| (19) |
 |
|
(11) |
EP 3 887 073 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
28.08.2024 Bulletin 2024/35 |
| (22) |
Date of filing: 06.11.2019 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/EP2019/080345 |
| (87) |
International publication number: |
|
WO 2020/108932 (04.06.2020 Gazette 2020/23) |
|
| (54) |
METHOD OF PRODUCING A HIGH-ENERGY HYDROFORMED STRUCTURE FROM AN AL-MG-SC ALLOY
VERFAHREN ZUR HERSTELLUNG EINER HOCHENERGETISCH HYDROGEFORMTEN STRUKTUR AUS EINER
AL-MG-SC-LEGIERUNG
PROCÉDÉ DE PRODUCTION D'UNE STRUCTURE HYDROFORMÉE À HAUTE ÉNERGIE À PARTIR D'UN ALLIAGE
AL-MG-SC
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
26.11.2018 EP 18208368
|
| (43) |
Date of publication of application: |
|
06.10.2021 Bulletin 2021/40 |
| (73) |
Proprietor: Airbus SAS |
|
31700 Blagnac (FR) |
|
| (72) |
Inventors: |
|
- BÜRGER, Achim
56070 Koblenz (DE)
- MEYER, Philippe
56070 Koblenz (DE)
- BACH, Andreas Harald
56070 Koblenz (DE)
- RUMPF, Philipp Daniel
56070 Koblenz (DE)
- SPANGEL, Sabine Maria
56070 Koblenz (DE)
|
| (74) |
Representative: Cabinet Le Guen Maillet |
|
3, impasse de la Vigie
CS 71840 35418 Saint-Malo Cedex 35418 Saint-Malo Cedex (FR) |
| (56) |
References cited: :
EP-A1- 2 546 373 US-B2- 7 610 669
|
EP-B1- 2 948 571
|
|
| |
|
|
- STUCKENBRUCK L C ET AL: "Explosive Forming of Missile Components", MACHINERY,, vol.
98, no. 2520, 1 March 1961 (1961-03-01), pages 486 - 490, XP001335799
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The invention relates to a method of producing an integrated monolithic aluminium
alloy structure, and can have a complex configuration, that is machined to near-net-shape
out of a plate material. More specifically, the invention relates to a method of producing
an integrated monolithic aluminium alloy structure made from an AlMgSc-series alloy,
and can have a complex configuration, that is machined to near-net-shape out of a
plate material.
BACKGROUND TO THE INVENTION
[0002] EP2948571, on which the preamble of claim 1 is based, discloses a method of forming an AL MG
alloy plate comprising the steps of providing an AIMG alloy plate, forming said plate,
heat treating and cooling said formed plate.
US patent no. 7,610,669-B2 (Aleris) discloses a method for producing an integrated monolithic aluminium structure, in
particular an aeronautical member, comprising the steps of:
- (a) providing an aluminium alloy plate with a predetermined thickness, said plate
having been stretched after quenching and having been brought to a first temper selected
from the group consisting of T4, T73, T74 and T76, wherein said aluminium alloy plate
is produced from a AA7xxx-series aluminium alloy having a composition consisting of,
in wt.%: 5.0-8.5% Zn, 1.0-2.6% Cu, 1.0-2.9% Mg, <0.3% Fe, <0.3% Si, optionally one
or more elements selected from the group of Cr, Zr, Mn, V, Hf, Ti, the total of the
optional elements not exceeding 0.6%, incidental impurities and the balance aluminium,
- (b) shaping said alloy plate by means of bending to obtain a predetermined shaped
structure having a pre-machining thickness in the range of 10 to 220 mm, said alloy
plate in said first temper selected from the group consisting of T4, T73, T74 and
T76 to form the shaped structure having a built-in radius,
- (c) heat-treating said shaped structure, wherein said heat-treating comprises artificially
aging said shaped structure to a second temper selected from the group consisting
of T6, T79, T77, T76, T74, T73 or T8,
- (d) machining said shaped structure to obtain an integrated monolithic aluminium structure
as said aeronautical member for an aircraft, wherein said machining of said shaped
structure occurs after said artificial ageing.
[0003] It is suggested that the disclosed method can be applied also to AA5xxx, AA6xxx and
AA2xxx-series aluminium alloys.
[0004] There is a demand for forming integrated monolithic aluminium structures of more
complex configuration from a rolled product.
DESCRIPTION OF THE INVENTION
[0005] As will be appreciated herein, except as otherwise indicated, aluminium alloy designations
and temper designations refer to the Aluminium Association designations in Aluminium
Standards and Data and the Registration Records, as published by the Aluminium Association
in 2018 and are well known to the person skilled in the art. The temper designations
are laid down in European standard EN515.
[0006] For any description of alloy compositions or preferred alloy compositions, all references
to percentages are by weight percent unless otherwise indicated.
[0007] As used herein, the term "about" when used to describe a compositional range or amount
of an alloying addition means that the actual amount of the alloying addition may
vary from the nominal intended amount due to factors such as standard processing variations
as understood by those skilled in the art.
[0008] The term "up to" and "up to about", as employed herein, explicitly includes, but
is not limited to, the possibility of zero weight-percent of the particular alloying
component to which it refers. For example, up to 0.1% Cu may include an aluminium
alloy having no Cu.
[0009] "Monolithic" is a term known in the art meaning comprising a substantially single
unit which may be a single piece formed or created without joint or seams and comprising
a substantially uniform whole.
