 2> 1	3 125 PRT homo	sapi	iens											
40	<400)> :	3													
			Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Asp
45	Thr	Leu	Ser	Leu 20	Thr	Cys	Thr	Val	Ser 25	Gly	Gly	Ser	Leu	Ser 30	Ser	Phe
50	Tyr	Trp	Ser 35	Trp	Ile	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Ile
55	Gly	Tyr 50	Ile	Tyr	Tyr	Ser	Gly 55	Ser	Pro	Asn	Tyr	Ser 60	Pro	Ser	Leu	Glu
	Ser	Arg	Val	Thr	Met	Ser	Val	Asp	Thr	Thr	Arg	Asn	Gln	Ile	Ser	Leu

	65	70		75	80
5	Lys Leu Asp Se	r Val Thr Al	la Ala Asp Thr . 90	Ala Val Tyr Tyr	Cys Val 95
10	Arg Ala Ser Ar 10		yr Trp Gly Ser 105	Tyr Arg Pro Thr 110	Ala Phe
70	Asp Ser Trp Gl 115	y Gln Gly Th	hr Leu Val Thr	Val Ser Ser 125	
15	<210> 4 <211> 105 <212> PRT <213> homo sa	piens			
20	<400> 4				
	Ser Tyr Glu Le 1	u Thr Gln Pi 5	ro Leu Ser Val 10	Ser Val Ser Pro	Gly Gln 15
25	Thr Ala Ile Ph 20	_	er Gly Asp Asn 1 25	Leu Gly Asp Lys 30	Tyr Val
30	Cys Trp Phe Gl 35	n Gln Arg Pı	ro Gly Gln Ser : 40	Pro Met Leu Leu 45	Ile Tyr
	Gln Asp Asn Ly 50	s Arg Pro Se 5!	_	Glu Arg Phe Ser 60	Gly Ser
35	Asn Ser Gly As 65	n Thr Ala Th 70		Ser Gly Thr Gln 75	Ser Thr 80
40	Asp Glu Ala As	p Tyr Tyr Cy 85	ys Gln Thr Trp . 90	Asp Ser Thr Val	Val Phe 95
	Gly Gly Gly Th	_	hr Val Leu 105		
45	<210> 5 <211> 123 <212> PRT <213> homo sa	piens			
50	<400> 5				
	Gln Val Gln Le 1	u Val Gln Se 5	er Gly Ala Glu 10	Val Lys Lys Pro	Gly Ser 15
55	Ser Val Lys Va		ys Thr Ser Gly 25	Gly Thr Leu Ser 30	Asn Tyr

	Ala	Ile	Ser 35	Trp	Val	Arg	GIn	A1a 40	Pro	СТĀ	GIn	СТĀ	Leu 45	GIu	Trp	Met
5	Gly	Gly 50	Thr	Ile	Pro	Thr	Leu 55	Gly	Met	Ser	Thr	Tyr 60	Ala	Pro	Asn	Phe
10	Gln 65	Gly	Arg	Val	Ala	Ile 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
15	Ala	Thr	Met	Gly 100	Ser	Ala	Asp	Thr	Ser 105	Phe	Tyr	Phe	туг	Met 110	Asp	Val
20	Trp	Gly	Lys 115	Gly	Thr	Thr	Val	Thr 120	Val	Ser	Ser					
25	<210 <211 <212 <213	> 1 > P	.08 PRT	sapi	Lens											
	<400	> 6	i													
30	Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
35	Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
40	Ile	Tyr 50	Gly	Thr	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
45	Gly 65	Ser	Ala	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80
50	Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Tyr	Ala	Tyr	Ser 95	Pro
	Phe	Thr	Phe	Gly 100	Pro	Gly	Thr	Lys	Val 105	Asp	Ile	Lys				
55	<210 <211		558													

	<213> homo sapiens	
5	<400> 7 gaggtgcagc tggtggagtc ttaattcagc cgggggggtc cctgagactc	60
	tectgtgcag cetetggatt egeceteaga atgtacgaea tgeactgggt eegteagaea	120
	atagataaac gtctcgagtg ggtctcagct gtgggtcctt ctggtgacac ctactatgca	180
10	gactccgtga agggccgatt cgccgtctcc agagagaatg ccaagaactc cttgtctctt	240
	cagatgaaca gcctgacagc cggggacacg gctatatact attgtgtaag gtctgaccga	300
	ggagtggctg gcctttttga cagctggggc cagggaatcc tggtcaccgt ctcttcag	358
15 20	<210> 8 <211> 322 <212> DNA <213> homo sapiens	
	<400> 8 gacatccaga tgacccagtc tccatcatcc ctgtctgcat ctgtgggaga cagaatcacc	60
	atcacttgcc gggcgagtca ggcctttgac aattatgtag cctggtatca acagagacca	120
25	gggaaggttc ctaagctcct gatctctgct gcatccgctt tgcacgcagg ggtcccatct	180
	cgcttcagcg gcagtggctc tgggacacat ttcactctca ccatcagcag cctgcagcct	240
	gaagatgttg caacttatta ctgtcaaaac tataacagtg ccccgctcac tttcggcgga	300
30	gggaccaagg tggagatcaa ac	322
35	<210> 9 <211> 376 <212> DNA <213> homo sapiens	
	<400> 9 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggatac cctgtccctc	60
40	acctgtactg tetetggtgg eteceteagt agtttetact ggagetggat eeggeageee	120
	ccagggaagg gactggagtg gattgggtat atctattaca gtgggagccc caactacagc	180
45	ccctccctcg agagtcgagt caccatgtca gtagacacga ccaggaacca gatctccctg	240
-	aagttggact ctgtgaccgc ggcggacacg gccgtgtatt actgtgtgag agcctcccga	300
	agttactatt gggggagtta tcgcccaacg gcttttgact cctggggcca gggaaccctg	360
50	gtcaccgtct cctcag	376
55	<210> 10 <211> 316 <212> DNA <213> homo sapiens	
	<400> 10	

	tcctatgagc	tgactcagcc	actctcagtg	tccgtgtccc	caggccagac	agccatcttc	60
	acctgctctg	gagataattt	gggggataag	tatgtttgct	ggtttcaaca	gaggccaggc	120
5	cagtccccta	tgctgctcat	ctatcaagac	aataagcggc	cctcggggat	ccctgagcga	180
	ttctctggct	ccaactctgg	gaacacagcc	actctgacta	tcagcgggac	ccagtctaca	240
	gatgaggctg	actattactg	tcagacgtgg	gacagcaccg	tggtgttcgg	cggagggacc	300
10	aaactgaccg	tcctgg					316
15	<210> 11 <211> 370 <212> DNA <213> homo	o sapiens					
	<400> 11 caggtccagc	tggtgcagtc	tggggctgag	gtgaagaagc	ctgggtcctc	ggtgaaagtc	60
20	tcctgcaaga	cttctggagg	caccctcagc	aactatgcta	tcagctgggt	gcgacaggcc	120
	cctggacaag	ggcttgagtg	gatgggaggc	accattccta	cccttggtat	gtccacctac	180
25	gcaccgaact	tccagggcag	agtcgcgatt	accgcggaca	aatccacgag	cacagcctac	240
25	atggagttga	gtagtctgag	gtctgacgac	acggccgttt	attattgtgc	gactatgggc	300
	agtgcggaca	ctagtttcta	cttctacatg	gacgtctggg	gcaaagggac	cacggtcacc	360
30	gtctcctcag						370
35	<210> 12 <211> 325 <212> DNA <213> homo	o sapiens					
	<400> 12 gaaattgtgt	tgacgcagtc	tccaggcacc	ctgtctttgt	ctccagggga	gagagccacc	60
40	ctctcctgca	gggccagtca	gagtgttagt	agcagctact	tagcctggta	ccagcagaaa	120
	cctggccagg	ctcccagact	cctcatctat	ggtacatcca	gcagggccac	tggcatccca	180
	gacaggttca	gtggcagtgc	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
45				cagtatgctt	actcaccatt	cactttcggc	300
	cctgggacca	cagtggatat	caaac				325
50	<210> 13 <211> 676 <212> PRT <213> Ebol	la virus					
F.F.	<400> 13						
55	Met Val Thi	Ser Gly I	le Leu Gln I	Leu Pro Arg	Glu Arg Phe	Arg Lys	

	Thr	Ser	Phe	Phe 20	Val	Trp	Val	IIe	11e 25	Leu	Phe	His	Lys	30	Phe	Pro
5	Ile	Pro	Leu 35	Gly	Val	Val	His	Asn 40	Asn	Thr	Leu	Gln	Val 45	Ser	Asp	Ile
10	Asp	Lys 50	Leu	Val	Cys	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Ser	Gln	Leu	Lys
	Ser 65	Val	Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
15	Thr	Ala	Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ala 90	Gly	Val	Pro	Pro	Lys 95	Val
20	Val	Asn	Tyr	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Cys	Tyr	Asn 110	Leu	Asp
25	Ile	Lys	Lys 115	Ala	Asp	Gly	Ser	Glu 120	Cys	Leu	Pro	Glu	Ala 125	Pro	Glu	Gly
	Val	Ar g 130	Gly	Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
30	Gly 145	Pro	Cys	Pro	Glu	Gly 150	Tyr	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
35	Leu	Tyr	Asp	Arg	Leu 165	Ala	Ser	Thr	Ile	Ile 170	Tyr	Arg	Ser	Thr	Thr 175	Phe
40	Ser	Glu	Gly	Val 180	Val	Ala	Phe	Leu	Ile 185	Leu	Pro	Glu	Thr	Lys 190	Lys	Asp
	Phe	Phe	Gln 195	Ser	Pro	Pro	Leu	His 200	Glu	Pro	Ala	Asn	Met 205	Thr	Thr	Asp
45	Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Val	Thr	Leu	Asn	Туг 220	Val	Ala	Asp	Asn
50	Phe 225	Gly	Thr	Asn	Met	Thr 230	Asn	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
	Tyr	Val	Gln	Leu	Glu 2 4 5	Pro	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	G1n 255	Leu
55	Asn	Glu	Thr	11e 260	Tyr	Thr	Asn	Gly	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Thr

	Leu	Ile	Trp 275	Lys	Val	Asn	Pro	Thr 280	Val	Asp	Thr	Gly	Val 285	Gly	Glu	Trp
5	Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Asn	Phe	Thr	Lys	Thr 300	Leu	Ser	Ser	Glu
10	Glu 305	Leu	Ser	Val	Ile	Phe 310	Val	Pro	Arg	Ala	Gln 315	Asp	Pro	Gly	Ser	As n 320
	Gln	Lys	Thr	Lys	Val 325	Thr	Pro	Thr	Ser	Phe 330	Ala	Asn	Asn	Gln	Thr 335	Ser
15	Lys	Asn	His	Glu 340	Asp	Leu	Val	Pro	Glu 3 4 5	Asp	Pro	Ala	Ser	Val 350	Val	Gln
20	Val	Arg	Asp 355	Leu	Gln	Arg	Glu	As n 360	Thr	Val	Pro	Thr	Pro 365	Pro	Pro	Asp
25	Thr	Val 370	Pro	Thr	Thr	Leu	Ile 375	Pro	Asp	Thr	Met	Glu 380	Glu	Gln	Thr	Thr
	Ser 385	His	Tyr	Glu	Pro	Pro 390	Asn	Ile	Ser	Arg	As n 395	His	Gln	Glu	Arg	Asn 400
30	Asn	Thr	Ala	His	Pro 405	Glu	Thr	Leu	Ala	Asn 410	Asn	Pro	Pro	Asp	Asn 415	Thr
35	Thr	Pro	Ser	Thr 420	Pro	Pro	Gln	Asp	Gly 425	Glu	Arg	Thr	Ser	Ser 430	His	Thr
40	Thr	Pro	Ser 435	Pro	_		Val			Ser	Thr	Ile	His 445	Pro	Thr	Thr
	Arg	Glu 450	Thr	His	Ile	Pro	Thr 455	Thr	Met	Thr	Thr	Ser 460	His	Asp	Thr	Asp
45	Ser 465	Asn	Arg	Pro	Asn	Pro 470	Ile	Asp	Ile	Ser	Glu 4 75	Ser	Thr	Glu	Pro	Gly 480
50	Pro	Leu	Thr	Asn	Thr 485	Thr	Arg	Gly	Ala	Ala 490	Asn	Leu	Leu	Thr	Gly 495	Ser
55	Arg	Arg	Thr	A rg 500	Arg	Glu	Ile	Thr	Leu 505	Arg	Thr	Gln	Ala	Lys 510	Cys	Asn
	Pro	Asn	Leu	His	Tyr	Trp	Thr	Thr	Gln	Asp	Glu	Gly	Ala	Ala	Ile	Gly

5	Leu	Ala 530	Trp	Ile	Pro	Tyr	Phe 535	Gly	Pro	Ala	Ala	Glu 540	Gly	Ile	Tyr	Thr
40	Glu 545	Gly	Ile	Met	His	A sn 550	Gln	Asn	Gly	Leu	Ile 555	Cys	Gly	Leu	Arg	Gln 560
10	Leu	Ala	Asn	Glu	Thr 565	Thr	Gln	Ala	Leu	Gln 570	Leu	Phe	Leu	Arg	Al a 575	Thr
15	Thr	Glu	Leu	Arg 580	Thr	Phe	Ser	Ile	Leu 585	Asn	Arg	Lys	Ala	Ile 590	Asp	Phe
20	Leu	Leu	Gln 595	Arg	Trp	Gly	Gly	Thr 600	Cys	His	Ile	Leu	Gly 605	Pro	Asp	Cys
	Cys	Ile 610	Glu	Pro	His	Asp	Trp 615	Thr	Lys	Asn	Ile	Thr 620	Asp	Lys	Ile	Asp
25	Gln 625	Ile	Ile	His	Asp	Phe 630	Ile	Asp	Lys	Pro	Leu 635	Pro	Asp	Gln	Thr	Asp 640
30	Asn	Asp	Asn	Trp	Trp 645	Thr	Gly	Trp	Arg	Gln 650	Trp	Val	Pro	Ala	Gly 655	Ile
	Gly	Ile	Thr	Gly 660	Val	Ile	Ile	Ala	Val 665	Ile	Ala	Leu	Leu	Cys 670	Ile	Cys
35	Lys	Phe	Leu 675	Leu												
40	<210 <211 <212 <213	L> (2> 1	14 676 PRT Ebola	a Vi:	cus											
45	<400)> :	14													
45	Met 1	Glu	Gly	Leu	Ser 5	Leu	Leu	Gln	Leu	Pro 10	Arg	Asp	Lys	Phe	Arg 15	Lys
50	Ser	Ser	Phe	Phe 20	Val	Trp	Val	Ile	Ile 25	Leu	Phe	Gln	Lys	Ala 30	Phe	Ser
55	Met	Pro	Leu 35	Gly	Val	Val	Thr	Asn 40	Ser	Thr	Leu	Glu	Val 45	Thr	Glu	Ile
	Asp	Gln	Leu	Val	Cys	Lys	Asp	His	Leu	Ala	Ser	Thr	Asp	Gln	Leu	Lys

5	Ser 65	Val	Gly	Leu	Asn	Le u 70	Glu	Gly	Ser	Gly	Val 75	Ser	Thr	Asp	Ile	Pro 80
10	Ser	Ala	Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ser 90	Gly	Val	Pro	Pro	Lys 95	Val
	Phe	Ser	Tyr	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Cys	Tyr	Asn 110	Leu	Glu
15	Ile	Lys	Lys 115	Pro	Asp	Gly	Ser	Glu 120	Cys	Leu	Pro	Pro	Pro 125	Pro	Asp	Gly
20	Val	Arg 130	Gly	Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Ala	Gln	Gly	Thr
	Gly 145	Pro	Cys	Pro	Gly	Asp 150	Tyr	Ala	Phe	His	Lys 155	Asp	Gly	Ala	Phe	Phe 160
25	Leu	Tyr	Asp	Arg	Leu 165	Ala	Ser	Thr	Val	Ile 170	Tyr	Arg	Gly	Val	As n 175	Phe
30	Ala	Glu	Gly	Val 180	Ile	Ala	Phe	Leu	Ile 185	Leu	Ala	Lys	Pro	Lys 190	Glu	Thr
35	Phe	Leu	Gln 195	Ser	Pro	Pro	Ile	Arg 200	Glu	Ala	Val	Asn	Tyr 205	Thr	Glu	Asn
	Thr	Ser 210	Ser	Tyr	Tyr	Ala	Thr 215	Ser	Tyr	Leu	Glu	Туг 220	Glu	Ile	Glu	Asn
40	Phe 225	Gly	Ala	Gln	His	Ser 230	Thr	Thr	Leu	Phe	Lys 235	Ile	Asn	Asn	Asn	Thr 240
45	Phe	Val	Leu	Leu	Asp 245	Arg	Pro	His	Thr	Pro 250	Gln	Phe	Leu	Phe	Gln 255	Leu
50	Asn	Asp	Thr	Ile 260	His	Leu	His	Gln	Gln 265	Leu	Ser	Asn	Thr	Thr 270	Gly	Lys
	Leu	Ile	Trp 275	Thr	Leu	Asp	Ala	As n 280	Ile	Asn	Ala	Asp	Ile 285	Gly	Glu	Trp
55	Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Asn	Leu	Ser	Glu	Gln 300	Leu	Arg	Gly	Glu

