(19)

(11) EP 3 892 750 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

13.10.2021 Bulletin 2021/41

(21) Application number: 20168495.8

(22) Date of filing: 07.04.2020

(51) Int Cl.:

C23C 4/02 (2006.01) B24C 1/10 (2006.01) F01D 5/00 (2006.01) C21D 7/06 (2006.01)

B24C 1/08 (2006.01) C23C 28/00 (2006.01) F01D 5/28 (2006.01) C23C 4/10 (2016.01)

(22) Date of filling. 07:04:2020

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

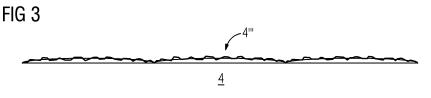
Designated Extension States:

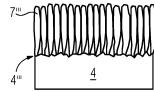
BA ME

Designated Validation States:

KH MA MD TN

(71) Applicant: Siemens Aktiengesellschaft 80333 München (DE)


(72) Inventors:


- Li, Xin-Hai 58272 Linköping (SE)
- Gupta, Mohit
 461 51 Trollhättan (SE)
- Markocsan, Nicolaie 46186 Trollhättan (SE)
- Djordjevic, Snezana
 602 42 Norrköping (SE)

(54) SURFACE TREATMENT BEFORE APPLYING TBC

(57) This invention is to introduce some key surface treatments on the metallic bond coats, like especially MCrAIY bond coats prior to SPS top coat application.

The surface treatments include a shot peening first and then a light grit blasting.

Description

[0001] The invention relates to a surface treatment of a substrate or metallic coating before applying a ceramic coating on top.

1

[0002] With increased demands in high gas temperature and long service life, especially in cyclic life for industrial gas turbines, the conventional Air Plasma Sprayed (APS) and Electron Beam Physical Vapour Deposited(EB-PVD) of 7%Y2O3 partially stabilized ZrO2 (7YPSZ) thermal barrier coatings (TBC's) cannot meet the higher challenges.

[0003] The APS TBC's contain a laminar structure and are much less strain tolerant as compared to the ones with a columnar structure and therefore have a short cyclic life.

[0004] The EB-PVD TBC's contain a columnar structure and therefore a good cyclic life. However, they have some disadvantages as high thermal conductivity, thickness is limited to maximum $350\mu m$, high investment costs, and component size limitation since using vacuum chamber is necessary.

[0005] These disadvantages create problems to satisfy the increased market demands.

[0006] Therefore, turbine efficiency and availability are limited and less competitive.

[0007] TBCs with a long life and a low conductivity are needed to solve the problem.

[0008] A new spraying process called suspension plasma spraying (SPS) comprises spraying fine TBC powders on top of a metallic bond coat, especially of MCrAlY bond coats, applied by thermal spraying methods for gas turbine hot components. Such SPS TBC's have been discovered to possess not only a columnar structure like EB-PVD does, but also a high desired microporosity.

[0009] The intention to develop a SPS TBC is to offer both high cyclic life and a low thermal conductivity to replace both APS and EB-PVD TBC's. However, up to now the test results of coating were not repeatable and the process has not been stabilized to create a controllable coating quality, although a huge effort has been made by many research groups to optimize the SPS TBC spraying parameters.

[0010] It is the aim of the invention to improve a columnar TBC microstructure.

[0011] The problem is solved by a method of a surface treatment of claim 1, by a substrate of claim 10 and by a method to apply a ceramic coating according to claim 11.

[0012] In the dependent claims further advantages are listed which can be arbitrarily combined with each other to yield further advantages.

[0013] The three figures show the surface morphology and the resulting SPS TBC.

[0014] This invention is to introduce some key surface treatments on the metallic bond coat or a substrate, like especially MCrAIY bond coats prior to a SPS top coat application.

[0015] The inventive surface treatment includes first a shot peening and then a light grit blasting.

[0016] Cleaning steps can preferably be performed before, between and finally.

⁵ [0017] Preferably the shot peening should be carried out with a shot size of 0,2 mm -0,5 mm in diameter of shot media.

preferably made of cast steels, metal cut wires, glass beans, or ceramic beans,

preferably a pressure of 0,5-5 bars, preferably a surface coverage 100% - 400%.

[0018] The following grit blasting should be carried out preferably with

Alumina grit of 80-270 mesh,

preferably a pressure of 0,5-5 bars, preferably nozzle diameter 5 mm - 20 mm, preferably at an angle of 30° - 80° to the surface.