[0010] It is an object of the invention to provide a method of producing an integrated monolithic
AlMgSc-series aluminium alloy structure of complex configuration that is machined
to near-net-shape out of a rolled material.
[0011] The above object is achieved by a method according to the features of claim 1 which
is a method of producing an integrated monolithic aluminium structure, the method
comprising the process steps of, in that order,
- providing an aluminium alloy rolled product with a predetermined thickness of at least
2 mm (0.0787 inches), wherein the aluminium alloy rolled product is an AlMgSc-series
alloy;
- forming the rolled product;
- heating and cooling the formed structure;
- characterized in that the method producing an integrated monolithic aluminium structure
comprises the steps of:
- optionally pre-machining of the aluminium alloy rolled product to an intermediate
machined structure;
- high-energy hydroforming of the aluminium alloy rolled product or the intermediate
machined structure against a forming surface of a rigid die having a contour at least
substantially in accordance with a desired curvature of the integrated monolithic
aluminium structure, the high energy forming causing the plate or the intermediate
machined structure to substantially conform to the contour of the forming surface
to at least one of a uniaxial curvature and a biaxial curvature;
- annealing and cooling of the resultant high-energy hydroformed structure;
- machining of the annealed high-energy formed structure to a near-final or final machined
integrated monolithic aluminium structure; and
- optionally annealing of the near-final or final integrated monolithic aluminium structure
to a desired temper.
[0012] The AlMgSc-series aluminium alloy rolled product is preferably cast, rolled to final
gauge and optionally annealed. Preferably the rolling process applied comprises hot
rolling, and optionally comprises hot rolling followed by cold rolling to final gauge,
and where applicable intermediate annealing is applied.
[0013] Prior to hot rolling the alloy product is homogenised or pre-heated for up to about
50 hours, preferably up to about 24 hours, at a temperature in a range of about 320°C
to 470°C.
[0014] In an embodiment following the hot rolling operation the hot rolled product receives
a very mild cold rolling step (skin rolling or skin pass) with a reduction of less
than about 1%, preferably less than about 0.5%, to improve the flatness of the rolled
product. In an alternative embodiment the hot rolled product can be stretched. This
stretching step can be carried out with a reduction of up to 3%, preferably between
about 0.5% to 1%, to improve the flatness of the hot rolled product.
[0015] The annealing at final gauge is to recover the microstructure and is typically performed
at a temperature in the range of 200°C to 400°C, preferably in the range of 280°C
to 350°C, for a time in the range of 0.5 hours to 20 hours, preferably 0.5 hours to
10 hours.
[0016] Optionally in a next process step the AlMgSc-series plate material is pre-machined,
such as by turning, milling, and drilling, to an intermediate machined structure.
Preferably the ultra-sonic dead-zone is removed from a thick plate product. And depending
on the final geometry of the integrated monolithic aluminium structure some material
can be removed to create one or more pockets in the plate material and a more near-net-shape
to the forming die. This may facilitate the shaping during the subsequent high-energy
hydroforming operation.
[0017] In an embodiment of the method according to this invention the high-energy hydroforming
step is by means of explosive forming. The explosive forming process is a high-energy-rate
plastic deformation process performed in water or another suitable liquid environment,
e.g. an oil, to allow ambient temperature forming of the aluminium alloy plate. The
explosive charge can be concentrated in one spot or distributed over the metal, ideally
using detonation cords. The rolled product is placed over a die and preferably clamped
at the edges. In an embodiment the space between the rolled product and the die may
be vacuumed before the forming process.
[0018] Explosive-forming processes may be equivalently and interchangeably referred to as
"explosion-moulding", "explosive moulding", "explosion-forming" or "high-energy hydroforming"
(HEH) processes. An explosive-forming process is a metalworking process where an explosive
charge is used to supply the compressive force (e.g. a shockwave) to an aluminium
plate against a form (e.g. a mould) otherwise referred to as a "die". Explosive-forming
is typically conducted on materials and structures of a size too large for forming
such structures using a punch or press to accomplish the required compressive force.
According to one explosive-forming approach, an aluminium plate, up to several inches
thick, is placed over or proximate to a die, with the intervening space, or cavity,
optionally evacuated by a vacuum pump. The entire apparatus is submerged into an underwater
basin or tank, with a charge having a predetermined force potential detonated at a
predetermined distance from the metal workpiece to generate a predetermined shockwave
in the water. The water then exerts a predetermined dynamic pressure on the workpiece
against the die at a rate on the order of milliseconds. The die can be made from any
material of suitable strength to withstand the force of the detonated charge such
as, for example, concrete, ductile iron, etc. The tooling should have higher yield
strength than the metal workpiece being formed.
[0019] In an embodiment of the method according to this invention the high-energy hydroforming
step is by means of electrohydraulic forming. The electrohydraulic forming process
is a high-energy-rate plastic deformation process preferably performed in water or
another suitable liquid environment, e.g. an oil, to allow ambient temperature forming
of the aluminium alloy plate. An electric arc discharge is used to convert electrical
energy to mechanical energy and change the shape of the rolled product. A capacitor
bank delivers a pulse of high current across two electrodes, which are positioned
a short distance apart while submerged in a fluid. The electric arc discharge rapidly
vaporizes the surrounding fluid creating a shock wave. The rolled product is placed
over a die and preferably clamped at the edges. In an embodiment the space between
the rolled product and the die may be vacuumed before the forming process.
