Cross-Reference to Related Applications
[0001] This disclosure claims priority to
Chinese Patent Application No. 201811580040.2 filed with the Chinese Patent Office on December 24, 2018, entitled "Human Vγ9Vδ2T
Cell Proliferation Method and Culture Medium", which is incorporated herein by reference
in its entirety.
Technical Field
[0002] The present disclosure relates to the technical field of cell culture, in particular,
to a human Vγ9Vδ2T cell proliferation method and a culture medium.
Background Art
[0003] Immunocyte therapy has become a novel important medical method for treating refractory
diseases (such as malignant tumor) in the medical field all around the world, for
example, a CAR-T cell is used to treat B-cell lymphoma. For the scientific and medical
communities, it is very critical to obtain an immunocyte with stable and reliable
quality and good functions for rendering good clinical treatment effect.
[0004] Human Vγ9Vδ2T cell which only exists in primates and human beings is a T-cell subset
with anti-tumor and anti-infection functions. Human Vγ9Vδ2T cell can be used for immunocyte
therapy or immunologic function reconstruction of people who suffers from tumor, refractory
infectious diseases or immune function unbalanced diseases.
[0005] Currently, there are mainly two types of human Vγ9Vδ2T cell proliferation methods:
the first type of existing proliferation technology is to add the monoclonal antibodies
of IL-2 and TCR in the culture medium of peripheral blood mononuclear cells (PBMCs).
The main disadvantage of the method is that the two types of γδ T cells (Vδ1 cell
subset and Vδ2 cell subset) in the peripheral blood are both proliferated, while the
Vδ1 cell subset has an immunosuppressive function, and thus it cannot be applied to
immunocyte therapy; and
the second type of existing proliferation technology is to add IL-2 and a phosphate
small molecule compound such as zoledronic acid in the culture medium of PBMCs. The
method can render γδ T cells of the Vδ2 cell subset of a relatively high purity, and
thus can be used in immunocyte therapy, and this is a conventional method currently
used for proliferating human Vγ9Vδ2T cells in human peripheral blood at home and abroad.
However, the method has the following disadvantages: the period of cell culture proliferation
is about 14 days, the proliferated human Vγ9Vδ2T cells have a relatively short survival
time (which can continuously survive for about 7 days), and thus the cell anti-apoptosis
ability is not strong, and thus the ability to kill tumor cells is not strong, either.
Summary
[0006] The purpose of the present disclosure comprises, for example, providing a human Vγ9Vδ2T
cell proliferation method, which can improve the proliferation efficiency and the
cell purity of human Vγ9Vδ2T cells, and the cultured human Vγ9Vδ2T cells have relatively
stronger killing ability and suppressive ability to tumor, and have a stronger anti-apoptotic
ability and a longer cell survival time.
[0007] The purpose of the present disclosure also comprises, for example, providing a human
Vγ9Vδ2T cell culture medium, and the culture medium is used to culture the human Vγ9Vδ2T
cells and can improve the proliferation efficiency and the cell purity of the human
Vγ9Vδ2T cells, and the cultured human Vγ9Vδ2T cells have a relatively stronger killing
ability and suppressive ability to tumor, and have a stronger anti-apoptotic ability
and a longer cell survival time.
[0008] The purpose of the present disclosure also comprises, for example, providing a human
Vγ9Vδ2T cell stimulation and proliferation culture medium, which can selectively proliferate
the human Vγ9Vδ2T cells from the peripheral blood mononuclear cells, and the proliferated
human Vγ9Vδ2T cells have high purity, stronger killing ability and stronger anti-apoptotic
ability.
[0009] The present disclosure provides a T cells proliferation method, comprising:
step A, culturing a composition containing the T cells, by using a first culture medium
which is able to stimulate the T cells, to stimulate the T cell; and
step B, using a second culture medium to culture the stimulated T cells; wherein the
second culture medium contains interleukin-2, interleukin-15, and vitamin C or derivatives
of vitamin C.
