BACKGROUND OF THE INVENTION
Technical Field
[0001] The invention belongs to the technical field of exploration and exploitation of submarine
natural gas hydrate resources, in particular to a coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system and method.
Description of Related Art
[0002] Natural gas hydrates (also referred to as "combustible ice") are ice-like crystalline
compounds formed by hydrocarbon gases such as methane and water in a high-pressure
environment. Natural gas hydrates in the sea include deep diffused natural gas hydrates
and superficial leaky natural gas hydrates according to the gas migration and accumulation
manner, the burial depth and the genetic model. Wherein, the superficial leaky hydrates
are closely associated with many special geologic bodies such as mud diaper, mud volcanoes
and gas chimneys.
[0003] Superficial hydrates associated with mud volcanoes are well developed in many sea
areas, and these mud volcanoes with a diameter of several meters to hundreds of meters
protrude over the seabed by several meters to tens of meters and are rich of huge
high-saturability hydrates. According to investigation, the reservoir of methane in
a single mud volcano in Nankai Trough reaches one billion cubic meters, and tens to
hundreds of such mud volcanoes are usually developed in groups. For example, 1742
superficial hydrate geologic bodies have been found in Japan sea, and most of these
superficial hydrate geologic bodies are associated with mud volcanoes. Mud volcano-associated
superficial hydrates are expected to play the same important role as the deep diffused
hydrates in hydrate industrialization because of their extensive distribution on the
seabed, small burial depth and thick and laminar occurrence manner, and have immeasurable
resource significance.
[0004] At present, many superficial hydrate exploitation methods have been put forward,
such as the well-known solid fluidization method and the robot mining method. However,
no corresponding method is available yet for superficial hydrates associated with
mud volcanoes. Meanwhile, although the solid fluidization method is simple and practicable,
large-area excavation needs to be carried out on the seabed, which may result in eco-catastrophes
and environmental disasters in a wide region, so the risk is uncontrollable. The robot
mining method may also result in environmental risks due to seabed excavation in spite
of its novel idea, and because of the high technical difficulties and other difficulties
of robot mining, it has not yet been implemented up to now in the seabed mining field
including exploration of submarine manganese nodule crusts and metal sulfide, which
indicates that the seabed robot is still a conceptual design for current mining and
remains far off being put into industrial production.
[0005] Considering the special structures of the deep-sea mud volcano-associated natural
gas hydrates such as shallow occurrence positions and even exposure to the surface
of the seabed, centralized occurrence scopes, moundy tops protruding out of the surface
of the seabed, and gas channels developed at the center, there is an urgent need for
a targeted exploitation technique.
[0006] International Application Number
PCT/US2012/050653, International Publication Date 21 February 2013, Systems and methods for extracting and processing gases from submerged sources are
disclosed. A system for removing and processing a gas from a submerged area in accordance
with a particular embodiment includes a membrane or other open-bottom structure having
a port and being disposed over at least a portion of the submerged area so as to at
least partially enclose a volume of the gas. The system can further include a chemical
reactor coupled to the open-bottom structure to receive the gas, and positioned to
conduct a non-combustion reaction to dissociate a constituent from a donor substance
of the gas.
[0007] Chinese Application Number
CN110630269A, Filing Date 12 October 2019. The invention discloses a natural gas collecting device applicable to a submarine
mud volcano. The natural gas collecting device comprises a collecting unit, a heating
unit and a suction unit, wherein the collecting unit comprises a collecting cover
and a collecting blanket covering the outer wall of the collecting cover; the bottom
edge of the collecting blanket outwards extends to form a projected part; the heating
unit is arranged under the projected part of the collecting blanket; the suction unit
is connected with the collecting cover; the collecting unit is used for covering the
submarine mud volcano for natural gas collection; the heating unit is used for heating
natural gas hydrates in shallow surface sediments, so that the natural gas hydrates
are decomposed into water and natural gas; and the suction unit is used for sucking
the natural gas collected by the collecting unit. The natural gas collecting device
has the advantages that natural gas released by the mud volcano in a slow eruption
state and natural gas generated by the decomposition of the natural gas hydrates in
the shallow surface sediments can be effectively collected; and the current energy
crisis, seawater acidification and greenhouse effect can be favorably relieved.
[0008] The above two patent comparison documents disclose a gas collection device and method,
but they are all currently commonly used technologies, and both are aimed at the mining
of shallow surface hydrates.
BRIEF SUMMARY OF THE INVENTION
[0009] The invention provides a coverage-type deep-sea mud volcano-associated natural gas
hydrate exploitation system and method, which are mainly applied to submarine mud
volcano-associated superficial massive hydrates and adopt a coverage-type heat-insulation
heating method to exploit the hydrates according to the occurrence characteristics
of the deep-sea mud volcano-associated hydrates.
[0010] The invention is realized through the following technical solution:
[0011] A coverage-type deep-sea mud volcano-associated natural gas hydrate exploitation
system comprises an engineering ship support unit, a power supply unit, a drilling
and casing unit and a gas isolation and heat insulation unit, wherein the engineering
ship support unit provides basic hardware support for hydrate exploitation and realizes
a collection of natural gas hydrates, and the power supply unit is connected to the
gas isolation and heat insulation unit through a power supply cable;
[0012] The gas isolation and heat insulation unit is regularly laid on a mud volcano , covers
the mud volcano and comprises a gas isolation and heat insulation cover connected
to the power supply unit, wherein the gas isolation and heat insulation cover sequentially
comprises, from bottom to top, a heat-conducting aluminum foil layer, a carbon fiber
heating wire layer, an asbestos heat insulation layer and a heat-proof gas isolation
layer and supplies heat into a sediment layer to heat a natural gas hydrate reservoir.