[0020] A coolant is preferably used during the various pre-machining and machining or mechanical
milling processes steps to allow for ambient temperature machining of the aluminium
alloy rolled product or an intermediate product. Preferably wherein the pre-machining
and the machining to near-final or final machined structure comprises high-speed machining,
preferably comprises numerically-controlled (NC) machining.
[0021] Following the high-energy hydroforming step the resultant structure is annealed and
cooled to ambient temperature. One of the objects is to heat the structure to a temperature
in the range of 200°C to 400°C for a time in the range of up to about 20 hours, and
preferably for about 0.5 hours to 10 hours. The annealing followed by cooling is important
because of obtaining an optimum recovered microstructure and a reduction of internal
stresses.
[0022] In an embodiment of the method according to this invention following annealing treatment
the intermediate product is further stress relieved, preferably by an operation including
a cold compression type of operation, else there will be too much residual stress
impacting a subsequent machining operation.
[0023] In an embodiment the stress relieve via a cold compression of operation is by performing
one or more next high-energy hydroforming steps. Preferably applying a milder shock
wave compared to the first high-energy hydroforming step creating the initial high-energy
hydroformed structure.
[0024] In one embodiment the annealed high-energy formed intermediate structure, and optionally
also stress relieved, is, in that order, next machined or mechanically milled to a
near-final or final machined integrated monolithic aluminium structure and followed
by annealing to a desired temper to achieve final mechanical properties. The annealing
is to a temperature in the range of 200°C to 400°C for a time in the range of up to
about 20 hours, and preferably for about 0.5 hours to 10 hours.
[0025] In an embodiment the final machined formed integrated monolithic aluminium structure
has a tensile strength of at least 200 MPa. In an embodiment the tensile strength
is at least 250 MPa, and more preferably at least 300 MPa.
[0026] In an embodiment the predetermined thickness of the aluminium alloy rolled product
is a plate product of at least 5 mm (0.2 inches), and more preferably at least 12.7
mm (0.5 inches).
[0027] In an embodiment the predetermined thickness of the aluminium alloy rolled product
is a plate product of at least 38.1 (1.5 inches), and preferably at least 50.8 mm
(2.0 inches), and more preferably at least 63.5 mm (2.5 inches).
[0028] In an embodiment the predetermined thickness of the aluminium alloy rolled product
is a plate product of at most 127 mm (5 inches), and preferably at most 114.3 mm (4.5
inches).
[0029] In an embodiment the AlMgSc-series aluminium alloy has a composition comprising,
in wt.%:
| Mg |
3.0% to 6.0%, preferably 3.2% to 4.8%, more preferably 3.5% to 4.5%, |
| Sc |
0.02% to 0.5%, preferably 0.02% to 0.40%, more preferably 0.1% to 0.3%, |
| Mn |
up to 1%, preferably 0.3% to 1.0%, more preferably 0.3% to 0.8%, |
| Zr |
up to 0.3%, preferably 0.05% to 0.2%, more preferably 0.07% to 0.15%, |
| Cr |
up to 0.3%, preferably 0.02% to 0.2%, |
| Ti |
up to 0.2%, preferably 0.01% to 0.2%, |
| Cu |
up to 0.2%, preferably up to 0.1%, more preferably up to 0.05%, |
| Zn |
up to 1.5%, preferably up to 0.8%, more preferably 0.1% to 0.8%, |
| Fe |
up to 0.4%, preferably up to 0.3%, more preferably up to 0.20%, |
| Si |
up to 0.3%, preferably up to 0.2%, more preferably up to 0.1%, |
impurities and balance aluminium. Typically, such impurities are present each <0.05%
and total <0.15%.
[0030] The Mg is the main alloying element in the AlMgSc-series alloys, and for the method
according to this invention it should be in a range of 3.0% to 6.0%. A preferred lower-limit
for the Mg-content is about 3.2%, more preferably about 3.8%. A preferred upper-limit
for the Mg-content is about 4.8%. In an embodiment the upper-limit for the Mg-content
is about 4.5%.
[0031] Sc is another important alloying element and should be present in a range of 0.02%
to 0.5%. A preferred lower-limit for the Sc-content is about 0.1%. In an embodiment
the Sc-content is up to about 0.4%, and preferably up to about 0.3%.
[0032] Mn may be added to the AlMgSc-series aluminium alloys and may be present in a range
of up to 1%. In an embodiment the Mn-content is in a range of about 0.3% to 1%, and
preferably about 0.3% to 0.8%.
[0033] To make Sc more effective, it is preferred to add also Zr in a range of up to 0.3%,
and preferably is present in a range of 0.05% to 0.20%, and more preferably is present
in a range of about 0.07% to 0.15%.
[0034] Cr can be present in a range of up to about 0.3%. When purposively added it is preferably
in a range of about 0.02% to 0.3%, and more preferably in a range of about 0.05% to
0.15%. In an embodiment there is no purposive addition of Cr and it can be present
up to 0.05%, and preferably is kept below 0.02%.
[0035] Ti may be added up to about 0.2% to the AlMgSc alloy as strengthening element or
for improving the corrosion resistance or for grain refiner purposes. A preferred
addition of Ti is in a range of about 0.01% to 0.2%, and preferably in a range of
about 0.01% to 0.10%.
[0036] In an embodiment there is a purposive combined addition of Zr+Cr+Ti. In this embodiment
the combined addition is at least 0.15% to achieve sufficient strength, and preferably
does not exceed 0.30% to avoid the formation of too large precipitates.