	Glu 305	Leu	Ser	Phe	Glu	Thr 310	Leu	Ser	Leu	Asn	Glu 315	Thr	Glu	Asp	Asp	Asp 320
5	Ala	Thr	Ser	Ser	Arg 325	Thr	Thr	Lys	Gly	Arg 330	Ile	Ser	Asp	Arg	Ala 335	Thr
10	Arg	Lys	Tyr	Ser 340	Asp	Leu	Val	Pro	Lys 345	Asp	Ser	Pro	Gly	Met 350	Val	Ser
	Leu	His	Val 355	Pro	Glu	Gly	Glu	Thr 360	Thr	Leu	Pro	Ser	Gln 365	Asn	Ser	Thr
15	Glu	Gly 370	Arg	Arg	Val	Asp	Val 375	Asn	Thr	Gln	Glu	Thr 380	Ile	Thr	Glu	Thr
20	Thr 385	Ala	Thr	Ile	Ile	Gly 390	Thr	Asn	Gly	Asn	As n 395	Met	Gln	Ile	Ser	Thr 400
25	Ile	Gly	Thr	Gly	Leu 405	Ser	Ser	Ser	Gln	Ile 410	Leu	Ser	Ser	Ser	Pro 415	Thr
	Met	Ala	Pro	Ser 420	Pro	Glu	Thr	Gln	Thr 425	Ser	Thr	Thr	Tyr	Thr 430	Pro	Lys
30	Leu	Pro	Val 435	Met	Thr	Thr	Glu	Glu 440	Ser	Thr	Thr	Pro	Pro 445	Arg	Asn	Ser
35	Pro	Gly 4 50	Ser	Thr	Thr	Glu	Ala 455	Pro	Thr	Leu	Thr	Thr 460	Pro	Glu	Asn	Ile
	Thr 465	Thr	Ala	Val	Lys	Thr 470	Val	Leu	Pro	Gln	Glu 475	Ser	Thr	Ser	Asn	Gly 480
40	Leu	Ile	Thr	Ser	Thr 485	Val	Thr	Gly	Ile	Leu 490	Gly	Ser	Leu	Gly	Leu 495	Arg
45	Lys	Arg	Ser	Arg 500	Arg	Gln	Val	Asn	Thr 505	Arg	Ala	Thr	Gly	Lys 510	Cys	Asn
50	Pro	Asn	Leu 515	His	Tyr	Trp	Thr	Ala 520	Gln	Glu	Gln	His	A sn 525	Ala	Ala	Gly
	Ile	Ala 530	Trp	Ile	Pro	Tyr	Phe 535	Gly	Pro	Gly	Ala	Glu 540	Gly	Ile	Tyr	Thr
55	Glu 545	Gly	Leu	Met	His	Asn 550	Gln	Asn	Ala	Leu	Val 555	Cys	Gly	Leu	Arg	Gln 560

	Leu	Ala	Asn	GIu	565	Thr	GIn	Ala	Leu	570	Leu	Phe	Leu	Arg	A1a 575	Thr
5	Thr	Glu	Leu	Ar g 580	Thr	Tyr	Thr	Ile	Leu 585	Asn	Arg	Lys	Ala	Ile 590	Asp	Phe
10	Leu	Leu	Ar g 595	Arg	Trp	Gly	Gly	Thr 600	Cys	Arg	Ile	Leu	Gly 605	Pro	Asp	Cys
	Cys	Ile 610	Glu	Pro	His	Asp	Trp 615	Thr	Lys	Asn	Ile	Thr 620	Asp	Lys	Ile	Asn
15	Gln 625	Ile	Ile	His	Asp	Phe 630	Ile	Asp	Asn	Pro	Le u 635	Pro	Asn	Gln	Asp	Asn 640
20	Asp	Asp	Asn	Trp	Trp 645	Thr	Gly	Trp	Arg	Gln 650	Trp	Ile	Pro	Ala	Gly 655	Ile
25	Gly	Ile	Thr	Gly 660	Ile	Ile	Ile	Ala	Ile 665	Ile	Ala	Leu	Leu	Cys 670	Val	Cys
	Lys	Leu	Le u 675	Cys												
30	<210 <211 <212 <213	L> 6 2> E	l5 576 PRT Ebola	ı Vil	rus											
35	<400)> 1	L 5													
	Met 1	Gly	Val	Thr	Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Asp	Arg	Phe	Lys 15	Lys
40	Thr	Ser	Phe	Phe 20	Leu	Trp	Val	Ile	Ile 25	Leu	Phe	Gln	Arg	Thr 30	Phe	Ser
45	Ile	Pro	Leu 35	Gly	Val	Ile	His	Asn 40	Ser	Thr	Leu	Gln	Val 45	Ser	Asp	Val
50	Asp	Lys 50	Leu	Val	Cys	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Asn	Gln	Leu	Arg
	Ser 65	Val	Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
55	Ser	Ala	Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ser 90	Gly	Val	Pro	Pro	Lys 95	Val

	Val	Asn	Tyr	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Cys	Tyr	Asn 110	Leu	Glu
5	Ile	Lys	Lys 115	Pro	Asp	Gly	Ser	Glu 120	Cys	Leu	Pro	Ala	Ala 125	Pro	Asp	Gly
10	Ile	Arg 130	Gly	Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
45	Gly 145	Pro	Суѕ	Ala	Gly	Asp 150	Phe	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
15	Leu	Tyr	Asp	Arg	Leu 165	Ala	Ser	Thr	Val	Ile 170	Tyr	Arg	Gly	Thr	Thr 175	Phe
20	Ala	Glu	Gly	Val 180	Val	Ala	Phe	Leu	Ile 185	Leu	Pro	Gln	Ala	Lys 190	Lys	Asp
25	Phe	Phe	Ser 195	Ser	His	Pro	Leu	Arg 200	Glu	Pro	Val	Asn	Ala 205	Thr	Glu	Asp
	Pro	Ser 210	Ser	Gly	Tyr	Tyr	Ser 215	Thr	Thr	Ile	Arg	Tyr 220	Gln	Ala	Thr	Gly
30	Phe 225	Gly	Thr	Asn	Glu	Thr 230	Glu	Tyr	Leu	Phe	Glu 235	Val	Asp	Asn	Leu	Thr 240
35	Tyr	Val	Gln	Leu	Glu 245	Ser	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Leu	Gln 255	Leu
40	Asn	Glu	Thr	Ile 260	Tyr	Thr	Ser	Gly	Lys 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Lys
	Leu	Ile	Trp 275	Lys	Val	Asn	Pro	Glu 280	Ile	Asp	Thr	Thr	Ile 285	Gly	Glu	Trp
45	Ala	Phe 290	Trp	Glu	Thr	Lys	Lys 295	Asn	Leu	Thr	Arg	Lys 300	Ile	Arg	Ser	Glu
50	Glu 305	Leu	Ser	Phe	Thr	Ala 310	Val	Ser	Asn	Arg	Ala 315	Lys	Asn	Ile	Ser	Gly 320
	Gln	Ser	Pro	Ala	Arg 325	Thr	Ser	Ser	Asp	Pro 330	Gly	Thr	Asn	Thr	Thr 335	Thr
55	Glu	Asp	His	Lys 340	Ile	Met	Ala	Ser	Glu 3 4 5	Asn	Ser	Ser	Ala	Met 350	Val	Gln

	Val	His	Ser 355	Gln	Gly	Arg	Glu	Ala 360	Ala	Val	Ser	His	Leu 365	Thr	Thr	Leu
5	Ala	Thr 370	Ile	Ser	Thr	Ser	Pro 375	Gln	Pro	Pro	Thr	Thr 380	Lys	Pro	Gly	Pro
10	Asp 385	Asn	Ser	Thr	His	Asn 390	Thr	Pro	Val	Tyr	Lys 395	Leu	Asp	Ile	Ser	Glu 400
15	Ala	Thr	Gln	Ala	Glu 405	Gln	His	His	Arg	Arg 410	Thr	Asp	Asn	Asp	Ser 415	Thr
13	Thr	Ser	Asp	Thr 420	Pro	Pro	Ala	Met	Thr 425	Ala	Ala	Gly	Pro	Pro 430	Lys	Ala
20	Glu	Asn	Thr 435	Asn	Thr	Ser	Lys	Gly 440	Thr	Asp	Leu	Pro	Asp 445	Pro	Ala	Thr
25	Thr	Thr 450	Ser	Pro	Gln	Asn	His 455	Ser	Glu	Thr	Ala	Gly 460	Asn	Asn	Asn	Thr
	His 465	His	Gln	Asp	Thr	Gly 470	Glu	Glu	Ser	Ala	Ser 475	Ser	Gly	Lys	Leu	Gly 480
30	Leu	Ile	Thr	Asn	Thr 485	Ile	Ala	Gly	Val	Ala 490	Gly	Leu	Ile	Thr	Gly 495	Gly
35	Arg	Arg	Thr	Arg 500	Arg	Glu	Ala	Ile	Val 505	Asn	Ala	Gln	Pro	Lys 510	Cys	Asn
40	Pro	Asn	Le u 515	His	Tyr	Trp	Thr	Thr 520	Gln	Asp	Glu	Gly	Ala 525	Ala	Ile	Gly
	Leu	Ala 530	Trp	Ile	Pro	Tyr	Phe 535	Gly	Pro	Ala	Ala	Glu 540	Gly	Ile	Tyr	Thr
45	Glu 545	Gly	Leu	Met	His	A sn 550	Gln	Asp	Gly	Leu	Ile 555	Cys	Gly	Leu	Arg	Gln 560
50	Leu	Ala	Asn	Glu	Thr 565	Thr	Gln	Ala	Leu	Gln 570	Leu	Phe	Leu	Arg	Ala 575	Thr
55	Thr	Glu	Leu	A rg 580	Thr	Phe	Ser	Ile	Leu 585	Asn	Arg	Lys	Ala	Ile 590	Asp	Phe
	Leu	Leu	Gln	Arg	Trp	Gly	Gly	Thr	Cys	His	Ile	Leu	Gly	Pro	Asp	Cys

			J J J					000					000			
5	Cys :	Ile 610	Glu	Pro	His	Asp	Trp 615	Thr	Lys	Asn	Ile	Thr 620	Asp	Lys	Ile	Asp
	Gln :	Ile	Ile	His	Asp	Phe 630	Val	Asp	Lys	Thr	Le u 635	Pro	Asp	Gln	Gly	Asp 640
10	Asn i	Asp	Asn	Trp	Trp 645	Thr	Gly	Trp	Arg	Gln 650	Trp	Ile	Pro	Ala	Gly 655	Ile
15	Gly '	Val	Thr	Gly 660	Val	Ile	Ile	Ala	Val 665	Ile	Ala	Leu	Phe	Cys 670	Ile	Cys
20	Lys 1	Phe	Val 675	Phe												
	<210: <211: <212:	> 6 > P	6 77 PRT													
25	<213: <400:		bola .6	vi:	rus											
30	Met (Gly	Ser	Gly	Tyr 5	Gln	Leu	Leu	Gln	Leu 10	Pro	Arg	Glu	Arg	Phe 15	Arg
	Lys '	Thr	Ser	Phe 20	Leu	Val	Trp	Val	Ile 25	Ile	Leu	Phe	Gln	Arg 30	Ala	Ile
35	Ser 1	Met	Pro 35	Leu	Gly	Ile	Val	Thr 40	Asn	Ser	Thr	Leu	Lys 45	Ala	Thr	Glu
40	Ile i	Asp 50	Gln	Leu	Val		Arg 55		Lys		Ser		Thr	Ser	Gln	Leu
	Lys : 65	Ser	Val	Gly	Leu	Asn 70	Leu	Glu	Gly	Asn	Gly 75	Ile	Ala	Thr	Asp	Val 80
45	Pro :	Ser	Ala	Thr	Lys 85	Arg	Trp	Gly	Phe	Arg 90	Ser	Gly	Val	Pro	Pro 95	Lys
50	Val '	Val	Ser	Tyr 100	Glu	Ala	Gly	Glu	Trp 105	Ala	Glu	Asn	Cys	Tyr 110	Asn	Leu
	Glu :	Ile	Lys 115	Lys	Ser	Asp	Gly	Ser 120	Glu	Cys	Leu	Pro	Leu 125	Pro	Pro	Asp
55	Gly '	Val	Arg	Gly	Phe	Pro	Arg	Cys	Arg	Tyr	Val	His	Lys	Val	Gln	Gly

5	Thr Gly	y Pro Cys	Pro Gl		Leu Al	la Phe	His 155	Lys	Asn	Gly	Ala	Phe 160
10	Phe Let	ı Tyr Asp	Arg Le	u Ala	Ser Th	hr Val 170	Ile	Tyr	Arg	Gly	Thr 175	Thr
	Phe Thi	Glu Gly 180		l Ala		eu Ile 85	Leu	Ser	Glu	Pro 190	Lys	Lys
15	His Phe	Trp Lys 195	Ala Th		Ala Hi 200	is Glu	Pro	Val	As n 205	Thr	Thr	Asp
20	Asp Ser 210	Thr Ser	Tyr Ty	r Met 215	Thr Le	eu Thr	Leu	Ser 220	Tyr	Glu	Met	Ser
25	Asn Phe 225	e Gly Gly	Lys Gl		Asn Th	hr Leu	Phe 235	Lys	Val	Asp	Asn	His 240
	Thr Tyi	r Val Gln	Leu Asy 245	p Arg	Pro Hi	is Thr 250	Pro	Gln	Phe	Leu	Val 255	Gln
30	Leu Asr	o Glu Thr 260		g Arg		sn Arg 65	Leu	Ser	Asn	Ser 270	Thr	Gly
35	Arg Let	Thr Trp 275	Thr Le		Pro Ly 280	ys Ile	Glu	Pro	Asp 285	Val	Gly	Glu
40	Trp Ala 290	a Phe Trp)	Glu Th	r Lys 295	Lys As	sn Phe	Ser	Gln 300	Gln	Leu	His	Gly
·	Glu Asr 305	n Leu His	Phe Gl:		Leu Se	er Thr	His 315	Thr	Asn	Asn	Ser	Ser 320
45	Asp Glr	n Ser Pro	Ala Gl 325	y Thr	Val G	ln Gly 330	Lys	Ile	Ser	Tyr	His 335	Pro
50	Pro Thi	Asn Asn 340		u Leu		ro Thr 45	Asp	Ser	Pro	Pro 350	Val	Val
55	Ser Val	Leu Thr 355	Ala Gl	-	Thr G] 360	lu Glu	Met	Ser	Thr 365	Gln	Gly	Leu
JJ	Thr Asr	n Gly Glu)	Thr Ile	e Thr 375	Gly Pł	he Thr	Ala	A sn 380	Pro	Met	Thr	Thr