[0019] The resulting surface, here of the bond coat surface has a roughness value of Ra = $1\mu m$ - $5\mu m$ with a micro-roughness created due to the light grit blasting with fine grit media. The unique surface roughness created by this procedure results in formation of thin columnar topcoat microstructure.

[0020] The surface treatment parameters depend on the method of coating the substrate or the MCrAIY bond coats (M= Ni, Co, Fe).

[0021] Now SPS TBCs have a lower thermal conductivity and/or longer life, especially cyclic life than that of the currently used APS and EBPVD TBC. These advantages allow an increase in lifetime of gas turbine components and the turbine efficiency.

[0022] Figure 1 shows the morphology of an as-spayed surface 4' of a metallic bond coat on substrate 4 on the left and on the right side the columnar microstructure of a SPS TBC 7' as in the state of the art.

[0023] Without any post surface treatment, the asspayed bond coat surface 4' is very roughness more than Ra= 6μ m and the microstructure of SPS TBC 7' sprayed on this bond coat surface 4' contains very large columns, i.e. very low column density and the TBC 7' surface is also very rough.

[0024] Figure 2 shows the morphology of a surface 4" of a metallic bond coat on a substrate 4 on the left, which was shot peened (starting from Figure 1) creating a smoother bond coat surface than the as-sprayed bond coat 4' and on the right side the columnar microstructure of a SPS TBC 7".

[0025] On top of the shot peened bond coat 4", TBC 7" contains smaller columns and its outer surface is smoother than the SPS TBC 7' in figure 1.

[0026] Figure 3 shows the inventive morphology of a surface 4" of a metallic bond coat on a substrate 4 on the left, which was shot peened according to figure 2 and finally grit blasting, starting from figure 2 and on the right side the resulting microstructure of a SPS TBC 7".

[0027] With both shot peening and grit blasting, the bond coat surface 4" is smooth but contains small and frequent peaks so called micro-roughness. This inventive

40

25

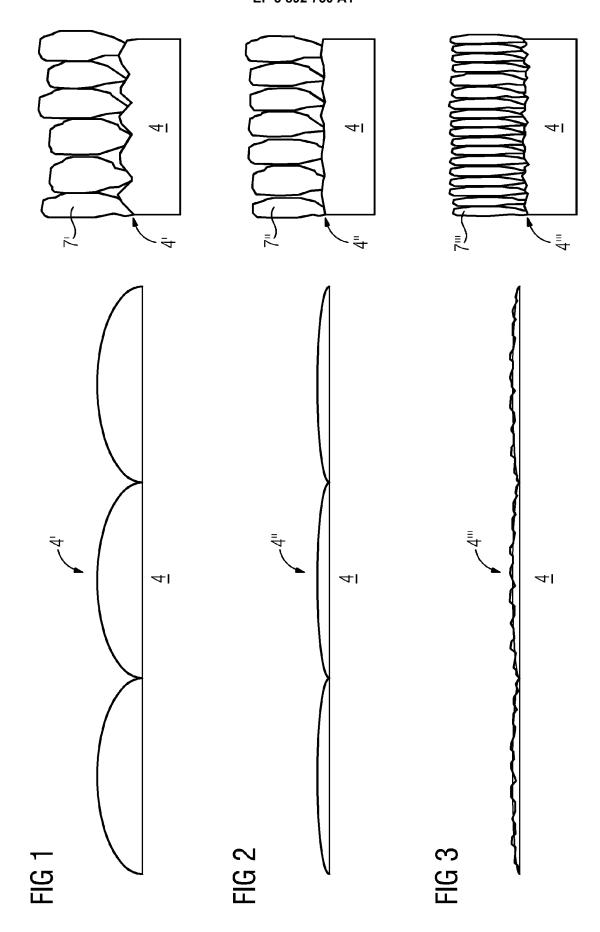
30

40

45

surface morphology leads to the SPS TBC 7" in figure 3 containing much smaller or thinner columns with a high column density as compared to the SPS TBC 7" in figure 2. The SPS TBC 7" surface is as least as smooth as that 7" in figure 2.