[0037] In another embodiment there is a purposive combined addition of Zr and Ti but no
purposive addition of Cr. In this embodiment the combined addition of Zr+Ti is at
least 0.08%, and preferably does not exceed 0.25%, and wherein Cr is up to 0.02%,
and preferably only up to 0.01%.
[0038] Zinc (Zn) in a range of up to 1.5% can be purposively added to further enhance the
strength in the alloy product. A preferred lower limit for the purposive Zn addition
would be 0.1%. A preferred upper limit would be about 0.8%, and more preferably 0.5%,
to provide a balance in strength and corrosion resistance.
[0039] In an embodiment the Zn is tolerable impurity element and it can be present up to
0.15%, and preferably up to 0.10%.
[0040] Cu can be present in the AlMgSc-alloy as strengthening element in a range up to about
2%. However, in applications of the product where the corrosion resistance is a very
critical engineering property, it is preferred to maintain the Cu at a low level of
0.2% or less, and preferably at a level of 0.1% or less, and more preferably at a
level of 0.05% or less.
[0041] Fe is a regular impurity in aluminium alloys and can be tolerated up to 0.4%. Preferably
it is kept to a level of up to about 0.3%, and more preferably up to about 0.20%.
[0042] Si is also a regular impurity in aluminium alloys and can be tolerated up to 0.3%.
Preferably it is kept to a level of up to 0.2%, and more preferably up to 0.10%.
[0043] In an embodiment the AlMgSc-series aluminium alloy has a composition consisting of,
in wt.%: Mg 3.0% to 6.0%, Sc 0.02% to 0.5%, Mn up to 1%, Zr up to 0.3%, Cr up to 0.3%,
Ti up to 0.2%, Cu up to 0.2%, Zn up to 1.5%, Fe up to 0.4%, Si up to 0.3%, balance
aluminium and impurities each <0.05% and total <0.15%, and with preferred narrower
compositional ranges as herein described and claimed.
[0044] An annealed and machined final integrated monolithic aluminium structure manufactured
by the method according to the invention can be part of a structure like a fuselage
panel with integrated stringers, cockpit of an aircraft, lateral windshield of a cockpit,
integral lateral windshield of a cockpit, an integral frontal windshield of a cockpit,
pressure bulkhead, door surround, nose landing gear bay, nose fuselage, and part of
a wing structure. It can also be part of a structure like an underbody structure of
an armoured vehicle providing mine blast resistance, the door of an armoured vehicle,
the engine hood or front fender of an armoured vehicle, a turret.
[0045] In a further aspect the invention relates to the use of a AlMgSc-series aluminium
alloy rolled product having a composition of, in wt.%, Mg 3.0% to 6.0%, Sc 0.02% to
0.5%, Mn up to 1%, Zr up to 0.3%, Cr up to 0.3%, Ti up to 0.2%, Cu up to 0.2%, Zn
up to 1.5%, Fe up to 0.4%, Si up to 0.3%, balance aluminium and impurities each preferably
<0.05% and total <0.15%, and with preferred narrower compositional ranges as herein
described and claimed, and a thickness of at least 2 mm, preferably of 5 mm to 127
mm, in the method according to this invention, and still in a further aspect to produce
an aircraft structural part.
DESCRIPTION OF THE DRAWINGS
[0046] The invention shall also be described with reference to the appended drawings, in
which:
Fig. 1 shows a flow chart illustrating one embodiment of the method according to this
invention; and
Fig. 2 shows a flow chart illustrating another embodiment of the method according
to this invention.
Figs. 3A, 3B and 3C show cross-sectional side-views of an aluminium plate progressing
through stages of a forming process from a rough-shaped metal plate into a shaped,
near-finally shaped and finally-shaped workpiece, according to aspects of the present
invention.
[0047] In Fig. 1 the method comprises, in that order, a first process step of providing
an AlMgSc-series aluminium alloy rolled product having a predetermined thickness of
at least 2 mm, with preferred thicker gauges. The aluminium alloy rolled product prior
to the high-energy hydroforming operation can be in various conditions, in particular
advantageous are:
- the rolled product can be a solely hot rolled product;
- the rolled product can be a hot rolled product and having been annealed to recover
the microstructure;
- the rolled product can be a hot rolled product and then cold rolled to final gauge;
- the rolled product can be a hot rolled product and then cold rolled to final gauge
and having been annealed to recover the microstructure.
As set out herein, optionally the hot rolled product can be further very mild cold
rolled or stretched to improve the flatness of the rolled product.
[0048] In a next process step the rolled product is pre-machined (this is an optional process
step) into an intermediate machined structure and subsequently high-energy hydroformed,
preferably by means of explosive forming or electrohydraulic forming, into a high-energy
hydroformed structure with least one of a uniaxial curvature and a biaxial curvature.
In a next process step there is annealing and cooling of said high-energy hydroformed
structure. In a preferred embodiment following annealing and cooling the intermediate
product is stress relieved, more preferably in an operation including a cold compression
type of operation. Then there is either machining or mechanical milling of said annealing
high-energy formed structure to a near-final or final machined integrated monolithic
aluminium structure, optionally followed by a final annealing of said machined integrated
monolithic aluminium structure to a desired temper to develop the required strength
and other engineering properties relevant for the intended application of the integrated
monolithic aluminium structure.