	Thr 385	Ile	Ala	Pro	Ser	Pro 390	Thr	Met	Thr	Ser	Glu 395	Val	Asp	Asn	Asn	Val 400
5	Pro	Ser	Glu	Gln	Pro 405	Asn	Asn	Thr	Ala	Ser 410	Ile	Glu	Asp	Ser	Pro 415	Pro
10	Ser	Ala	Ser	Asn 420	Glu	Thr	Ile	Asp	His 425	Ser	Glu	Met	Asn	Pro 430	Ile	Gln
	Gly	Ser	Asn 435	Asn	Ser	Ala	Gln	Ser 440	Pro	Gln	Thr	Lys	Thr 445	Thr	Pro	Ala
15	Pro	Thr 450	Ala	Ser	Pro	Met	Thr 455	Gln	Asp	Pro	Gln	Glu 460	Thr	Ala	Asn	Ser
20	Ser 465	Lys	Leu	Gly	Thr	Ser 470	Pro	Gly	Ser	Ala	Ala 475	Glu	Pro	Ser	Gln	Pro 480
25	Gly	Phe	Thr	Ile	Asn 485	Thr	Val	Ser	Lys	Val 490	Ala	Asp	Ser	Leu	Ser 495	Pro
	Thr	Arg	Lys	Gln 500	Lys	Arg	Ser	Val	Arg 505	Gln	Asn	Thr	Ala	Asn 510	Lys	Cys
30	Asn	Pro	Asp 515	Leu	His	Tyr	Trp	Thr 520	Ala	Val	Asp	Glu	Gly 525	Ala	Ala	Val
35	Gly	Leu 530	Ala	Trp	Ile	Pro	Tyr 535	Phe	Gly	Pro	Ala	Ala 540	Glu	Gly	Ile	Tyr
	Ile 545	Glu	Gly	Val	Met	His 550	Asn	Gln	Asn	Gly	Leu 555	Ile	Cys	Gly	Leu	Arg 560
40	Gln	Leu	Ala	Asn	Glu 565	Thr	Thr	Gln	Ala	Le u 570	Gln	Leu	Phe	Leu	Ar g 575	Ala
45	Thr	Thr	Glu	Leu 580	Arg	Thr	Tyr	Ser	Leu 585	Leu	Asn	Arg	Lys	Ala 590	Ile	Asp
50	Phe	Leu	Leu 595	Gln	Arg	Trp	Gly	Gly 600	Thr	Cys	Arg	Ile	Leu 605	Gly	Pro	Ser
	Cys	Cys 610	Ile	Glu	Pro	His	Asp 615	Trp	Thr	Lys	Asn	Ile 620	Thr	Asp	Glu	Ile
55	Asn 625	Gln	Ile	Lys	His	Asp 630	Phe	Ile	Asp	Asn	Pro 635	Leu	Pro	Asp	His	Gly 640

	Asp As	p Leu	Asn	Leu 645	Trp	Thr	Gly	Trp	Arg 650	Gln	Trp	Ile	Pro	Ala 655	Gly
5	Ile Gl	y Ile	Ile 660	Gly	Val	Ile	Ile	Ala 665	Ile	Ile	Ala	Leu	Le u 670	Cys	Ile
10	Cys Ly	s Ile 675	Leu	Cys											
15	<210> <211> <212> <213>	17 676 PRT Ebol	a vi:	rus											
	<400>	17													
20	Met Gl 1	y Ala	Ser	Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
	Thr Se	r Phe	Phe 20	Val	Trp	Val	Ile	Ile 25	Leu	Phe	His	Lys	Val 30	Phe	Ser
25	Ile Pr	o Leu 35	Gly	Val	Val	His	Asn 40	Asn	Thr	Leu	Gln	Val 4 5	Ser	Asp	Ile
30	Asp Ly		Val	Cys	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Ser	Gln	Leu	Lys
35	Ser Va 65	l Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
	Thr Al	a Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ala 90	Gly	Val	Pro	Pro	Lys 95	Val
40	Val As	n Cys	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Cys	Tyr	As n 110	Leu	Ala
45	Ile Ly	s Lys 115	Val	Asp	Gly	Ser	Glu 120	Cys	Leu	Pro	Glu	Ala 125	Pro	Glu	Gly
50	Val Ar 13		Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
	Gly Pr 1 4 5	o Cys	Pro	Gly	Gly 150	Leu	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
55	Leu Ty	r Asp	Arg	Leu 165	Ala	Ser	Thr	Ile	Ile 170	Tyr	Arg	Gly	Thr	Thr 175	Phe

	Ala	Glu	Gly	Val 180	Ile	Ala	Phe	Leu	Ile 185	Leu	Pro	Lys	Ala	Ar g 190	Lys	Asp
5	Phe	Phe	Gln 195	Ser	Pro	Pro	Leu	His 200	Glu	Pro	Ala	Asn	Met 205	Thr	Thr	Asp
10	Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Thr	Thr	Ile	Asn	Tyr 220	Val	Val	Asp	Asn
	Phe 225	Gly	Thr	Asn	Thr	Thr 230	Glu	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
15	Tyr	Val	Gln	Leu	Glu 245	Ala	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	Leu 255	Leu
20	Asn	Glu	Thr	Ile 260	Tyr	Ser	Asp	Asn	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Lys
25	Leu	Ile	Trp 275	Lys	Ile	Asn	Pro	Thr 280	Val	Asp	Thr	Ser	Met 285	Gly	Glu	Trp
	Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Asn	Phe	Thr	Lys	Thr 300	Leu	Ser	Ser	Glu
30	Glu 305	Leu	Ser	Phe	Val	Pro 310	Val	Pro	Glu	Thr	Gln 315	Asn	Gln	Val	Leu	Asp 320
35	Thr	Thr	Ala	Thr	Val 325	Ser	Pro	Pro	Ile	Ser 330	Ala	His	Asn	His	Ala 335	Ala
40	Glu	Asp	His	Lys 340	Glu	Leu	Val	Ser	Glu 3 4 5	Asp	Ser	Thr	Pro	Val 350	Val	Gln
40	Met	Gln	Asn 355	Ile	Lys	Gly	Lys	Asp 360	Thr	Met	Pro	Thr	Thr 365	Val	Thr	Gly
45	Val	Pro 370	Thr	Thr	Thr	Pro	Ser 375	Pro	Phe	Pro	Ile	A sn 380	Ala	Arg	Asn	Thr
50	Asp 385	His	Thr	Lys	Ser	Phe 390	Ile	Gly	Leu	Glu	Gly 395	Pro	Gln	Glu	Asp	His 400
	Ser	Thr	Thr	Gln	Pro 405	Ala	Lys	Thr	Thr	Ser 410	Gln	Pro	Thr	Asn	Ser 415	Thr
55	Glu	Ser	Thr	Thr 420	Leu	Asn	Pro	Thr	Ser 425	Glu	Pro	Ser	Ser	Arg 430	Gly	Thr

	СТĀ	Pro	Ser 435	Ser	Pro	Thr	Val	440	Asn	Thr	Thr	GIu	Ser 445	His	Ala	GLu
5	Leu	Gly 450	Lys	Thr	Thr	Pro	Thr 455	Thr	Leu	Pro	Glu	Gln 460	His	Thr	Ala	Ala
10	Ser 465	Ala	Ile	Pro	Arg	Ala 4 70	Val	His	Pro	Asp	Glu 475	Leu	Ser	Gly	Pro	Gly 480
45	Phe	Leu	Thr	Asn	Thr 485	Ile	Arg	Gly	Val	Thr 490	Asn	Leu	Leu	Thr	Gly 495	Ser
15	Arg	Arg	Lys	A rg 500	Arg	Asp	Val	Thr	Pro 505	Asn	Thr	Gln	Pro	Lys 510	Cys	Asn
20	Pro	Asn	Leu 515	His	Tyr	Trp	Thr	Ala 520	Leu	Asp	Glu	Gly	Ala 525	Ala	Ile	Gly
25	Leu	Ala 530	Trp	Ile	Pro	Tyr	Phe 535	Gly	Pro	Ala	Ala	Glu 5 4 0	Gly	Ile	Tyr	Thr
	Glu 545	Gly	Ile	Met	Glu	A sn 550	Gln	Asn	Gly	Leu	Ile 555	Cys	Gly	Leu	Arg	Gln 560
30	Leu	Ala	Asn	Glu	Thr 565	Thr	Gln	Ala	Leu	Gln 570	Leu	Phe	Leu	Arg	Ala 575	Thr
35	Thr	Glu	Leu	A rg 580	Thr	Phe	Ser	Ile	Leu 585	Asn	Arg	Lys	Ala	Ile 590	Asp	Phe
40	Leu	Leu	Gln 595	Arg	Trp	Gly	Gly	Thr 600	Cys	His	Ile	Leu	Gly 605	Pro	Asp	Cys
	Cys	Ile 610	Glu	Pro	Gln	Asp	Trp 615	Thr	Lys	Asn	Ile	Thr 620	Asp	Lys	Ile	Asp
45	Gln 625	Ile	Ile	His	Asp	Phe 630	Val	Asp	Asn	Asn	Leu 635	Pro	Asn	Gln	Asn	Asp 640
50	Gly	Ser	Asn	Trp	Trp 645	Thr	Gly	Trp	Lys	Gln 650	Trp	Val	Pro	Ala	Gly 655	Ile
55	Gly	Ile	Thr	Gly 660	Val	Ile	Ile	Ala	Ile 665	Ile	Ala	Leu	Leu	Cys 670	Ile	Cys
	Lys	Phe	Met	Leu												

5	<210 <211 <212 <213	L> 2> :	18 364 PRT Ebola	a vi i	rus											
	<400)>	18													
10	Met 1	Gly	Val	Thr	Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Asp	Arg	Phe	Lys 15	Arg
15	Thr	Ser	Phe	Phe 20	Leu	Trp	Val	Ile	Ile 25	Leu	Phe	Gln	Arg	Thr 30	Phe	Ser
	Ile	Pro	Leu 35	Gly	Val	Ile	His	Asn 40	Ser	Thr	Leu	Gln	Val 45	Ser	Asp	Val
20	Asp	Lys 50	Leu	Val	Cys	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Asn	Gln	Leu	Arg
25	Ser 65	Val	Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
30	Ser	Ala	Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ser 90	Gly	Val	Pro	Pro	Lys 95	Val
	Val	Asn	Tyr	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Cys	Tyr	Asn 110	Leu	Glu
35	Ile	Lys	Lys 115	Pro	Asp	Gly	Ser	Glu 120	Cys	Leu	Pro	Ala	Ala 125	Pro	Asp	Gly
40	Ile	A rg 130	Gly	Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
	Gly 145	Pro	Cys	Ala	Gly	A sp 150	Phe	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
45	Leu	Tyr	Asp	Arg	Leu 165	Ala	Ser	Thr	Val	Ile 170	Tyr	Arg	Gly	Thr	Thr 175	Phe
50	Ala	Glu	Gly	Val 180	Val	Ala	Phe	Leu	Ile 185	Leu	Pro	Gln	Ala	Lys 190	Lys	Asp
55	Phe	Phe	Ser 195	Ser	His	Pro	Leu	Arg 200	Glu	Pro	Val	Asn	Ala 205	Thr	Glu	Asp
	Pro	Ser	Ser	Gly	Tyr	Tyr	Ser	Thr	Thr	Ile	Arg	Tyr	Gln	Ala	Thr	Gly

5	Phe 225	Gly	Thr	Asn	Gl u	Thr 230	Glu	Tyr	Leu	Phe	Glu 235	Val	Asp	Asn	Leu	Thr 240
	Tyr	Val	Gln	Leu	Glu 245	Ser	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Leu	Gln 255	Leu
10	Asn	Glu	Thr	Ile 260	Tyr	Thr	Ser	Gly	Lys 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Lys
15	Leu	Ile	Trp 275	Lys	Val	Asn	Pro	Glu 280	Ile	Asp	Thr	Thr	Ile 285	Gly	Glu	Trp
20	Ala	Phe 290	Trp	Glu	Thr	Lys	Lys 295	Thr	Ser	Leu	Glu	Lys 300	Phe	Ala	Val	Lys
	Ser 305	Cys	Leu	Ser	Gln	Leu 310	Tyr	Gln	Thr	Glu	Pro 315	Lys	Thr	Ser	Val	Val 320
25	Arg	Val	Arg	Arg	G1u 325	Leu	Leu	Pro	Thr	Gln 330	Gly	Pro	Thr	Gln	Gln 335	Leu
30	Lys	Thr	Thr	Lys 3 4 0	Ser	Trp	Leu	Gln	Lys 3 4 5	Ile	Pro	Leu	Gln	Trp 350	Phe	Lys
	Cys	Thr	Val 355	Lys	Glu	Gly	Lys	Leu 360	Gln	Cys	Arg	Ile				
35	<210 <210 <210 <210	1> : 2> :	19 128 PRT	sapi	iens											
40	<400	0> :	19													
	Asp 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Gly
45	Ser	Leu	Lys	Leu 20	Ala	Cys	Val	Val	Ser 25	Gly	Phe	Arg	Phe	Ser 30	Asp	Tyr
50	Trp	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Le u 4 5	Glu	Trp	Val
55	Ala	Asn 50	Ile	Lys	Gln	Asp	Gly 55	Ser	Gly	Lys	Tyr	Tyr 60	Val	Asp	Ser	Val
	Lys	Gly	Arg	Phe	Thr	Val	Ser	Arg	Asp	Asn	Ala	Lys	Asn	Ser	Leu	Tyr

	65				70					75					80	
5	Leu Hi	ls Met	Thr	Ser 85	Leu	Gly	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Phe 95	Cys	
	Ala Aı	g Ala	A la 100	Pro	Thr	Gly	Ser	Туг 105	Thr	Asn	Ile	Leu	Val 110	Asp	Asn	
10	Val Hi	s Phe 115		Tyr	Trp	Gly	Gln 120	Gly	Ile	Leu	Val	Ala 125	Val	Ser	Ser	
15	<210><211><211><212><213>	20 107 PRT homo	sapi	iens												
	<400>	20														
20	Gly II	le Gln	Leu	Thr 5	Gln	Ser	Pro	Gly	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
25	Asp Se	er Val	Thr 20	Ile	Thr	Cys	Arg	Pro 25	Asn	Gln	Asn	Ile	Ala 30	Thr	Tyr	
30	Ile As	n Trp 35	Tyr	Gln	Gln	Thr	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
•	Tyr Al		Ser	Ile	Leu	Gl n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
35	Al a G]	ly Ser	Gly	Thr	His 70	Phe	Thr	Leu	Ile	Ile 75	Ser	Thr	Leu	Gln	Pro 80	
40	Glu As	sp Ser	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Tyr	Ser	Thr	Pro 95	Trp	
	Thr Pl	ne Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys						
45	<210> <211> <212> <213>	DNA	sapi	iens												
50	<400> gatgte	21	t.aat r	ıgan ı	ic to	aaaa,	ann	: ata	at cr	agg	caar	aaaa	rte d	eet as	aactc	60
	gcctgt															120
55	ccagg															180
00	gtggad															240

	ctacac	catga	ccago	cctgg	g ag	geega	aggac	acç	ggccg	tat	actt	ctgo	egc (gagaç	gcago	ec 3	300
	cccac	ggct	cctac	cacta	a ta	atcct	tagto	gad	caacg	tcc	actt	cgac	cta (ctggg	gcca	ag 3	360
5	ggaato	ectgg	tegeo	egtet	c ct	cag										3	385
10	<210> <211> <212> <213>		sapi	iens													
	<400> ggcato	22 ccagc	tgaco	ccagt	c to	ccag	getec	: cto	gtetg	cat	ctgt	agga	aga (cagto	gtcac	ec	60
15	atcact	tgcc	ggcca	aaatc	a ga	acat	tegeo	aco	ctata	taa	atto	gtat	ca ·	gcaga	acaco	ca 1	120
	gggaaa	gccc	ctaaç	gctcc	t ga	atcta	atgco	gca	atcca	ttt	tgca	ıgagt	gg (ggtc	ccato	ca 1	180
	aggtto	agtg	geget	ggat	c to	ggga	cacat	tto	cacto	tca	tcat	cagt	ac	cctad	caaco	et 2	240
20	gaggat	tctg	caact	tact	a ct	gcca	aacaç	g agt	taca	gta	ccc	gtgg	jac :	attc	gcca	aa 3	300
	gggac	caaag	tggaa	aatca	a ac	2										3	322
25	<210> <211> <212> <213>	113 PRT	sapi	iens													
30	<400>	23															
	Ala Va 1	ıl Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Thr		
35	Thr Va	al Lys	Ile 20	Ser	Cys	Lys	Val	Ser 25	Gly	Tyr	Thr	Phe	Ile 30	Gln	Glu		
40	Tyr I	le His 35	Trp	Val	Gln	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Val	Trp	Met		
	Gly Le		Asp	Pro	Glu	Asn 55	Asn	Glu	Thr	Leu	Tyr 60	Ser	Glu	Asp	Phe		
45	Gln Gl 65	ly Arg	Val	Thr	Met 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Asp	Thr	Ala	Tyr 80		
50	Leu G	lu Le u	Arg		Leu	Thr	Phe	Ala	Asp 90	Thr	Ala	Val	Tyr	Phe 95	Cys		
				85					90					93			
55	Thr Se	er Arg	Lys 100		Trp	Trp	Gly	Gln 105		Thr	Leu	Val	Thr 110	Val	Ala		