Claims


- Method to produce an uniform surface roughness, especially on a metallic coating for bonding a ceramic coating, wherein the surface treatment comprises first a shot peening and finally a grit blasting, especially consists of these two steps of mechanical impact.
- 2. Method according to claim 1, wherein the shot peening with a shot media is carried out with a shot size of 0,2 mm 0,5 mm.
- **3.** Method according to one or both claims 1 or 2, wherein the shot peening with a shot media is carried out with a pressure of 0,5 bar 5 bar.
- **4.** Method according to one or more of the claims 1, 2 or 3, wherein the shot peening is carried out with a surface coverage 100% 400%.
- 5. Method according to one or more of the claims 1, 2, 3 or 4, wherein the shot media comprises, especially consists of, cast steel, metal cut wires, glass beans and/or ceramic beans.
- 6. Method according to one or more of the claims 1, 2, 3, 4 or 5, wherein the grit blasting is carried out with ceramic particles, especially with alumina grit.
- Method according to one or more of the claims 1, 2, 3, 4, 5 or 6, wherein the grit blasting is carried out with a particle size of 80 mesh 270 mesh.
- Method according to one or more of the claims 1, 2, 3, 4, 5, 6 or 7, 50 wherein the grit blasting is carried out with a pressure of 0,5 bar 5 bar.
- 9. Method according to one or more of the claims 1, 2, 3, 4, 5, 6, 7, or 8, wherein the grit blasting is carried out with a nozzle diameter 5 mm 20 mm, and especially with at an angle of 30° 80° to the bond

coat surface.

10. Substrate (4)

- with a metallic coating, especially produced by a method of any of the preceding claims 1 to 9, wherein coating surface (4"') has an uniform roughness value of Ra = 1μ m 5μ m.
- 10 11. Method to apply a ceramic coating, wherein a ceramic coating is applied via SPS on a metallic coating 4" produced by a method of any of the claims 1 to 9,
 15 or on a substrate (4) according to claim 10.
 - Method according to claim 11, wherein yttria stabilized zirconia is applied, especially 7YSZ.

55

EUROPEAN SEARCH REPORT

Application Number EP 20 16 8495

5

10		
15		
20		
25		
30		
35		
40		
45		

50

55

	DOCUMENTS CONSIDE					
Category	Citation of document with in of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
X	EP 1 217 089 A2 (UN [US]) 26 June 2002 * paragraphs [0001] [0013], [0014], [0021], [0021], [0027], [0027]	, [0003], [0008], 0016], [0017],	1-12	INV. C23C4/02 B24C1/08 B24C1/10 C23C28/00 F01D5/00 F01D5/28		
Χ		ITED TECHNOLOGIES CORP	1-9,11,			
A	[US]) 28 June 2000 * paragraphs [0001] [0014], [0022] *	- [0003], [0013],	12 10			
X	US 2003/041927 A1 (AL) 6 March 2003 (20 * paragraphs [0001] [0011], [0026], [- [0003], [0009],	1-12			
X	EP 0 937 787 A1 (UN [US]) 25 August 1999 * paragraphs [0001] [0012], [0020], [, [0002], [0010],	10	TECHNICAL FIELDS SEARCHED (IPC) C23C B24C F01D C21D		
	The present search report has b	een drawn up for all claims Date of completion of the search	-	Examiner		
	Munich	27 July 2020	Bro	own, Andrew		
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS icicularly relevant if taken alone icicularly relevant if combined with anoth ument of the same category inological backgroundwritten disclosure	L : document cited for	cument, but publice en the application or other reasons	shed on, or		

EP 3 892 750 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 20 16 8495

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-07-2020

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	EP 1217089 A2	26-06-2002	DE 60109257 T2 EP 1217089 A2 JP 2002275658 A SG 114515 A1 US 2003039764 A1	28-07-2005 26-06-2002 25-09-2002 28-09-2005 27-02-2003
20	EP 1013795 A1	28-06-2000	CA 2290236 A1 EP 1013795 A1 JP 3124966 B2 JP 2000192256 A US 6042898 A	15-06-2000 28-06-2000 15-01-2001 11-07-2000 28-03-2000
	US 2003041927 A1	06-03-2003	NONE	
25	EP 0937787 A1	25-08-1999	DE 69904248 T2 EP 0937787 A1 ES 2189349 T3 JP 3051395 B2 JP H11310885 A	14-08-2003 25-08-1999 01-07-2003 12-06-2000 09-11-1999
30			UA 61920 C2 US 6060177 A	15-09-2000 09-05-2000
35				
40				
45				
50				
55 CS				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82