[0013] Furthermore, the gas isolation and heat insulation unit further comprises thermal
electrodes which are disposed at positions with a high hydrate saturability and a
large thickness, the thermal electrodes and the carbon fiber heating wire layer of
the gas isolation and heat insulation cover adopt two independent power supply circuits,
and the power supply circuit of the thermal electrodes is separately buried between
the asbestos heat insulation layer and the heat-proof gas isolation layer.
[0014] Furthermore, a safe unhooking system is disposed at a joint of an exploitation mother
ship and the natural gas transport pipe to handle a sudden severe weather or other
disastrous events to avoid risks and guarantee operation safety.
[0015] Furthermore, the power supply unit comprises a solar heating panel, a photoelectric
converter and a storage battery which are disposed on the engineering ship support
unit, and solar energy or electricity in the storage battery is transmitted into the
gas isolation and heat insulation cover and the thermal electrodes through the power
supply unit to heat the hydrates.
[0016] Furthermore, the engineering ship support unit comprises the exploitation mother
ship, a hoisting mechanism and a natural gas storage device, a flow control valve
is disposed on the natural gas storage device, a temperature-pressure sensor is disposed
on the power supply cable, and the operating state of the system is determined and
controlled according to system information collected by the temperature-pressure sensor
and the flow control valve, so that safe and efficient operation of the system is
guaranteed.
[0017] The invention further provides an exploitation method based on the coverage-type
deep-sea mud volcano-associated natural gas hydrate exploitation system, comprising
the following steps:
First, determining a central conduit of the mud volcano, drilling a well in the central
conduit of the mud volcano, and disposing a casing pipe and perforated holes in the
central conduit of the mud volcano;
Second, disposing the gas isolation and heat insulation unit on a flank of the mud
volcano, wherein the gas isolation and heat insulation unit comprises the gas isolation
and heat insulation cover and thermal electrodes, and the gas isolation and heat insulation
cover sequentially comprises, from bottom to top, a heat-conducting aluminum foil
layer, the carbon fiber heating wire layer, the asbestos heat insulation layer and
the heat-proof gas isolation layer;
Third, heating hydrates by means of the ship-borne power supply unit; and
Fourth, collecting gas in the production well, and storing the collected gas on an
engineering ship.
[0018] Furthermore, in the first step, the position of the central conduit of the mud volcano
is targeted according to the position of a cold spring vent determined by a two-dimensional
multi-channel seismic section explanation result and a submarine image.
[0019] Furthermore, the first step is implemented specifically through the following sub-steps:
Drilling the well in the central conduit of the mud volcano through a deepwater drilling
technique, wherein the drilled well penetrates through a sediment covering layer above
natural gas, stretches into a hydrate reservoir and ends at bed rock of the mud volcano,
so that the production well is formed; and
Mounting the casing pipe, forming the perforated holes in the hydrate reservoir to
guide water and gas generated by decomposing the hydrates, and disposing the depressurization
control valve in the production well to combine heat production and depressurization
to decompose the hydrates more sufficiently.
[0020] Furthermore, the second step is implemented specifically through the following steps:
Drilling holes at position, with a high hydrate saturability and a large thickness,
of the flank of the mud volcano, and placing the thermal electrodes in the holes;
then, regularly placing the gas isolation and heat insulation cover on the mud volcano
by means of an engineering underwater robot, and connecting the gas isolation and
heat insulation cover to the thermal electrodes placed in the drilled holes, wherein
an opening is formed in a position, corresponding to a central hole of the mud volcano,
of the gas isolation and heat insulation cover.
[0021] Furthermore, in the fourth step, after gas released by the hydrates flows into the
production well via the perforated holes, the gas is delivered into a natural gas
storage device on an exploitation mother ship through the natural gas transport pipe,
and a safe unhooking system is disposed at a joint of the natural gas transport pipe
and the exploitation mother ship to handle a sudden severe weather or other disastrous
events.
[0022] Compared with the prior art, the invention has the following advantages and beneficial
effects:
- 1) The gas isolation and heat insulation cover can be laid freely according to the
shape of the mud volcano, has a good gas leakage prevention capacity to prevent gas
generated by decomposing the hydrates from leaking from the flank, and can realize
uniform heating; heat-insulation treatment is carried out between the gas isolation
layer and the heating layer with asbestos materials, so that the heating layer only
supplies heat to the hydrates below to minimize energy consumption;
- 2) Moreover, multiple thermal electrodes are disposed at the position with a high
hydrate saturability and a large thickness and are effectively connected to heating
elements of the gas isolation and heat insulation cover, and each thermal electrode
can penetrate to a required depth according to the actual depth of the hydrates to
further heat the hydrates in a target region, so that the decomposed hydrates can
flow into the production well via the perforated holes of the production well under
the effect of a pressure difference at the bottom of the well.
[0023] By adoption of this solution, the defects of small heating range, high energy consumption
and low output rate of a heating-type hydrate exploitation method are overcome, and
the exploitation efficiency can be greatly improved; moreover, possible environmental
risks and eco-catastrophes caused by large-area excavation on the seabed of existing
methods are avoided; large-scale efficient and economical exploitation of the hydrates
can be realized, the application prospect is broad, and the application value is high.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0024]
FIG. 1 is a schematic diagram of a coverage-type deep-sea mud volcano-associated natural
gas hydrate exploitation system in an embodiment of the invention;
FIG. 2 is a structural diagram of a gas isolation and heat insulation cover in an
embodiment of the invention;
[0025] Wherein: 1, exploitation mother ship; 2, hoisting mechanism; 3, natural gas storage
device; 4, flow control valve; 5, solar heating panel; 6, photoelectric converter;
7, storage battery; 8, safe unhooking system; 9, temperature-pressure sensor; 10,
power supply cable; 11, production well; 12, perforated hole; 13, depressurization
control valve; 14, natural gas transport pipe; 15, gas isolation and heat insulation
cover; 16, thermal electrode; 17, hydrate reservoir; 18, sediment layer; 151, heat-conducting
aluminum foil layer; 152, carbon fiber heating wire layer; 153, asbestos heat insulation
layer; 154, heat-proof gas isolation layer.