74

Ser

	<210 <211 <212 <213	L> ?>	24 111 PRT homo	sapi	iens													
5	<400)>	24															
	Glu 1	Leu	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly		
10																		
	Glu	Ser	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Leu	Ser 30	Ser	Asp		
15	Ser	Val	Ser 35	Trp	Phe	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Val		
20	Ile	His 50	Gly	Thr	Ser	Lys	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser		
25	Gly 65	Gly	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ala	Arg	Leu	Glu 80		
	Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Arg	Ser	Gly	Tyr	Gly 95	Met		
30	Ser	Val	Thr	Trp 100	Thr	Phe	Gly	Gln	Gly 105	Thr	Thr	Val	Glu	Ile 110	Lys			
35	<210 <211 <212 <213	L> ?>	25 340 DNA homo	sapi	iens													
	<400		25	L 4	.													
40																aaatc		60
	tect	gca	aag 1	tttct	ggat	a ca	acctt	catt	caa	agaat	aca	taca	actgo	gt (gcaac	eaggcc	-	120
	cct	ggaa	aag	ggctt	gtgt	g ga	atggg	gactt	ggt	gaco	cctg	aaaa	ataat	ga q	gacto	tatat	:	180
45	tcag	jagg	att 1	tccaa	aggca	ag ag	gtcad	ccato	g acc	gcgg	gaca	cato	ectca	aga d	cacaç	gcctat	2	240
	ctg	jaac	tgc (gcago	cctga	ac at	ttg	cagao	acq	gccc	gtct	attt	ctgt	ac a	atcac	gaaag	:	300
50	tect	ggt	ggg	gccaç	gggaa	ac co	etggt	caco	gto	egeet	cag						:	340
55	<210 <211 <212 <213	L> 2>	26 334 DNA homo	sapi	iens													
	<400)>	26															

	gaacttgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagcgccacc	60
	ctctcctgta gggccagtca gagtcttagc agcgactctg tatcttggtt ccagcagaaa	120
5	cctggccagg ctcccaggct cgtcatccat ggtacatcaa agagggccac tggcatccca	180
	gacaggttca gtggcggtgg gtctgggaca gacttcactc tcaccatcgc cagactggag	240
	cctgaggatt ttgcagtcta ttattgtcag cggtctgggt atggtatgtc agtcacgtgg	300
10	acgttcggcc aagggaccac ggtggagatc aaac	334
15	<210> 27 <211> 334 <212> DNA <213> homo sapiens	
	<400> 27 gaacttgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagcgccacc	60
20	ctctcctgta gggccagtca gagtcttagc agcgactctg tatcttggtt ccagcagaaa	120
	cctggccagg ctcccaggct cgtcatccat ggtacatcaa agagggccac tggcatccca	180
25	gacaggttca gtggcggtgg gtctgggaca gacttcactc tcaccatcgc cagactggag	240
	cctgaggatt ttgcagtcta ttattgtcag cggtctgggt atggtatgtc agtcacgtgg	300
	acgtttggcc aagggaccac ggtggagatc aaac	334
30	<210> 28 <211> 119 <212> PRT <213> homo sapiens	
35	<400> 28	
	Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Ile Gln Pro Gly Gly 1 5 10 15	
40	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ala Leu Arg Ser Tyr 20 25 30	
45	Asp Met His Trp Val Arg Gln Thr Ile Asp Lys Arg Leu Glu Trp Val 35 40 45	
50	Ser Ala Val Gly Pro Ser Gly Asp Thr Tyr Tyr Ala Asp Ser Val Lys 50 55 60	
	Gly Arg Phe Ala Val Ser Arg Glu Asn Ala Lys Asn Ser Leu Ser Leu 65 70 75 80	
55	Gln Met Asn Ser Leu Thr Ala Gly Asp Thr Ala Ile Tyr Tyr Cys Val 85 90 95	

	Arg	Ser	Asp	Arg 100	Gly	Val	Ala	Gly	Leu 105	Phe	Asp	Ser	Trp	Gly 110	Gln	Gly	
5	Ile	Leu	Val 115	Thr	Val	Ser	Ser										
10	<210 <210 <210 <210	1> 2> : 3> :	29 106 PRT homo	sapi	iens												
	<400	U> :	29														
15	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
20	Asp	Arg	Ile	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ala	Phe	Ser 30	Asn	Tyr	
	Val	Ala	Trp 35	Tyr	Gln	Gln	Arg	Pro 40	Gly	Lys	Val	Pro	Lys 45	Leu	Leu	Ile	
25	Ser	Ala 50	Ala	Ser	Ala	Leu	His 55	Ala	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
30	Ser 65	Gly	Ser	Gly	Thr	His 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Val	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Asn 90	Tyr	Asn	Ser	Ala	Pro 95	Leu	
35	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile							
40	<210 <210 <210 <210	1> 2> :	30 357 DNA homo	sapi	iens												
	<40	-	30														
45																egtetg	60
	_								_			_		_		cagact	120
50																atgca	180
50	_		_								_					agcctg	240
																gataga	300
55	ggg	gtcg	cag (gacto	gtttq	ga tt	cato	ggggt	caç	gggta	attc	tggt	caco	egt (gtctt	ca	357
	<21	0>	31														

	<212> [318 ONA nomo sa	apiens					
5		31 32 tas	act cacac	agattaataa	ct ct ccccat	aaat aaaaaa	aggt att agt	60
					ctgtccgcat			
	attactto	gta gag	gcttctca	ggctttttct	aactacgtgg	cttggtatca	gcagaggccc	120
10	ggcaaggt	cc cta	aactgct	gatctccgcc	gcttctgcac	tgcatgctgg	agtgccaagc	180
	cggttctc	ctg gaa	agtggatc	agggactcac	ttcaccctga	caatttccag	cctgcagccc	240
	gaggatgt	cg caa	acctacta	ttgccagaac	tacaacagtg	ctcccctgac	attcggtggt	300
15	ggaacaaa	agg tcg	gagatc					318
		32						
	<211> 8	RT						
20	<213> h	nomo sa	apiens					
	<400> 3	32						
	Gly Phe	Ala Le	eu Arg Me	t Tyr Asp				
25	1		5					
		33						
		7 PRT						
30	<213> h		apiens					
	<400> 3	33						
	Val Gly	Pro Se	er Gly As	p Thr				
35	1		5					
	<210> 3	34						
		13						
		PRT						
40	<213> ł	nomo sa	apiens					
	<400> 3	34						
	Val Arg 1	Ser As	sp Arg Gl 5	y Val Ala (Gly Leu Phe 10	Asp Ser		
45	-		J		10			
	<210> 3	35						
	<211>							
		PRT	niona					
50	<213> h	nomo sa	zhreng					
	<400> 3	35						
	Gln Ala	Phe As	sp Asn Ty 5	r				
55	_		5					
	~210× 3	26						
	2710N 3	•						

	<211> <212>	PRT					
	<213>	homo	sapiens				
5	<400>	36					
	Ala Al 1	a Ser					
10	<210>	37					
	<211>						
	<212>						
	<213>	homo	sapiens				
15	<400>	37					
	Gln As	n Tyr	Asn Ser	Ala	Pro	Leu	Thr
	1		5				
20	<210> <211>						
	<211>						
			sapiens				
25	<400>	38					
	Gly Ph	e Ala	Leu Arg	Ser	Tyr	Asp	
	1		5		-	•	
30	<210>	39					
	<211>						
	<212>						
	\213 /	1101110	sapiens				
35	<400>	39					
	Gln Al	a Phe	Ser Asn	Tyr			
	1		5	_			
	<210>	40					
40	<211>						
	<212>	PRT					
	<213>	homo	sapiens				
45	<400>	40					
		y Ser	Leu Ser	Ser	Phe	Tyr	
	1		5				
	<210>	41					
50	<211>						
	<212>		anniar-				
	<213>	TOMO	sapiens				
	<400>	41					
55	Ile Ty	r Tyr	Ser Gly	Ser	Pro		
	1		5				

```
<210> 42
             <211> 19
             <212> PRT
             <213> homo sapiens
5
             <400> 42
             Val Arg Ala Ser Arg Ser Tyr Tyr Trp Gly Ser Tyr Arg Pro Thr Ala
10
            Phe Asp Ser
15
            <210> 43
             <211> 6
            <212> PRT
<213> homo sapiens
            <400> 43
20
            Asn Leu Gly Asp Lys Tyr
            <210> 44
             <211> 3
             <212> PRT
             <213> homo sapiens
            <400> 44
30
             Gln Asp Asn
            <210> 45
<211> 8
<212> PRT
<213> homo sapiens
35
             <400> 45
40
             Gln Thr Trp Asp Ser Thr Val Val
                          5
45
             <210> 46
            <211> 8
<212> PRT
<213> homo sapiens
50
             <400> 46
             Gly Phe Arg Phe Ser Asp Tyr Trp
55
             <210> 47
             <211> 8
```

```
<212> PRT
               <213> homo sapiens
               <400> 47
5
               Ile Lys Gln Asp Gly Ser Gly Lys
               <210> 48
               <211> 21
<212> PRT
<213> homo sapiens
10
               <400> 48
15
               Ala Arg Ala Ala Pro Thr Gly Ser Tyr Thr Asn Ile Leu Val Asp Asn
                                  5
               Val His Phe Asp Tyr
                             20
20
               <210> 49
               <211> 6
<212> PRT
<213> homo sapiens
25
               <400> 49
               Gln Asn Ile Ala Thr Tyr
30
               <210> 50
<211> 9
<212> PRT
<213> homo sapiens
35
               <400> 50
               Gln Gln Ser Tyr Ser Thr Pro Trp Thr
40
               <210> 51
               <211> 8
               <212> PRT
45
               <213> homo sapiens
               <400> 51
               Gly Gly Thr Leu Ser Asn Tyr Ala
                                  5
50
               <210> 52
               <211> 8
<212> PRT
<213> homo sapiens
55
               <400> 52
```

```
Thr Ile Pro Thr Leu Gly Met Ser
               <210> 53
<211> 16
<212> PRT
<213> homo sapiens
5
               <400> 53
10
               Ala Thr Met Gly Ser Ala Asp Thr Ser Phe Tyr Phe Tyr Met Asp Val
              <210> 54
<211> 7
<212> PRT
<213> homo sapiens
15
               <400> 54
20
               Gln Ser Val Ser Ser Ser Tyr
               1 5
              <210> 55
<211> 3
<212> PRT
<213> homo sapiens
               <400> 55
30
               Gly Thr Ser
               <210> 56 <211> 9
35
               <212> PRT
               <213> homo sapiens
               <400> 56
40
               Gln Gln Tyr Ala Tyr Ser Pro Phe Thr
              <210> 57
<211> 8
<212> PRT
<213> homo sapiens
               <400> 57
50
               Gly Tyr Thr Phe Ile Gln Glu Tyr
               1 5
               <210> 58
               <211> 8
<212> PRT
```

```
<213> homo sapiens
            <400> 58
            Gly Asp Pro Glu Asn Asn Glu Thr
5
            <210> 59
            <211> 6
10
            <212> PRT
<213> homo sapiens
            <400> 59
            Thr Ser Arg Lys Ser Trp
15
            <210> 60
            <211> 7
20
            <212> PRT
            <213> homo sapiens
            <400> 60
            Gln Ser Leu Ser Ser Asp Ser
               5
            <210> 61
            <211> 12
30
            <212> PRT
            <213> homo sapiens
            <400> 61
            Gln Arg Ser Gly Tyr Gly Met Ser Val Thr Trp Thr
35
            <210> 62
            <211> 108
40
            <212> PRT
            <213> homo sapiens
            <400> 62
            Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
45
            Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
                                            25
50
            Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
55
            Ile Tyr Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
```

	Gly Sea	r Ala	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80	
5	Pro Gli	ı Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Tyr	Ala	Tyr	Ser 95	Pro	
10	Phe Th	r Phe	Gly 100	Pro	Gly	Thr	Thr	Val 105	Asp	Ile	Lys					
	<210> <211>	63 23														
		DNA														
15	<213>		ficia	al se	equei	nce										
	<220>															
	<223>	DNA p	orime	er												
20	<400>	63														
	ttttcaa	atcc t	caac	ccgta	aa g	gc										23
	<210>	64														
25	<211>															
		DNA														
	<213>	Artif	ilCla	al se	equei	nce										
	<220>															
30	<223>	DNA p	orıme	er												
	<400>	64		+	- ~											20
	Cagcec	gg.c c	caya	aacgi	- y											20
35	<210>	65														
	<211>	21														
	<212>	DNA														
	<213>	Artif	ficia	al se	equei	nce										
40	<220>															
	<223>	_	orime	er												
	<400>	65														
	catgtg	ccgc c	ccat	cgct	tg c											21
45																
	<210>	66														
	<211>	58														
	<212>			. 1												
50	<213>	Artif	LICI	al Se	eque	ice										
	<220>	W- 34 6	22.2	ml 3	1	.	ar.									
	<223>	Modif	iled	EDO.	ıa V:	ırus	GP									
	<400>	66														
55	Met Lys	s Gln	Ile		Asp	Lys	Ile	Glu		Ile	Leu	Ser	Lys	Ile 15	Tyr	
	1			5					10					T 🗘		

His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu Val 20 25 30

Ala Ser Ser Ser Ile Glu Gly Arg Gly Ser His His His His His 35

Ser Ala Trp Ser His Pro Gln Phe Glu Lys 50 55

Claims

5

10

25

30

45

50

- An isolated monoclonal antibody or antigen-binding fragment thereof, comprising:

 a heavy chain variable region (VH) comprising an amino acid sequence at least 80% identical to the sequence set forth as SEQ ID NO: 1 and a heavy chain complementarity determining region (HCDR)1, a HCDR2, and a HCDR3 comprising amino acids 26-33, 51-57, and 96-108 of SEQ ID NO: 1, respectively; and a light chain variable region (VL) comprising an amino acid sequence at least 80% identical to the sequence set forth as SEQ ID NO: 2 and a light chain complementarity determining region (LCDR)1, a LCDR2, and a LCDR3 comprising amino acids 27-32, 50-52, and 89-97 of SEQ ID NO: 2, respectively, wherein the monoclonal antibody or antigen binding fragment specifically binds to Ebola virus glycoprotein (GP) and neutralizes Ebola virus, and wherein the antibody or antigen binding fragment binds to the same epitope on Ebola virus GP as antibody EVB114 comprising the VH sequence of SEQ ID NO: 1 and the VL sequence of SEQ ID NO: 2.
 - 2. The antibody or antigen-binding fragment of claim 1, wherein: the VH comprises an amino acid sequence at least 90% identical to the sequence set forth as SEQ ID NO: 1 and the VL comprises an amino acid sequence at least 90% identical to the sequence set forth as SEQ ID NO: 2; the VH comprises an amino acid sequence at least 95% identical to the sequence set forth as SEQ ID NO: 1 and the VL comprises an amino acid sequence at least 95% identical to the sequence set forth as SEQ ID NO: 2; the VH comprises the amino acid sequence set forth as SEQ ID NO: 1 and the VL comprises the amino acid sequence set forth as SEQ ID NO: 2; or the VH consists of the amino acid sequence set forth as SEQ ID NO: 2.
- **3.** The antibody or antigen-binding fragment of claim 1 or claim 2, comprising a human framework region and/or a human constant region.
 - 4. The antibody or antigen-binding fragment of any one of claims 1-3, wherein the antibody is an IgG, IgM or IgA.
- 5. The antibody or antigen-binding fragment of any one of claims 1-4, wherein the antibody is an IgG1 and comprises a human constant region.
 - **6.** The antibody or antigen-binding fragment of any one of claims 1-5, wherein the antibody is a human IgG1 and comprises a recombinant constant region comprising M428L and N434S mutations to increase binding to the neonatal Fc receptor.
 - 7. The antibody or antigen-binding fragment of any one of claims 1-6, wherein the antigen binding fragment is a Fv, Fab, F(ab')2, scFv or scFv2 fragment.
 - 8. The antibody or antigen binding fragment of any one of claims 1-7, wherein the Ebola virus is Zaire Ebola virus.
 - **9.** The antibody or antigen binding fragment of any one of claims 1-8, linked to an effector molecule or a detectable marker.
 - 10. A bispecific antibody, comprising the antibody or antigen-binding fragment of any one of claims 1-9.
 - **11.** An isolated nucleic acid molecule or expression vector encoding the antibody or antigen binding fragment of any one of claims 1-9.