[0049] The method illustrated in Fig. 2 is closely related to the method illustrated in
Fig. 1, except that in this embodiment there is a first high-energy hydroforming step,
followed by annealing and cooling. Then at least one second high-energy hydro-forming
step is performed the purpose of which is at least stress relief, followed by the
annealing and machining as in the method illustrated in Fig. 1.
[0050] Figs. 3A, 3B and 3C show a series in progression of exemplary drawings illustrating
how an aluminium plate may be formed during an explosive forming process that can
be used in the forming processes according to this invention. According to explosive
forming assembly 80a, a tank 82 contains an amount of water 83. A die 84 defines a
cavity 85 and a vacuum line 87 extends from the cavity 85 through the die 84 to a
vacuum (not shown). Aluminium plate 86a is held in position in the die 84 via a hold-down
ring or other retaining device (not shown). An explosive charge 88 is shown suspended
in the water 83 via a charge detonation line 89, with charge detonation line 19a connected
to a detonator (not shown). As shown in Fig. 3B, the charge 88 (shown in Fig. 3A )
has been detonated in explosive forming assembly 80b creating a shock wave "A" emanating
from a gas bubble "B", with the shock wave "A" causing the deformation of the aluminium
plate 86b into cavity 85 until the aluminium plate 86c is driven against (e.g., immediately
proximate to and in contact with) the inner surface of die 84 as shown in Fig. 3C.
[0051] Having now fully described the invention, it will be apparent to one of ordinary
skill in the art that many changes and modifications can be made without departing
from the scope of the invention as defined by the appended claims.
1. A method of producing an integrated monolithic aluminium structure, the method comprising
the steps of:
- providing an aluminium alloy rolled product with a predetermined thickness of at
least 2 mm, and wherein the aluminium alloy rolled product is an AlMgSc-series aluminium
alloy;
- forming the rolled product;
- heating and cooling the formed structure;
characterized in that the method producing an integrated monolithic aluminium structure comprises the steps
of:
- optionally pre-machining of the aluminium alloy rolled product to an intermediate
machined structure;
- high-energy hydroforming of the rolled product or optional intermediate machined
structure against a forming surface of a rigid die having a contour in accordance
with a desired curvature of the integrated monolithic aluminium structure, the high
energy forming causing the plate or the intermediate machined structure to conform
to the contour of the forming surface to at least one of a uniaxial curvature and
a biaxial curvature;
- annealing and cooling of the high-energy hydroformed structure;
- machining of the annealed high-energy formed structure to a near-final or final
machined integrated monolithic aluminium structure; and
- optionally annealing of the near-final or final integrated monolithic aluminium
structure to a desired temper.
2. Method according to claim 1, wherein the high-energy hydro-forming step is by explosive
forming.
3. Method according to claim 1, wherein the high-energy hydro-forming step is by electrohydraulic
forming.
4. Method according to any one of claims 1 to 3, wherein following annealing and cooling
of the high-energy hydroformed structure, in that order, the annealed high-energy
formed structure is machined to a near-final or final machined integrated monolithic
aluminium structure and then final annealed to a desired temper.
5. Method according to any one of claims 1 to 3, wherein following annealing and cooling
of the high-energy hydroformed structure, in that order, the annealed high-energy
formed structure is final annealed to a desired temper and then machined to a near-final
or final machined integrated monolithic aluminium structure.
6. Method according to any one of claims 1 to 5, wherein following annealing and cooling
of the high-energy hydroformed structure, said structure is stress-relieved, preferably
by compressive forming, followed by machining into the integrated monolithic aluminium
structure.
7. Method according to any one of claims 1 to 6, wherein following annealing and cooling
of the high-energy hydroformed structure, said structure is stress-relieved, preferably
by compressive forming in a next high-energy hydroforming step, followed by machining
and final annealing to a desired temper of the integrated monolithic aluminium structure.
8. Method according to any one of claims 1 to 7, wherein the predetermined thickness
of the aluminium alloy plate is at least 5 mm, preferably at least 12.7 mm, and preferably
at least 38.1 mm.
9. Method according to any one of claims 1 to 8, wherein the predetermined thickness
of the aluminium alloy plate is at most 127 mm, and preferably at most 114.3 mm.
10. Method according to any one of claims 1 to 9, wherein the annealing following the
high-energy hydroforming step is by holding the structure at a temperature in the
range of 200°C to 400°C, preferably for a time in a range of up to 20 hours.
11. Method according to any one of claims 1 to 9, wherein the final annealing of the integrated
monolithic aluminium structure is by holding the structure at a temperature in the
range of 200°C to 400°C, preferably for a time in a range of up to 20 hours.
12. Method according to any one of claims 1 to 11, wherein the AlMgSc-series aluminium
alloy has a composition comprising, in wt.%:
| Mg |
3.0% to 6.0%, preferably 3.2% to 4.8%, |
| Sc |
0.02% to 0.5%, preferably 0.02% to 0.40%, |
| Mn |
up to 1%, |
| Zr |
up to 0.3%, preferably 0.05% to 0.2%. |
13. Method according to any one of claims 1 to 12, wherein the AlMgSc-series aluminium
alloy has a composition comprising, in wt.%:
| Mg |
3.0% to 6.0%, preferably 3.2% to 4.8%, |
| Sc |
0.02% to 0.5%, preferably 0.02% to 0.40%, |
| Mn |
up to 1%, preferably 0.3% to 1.0%, |
| Zr |
up to 0.3%, preferably 0.05% to 0.2%, |
| Cr |
up to 0.3%, |
| Ti |
up to 0.2%, preferably 0.01% to 0.2%, |
| Cu |
up to 0.2%, |
| Zn |
up to 1.5%, |
| Fe |
up to 0.4%, |
| Si |
up to 0.3%, |
impurities and balance aluminium.