DETAILED DESCRIPTION OF THE INVENTION
[0026] To gain a clearer understanding of the above purposes, features and advantages of
the invention, the invention will be further explained below in conjunction with the
drawings and embodiments. Many specific details are expounded in the following description
for a comprehensive appreciation of the invention. But the invention can also be implemented
in other ways different from those mentioned herein. Therefore, the invention is not
limited to the specific embodiments disclosed below.
[0027] The invention provides a coverage-type deep-sea mud volcano-associated natural gas
hydrate exploitation system and method, which are mainly applied to submarine mud
volcano-associated superficial massive hydrates and exploit natural gas hydrates through
a heating method based on a specially-designed gas isolation and heat insulation cover
and thermal electrodes. Decomposed hydrates flow into a production well via perforated
holes of the production well under the effect of a pressure difference at the bottom
of the well, and a depressurization device is disposed in the production well to further
decompose the hydrates to complete thermal production of the volcano-associated hydrates;
moreover, to reduce energy consumption and improve economical efficiency, solar power
generation is used to heat the thermal electrodes, and a ship-borne autonomous power
supply device is used in rainy days or at night when the solar energy conversion efficiency
is insufficient, so that stable and continuous production is guaranteed.
Embodiment 1
[0028] This embodiment provides a coverage-type exploitation system for thermal production
of submarine deep-sea mud volcano-associated natural gas hydrates. When it is determined
in the resource exploration stage that a hydrate reservoir 17 in a submarine mud volcano
is located below a sediment layer 18, this system and relevant techniques can be used
to exploit hydrates to obtain natural gas. Specifically, as shown in FIG. 1:
[0029] The exploitation system comprises an engineering ship support unit, a power supply
unit, a drilling and casing unit and a gas isolation and heat insulation unit, wherein
the engineering ship support unit comprises an exploitation mother ship 1, a hoisting
mechanism 2, a natural gas storage device 3 and a safe unhooking system 8, a flow
control valve 4 is disposed on the natural gas storage device 3, and the safe unhooking
system is able to immediately separate the exploitation mother ship from other underwater
systems in case of a sudden severe weather or other disastrous events to allow the
exploitation mother ship to leave a working site to avoid risks and allow other systems
to stay on a seabed; after the weather returns to normal or the disastrous events
are eliminated, the exploitation mother ship can return to the site and continue to
work after being connected to the underwater systems through an unhooking device.
[0030] The power supply unit comprises a solar heating panel 5, a photoelectric converter
6 and a storage battery 7 which are disposed on the engineering ship support unit,
the power supply unit is connected to the gas isolation and heat insulation unit through
a power supply cable 10, a temperature-pressure sensor 9 is disposed on the power
supply cable 10, solar energy or electricity in the storage battery is transmitted
into the gas isolation and heat insulation cover and thermal electrodes through the
power supply unit to heat the hydrates, and system information is automatically collected
by the temperature-pressure sensor 9 and the flow control valve 4 to determine the
operating state of the system and to control the operation of a valve in time to guarantee
safe and efficient operation of the system;
[0031] The drilling and casing unit comprises a production well 11, perforated holes 12
and a natural gas transport pipe 14, wherein the perforated holes 12 are formed in
a hydrate enrichment layer in the production well 11 to better guide the hydrates
to release fluid, and a depressurization control valve 13 is disposed at an appropriate
position of the natural gas transport pipe 14 to combine pressurization and thermal
production to guarantee smooth output of the natural gas hydrates. A well is preferably
drilled in a central conduit of the mud volcano, which is an important passage for
material exchange between mud volcano fluid and the outside and has a good lateral
circulation condition; after the hydrates are heated to be decomposed, gas will migrate
into the central conduit to be collected; and specifically, the position of the central
conduit of the mud volcano can be targeted according to the position of a cold spring
vent determined by a two-dimensional multi-channel seismic section explanation result
and a submarine image.
[0032] The gas isolation and heat insulation unit can only supply heat into the sediment
layer, including the gas isolation and heat insulation cover 15 and the thermal electrodes
16; the gas isolation and heat insulation cover 15 is a special heating body and sequentially
comprises, from bottom to top, a heat-conducting aluminum foil layer 151, a carbon
fiber heating wire layer 152, an asbestos heat insulation layer 153 and a heat-proof
gas isolation layer 154. The heat-conducting aluminum foil layer 151 has a flame-retarding
and heat-conducting function, thus facilitating heat transfer to the sediment layer
below; the carbon fiber heating wire 152 is made of carbon fiber materials and is
disposed in the gas isolation and heat insulation cover in an S shape, a hollow square
shape or a wavy shape; the asbestos heat insulation layer 153 is subjected to heat-insulation
treatment with asbestos materials to supply heat only into the sediment layer to efficiently
and uniformly heat the natural gas hydrate reservoir; a heat-proof plastic film (made
of polysulfone plastic and capable of being used under 100-180°C for a long time)
is laid on the surface of the heat-insulating asbestos layer to serve as the heat-proof
gas isolation layer 154 to endow the device with a gas leakage prevention function,
so that gas generated by decomposing the hydrates will not leak to the ocean or the
atmosphere via a covering layer; moreover, the four layers have food flexibility and
can be bent freely according to the shape of the mud volcano without compromising
the using effect.