- **12.** The nucleic acid molecule of claim 11, comprising the nucleic acid sequences set forth as SEQ ID NOs: 7 and 8, or degenerate variants thereof.
- **13.** A pharmaceutical composition for use in treating or inhibiting an Ebola virus infection, comprising: a therapeutically effective amount of the antibody, antigen binding fragment, bispecific antibody, nucleic acid molecule, or expression vector of any one of claims 1-12; and a pharmaceutically acceptable carrier.
- **14.** A method of detecting an Ebola virus or Ebola virus Zaire infection in a subject, comprising: contacting a biological sample from the subject with the antibody or antigen binding fragment of any one of claims 1-9 under conditions sufficient to form an immune complex; and detecting the presence of the immune complex, wherein the presence of the immune complex indicates that the subject has the Ebola virus infection.
- **15.** A therapeutically effective amount of an antibody, antigen binding fragment, bispecific antibody, nucleic acid molecule, expression vector or pharmaceutical composition according to any one of claims 1 to 13 for use in the prevention or treatment of an Ebola virus or Ebola virus Zaire infection in a subject.
- **16.** A method of producing an antibody or antigen binding fragment that specifically binds to Ebola virus GP, comprising: expressing first and second nucleic acid molecules encoding the VH and the VL, respectively, of the antibody or antigen binding fragment of any one of claims 1-9 in a host cell, or expressing a nucleic acid molecule encoding the VH and the VL of the antibody or antigen binding fragment of any one of claims 1-9 in the host cell; and purifying the antibody or antigen binding fragment; thereby producing the antibody or antigen binding fragment.

FIG. 1A

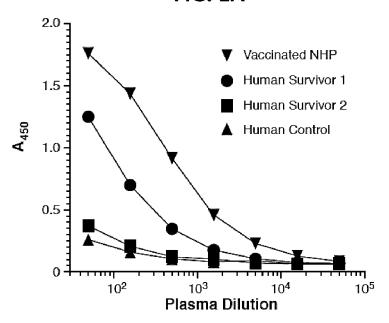


FIG. 1B

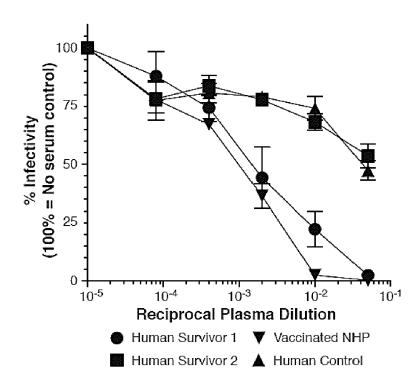
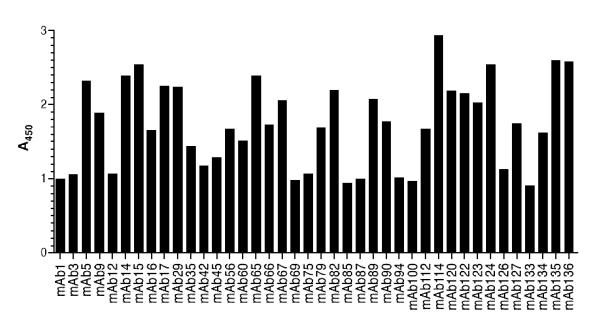



FIG. 1C

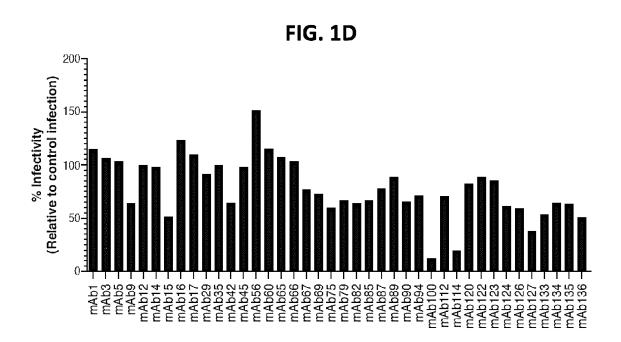
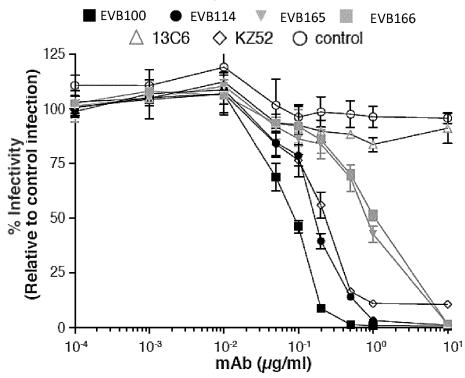
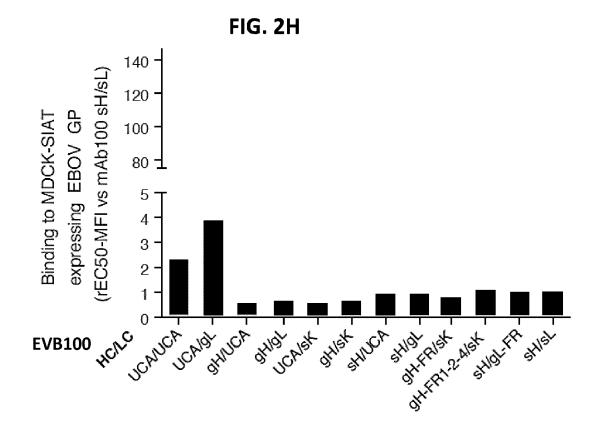
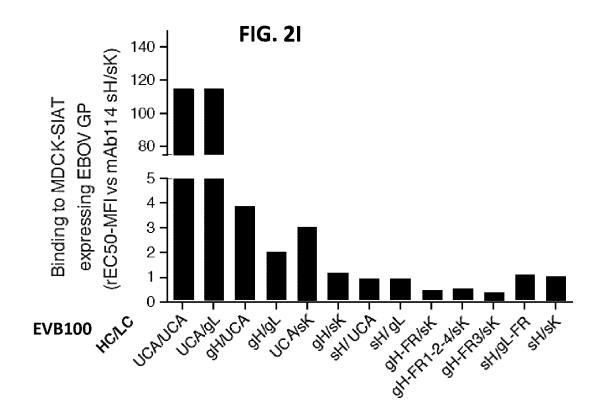


FIG. 2A

FIG. 2B


FIG. 2C

	VH	Identity %	D	JH	٧L	Identity %	JL	HCDR3 length	lgG subclass
EVB100	V4-59*01	94.74%	D3-16*02	J4*02	VL3-1*01	92.11%	J2*01	19	lgG3
EVB114	V3-13*01	87.37%	D6-19*01	J4*02	VK1-27*01	92.83%	J4*01	13	IgG1
EVB165	V3-7*01	89.93%	D2-2*02	J4*02	VK1-39*01	89.96%	J1*01	21	IgG1
EVB166	V1-69*04	92.01%	D3-22*01	J6*03	VK3-20*01	97,16%	J3*01	16	laG3

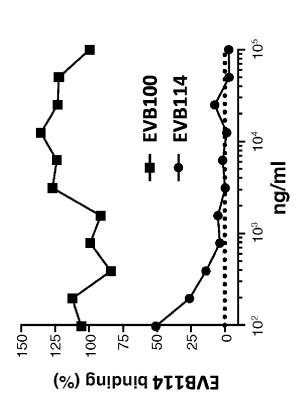

FIG. 2D EVB100 VHUCA QVQLQESGPGLVKPSETLSLTCTVSGGSTSSYYWSWIRQPPGKGLEWIGYLYYSGSTNYNPSLKSRVTIS 7	gH-FR	gH-FR1-24	VDTSKNQFSLKLSSVTAADTAVYYCARASRSYVWGSYRPTAFDYWGOGTLVTVSS	EVB100 VLUCA SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGOSPVLVIYQDSKRPSGIPERFSGSNSGNTA 7 gL	EVB100VLUCA TLTISGTQAMDEADYYCQAWDSTVVFGGGTKLTVL 105 gl
EVB100 VH UCA	gH-FR	gH-FR1-24 sH	EVB100 VH UCA gH gH-FR gH-FR1-2-4	SH EVB100 VL UCA gL -FR SL SH	EVB100 VL UCA gL gL-FR
FIG. 2D				FIG. 2E	

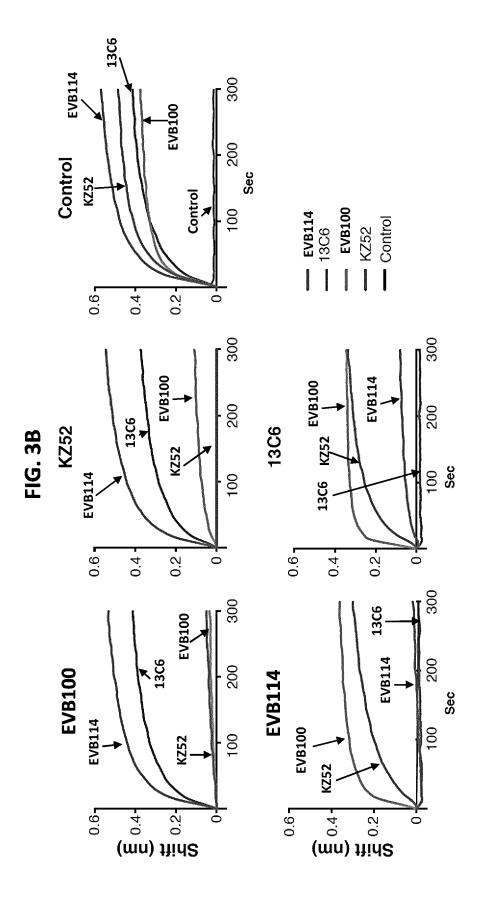
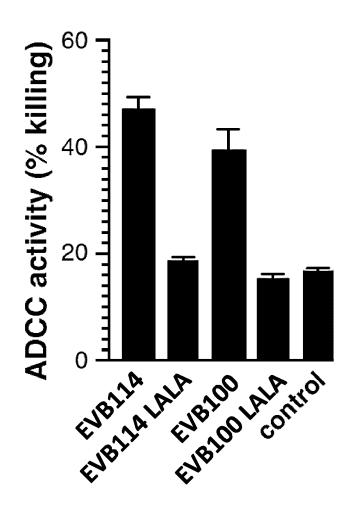
FIG. 2F	FIG. 2F EVB114 VH UCA EVOLV
	gH-FR
	SH
	g g
	gH-FR3 gH-FR1-2-4
	Hs
FIG. 2G	FIG. 2G EVB114 VK UCA DI QMT
	gL-FR
	¥s
	EVB114 VK UCA FTLT I
	g 1g
	gL-FR
	⅓

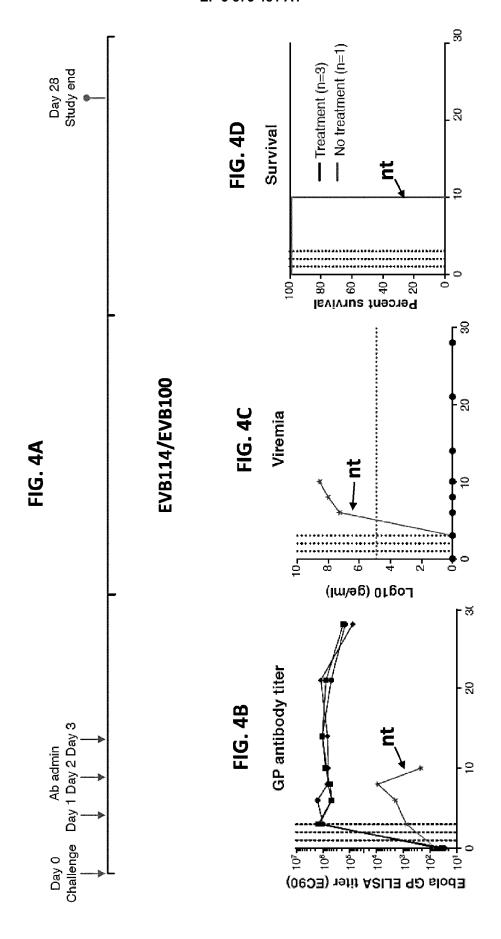
1507

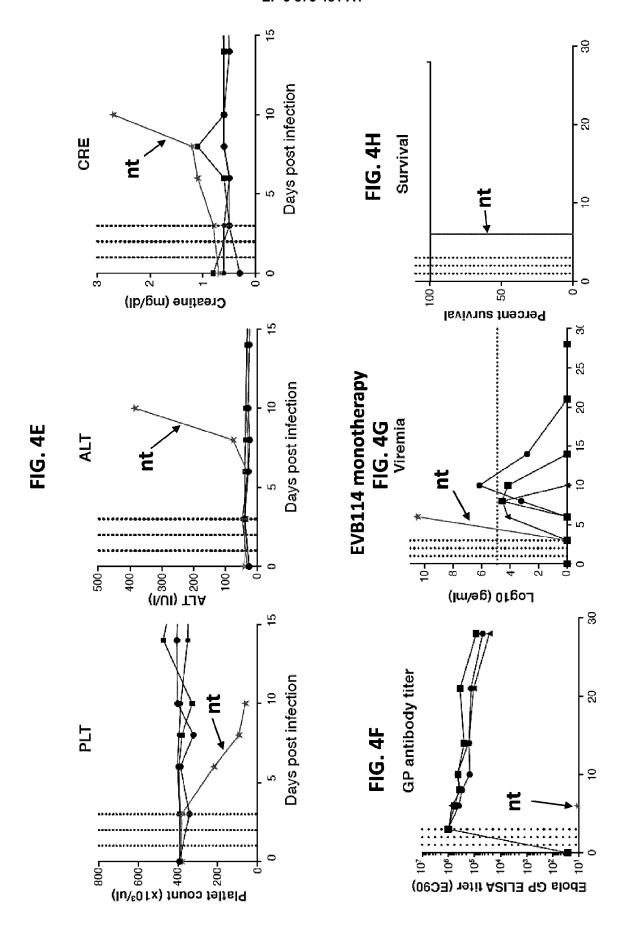
125-

1001

EVB100 binding (%)


FIG. 3C


Analyte

EVB114	Control
-6.1%	NB
-4.4%	NB
84.4%	NB
97.4%	NB
-10.8%	NB
	-6.1% -4.4% 84.4% 97.4%

FIG. 3D

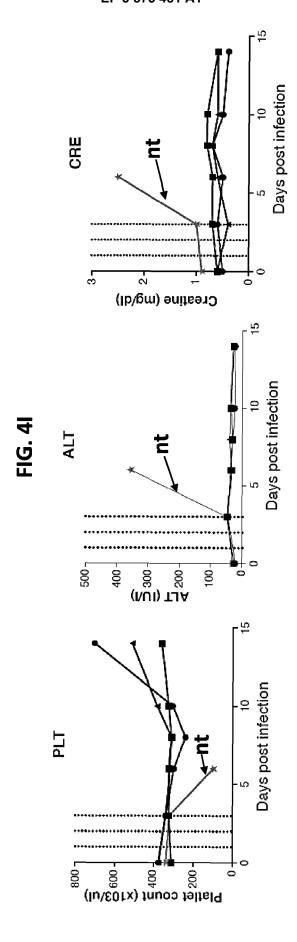
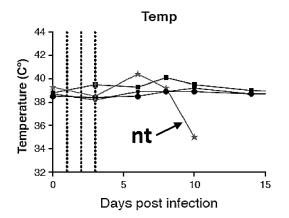