14. Method according to any one of claims 1 to 13, wherein the pre-machining and final
machining comprises high-speed machining, preferably comprises numerically-controlled
(NC) machining.
15. Use of an AlMgSc-series aluminium alloy rolled product having a composition of, in
wt.%, Mg 3.0% to 6.0%, Sc 0.02% to 0.5%, Mn up to 1%, Zr up to 0.3%, Cr up to 0.3%,
Ti up to 0.2%, Cu up to 0.2%, Zn up to 1.5%, Fe up to 0.4%, Si up to 0.3%, balance
aluminium and impurities, and a gauge in a range of at least 2 mm in a method according
to any one of claims 1 to 14.
16. Use of an AlMgSc-series aluminium alloy rolled product having a composition of, in
wt.%, Mg 3.0% to 6.0%, Sc 0.02% to 0.5%, Mn up to 1%, Zr up to 0.3%, Cr up to 0.3%,
Ti up to 0.2%, Cu up to 0.2%, Zn up to 1.5%, Fe up to 0.4%, Si up to 0.3%, balance
aluminium and impurities, and a gauge in a range of at least 2 mm in a method according
to any one of claims 1 to 14 to produce an aircraft structural part.
1. Verfahren zum Herstellen einer einstückigen monolithischen Aluminiumstruktur, wobei
das Verfahren die folgenden Schritte umfasst:
- Bereitstellen eines gewalzten Aluminiumlegierungsprodukts mit einer vorab festgelegten
Dicke von mindestens 2 mm, und wobei das gewalzte Aluminiumlegierungsprodukt eine
Aluminiumlegierung der AIMgSc-Reihe ist;
- Formen des gewalzten Produkts;
- Erhitzen und Kühlen der geformten Struktur,
dadurch gekennzeichnet, dass das Verfahren, mit dem eine einstückige monolithische Aluminiumstruktur hergestellt
wird, die folgenden Schritte umfasst:
- gegebenenfalls Vorzerspanen des gewalzten Aluminiumlegierungsprodukts zu einer zerspanten
Zwischenstruktur;
- hochenergetisches Hydroformen des gewalzten Produkts oder der gegebenenfalls zerspanten
Zwischenstruktur gegen eine Formfläche einer starren Matrize mit einer Kontur, die
einer gewünschten Krümmung der einstückigen monolithischen Aluminiumstruktur entspricht,
wobei die hochenergetische Formung bewirkt, dass die Platte oder die zerspante Zwischenstruktur
der Kontur der Formfläche zu mindestens einer von einer uniaxialen Krümmung und einer
biaxialen Krümmung entspricht,
- Glühen und Kühlen der hochenergetisch hydrogeformten Struktur,
- Zerspanen der geglühten hochenergetisch geformten Struktur zu einer nahezu finalen
oder finalen zerspanten einstückigen monolithischen Aluminiumstruktur; und
- gegebenenfalls Glühen der nahezu finalen oder finalen einstückigen monolithischen
Aluminiumstruktur auf einen gewünschten Härtegrad.
2. Verfahren nach Anspruch 1, wobei der Schritt der hochenergetischen Hydroformung durch
Explosivumformen durchgeführt wird.
3. Verfahren nach Anspruch 1, wobei der Schritt der hochenergetischen Hydroformung durch
elektrohydraulisches Umformen durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei nach dem Glühen und Kühlen der hochenergetisch
hydrogeformten Struktur, in dieser Reihenfolge, die geglühte hochenergetisch geformte
Struktur zu einer nahezu finalen oder finalen zerspanten einstückigen monolithischen
Aluminiumstruktur zerspant und anschließend final auf einen gewünschten Härtegrad
geglüht wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, wobei nach dem Glühen und Kühlen der hochenergetisch
hydrogeformten Struktur, in dieser Reihenfolge, die geglühte hochenergetisch geformte
Struktur final auf einen gewünschten Härtegrad geglüht und anschließend zu einer nahezu
finalen oder finalen zerspanten einstückigen monolithischen Aluminiumstruktur zerspant
wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei nach dem Glühen und Kühlen der hochenergetisch
hydrogeformten Struktur die Struktur spannungsarm geglüht wird, vorzugsweise durch
Druckumformen, worauf ein Zerspanen zu der einstückigen monolithischen Aluminiumstruktur
folgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei nach dem Glühen und Kühlen der hochenergetisch
hydrogeformten Struktur die Struktur spannungsarm geglüht wird, vorzugsweise durch
Druckumformen in einem nächsten Schritt der hochenergetischen Hydroformung, worauf
ein Zerspanen und anschließendes Glühen der einstückigen monolithischen Aluminiumstruktur
auf einen gewünschten Härtegrad folgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die vorab festgelegte Dicke der
Aluminiumlegierungsplatte mindestens 5 mm beträgt, vorzugsweise mindestens 12,7 mm
und vorzugsweise mindestens 38,1 mm.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die vorab festgelegte Dicke der
Aluminiumlegierungsplatte höchstens 127 mm und vorzugsweise höchstens 114,3 mm beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei das Glühen nach dem Schritt der
hochenergetischen Hydroformung durch Halten der Struktur bei einer Temperatur im Bereich
von 200 °C bis 400 °C erfolgt, vorzugsweise für eine Zeit im Bereich von bis zu 20
Stunden.