[0033] In addition, to avoid contradictions that may be caused by different heating powers,
the thermal electrodes 16 and carbon fiber heating wires of the gas isolation and
heat insulation cover 15 adopt independent power supply circuits; during construction,
the circuit of the thermal electrodes is separately buried between the heat insulation
layer and the gas isolation layer of the gas isolation and heat insulation cover 15,
so that an opening does not need to be additionally formed in the gas isolation and
heat insulation cover 15 anymore, the construction difficulty will not be increased,
and the risk of gas leakage is avoided; during exploitation, power is supplied to
the thermal electrodes separately, and the heating efficiency is controlled through
a temperature control switch to satisfy the heating requirements of hydrates with
different thicknesses.
[0034] According to this embodiment, a coverage-type heat-insulation heating method is adopted
according to the occurrence characteristics of deep-sea mud volcano hydrates; the
gas isolation and heat insulation cover can be laid freely according to the shape
of the mud volcano, has a good gas leakage prevention capacity to prevent gas generated
by decomposing the hydrates n from leaking from the flank, and can realize uniform
heating; heat-insulation treatment is carried out between the gas isolation layer
and the heating layer with asbestos materials, so that the heating layer only supplies
heat to the hydrates below to minimize energy consumption; moreover, multiple thermal
electrodes are disposed at the position with a high hydrate saturability and a large
thickness and are effectively connected to heating elements of the gas isolation and
heat insulation cover, and each thermal electrode can penetrate to a required depth
according to the actual depth of the hydrates to further heat the hydrates in a target
region, so that the decomposed hydrates can flow into the production well via the
perforated holes of the production well under the effect of a pressure difference
at the bottom of the well.
Embodiment 2
[0035] This embodiment provides a corresponding exploitation method based on the coverage-type
deep-sea mud volcano-associated natural gas hydrate exploitation system disclosed
in Embodiment 1. The exploitation method specifically comprises the following steps:
First, the central conduit of the mud volcano is determined, a well is drilled in
the central conduit of the mud volcano, and a casing pipe and the perforated holes
are disposed in the central conduit of the mud volcano;
The exploitation mother ship 1 is sailed to the hydrate region of the mud volcano,
the well is drilled in the conduit of the mud volcano-associated hydrates through
a deepwater drilling technique, and the well penetrates through a sediment covering
layer 18 above natural gas, stretches into a hydrate reservoir 17 and finally ends
at bed rock of the mud volcano, so that the production well 11 is formed; then the
casing pipe is mounted, the perforated holes 12 are drilled in the hydrate reservoir
to guide water and gas generated by decomposing the hydrates, and the depressurization
control valve 13 is disposed in the production well, so that thermal production and
decompression are combined to decompose the hydrates more sufficiently.
Second, the gas isolation and heat insulation cover is disposed on the flank of the
mud volcano by means of an engineering robot;
Holes are drilled in positions, with a high hydrate saturability and a large thickness,
of the flank of the mud volcano, and the thermal electrodes 16 are placed into the
holes. Then, the gas isolation and heat insulation cover 15 is regularly disposed
on the mud volcano by means of the engineering underwater robot and is connected to
the thermal electrodes 16 placed into the holes. An opening is formed in the position,
corresponding to a central hole of the mud volcano, of the gas isolation and heat
insulation cover 15. In this way, construction of the gas isolation and heat insulation
unit is completed.
Third, the hydrates are heated by the ship-borne power supply unit (the solar panel
and the standby storage battery);
Solar energy collected by the solar heating panel 5 of the exploitation mother ship
1 is converted into electric energy by the photoelectric converter 6, and the electric
energy is transmitted to the volcano gas isolation and heat insulation cover 15 on
the seabed. The gas isolation and heat insulation 15 and the integrated thermal electrodes
16 supply power to heat the natural gas hydrates. In rainy days or at night when the
power of electric energy generated by the whole solar system cannot meet exploitation
requirements, the ship-borne storage battery 7 is started to supply power to guarantee
that the whole production process is stable and continuous.
Fourth, gas in the production well is collected and is stored on the ship;
After gas released by the hydrates flows into the production well 11 via the perforated
holes 12, the gas can be delivered into the natural gas storage device 3 on the exploitation
mother ship through the natural gas transport pipe 14 so as to be stored. The depressurization
control valve 13 is disposed on the natural gas transport pipe, so that the risk of
instrument damage caused by an excessively high pressure in the gas accumulation process
is prevented; the pressure can be decreased properly to combine thermal production
and depressurization to prompt the hydrate exploitation efficiency to be improved.
[0036] It should be noted that in the whole exploitation process, the full-course operation
is safety monitored by means of automatic control and feedback of the entire system.
For example, system information is automatically collected by the temperature-pressure
sensor 9 and the flow control valve 4 to determine the operating state of the system
and to control the operation of the valve in time to switch the operating mode, so
that the working requirements under different conditions are met, and safe and efficient
operation of the system is guaranteed.
[0037] According to the invention, a coverage-type heat-insulation heating method is adopted
according to the occurrence characteristics of deep-sea mud volcano hydrates, so that
the defects of small heating range, high energy consumption and low output rate of
a heating-type hydrate exploitation method are overcome, and the exploitation efficiency
can be greatly improved; moreover, possible environmental risks and eco-catastrophes
caused by large-area excavation on the seabed of existing methods are avoided; in
addition, solar energy is used on the site, so that the cost is low, environmental
friendliness is realized, and in use, the system is driven by standby electricity
stored on the ship at night and in rainy days by controlling the pressure condition
of the gas well. By adoption of these measures, large-scale efficient and economical
exploitation of the hydrates can be realized, and the application prospect is broad.
[0038] The aforesaid embodiments are merely preferred ones of the invention and are not
intended to limit the invention in any forms. Any skilled in the art can make alterations
or transformations according to the technical contents disclosed above to obtain equivalent
embodiments applied to other fields.