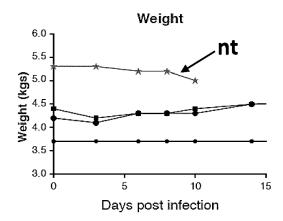
FIG. 5

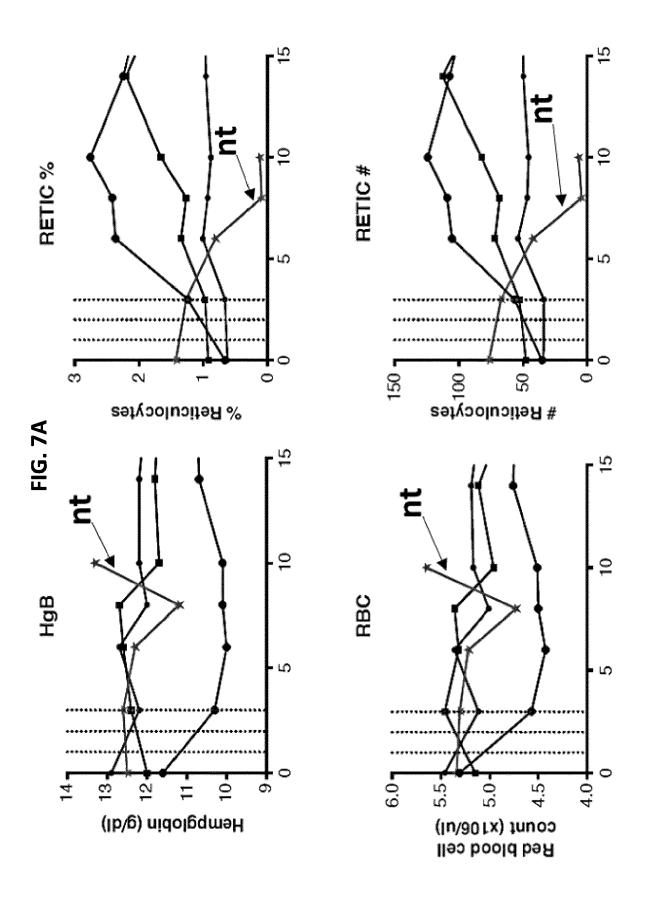
Makona C05

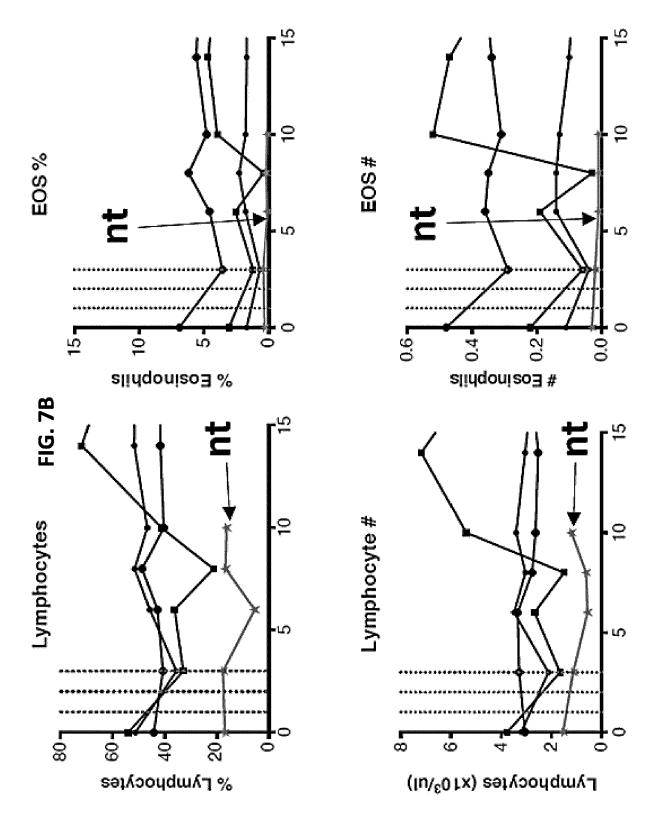
EVB100

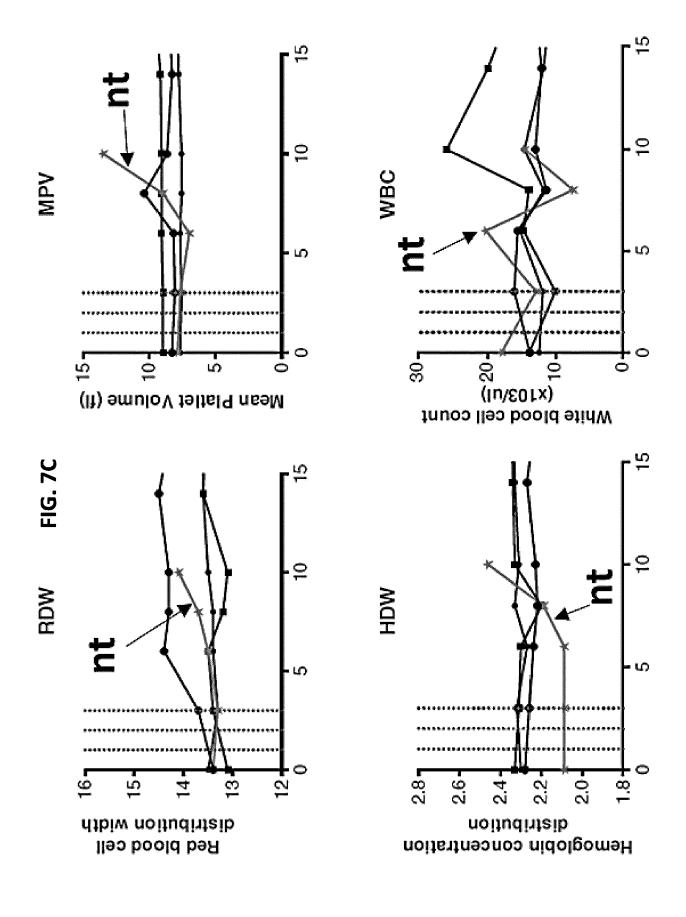
EVB114

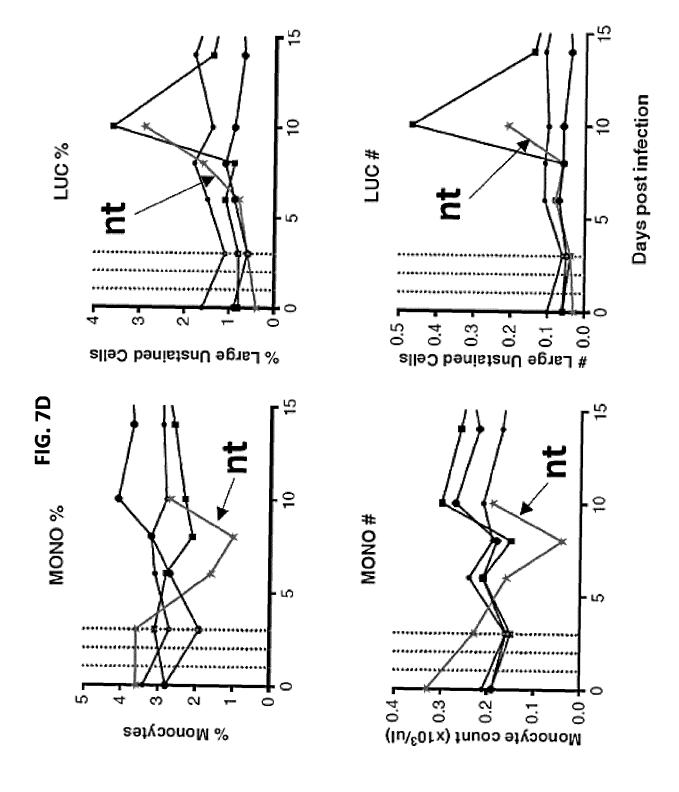

EVB165

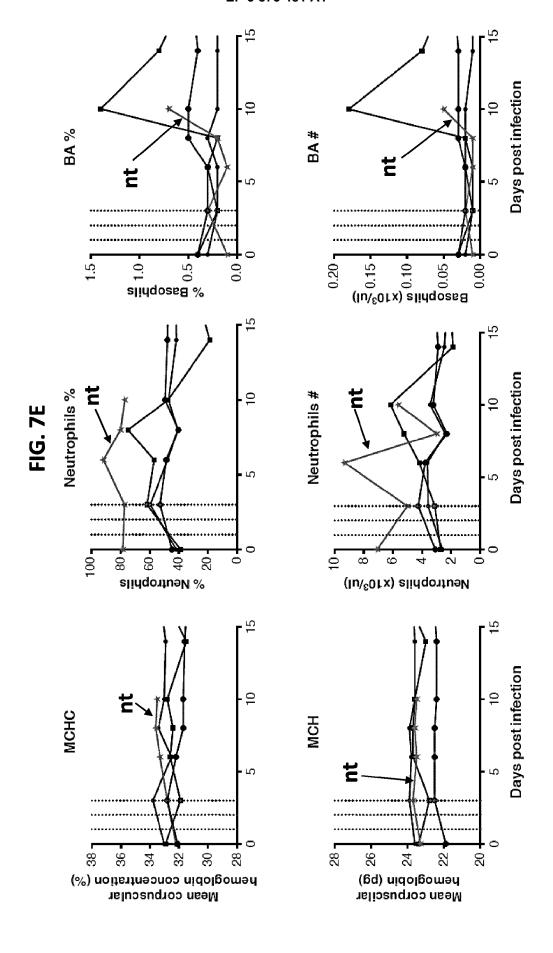

EVB166

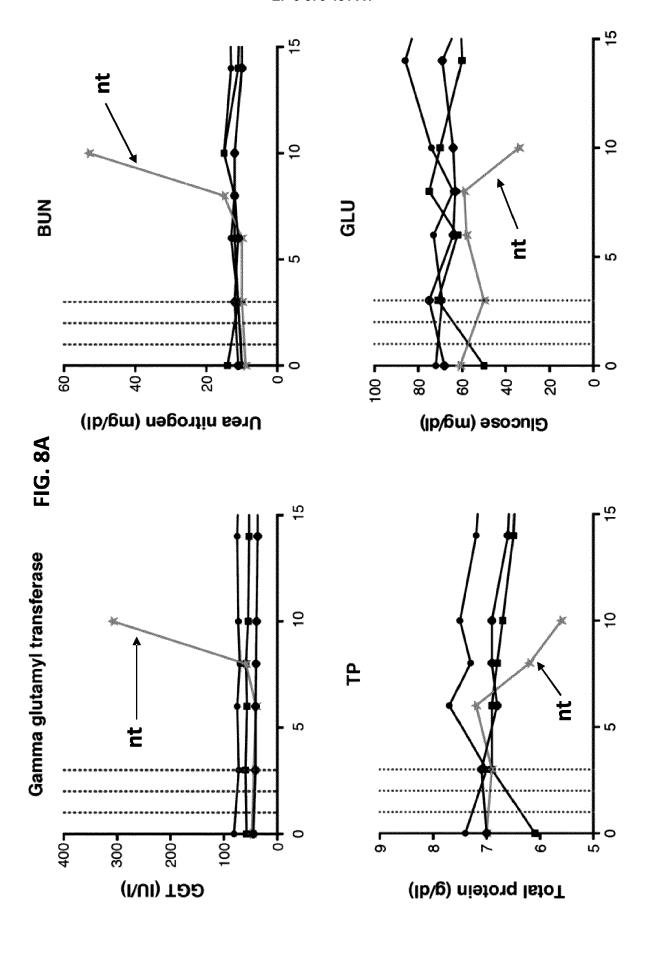
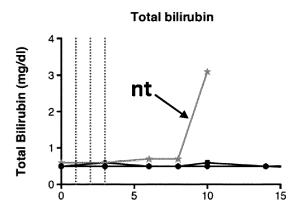
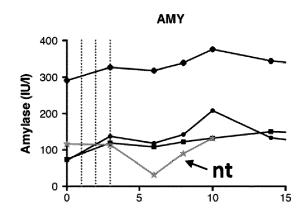
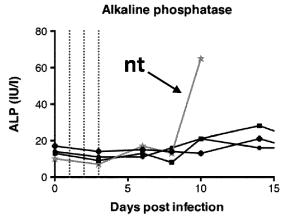
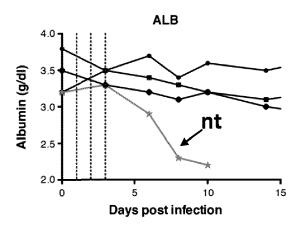

Control

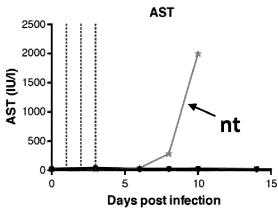

MAb (µg/ml)