11. Verfahren nach einem der Ansprüche 1 bis 9, wobei das finale Glühen der einstückigen
monolithischen Aluminiumstruktur durch Halten der Struktur bei einer Temperatur im
Bereich von 200 °C bis 400 °C erfolgt, vorzugsweise für eine Zeit im Bereich von bis
zu 20 Stunden.
12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die Aluminiumlegierung der AIMgSc-Reihe
eine Zusammensetzung aufweist, die in Gew.-% Folgendes umfasst:
Mg zu 3,0 Gew.-% bis 6,0 Gew.-%, vorzugsweise 3,2 Gew.-% bis 4,8 Gew.-%,
Sc zu 0,02 Gew.-% bis 0,5 Gew.-%, vorzugsweise 0,02 Gew.-% bis 0,40 Gew.-%,
Mn zu bis zu 1 Gew.-%,
Zr zu bis zu 0,3 Gew.-%, vorzugsweise 0,05 Gew.-% bis 0,2 Gew.-%.
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Aluminiumlegierung der AIMgSc-Reihe
eine Zusammensetzung aufweist, die in Gew.-% Folgendes umfasst:
Mg zu 3,0 Gew.-% bis 6,0 Gew.-%, vorzugsweise 3,2 Gew.-% bis 4,8 Gew.-%,
Sc zu 0,02 Gew.-% bis 0,5 Gew.-%, vorzugsweise 0,02 Gew.-% bis 0,40 Gew.-%,
Mn zu bis zu 1 Gew.-%, vorzugsweise 0,3 Gew.-% bis 1,0 Gew.-%,
Zr zu bis zu 0,3 Gew.-%, vorzugsweise 0,05 Gew.-% bis 0,2 Gew.-%,
Cr zu bis zu 0,3 Gew.-%,
Ti zu bis zu 0,2 Gew.-%, vorzugsweise 0,01 Gew.-% bis 0,2 Gew.-%,
Cu zu bis zu 0,2 Gew.-%,
Zn zu bis zu 1,5 Gew.-%,
Fe zu bis zu 0,4 Gew.-%,
Si zu bis zu 0,3 Gew.-%,
Verunreinigungen und als Rest Aluminium.
14. Verfahren nach einem der Ansprüche 1 bis 13, wobei die Vorzerspanung und finale Zerspanung
Hochgeschwindigkeitszerspanung umfasst, vorzugsweise numerisch gesteuerte (NC) Zerspanung
umfasst.
15. Verwendung eines gewalzten Produkts aus Aluminiumlegierung der AIMgSc-Reihe mit einer
Zusammensetzung, in Gew.-%, von Mg zu 3,0 Gew.-% bis 6,0 Gew.-%, Sc zu 0,02 Gew.-%
bis 0,5%, Mn zu bis zu 1 Gew.-%, Zr zu bis zu 0,3 Gew.-%, Cr zu bis zu 0,3 Gew.-%,
Ti zu bis zu 0,2 Gew.-%, Cu zu bis zu 0,2 Gew.-%, Zn zu bis zu 1,5 Gew.-%, Fe zu bis
zu 0,4 Gew.-%, Si zu bis zu 0,3 Gew.-%, als Rest Aluminium und Verunreinigungen und
einem Gauge im Bereich von mindestens 2 mm in einem Verfahren nach einem der Ansprüche
1 bis 14.
16. Verwendung eines gewalzten Produkts aus Aluminiumlegierung der AIMgSc-Reihe mit einer
Zusammensetzung, in Gew.-%, von Mg zu 3,0 Gew.-% bis 6,0 Gew.-%, Sc zu 0,02 Gew.-%
bis 0,5%, Mn zu bis zu 1 Gew.-%, Zr zu bis zu 0,3 Gew.-%, Cr zu bis zu 0,3 Gew.-%,
Ti zu bis zu 0,2 Gew.-%, Cu zu bis zu 0,2 Gew.-%, Zn zu bis zu 1,5 Gew.-%, Fe zu bis
zu 0,4 Gew.-%, Si zu bis zu 0,3 Gew.-%, als Rest Aluminium und Verunreinigungen und
einem Gauge im Bereich von mindestens 2 mm in einem Verfahren nach einem der Ansprüche
1 bis 14 zur Herstellung eines Flugzeugstrukturteils.
1. Procédé de production d'une structure monolithique intégrée en aluminium, le procédé
comprenant les étapes suivantes :
- obtention d'un produit laminé en alliage d'aluminium avec une épaisseur prédéterminée
d'au moins 2 mm, le produit laminé en alliage d'aluminium étant un alliage d'aluminium
de la série AIMgSc ;
- formage du produit laminé ;
- chauffage et refroidissement de la structure formée ;
caractérisé en ce que le procédé de production d'une structure monolithique intégrée en aluminium comprend
les étapes suivantes :
- éventuellement, pré-usinage du produit laminé en alliage d'aluminium pour obtenir
une structure usinée intermédiaire ;
- hydroformage à haute énergie du produit laminé ou de la structure usinée intermédiaire
éventuelle contre une surface de formage d'une matrice rigide ayant un contour correspondant
à une courbure souhaitée de la structure monolithique intégrée en aluminium, le formage
à haute énergie conduisant la plaque ou la structure usinée intermédiaire à épouser
la forme du contour de la surface de formage au moins jusqu'à une courbure uniaxiale
et/ou une courbure biaxiale ;
- recuit et refroidissement de la structure hydroformée à haute énergie ;
- usinage de la structure formée à haute énergie recuite pour obtenir une structure
monolithique intégrée en aluminium usinée presque finale ou finale ; et
- éventuellement, recuit de la structure monolithique intégrée en aluminium presque
finale ou finale jusqu'à une trempe souhaitée.