1. A coverage-type deep-sea mud volcano-associated natural gas hydrate exploitation system,
comprising an engineering ship support unit, a power supply unit, a drilling and casing
unit and a gas isolation and heat insulation unit, wherein the engineering ship support
unit provides basic hardware support for hydrate exploitation and realizes a collection
of natural gas hydrates,
characterized in that the power supply unit is connected to the gas isolation and heat insulation unit
through a power supply cable (10);
the drilling and casing unit comprises a production well (11), perforated holes (12)
and a natural gas transport pipe (14), wherein the perforated holes (12) are formed
in a hydrate enrichment layer in the production well (11), the natural gas transport
pipe (14) has an end disposed in the production well (11) and an end connected to
the engineering ship support unit, and a depressurization control valve (13) is disposed
on the natural gas transport pipe (14);
the gas isolation and heat insulation unit is regularly laid on a mud volcano, covers
the mud volcano and comprises a gas isolation and heat insulation cover (15) connected
to the power supply unit, wherein the gas isolation and heat insulation cover (15)
sequentially comprises, from bottom to top, a heat-conducting aluminum foil layer
(151), a carbon fiber heating wire layer (152), an asbestos heat insulation layer
(153) and a heat-proof gas isolation layer (154) and supplies heat into a sediment
layer to heat a natural gas hydrate reservoir;
the gas isolation and heat insulation unit further comprises thermal electrodes (16)
which are disposed at positions with a high hydrate saturability and a large thickness,
the thermal electrodes (16) and the carbon fiber heating wire layer (152) adopt two
independent power supply circuits, and the power supply circuit of the thermal electrodes
(16) is separately buried between the asbestos heat insulation layer (153) and the
heat-proof gas isolation layer (154).
2. The coverage-type deep-sea mud volcano-associated natural gas hydrate exploitation
system according to Claim 1, wherein a safe unhooking system (8) is disposed at a
joint of an exploitation mother ship (1) and the natural gas transport pipe (14) to
handle a sudden severe weather or other disastrous events.
3. The coverage-type deep-sea mud volcano-associated natural gas hydrate exploitation
system according to Claim 1, wherein the power supply unit comprises a solar heating
panel (5), a photoelectric converter (6) and a storage battery (7) which are disposed
on the engineering ship support unit, and solar energy or electricity in the storage
battery is transmitted into the gas isolation and heat insulation cover (15) and the
thermal electrodes (16) through the power supply unit to heat the hydrates.
4. The coverage-type deep-sea mud volcano-associated natural gas hydrate exploitation
system according to Claim 2, wherein the engineering ship support unit comprises the
exploitation mother ship (1), a hoisting mechanism (2) and a natural gas storage device
(3), a flow control valve (4) is disposed on the natural gas storage device (3), a
temperature-pressure sensor (9) is disposed on the power supply cable (10), and an
operating state of the system is determined and controlled according to system information
collected by the temperature-pressure sensor (9) and the flow control valve (4).
5. An exploitation method based on the coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system according to Claim 1, comprising the following
steps:
1) determining a central conduit of the mud volcano, drilling a well in the central
conduit of the mud volcano, and disposing a casing pipe and the perforated holes in
the central conduit of the mud volcano;
2) disposing the gas isolation and heat insulation unit on a flank of the mud volcano,
wherein the gas isolation and heat insulation unit comprises the gas isolation and
heat insulation cover (15) and the thermal electrodes (16), and the gas isolation
and heat insulation cover (15) sequentially comprises, from bottom to top, the heat-conducting
aluminum foil layer (151), the carbon fiber heating wire layer (152), the asbestos
heat insulation layer(153) and the heat-proof gas isolation layer (154);
3) heating the hydrates by means of the ship-borne power supply unit; and
4) collecting gas in the production well, and storing the collected gas on an engineering
ship.
6. The exploitation method based on the coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system according to Claim 5, wherein in Step 1),
the position of the central conduit of the mud volcano is targeted according to the
position of a cold spring vent determined by a two-dimensional multi-channel seismic
section explanation result and a submarine image.
7. The exploitation method based on the coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system according to Claim 5, wherein Step 1) is implemented
specifically through the following sub-steps:
drilling the well in the central conduit of the mud volcano through a deepwater drilling
technique, wherein the drilled well penetrates through a sediment covering layer (18)
above natural gas, stretches into a hydrate reservoir (17) and ends at bed rock of
the mud volcano, so that the production well (11) is formed; and
mounting the casing pipe, forming the perforated holes (12) in the hydrate reservoir
to guide water and gas generated by decomposing the hydrates, and disposing the depressurization
control valve (13) in the production well (11) to combine heat production and depressurization
to decompose the hydrates more sufficiently.
8. The exploitation method based on the coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system according to Claim 5, wherein Step 2) is implemented
specifically through the following sub-steps:
drilling holes at position, with a high hydrate saturability and a large thickness,
of the flank of the mud volcano, and placing the thermal electrodes (16) in the holes;
then, regularly placing the gas isolation and heat insulation cover (15) on the mud
volcano by means of an engineering underwater robot, and connecting the gas isolation
and heat insulation cover (15) to the thermal electrodes (16) placed in the drilled
holes, wherein an opening is formed in a position, corresponding to a central hole
of the mud volcano, of the gas isolation and heat insulation cover (15).
9. The exploitation method based on the coverage-type deep-sea mud volcano-associated
natural gas hydrate exploitation system according to Claim 5, wherein in Step 4),
after gas released by the hydrates flows into the production well (11) via the perforated
holes (12), the gas is delivered into a natural gas storage device (3) on an exploitation
mother ship through the natural gas transport pipe (14), and a safe unhooking system
(8) is disposed at a joint of the natural gas transport pipe (14) and the exploitation
mother ship to handle a sudden severe weather or other disastrous events.