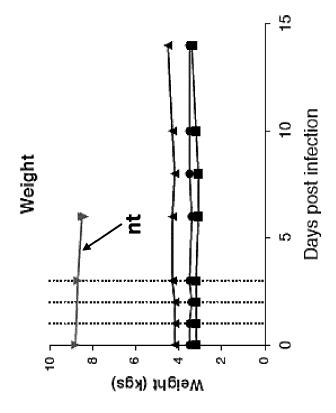

FIG. 6

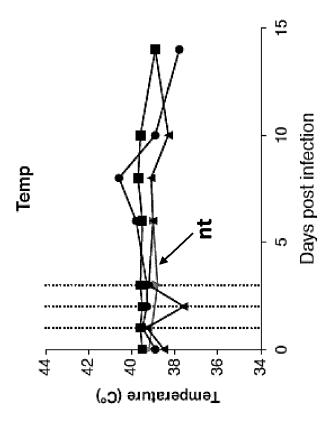


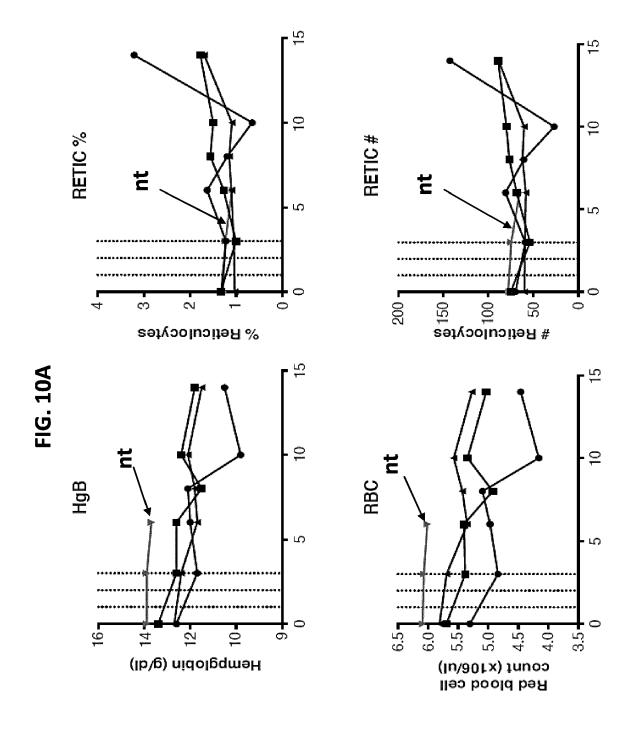


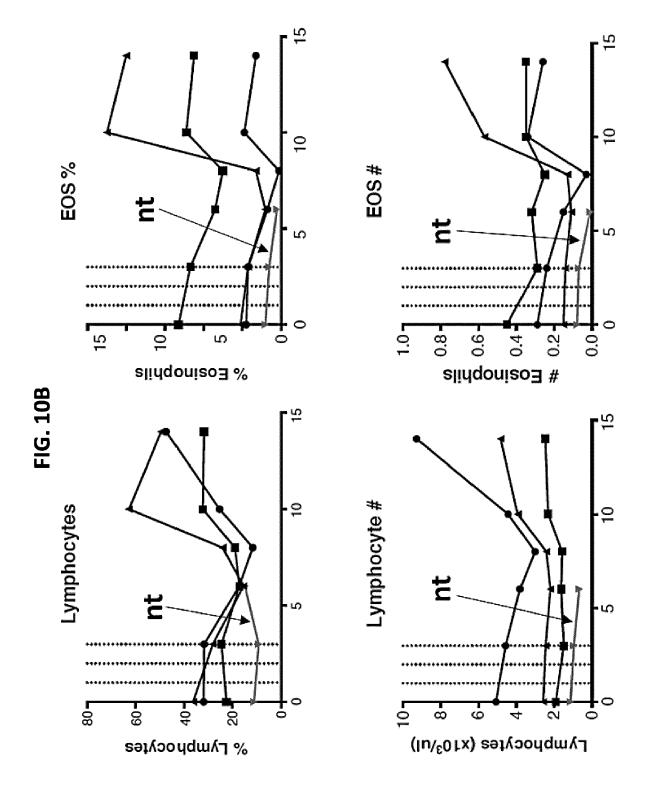






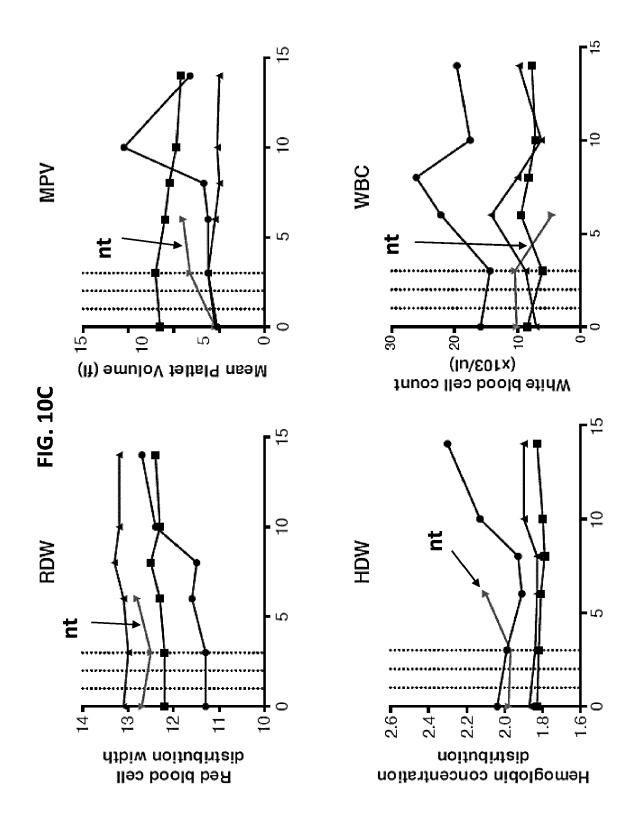

FIG. 8B

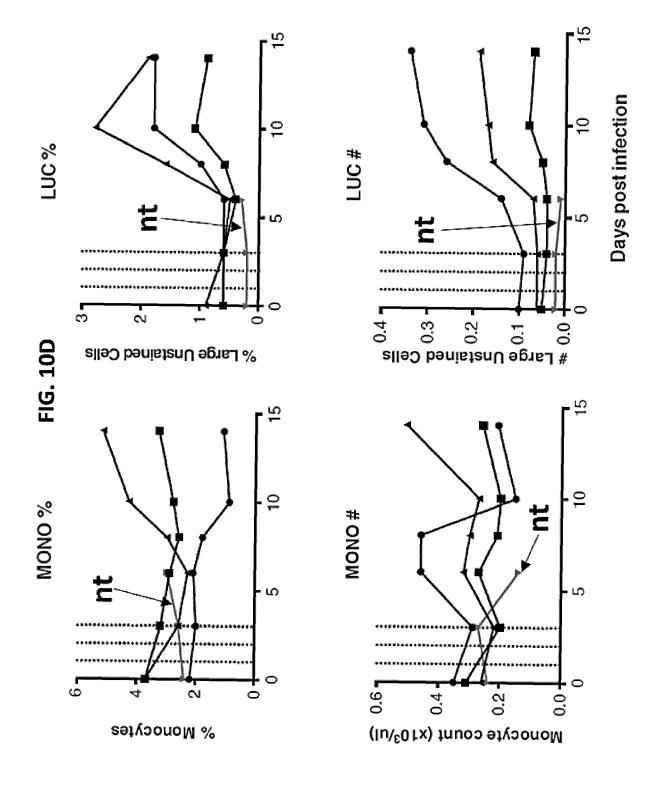


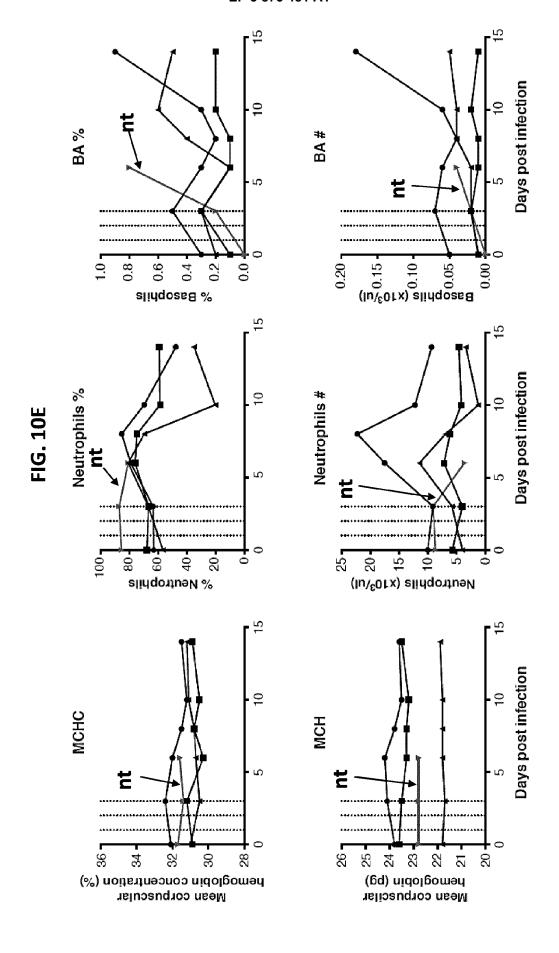












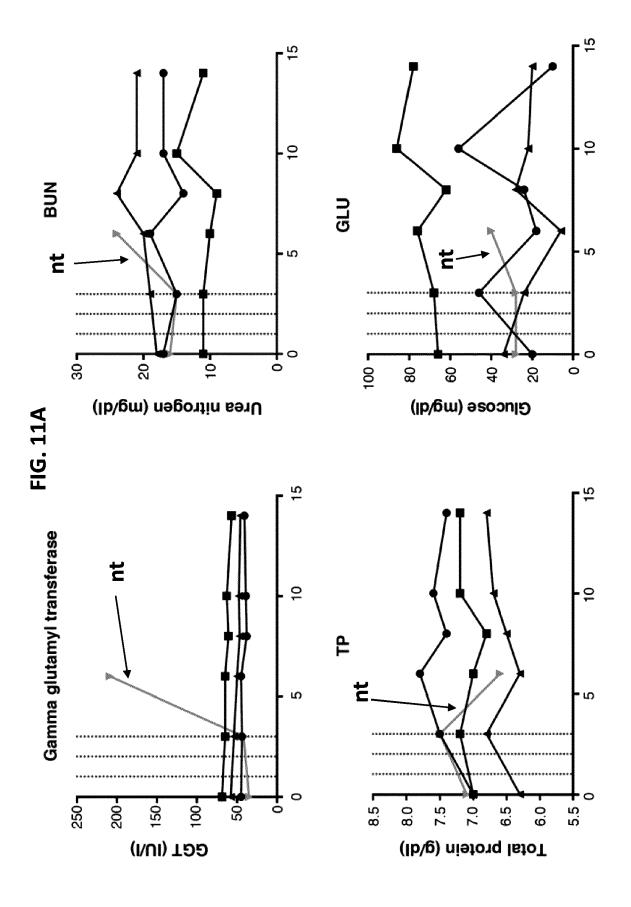
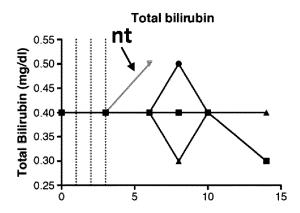
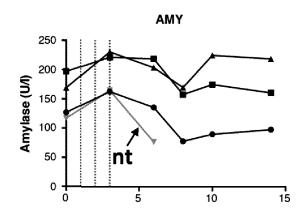
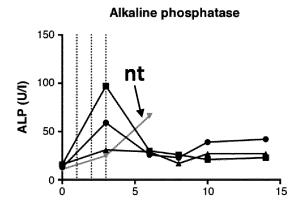
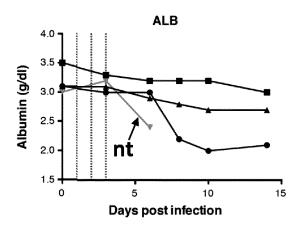






FIG. 11B

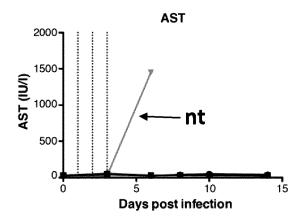


FIG. 12
EBOV mAbs neutralization at IC50 concentration in presence or absence of sGP

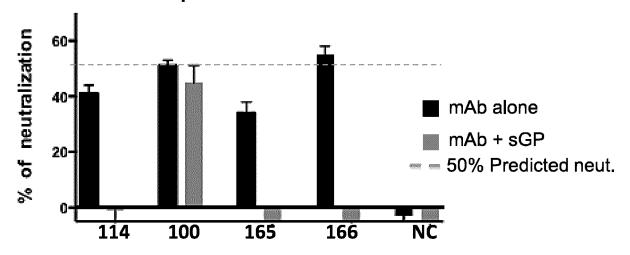
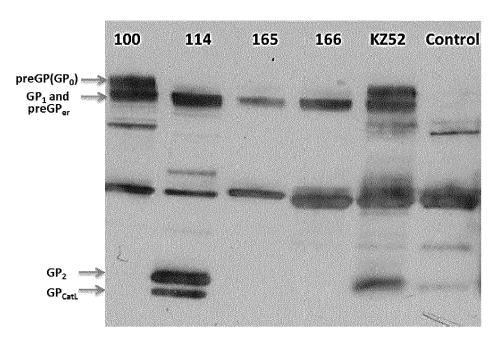



FIG. 13

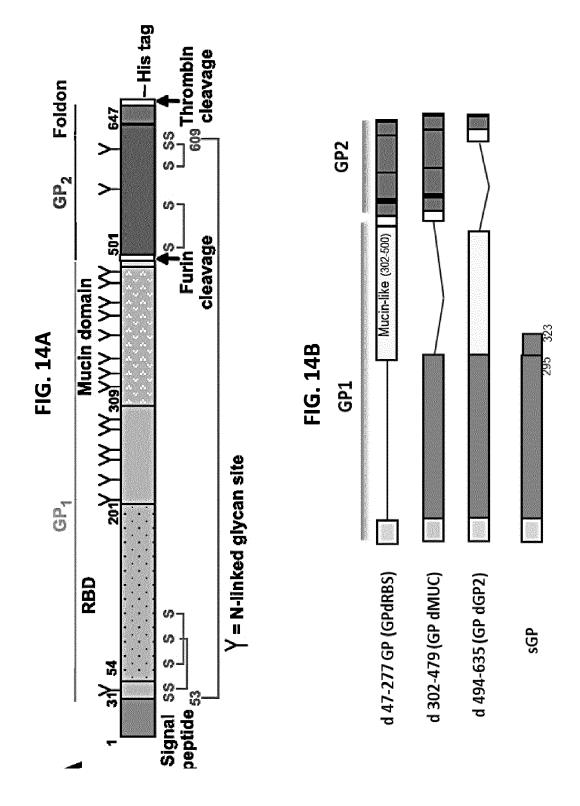


FIG. 15

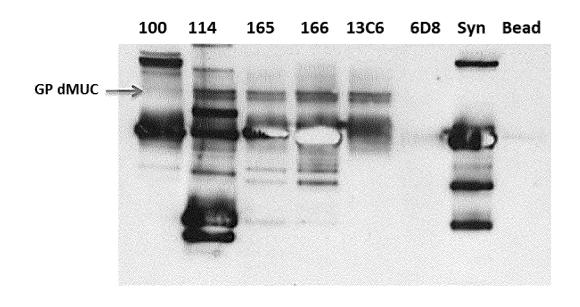


FIG. 16

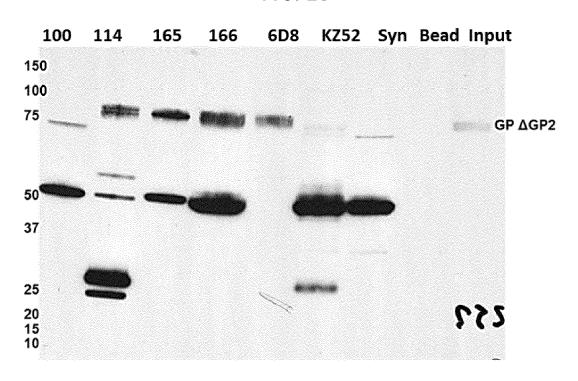


FIG. 17A

IP/WB

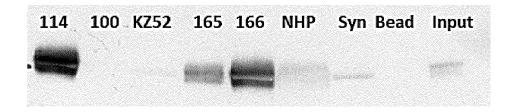
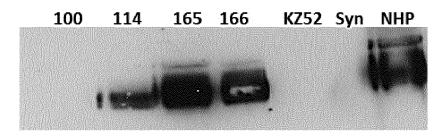
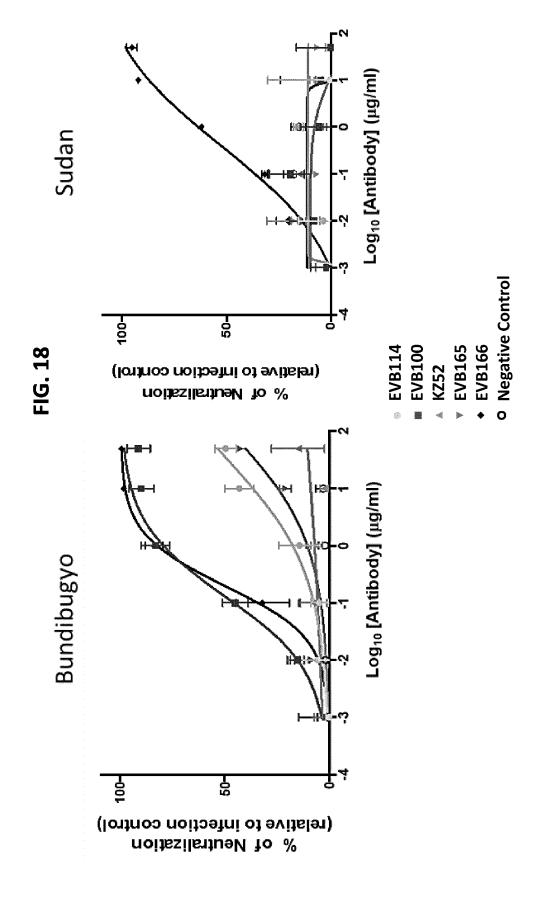




FIG. 17B

Direct WB

EUROPEAN SEARCH REPORT

Application Number

EP 21 15 8309

5					1
	Category	Citation of document with i	PERED TO BE RELEVANT Indication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	X	XIANGGUO QIU ET AL ofglycoprotein-spec antibodies", CLINICAL IMMUNOLOGY vol. 141, no. 2, 13 August 2011 (20) 218-227, XP02832270 ISSN: 1521-6616, DO 10.1016/J.CLIM.201	1-16	INV. C07K16/10	
20		[retrieved on 2011- * the whole documer			
25	X	LEE J E ET AL: "Ne structural insight: glycoprotein and an against it", CURRENT OPINION IN ELSEVIER LTD, GB, vol. 19, no. 4, 1	1-16		
30		, pages 408-417, XI ISSN: 0959-440X, DO 10.1016/J.SBI.2009 [retrieved on 2009- * the whole documen	OI: .05.004 -06-24]		TECHNICAL FIELDS SEARCHED (IPC)
35	X			1-16	
40	X	WO 2004/018649 A2 INST OF IN [US]; HA WILSON JULIE) 4 Man * the whole documen	1-16		
45					
1		The present search report has			
50	3	Place of search Munich	Date of completion of the search 23 June 2021	Sch	Examiner neffzyk, Irmgard
55	X:par Y:par doc A:tec	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anoiument of the same category hnological background n-written disclosure remediate document	e underlying the invention burnent, but published on, or e n the application or other reasons ame patent family, corresponding		

nvention shed on, or

after the filing date
D : document cited in the application
L : document cited for other reasons

[&]amp; : member of the same patent family, corresponding document

EP 3 875 481 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 21 15 8309

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-06-2021

10	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
	WO 2011071574	A2	16-06-2011	EP US WO	2473525 A2 2012164153 A1 2011071574 A2	11-07-2012 28-06-2012 16-06-2011
15	WO 2004018649	 A2	04-03-2004	AU EP	2003265883 A1 1539238 A2	11-03-2004 15-06-2005
20				US US WO	2004053865 A1 2007298042 A1 2004018649 A2	18-03-2004 27-12-2007 04-03-2004
25						
30						
35						
40						
45						
50						
	65					
55	ORM PO459					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 875 481 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 62087087 [0001]
- US 62080094 [0001]
- US 5585089 A [0138]
- WO 2013163427 A [0144]
- US 8076459 B [0145]
- US 8017748 B [0145]
- US 8007796 B [0145]
- US 7919089 B [0145]
- US 7820166 B [0145]
- US 7635472 B [0145]
- US 7575923 B [0145]
- US 7435549 B [0145]
- US 7332168 B [0145]
- 00 7002 100 B [0140]
- US 7323440 B [0145]
- US 7235641 B **[0145]**
- US 7229760 B **[0145]**
- US 7112324 B **[0145]**
- US 6723538 B **[0145]**
- WO 9954440 A [0145]
- US 4946778 A **[0150]**
- US 4036945 A [0151]
- US 4331647 A [0151]
- WO 2005035572 A [0153]
- WO 2003002609 PCT [0153]
- US 6075181 A **[0155]**
- US 6150584 A [0155]
- US 5770429 A [0155]
- US 7041870 B [0155]
- US 20070061900 A **[0155]**
- US 7189826 B [0156]
- US 5750373 A [0158]
- US 20050079574 A [0158]
- US 20050119455 A **[0158]**
- US 20050266000 A [0158]
- US 20070117126 A [0158]
 US 20070160598 A [0158]
- US 20070100590 A [0130]
- US 20070237764 A **[0158]**
- US 20070292936 A [0158]US 20090002360 A [0158]
- WO 0000077540 A **10400**1
- WO 2008077546 A **[0168]**
- US 20030157108 A, Presta, L. **[0168]**
- US 20040093621 A **[0168]**
- WO 200061739 A **[0168]**
- WO 200129246 A [0168]