2. Procédé selon la revendication 1, dans lequel l'étape d'hydroformage à haute énergie
se fait par formage par explosion.
3. Procédé selon la revendication 1, dans lequel l'étape d'hydroformage à haute énergie
se fait par formage électrohydraulique.
4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel, après le recuit
et le refroidissement de la structure hydroformée à haute énergie, dans cet ordre,
la structure formée à haute énergie recuite est usinée pour obtenir une structure
monolithique intégrée en aluminium usinée presque finale ou finale, puis soumise à
un recuit final jusqu'à une trempe souhaitée.
5. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel, après le recuit
et le refroidissement de la structure hydroformée à haute énergie, dans cet ordre,
la structure formée à haute énergie recuite est soumise à un recuit final jusqu'à
une trempe souhaitée puis usinée pour obtenir une structure monolithique intégrée
en aluminium usinée presque finale ou finale.
6. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel, après le recuit
et le refroidissement de la structure hydroformée à haute énergie, ladite structure
est soumise à une relaxation des contraintes, de préférence par formage par compression,
suivie d'un usinage pour obtenir la structure monolithique intégrée en aluminium.
7. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel, après le recuit
et le refroidissement de la structure hydroformée à haute énergie, ladite structure
est soumise à une relaxation des contraintes, de préférence par formage par compression
dans une étape d'hydroformage à haute énergie suivante, suivie d'un usinage et d'un
recuit final jusqu'à une trempe souhaitée de la structure monolithique intégrée en
aluminium.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'épaisseur prédéterminée
de la plaque en alliage d'aluminium est d'au moins 5 mm, de préférence au moins 12,7
mm, et de préférence au moins 38,1 mm.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'épaisseur prédéterminée
de la plaque en alliage d'aluminium est de 127 mm maximum, et de préférence 114,3
mm maximum.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le recuit suivant
l'étape d'hydroformage à haute énergie se fait par maintien de la structure à une
température dans la plage de 200 °C à 400 °C, de préférence pendant un temps dans
une plage allant jusqu'à 20 heures.
11. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le recuit final
de la structure monolithique intégrée en aluminium se fait par maintien de la structure
à une température dans la plage de 200 °C à 400 °C, de préférence pendant un temps
dans une plage allant jusqu'à 20 heures.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel l'alliage d'aluminium
de la série AIMgSc a une composition comprenant, en pourcentage pondéral :
Mg 3,0 % à 6,0 %, de préférence 3,2 % à 4,8 %,
Sc 0,02 % à 0,5 %, de préférence 0,02 % à 0,40 %,
Mn jusqu'à 1 %,
Zr jusqu'à 0,3 %, de préférence de 0,05 % à 0,2 %.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel l'alliage d'aluminium
de la série AIMgSc a une composition comprenant, en pourcentage pondéral :
Mg 3,0 % à 6,0 %, de préférence 3,2 % à 4,8 %,
Sc 0,02 % à 0,5 %, de préférence 0,02 % à 0,40 %,
Mn jusqu'à 1 %, de préférence de 0,3 % à 1,0 %,
Zr jusqu'à 0,3 %, de préférence de 0,05 % à 0,2 %,
Cr jusqu'à 0,3 %,
Ti jusqu'à 0,2 %, de préférence de 0,01 % à 0,2 %,
Cu jusqu'à 0,2 %,
Zn jusqu'à 1,5 %,
Fe jusqu'à 0,4 %,
Si jusqu'à 0,3 %,
des impuretés et pour le solde de l'aluminium.
14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel le pré-usinage
et l'usinage final comprennent un usinage à haute vitesse, de préférence comprennent
un usinage par commande numérique (CN).
15. Utilisation d'un produit laminé en alliage d'aluminium de la série AIMgSc ayant une
composition, en pourcentage pondéral, de Mg 3,0 % à 6,0 %, Sc 0,02 % à 0,5 %, Mn jusqu'à
1 %, Zr jusqu'à 0,3 %, Cr jusqu'à 0,3 %, Ti jusqu'à 0,2 %, Cu jusqu'à 0,2 %, Zn jusqu'à
1,5 %, Fe jusqu'à 0,4 %, Si jusqu'à 0,3 %, pour le solde de l'aluminium et des impuretés,
et une épaisseur dans une plage d'au moins 2 mm, dans un procédé selon l'une quelconque
des revendications 1 à 14.
16. Utilisation d'un produit laminé en alliage d'aluminium de la série AIMgSc ayant une
composition, en pourcentage pondéral, de Mg 3,0 % à 6,0 %, Sc 0,02 % à 0,5 %, Mn jusqu'à
1 %, Zr jusqu'à 0,3 %, Cr jusqu'à 0,3 %, Ti jusqu'à 0,2 %, Cu jusqu'à 0,2 %, Zn jusqu'à
1,5 %, Fe jusqu'à 0,4 %, Si jusqu'à 0,3 %, pour le solde de l'aluminium et des impuretés,
et une épaisseur dans une plage d'au moins 2 mm, dans un procédé selon l'une quelconque
des revendications 1 à 14 pour produire une pièce structurale d'aéronef.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description