1. Gewinnungssystem für tiefseeschlammvulkanassoziierter Gashydrate des Abdeckungstyps,
umfassend eine technische Schiffshilfseinheit, ein Stromversorgungseinheit, eine Bohr-
und Auskleidungseinheit und eine Gastrennungs- und Wärmedämmeinheit, wobei die technische
Schiffshilfseinheit grundlegende systemteilbezogene Hilfe bei der Hydratgewinnung
bereitstellt und das Gewinnen von Erdgashydraten ermöglicht,
dadurch gekennzeichnet, dass die Stromversorgungseinheit mit der Gastrennungs- und Wärmedämmeinheit durch ein
Stromversorgungskabel (10) verbunden ist;
die Bohr- und Auskleidungseinheit ein Förderbohrloch (11), Perforationslöcher (12)
und ein Erdgastransportloch (14) umfasst, wobei die Perforationslöcher (12) in einer
hydratreichen Schicht des Förderbohrlochs (11) gebildet sind, ein Ende des Erdgastransportlochs
(14) im Förderbohrloch (11) angeordnet ist und ein Ende mit der technischen Schiffshilfseinheit
verbunden ist, und ein Druckherabsetzungssteuerventil (13) am Erdgastransportloch
(14) angeordnet ist;
die Gastrennungs- und Wärmedämmeinheit regelmäßig auf einem Schlammvulkan ausgelegt
ist, den Schlammvulkan abdeckt und eine Gastrennungs- und Wärmedämmabdeckung (15)
umfasst, die mit der Stromversorgungseinheit verbunden ist, wobei die Gastrennungs-
und Wärmedämmabdeckung (15) nacheinander von unten nach oben eine wärmeleitende Aluminiumfolienschicht
(151), eine Kohlenstofffaserheizdrahtschicht (152), eine Asbestwärmedämmschicht (153)
und eine wärmebeständige Gastrennungsschicht (154) umfasst und Wärme in eine Sedimentschicht
liefert, um eine Erdgashydratlagerstätte zu erwärmen;
die Gastrennungs- und Wärmedämmeinheit ferner Wärmeelektroden (16) umfasst, die an
Positionen mit hoher Hydratsättigungsfähigkeit und großer Dicke angeordnet sind, wobei
die Wärmeelektroden (16) und die Kohlenstofffaserheizdrahtschicht (152) zwei unabhängige
Stromversorgungskreise verwenden und der Stromversorgungskreis der Wärmeelektroden
(16) separat zwischen der Asbestwärmedämmschicht (153) und der wärmebeständigen Gastrennungsschicht
(154) eingebettet ist.
2. Gewinnungssystem für tiefseeschlammvulkanassoziierter Gashydrate des Abdeckungstyps
nach Anspruch 1, wobei ein sicheres Abtrennsystem (8) an einer Verbindung eines Gewinnungsmutterschiffs
(1) und des Erdgastransportlochs (14) angeordnet ist, um mit plötzlichem Schlechtwetter
oder anderen Katastrophenereignissen umzugehen.
3. Gewinnungssystem für tiefseeschlammvulkanassoziierter Gashydrate des Abdeckungstyps
nach Anspruch 1, wobei d Stromversorgungseinheit ein Solarheizmodul (5), einen photoelektrischen
Wandler (6) und eine Speicherbatterie (7) umfasst, die an der technischen Schiffshilfseinheit
angeordnet sind, und Solarenergie oder Elektrizität aus der Speicherbatterie durch
die Stromversorgungseinheit in die Gastrennungs- und Wärmedämmabdeckung (15) und die
Wärmeelektroden (16) übertragen wird, um die Hydrate zu erwärmen.
4. Gewinnungssystem für tiefseeschlammvulkanassoziierter Gashydrate des Abdeckungstyps
nach Anspruch 2, wobei die technische Schiffshilfseinheit das Gewinnungsmutterschiff
(1), einen Hebemechanismus (2) und eine Erdgasspeichervorrichtung (3) umfasst, wobei
ein Durchflussregelungsventil (4) an der Erdgasspeichervorrichtung (3) angeordnet
ist, ein Temperatur-Druck-Sensor (9) am Stromversorgungskabel (10) angeordnet ist
und ein Betriebszustand des Systems anhand von Systeminformationen, die von dem Temperatur-Druck-Sensor
(9) und dem Durchflussregelungsventil (4) erfasst werden, bestimmt und gesteuert wird.
5. Gewinnungsverfahren auf Grundlage des Gewinnungssystems für tiefseeschlammvulkanassoziierter
Gashydrate des Abdeckungstyps nach Anspruch 1, folgende Schritte umfassend:
1) Bestimmen eines zentralen Schlots des Schlammvulkans, Bohren eines Bohrlochs in
den zentralen Schlot des Schlammvulkans und Anordnen eines Futterrohrs und von Perforationslöchern
im zentralen Schlot des Schlammvulkans;
2) Anordnen der Gastrennungs- und Wärmedämmeinheit an einer Flanke des Schlammvulkans,
wobei die Gastrennungs- und Wärmedämmeinheit die Gastrennungs- und Wärmedämmabdeckung
(15) und die Wärmeelektroden (16) umfasst und die Gastrennungs- und Wärmedämmabdeckung
(15) nacheinander von unten nach oben die wärmeleitende Aluminiumfolienschicht (151),
die Kohlenstofffaserheizdrahtschicht (152), die Asbestwärmedämmschicht (153) und die
wärmebeständige Gastrennungsschicht (154) umfasst;
3) Erwärmen der Hydrate mittels der auf dem Schiff getragenen Stromversorgungseinheit;
und
4) Auffangen von Gas im Förderbohrloch und Speichern des aufgefangenen Gases auf einem
technischen Schiff.