- US 20030115614 A [0168]
- US 20020164328 A [0168]
- US 20040132140 A [0168]
- US 20040110704 A [0168]
- US 20040110282 A [0168]
- US 20040109865 A [0168]
- WO 2003085119 A [0168]
- WO 2003084570 A [0168]
- WO 2005035586 A [0168]
- WO 2005035778 A [0168]
- WO 2005053742 A [0168]
 WO 2002031140 A [0168]
- US 20030157108 A1, Presta, L [0168]
- WO 2004056312 A1 **[0168]**
- WO 2003085107 A **[0168]**
- WO 2003011878 A, Jean-Mairet [0169]
- US 6602684 B, Uman [0169]
- US 20050123546 A, Umana [0169]
- WO 199730087 A, Patel [0169]
- WO 199858964 A, Raju, S. [0169]
- WO 199922764 A, Raju, S. **[0169]**
- US 4458066 A [0188]
- US 20100093979 A [0193]
- US 5643578 A [0213]
- US 5593972 A [0213]
- US 5817637 A [0213]
- US 5880103 A [0213]
- US 5589466 A **[0217]**
- US 5055303 A [0232]
- US 5188837 A [0232]
- US 4235871 A [0232]
- US 4501728 A [0232]
- US 4837028 A [0232]
- 03 4637026 A [0232]
- US 4957735 A [0232]
- US 5019369 A [0232]
- US 5514670 A [0232]
- US 5413797 A [0232]
- US 5268164 A [0232]
- US 5004697 A [0232]
- US 4902505 A [0232]
- US 5506206 A [0232]
- US 5271961 A [0232]
- US 5254342 A [0232]
- US 5534496 A [0232]

Non-patent literature cited in the description

BENJAMIN LEWIN. Genes X. Jones & Bartlett Pub-

lishers, 2009 [0016]

- The Encyclopedia of Cell Biology and Molecular Medicine. Wiley-VCH, 2008, vol. 16 [0016]
- Antibody Engineering. Springer Press, 2010, vol. 1-2 [0018] [0192]
- BIRD et al. Science, 1988, vol. 242, 423-426 [0019] [0192]
- HUSTON et al. Proc. Natl. Acad. Sci., 1988, vol. 85, 5879-5883 [0019]
- AHMAD et al. Clin. Dev. Immunol., 2012 [0019] [0146] [0150]
- MARBRY. IDrugs, 2010, vol. 13, 543-549 [0019] [0146] [0150]
- HOLLIGER et al. Proc. Natl. Acad. Sci., 1993, vol. 90, 6444-6448 [0020]
- POLJAK et al. Structure, 1994, vol. 2, 1121-1123 [0020]
- Pierce Catalog and Handbook. Pierce Chemical Co, 1994-1995 [0021]
- KUBY, J. Immunology. W.H. Freeman & Co, 1997
 [0021]
- KINDT et al. Kuby Immunology. W.H. Freeman and Co, 2007, 91 [0025]
- HAMERS-CASTERMAN et al. Nature, 1993, vol. 363, 446-448 [0025]
- SHERIFF E. Nat. Struct. Biol., 1996, vol. 3, 733-736
 [0025]
- KABAT et al. Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, 1991 [0027]
- KABAT et al. Sequences of Proteins of Immunological Interest. Public Health Service, National Institutes of Health, 1991 [0028]
- AL-LAZIKANI et al. JMB. 1997, vol. 273, 927-948
 [0028]
- LEFRANC et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol., 2003, vol. 27, 55-77 [0028]
- HARLOW; LANE. Antibodies, A Laboratory Manual.
 Cold Spring Harbor Publications, 2013 [0029] [0036]
 [0087]
- BARBAS et al. Phage display: A Laboratory Manuel.
 Cold Spring Harbor Laboratory Press, 2004 [0032]
- LONBERG. Nat. Biotech., 2005, vol. 23, 1117-1125
 [0032]
- LONENBERG. Curr. Opin. Immunol., 2008, vol. 20, 450-459 [0032]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 2012 [0047] [0189]
- AUSUBEL et al. Current Protocols in Molecular Biology. John Wiley & Sons, 2013, vol. 104 [0047] [0189]
- BAIZE et al. N Engl J Med., 2014, vol. 371, 1418-1425 [0049] [0050]
- GEISBERT; JAHRLING. Nat Med., 2004, vol. 10, 110-21 [0050]
- HENSLEY et al. Curr Mol Med, 2005, vol. 5, 761-72 [0050]

- SULLIVAN; YANG; NABEL. J Virol, 2003, vol. 77, 9733-7 [0051]
- KUHN, J.H. et al. Arch Virol, 2013, vol. 158 (1), 301-11 [0052]
- VOLCHKOV et al. Virology, 1998, vol. 245, 110-119 [0055]
- SANCHEZ. Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, 3602-3607 [0055]
- FELDMANN. Virus Res, 1992, vol. 24, 1-19 [0056]
- **BITTER et al.** *Methods in Enzymology,* 1987, vol. 153, 516-544 **[0062]**
- Remington's Pharmaceutical Science. Pharmaceutical Press, 2012 [0075] [0229]
- SMITH; WATERMAN. Adv. Appl. Math., 1981, vol. 2, 482 [0081]
- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443 [0081]
- PEARSON; LIPMAN. Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, 2444 [0081]
- HIGGINS; SHARP. Gene, 1988, vol. 73, 237 [0081]
- HIGGINS; SHARP. CABIOS, 1989, vol. 5, 151 [0081]
- CORPET et al. Nucleic Acids Research, 1988, vol. 16, 10881 [0081]
- ALTSCHUL et al. Nature Genet, 1994, vol. 6, 119 [0081]
- ALTSCHU et al. J. Mol. Biol., 1990, vol. 215, 403 [0082]
- JONES et al. Nature, 1986, vol. 321, 522 [0138]
- RIECHMANN et al. *Nature*, 1988, vol. 332, 323 [0138]
- VERHOEYEN et al. Science, 1988, vol. 239, 1534
 [0138]
- CARTER et al. Proc. Natl. Acad. Sci. U.S.A., 1992,
 vol. 89, 4285 [0138]
- **SANDHU.** *Crit. Rev. Biotech,* 1992, vol. 12, 437 [0138]
- SINGER et al. J. Immunol., 1993, vol. 150, 2844
 [0138]
- CHEN et al. J. Mol. Biol., 1999, vol. 293, 865-881 [0141] [0142]
- PRESTA et al. Cancer Res., 1997, vol. 57, 4593-4599 [0141]
- MARTIN et al. Nature Biotechnology, 2003, vol. 21, 71-76 [0143]
- MACK. J. Immunol., 1997, vol. 158, 3965-3970 [0145]
- MACK. PNAS, 1995, vol. 92, 7021-7025 [0145]
- KUFER. Cancer Immunol. Immunother, 1997, vol. 45, 193-197 [0145]
- LOFFLER. Blood, 2000, vol. 95, 2098-2103 [0145]
- BRUHL. J. Immunol., 2001, vol. 166, 2420-2426
 [0145]
- SCHOONJANS et al. J. Immunol., 2000, vol. 165, 7050-57 [0145]
- WILLEMS et al. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, vol. 786, 161-76 [0145]

- HARLOW; LANE. Antibodies: A Laboratory Manual.
 Cold Spring Harbor Laboratory, 2013 [0147] [0192] [0203]
- WHITLOW et al. Methods: a Companion to Methods in Enzymology, 1991, vol. 2, 97 [0150]
- BIRD et al. Science, 1988, vol. 242, 423 [0150]
- PACK et al. Bio/Technology, 1993, vol. 11, 1271 [0150]
- **NISONHOFF et al.** *Arch. Biochem. Biophys*, 1960, vol. 89, 230 **[0151]**
- PORTER. Biochem. J., 1959, vol. 73, 119 [0151]
- EDELMAN et al. Methods in Enzymology. Academic Press, 1967, vol. 1, 422 [0151]
- WARD et al. Nature, 1989, vol. 341, 544-546 [0153]
- LIU E. J. Virology, 2011, vol. 85 (17), 8467-8476 [0154]
- VAN DIJK; VAN DE WINKEL. Curr. Opin. Pharmacol, 2001, vol. 5, 368-74 [0155]
- LONBERG. Curr. Opin. Immunol, 2008, vol. 20, 450-459 [0155]
- LONBERG. Nat. Biotech, 2005, vol. 23, 1117-1125
 [0155]
- KOZBOR. J. Immunol., 1984, vol. 133, 3001 [0156]
- BRODEUR et al. Monoclonal Antibody Production Techniques and Applications. Marcel Dekker, Inc, 1987, 51-63 [0156]
- BOERNER et al. J. Immunol., 1991, vol. 147, 86
 [0156]
- LI et al. Proc. Natl. Acad. Sci. USA, 2006, vol. 103, 3557-3562 [0156]
- NI. Xiandai Mianyixue, 2006, vol. 26 (4), 265-268 [0156]
- VOLLMERS; BRANDLEIN. Histology and Histopathology, 2005, vol. 20 (3), 927-937 [0156]
- VOLLMERS; BRANDLEIN. Methods and Findings in Experimental and Clinical Pharmacology, 2005, vol. 27 (3), 185-91 [0156]
- HOOGENBOOM et al. Methods in Molecular Biology. Human Press, 2001, vol. 178, 1-37 [0157] [0165]
- MCCAFFERTY et al. Nature, vol. 348, 552-554
 [0157]
- CLACKSON et al. Nature, 1991, vol. 352, 624-628
 [0157]
- MARKS et al. J. Mol. Biol., 1992, vol. 222, 581-597
 [0157]
- MARKS; BRADBURY. Methods in Molecular Biology. Human Press, 2003, vol. 248, 161-175 [0157]
- SIDHU et al. J. Mol. Biol., 2004, vol. 338 (2 [0157]
- LEE et al. J. Mol. Biol., 2004, vol. 340 (5), 1073-1093 [0157]
- FELLOUSE. Proc. Natl. Acad. Sci. USA, 2004, vol. 101 (34), 12467-12472 [0157]
- LEE et al. J. Immunol. Methods, 2004, vol. 284 (1-2), 119-132 [0157]
- WINTER et al. Ann. Rev. Immunol., 1994, vol. 12, 433-455 [0158]
- **GRIFFITHS et al.** *EMBO J,* 1993, vol. 12, 725-734 **[0158]**

- HOOGENBOOM; WINTER. J. Mol. Biol., 1992, vol. 227, 381-388 [0158]
- CHOWDHURY. Methods Mol. Biol., 2008, vol. 207, 179-196 [0165]
- WRIGHT et al. TIBTECH, 1997, vol. 15, 26-32 [0167]
- OKAZAKI et al. J. Mol. Biol., 2004, vol. 336, 1239-1249 [0168]
- YAMANE-OHNUKI et al. Biotech. Bioeng, 2004, vol. 87, 614 [0168]
- RIPKA et al. Arch. Biochem. Biophys, 1986, vol. 249, 533-545 [0168]
- KANDA, Y. et al. Biotechnol. Bioeng., 2006, vol. 94
 (4), 680-688 [0168]
- HINTON et al. *J Immunol.*, 2006, vol. 176, 346-356 [0170]
- ZALEVSKY et al. Nature Biotechnology, 2010, vol. 28, 157-159 [0170]
- **PETKOVA et al.** *Int. Immunol.*, 2006, vol. 18, 1759-1769 [0170]
- DALL'ACQUA et al. J. Biol. Chem., 2006, vol. 281, 23514-23524 [0170]
- LAZAR et al. Proc. Natl., Acad. Sci. U.S.A., 2006, vol. 103, 4005-4010 [0171]
- NARANG et al. Meth. Enzymol., 1979, vol. 68, 90-99
 [0188]
- **BROWN et al.** *Meth. Enzymol.*, 1979, vol. 68, 109-151 [0188]
- BEAUCAGE et al. Tetra. Lett., 1981, vol. 22, 1859-1862 [0188]
- BEAUCAGE; CARUTHERS. Tetra. Letts, 1981, vol. 22 (20), 1859-1862 [0188]
- NEEDHAM-VANDEVANTER et al. Nucl. Acids Res., 1984, vol. 12, 6159-6168 [0188]
- Antibody Expression and Production. Springer Press, 2011 [0191]
- HUSTON et al. Proc. Natl. Acad. Sci. USA, 1988, vol. 85, 5879-5883 [0192]
- MCCAFFERTY et al. Nature, 1990, vol. 348, 552-554
 [0192]
- Viral Expression Vectors. Springer press, 2011
 [0199]
- Basic methods in Protein Purification and Analysis: A laboratory Manual. Cold Harbor Press, 2008 [0202] [0203]
- WARD et al. Nature, 1989, vol. 341, 544 [0203]
- SAXENA et al. *Biochemistry*, 1970, vol. 9, 5015-5021 [0204]
- BARANY; MERRIFIELD. The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A, vol. 2, 3-284 [0205]
- MERRIFIELD et al. J. Am. Chem. Soc., 1963, vol. 85, 2149-2156 [0205]
- **STEWART et al.** Solid Phase Peptide Synthesis. Pierce Chem. Co, 1984 [0205]
- QIU et al. Sci. Transl. Med., 2012, vol. 4, 138ra81
 [0212]
- BAROUCH et al. J. Virol, 2005, vol. 79, 8828-8834 [0213]

EP 3 875 481 A1

- JOHNSON et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. *Nat. Med.*, 2009, vol. 15 (8), 901-906 [0215]
- GARDNER et al. AAV-expressed eCD4-lg provides durable protection from multiple SHIV challenges. Nature, 2015, vol. 519 (7541), 87-91 [0215]
- BANGA, A.J. Therapeutic Peptides and Proteins: Formulation, Processing, and Delivery Systems. Technomic Publishing Company, Inc, 1995 [0231]
- KREUTER, J. Colloidal Drug Delivery Systems. Marcel Dekker, Inc, 1994, 219-342 [0231]
- TICE; TABIBI. Treatise on Controlled Drug Delivery.
 Marcel Dekker, Inc. 1992, 315-339 [0231]
- LANGER. Accounts Chem. Res., 1993, vol. 26, 537-542 [0232]
- JOHNSTON et al. Pharm. Res., 1992, vol. 9, 425-434
 [0232]
- PEC et al. J. Parent. Sci. Tech., 1990, vol. 44 (2), 58-65 [0232]
- IJNTEMA et al. Int. J. Pharm., 1994, vol. 112, 215-224 [0232]
- BETAGERI et al. Liposome Drug Delivery Systems.
 Technomic Publishing Co., Inc, 1993 [0232]
- QIU et al. Clin. Immunol, 2011, vol. 141, 218-27 [0244]
- WILSON et al. Science, 2000, vol. 287, 1664-6 [0244] [0263]
- QIU et al. Nature, 2014, vol. 514, 47-53 [0244] [0263]

- MUYEMBE-TAMFUM et al. J. Infect. Dis., 1999, vol. 179, S259-S262 [0245]
- TRAGGIAI et al. Nat. Med., 2004, vol. 10, 871-875 [0246] [0265]
- MARUYAMA et al. J. Virol., 1999, vol. 73, 6024-6030
 [0248]
- PAPPAS et al. Nature, 2014, vol. 516, 418-22 [0252]
- BAROUCH et al. Nature, 2013, vol. 503, 224-8
 [0253]
- SHINGAI et al. Nature, 2013, vol. 503, 277-80 [0253]
- LEE et al. Nature, 2008, vol. 454, 177-82 [0253]
- MURIN et al. Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, 17182-17187 [0253]
- OLINGER et al. Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, 18030-5 [0254]
- **HEZAREH et al.** *J. Virol.*, 2001, vol. 75, 12161-12168 **[0254]**
- OSWALD et al. PLoS Pathog, 2007, vol. 3, e9 [0263]
- TILLER et al. J. Immunol. Methods., 2008, vol. 329, 112-124 [0267]
- SULLIVAN et al. PLoSMed, 2006, vol. 3, e177 [0269]
 [0270]
- SULLIVAN et al. *PLoSMed.*, 2006, vol. 3, e177 [0270]
- CÔTÉ et al. Nature, 2011, vol. 477, 344-348 [0276]
- MALHOTRA et al. PLoS Negl. Trop. Dis., 2013, vol. 7, e2171 [0281]
- ROBINSON et al. *Lancet*, 2003, vol. 362, 1612-1616 [0283]