6. Gewinnungsverfahren auf Grundlage des Gewinnungssystems für tiefseeschlammvulkanassoziierter
Gashydrate des Abdeckungstyps nach Anspruch 5, wobei in Schritt 1) die Position des
zentralen Schlots des Schlammvulkans anhand der Position eines Kaltquellenschlots
anvisiert wird, die durch ein zweidimensionales erläuterndes seismisches Mehrkanalschnittergebnis
und ein Unterseebild bestimmt wird.
7. Gewinnungsverfahren auf Grundlage des Gewinnungssystems für tiefseeschlammvulkanassoziierter
Gashydrate des Abdeckungstyps nach Anspruch 5, wobei Schritt 1) insbesondere mittels
der folgenden Unterschritte implementiert wird:
Bohren des Bohrlochs im zentralen Schlot des Schlammvulkans durch eine Tiefseebohrtechnik,
wobei das gebohrte Bohrloch eine Sedimentdeckschicht (18) über dem Erdgas durchdringt,
sich in eine Hydratlagerstätte (17) erstreckt und am Gestein des Schlammvulkans endet,
sodass das Förderbohrloch (11) gebildet wird; und
Montieren des Futterrohrs, Bilden der Perforationslöcher (12) in der Hydratvlagerstätte,
um durch den Abbau der Hydrate erzeugtes Wasser und Gas zu leiten, und Anordnen des
Druckherabsetzungssteuerventils (13) im Förderbohrloch (11), um Wärmeerzeugung und
Druckherabsetzung zu kombinieren und so die Hydrate gründlicher abzubauen.
8. Gewinnungsverfahren auf Grundlage des Gewinnungssystems für tiefseeschlammvulkanassoziierter
Gashydrate des Abdeckungstyps nach Anspruch 5, wobei Schritt 2) insbesondere mittels
der folgenden Unterschritte implementiert wird:
Bohren von Löchern an einer Position mit hoher Hydratsättigungsfähigkeit und großer
Dicke an der Flanke des Schlammvulkans und Anordnen der Wärmeelektroden (16) in den
Löchern; sodann regelmäßiges Anordnen der Gastrennungs- und Wärmedämmabdeckung (15)
am Schlammvulkan mittels eines technischen Unterwasserroboters und Verbinden der Gastrennungs-
und Wärmedämmabdeckung (15) mit den in den gebohrten Löchern angeordneten Wärmeelektroden
(16), wobei eine Öffnung an einer Position der Gastrennungs- und Wärmedämmabdeckung
(15) gebildet wird, die einem zentralen Loch des Schlammvulkans entspricht.
9. Gewinnungsverfahren auf Grundlage des Gewinnungssystems für tiefseeschlammvulkanassoziierter
Gashydrate des Abdeckungstyps nach Anspruch 5, wobei in Schritt 4) nach dem Strömen
des von den Hydraten freigesetzten Gases in das Förderbohrloch (11) über die Perforationslöcher
(12) das Gas durch ein Erdgastransportrohr (14) in eine Erdgasspeichervorrichtung
(3) auf einem Gewinnungsmutterschiff geleitet wird und ein sicheres Abtrennsystem
(8) an einer Verbindung des Erdgastransportrohrs (14) und des Gewinnungsmutterschiffs
angeordnet ist, um mit plötzlichem Schlechtwetter oder anderen Katastrophenereignissen
umzugehen.
1. Un système d'exploitation d'hydrates de gaz naturel de boue de haute mer de type couverture
associés à un volcan, comprenant une unité d'appui de navire du génie, une unité d'appui
d'alimentation électrique, une unité de forage et de cuvelage et une unité d'isolation
de gaz et d'isolation thermique, dans lequel l'unité d'appui de navire du génie fournit
un appui matériel de base pour l'exploitation des hydrates et effectue la collecte
des hydrates de gaz naturel,
caractérisé en ce que l'unité d'appui d'alimentation électrique est connectée à l'unité d'isolation de
gaz et d'isolation thermique via un câble d'alimentation électrique (10) ;
l'unité de forage et de cuvelage comprend un puits de production (11), des trous perforés
(12) et une conduite de transport de gaz naturel (14), dans lequel les trous perforés
(12) sont formés dans une couche d'enrichissement d'hydrates dans le puits de production
(11), la conduite de transport de gaz naturel (14) est munie d'une extrémité agencée
dans le puits de production (11) et d'une extrémité connectée à l'unité d'appui de
navire du génie, et une vanne de régulation de dépressurisation (13) est agencée sur
la conduite de transport de gaz naturel (14) ;
l'unité d'isolation de gaz et d'isolation thermique est régulièrement posée sur un
volcan de boue, couvre le volcan de boue et comprend une couverture d'isolation de
gaz et d'isolation thermique (15) connectée à l'unité d'alimentation électrique, dans
laquelle la couverture d'isolation de gaz et d'isolation thermique (15) comprend de
façon séquentielle, du bas vers le haut, une couche de feuille d'aluminium thermoconductrice
(151), une couche de câble de chauffage en fibre de carbone (152), une couche d'isolation
thermique en amiante (153) et une couche d'isolation de gaz résistante à la chaleur
(154) et fournit de la chaleur dans la couche de sédiments afin de chauffer un réservoir
d'hydrates de gaz naturel ;
l'unité d'isolation de gaz et d'isolation thermique comprend en outre des électrodes
thermiques (16) qui sont agencées sur des positions de haute saturabilité en hydrates
et de large épaisseur, les électrodes thermiques (16) et la couche de câble de chauffage
en fibre de carbone (152) utilisent deux circuits d'alimentation électrique différents,
et le circuit d'alimentation électrique des électrodes thermiques (16) est enfoui
séparément entre la couche d'isolation thermique en amiante (153) et la couche d'isolation
de gaz résistante à la chaleur (154).
2. Un système d'exploitation d'hydrates de gaz naturel de boue de haute mer de type couverture
associés à un volcan selon la revendication 1, dans lequel un système de décrochage
sécurisé (8) est agencé à une jonction d'un vaisseau mère d'exploitation (1) et de
la conduite de transport de gaz naturel (14) afin de faire face à de graves intempéries
ou autres événements catastrophiques.
3. Un système d'exploitation d'hydrates de gaz naturel de boue de haute mer de type couverture
associés à un volcan selon la revendication 1, dans lequel l'unité d'alimentation
électrique comprend un panneau solaire thermique (5), un convertisseur photoélectrique
(6) et une batterie d'accumulateurs (7) qui sont agencés sur l'unité d'appui de navire
du génie, et l'énergie solaire ou l'électricité de la batterie d'accumulateurs est
transmise dans la couverture d'isolation de gaz et d'isolation thermique (15) et les
électrodes thermiques (16) via l'unité d'alimentation électrique pour chauffer les
hydrates.
4. Un système d'exploitation d'hydrates de gaz naturel de boue de haute mer de type couverture
associés à un volcan selon la revendication 2, dans lequel l'unité d'appui de navire
du génie comprend le vaisseau mère d'exploitation (1), un mécanisme de levage (2)
et un dispositif de stockage de gaz naturel (3), une vanne de régulation de débit
(4) est agencée sur le dispositif de stockage de gaz naturel (3), un capteur de température-pression
(9) est agencé sur le câble d'alimentation électrique (10), et un mode de fonctionnement
du système est déterminé et contrôlé selon les informations du système collectées
par le capteur de température-pression (9) et la vanne de régulation de débit (4).
5. Un procédé d'exploitation basé sur le système d'exploitation d'hydrates de gaz naturel
de boue de haute mer de type couverture associés à un volcan selon la revendication
1, comprenant les étapes suivantes :
1) déterminer un conduit central du volcan de boue, forer un puits dans le conduit
central du volcan de boue, et agencer un tuyau de cuvelage et les trous perforés dans
le conduit central du volcan de boue ;
2) placer l'unité d'isolation de gaz et d'isolation thermique sur un flanc du volcan
de boue, dans lequel l'unité d'isolation de gaz et d'isolation thermique comprend
la couverture d'isolation de gaz et d'isolation thermique (15) et les électrodes thermiques
(16), et la couverture d'isolation de gaz et d'isolation thermique (15) comprend de
façon séquentielle, du bas vers le haut, la couche de feuille d'aluminium thermoconductrice
(151), la couche de câble de chauffage en fibre de carbone (152), la couche d'isolation
thermique en amiante (153) et la couche d'isolation de gaz résistante à la chaleur
(154) ;
3) chauffer les hydrates au moyen de l'unité d'alimentation électrique embarquée ;
et
4) collecter le gaz dans le puits de production, et stocker le gaz collecté sur un
navire du génie.
6. Un procédé d'exploitation basé sur le système d'exploitation d'hydrates de gaz naturel
de boue de haute mer de type couverture associés à un volcan selon la revendication
5, dans lequel à l'Étape 1), la position du conduit central du volcan de boue est
ciblée en fonction de la position d'une fente de source froide déterminée par les
résultats d'explication de section sismique à multicanaux bidimensionnels et une image
sous-marine.
7. Un procédé d'exploitation basé sur le système d'exploitation d'hydrates de gaz naturel
de boue de haute mer de type couverture associés à un volcan selon la revendication
5, dans lequel l'Étape 1) est réalisée spécifiquement via les sous-étapes suivantes
:
forer un puits dans le conduit central du volcan de boue à l'aide d'une technique
de forage en eaux profondes, dans lequel le puits pénètre à travers une couche de
couverture de sédiments (18) au-dessus du gaz naturel, s'étend dans un réservoir d'hydrates
(17) et finit à la roche-mère du volcan de boue, de sorte que le puits de production
(11) est formé ; et
monter le tuyau de cuvelage, former les trous perforés (12) dans le réservoir d'hydrates
afin de guider l'eau et le gaz générés par décomposition des hydrates, et agencer
la vanne de régulation de dépressurisation (13) dans le puits de production (11) afin
de combiner production de chaleur et dépressurisation pour décomposer les hydrates
plus efficacement.
8. Un procédé d'exploitation basé sur le système d'exploitation d'hydrates de gaz naturel
de boue de haute mer de type couverture associés à un volcan selon la revendication
5, dans lequel l'Étape 2) est réalisée spécifiquement via les sous-étapes suivantes
:
forer les trous en position, à haute saturabilité en hydrates et large épaisseur,
sur le flanc du volcan de boue, et placer les électrodes thermiques (16) dans les
trous ; puis, placer régulièrement la couverture d'isolation de gaz et d'isolation
thermique (15) sur le volcan de boue au moyen d'un robot sous-marin du génie, et connecter
la couverture d'isolation de gaz et d'isolation thermique (15) aux électrodes thermiques
(16) placées dans les trous forés, dans laquelle une ouverture est formée sur une
position, correspondant au trou central du volcan de boue, de la couverture d'isolation
de gaz et d'isolation thermique (15).
9. Un procédé d'exploitation basé sur le système d'exploitation d'hydrates de gaz naturel
de boue de haute mer de type couverture associés à un volcan selon la revendication
5, dans lequel à l'Étape 4), une fois que le gaz relâché par les hydrates s'écoule
dans le puits de production (11) via les trou perforés (12), le gaz est acheminé dans
le dispositif de stockage de gaz naturel (3) sur le vaisseau mère d'exploitation via
la conduite de transport de gaz naturel (14), et le système de décrochage sécurisé
(8) est agencé à une jonction du vaisseau mère d'exploitation et de la conduite de
transport de gaz naturel (14) afin de faire face à de graves intempéries ou autres
événements catastrophiques.