[0010] In one or multiple embodiments, the T cells comprises Vγ9Vδ2T cells.
[0011] In one or multiple embodiments, the first culture medium comprises interleukin-2
and phosphonic acid compounds.
[0012] In one or multiple embodiments, the first culture medium comprises interleukin-2,
phosphonic acid compounds, interleukin-15, and vitamin C or derivatives of vitamin
C.
[0013] In one or multiple embodiments, the derivatives of vitamin C are selected from vitamin
C ethyl ether, vitamin C palmitate, vitamin C glucoside, vitamin C magnesium phosphate
and vitamin C sodium phosphate.
[0014] In one or multiple embodiments, in the second culture medium, the concentration of
the interleukin-15 is 1-1000ng/ml.
[0015] In one or multiple embodiments, in the second culture medium, the concentration of
the vitamin C or derivatives of vitamin C is 10µM-800mM.
[0016] In one or multiple embodiments, in the second culture medium, the concentration of
the interleukin-2 is 1-1000ng/ml.
[0017] In one or multiple embodiments, the composition containing the T cells comprises
peripheral blood mononuclear cells extracted from the peripheral blood of a human
body.
[0018] In one or multiple embodiments, in step A, the culture duration is 60-100 hours.
[0019] In one or multiple embodiments, the phosphonic acid compounds comprise bisphosphoric
acid compounds, preferably, selected from the group consisting of zoledronic acid,
etidronic acid, ibandronic acid, pamidronic acid, alendronic acid, risedronic acid,
minodronic acid and combinations thereof, for example, zoledronic acid.
[0020] In one or multiple embodiments, the second culture medium comprises a basic culture
medium, interleukin-2, interleukin-15, and vitamin C or derivatives of vitamin C.
[0021] In one or multiple embodiments, the basic culture medium is selected from the group
consisting of RPMI-1640 culture medium, D-MEM, MEM, RPMI, Opti-MEM and combinations
thereof, for example, RPMI-1640 culture medium.
[0022] The present disclosure also provides a culture medium, comprising a basic culture
medium, interleukin-2, interleukin-15, and vitamin C or derivatives of vitamin C.
[0023] In one or multiple embodiments, the concentration of the interleukin-2 in the culture
medium is 1-1000ng/ml, the concentration of the interleukin-15 is 1-1000ng/ml, and
the concentration of the vitamin C or derivatives of vitamin C is 10µM-800mM.
[0024] The present disclosure also provides a pharmaceutical composition, comprising the
T cells obtained by using the proliferation method according to the present text and
a pharmaceutically acceptable carrier.
[0025] The present disclosure also provides a pharmaceutical composition, comprising the
Vγ9Vδ2T cells obtained by using the proliferation method according to the present
text and a pharmaceutically acceptable carrier.
[0026] In one or multiple embodiments, the pharmaceutical composition is a cell suspension.
[0027] The present disclosure also provides use of the T cells obtained by the proliferation
method according to the present disclosure or the pharmaceutical composition of the
present disclosure in preparation of medicines for suppressing, preventing or treating
infectious diseases, autoimmune diseases or malignant diseases.
[0028] In one or multiple embodiments, the malignant disease is cancer.
[0029] In one or multiple embodiments, the malignant disease is lung cancer.
[0030] The present disclosure also provides a method for suppressing, preventing or treating
infectious diseases, autoimmune diseases or malignant diseases, comprising:
- (1) extracting peripheral blood mononuclear cells from the peripheral blood of a subject
in need;
- (2) proliferating the peripheral blood mononuclear cells through the proliferation
method of the present disclosure; and
- (3) administering the proliferated product to the subject in need.
[0031] The present disclosure also provides the use of the T cells obtained by the proliferation
method according to the present text or the pharmaceutical composition of the present
text in suppressing, preventing or treating infectious diseases, autoimmune diseases
or malignant diseases.
[0032] The present disclosure also provides the use of the culture medium of the present
text used for proliferating T cells.
[0033] In one or multiple embodiments, the T cells are Vγ9Vδ2T cells.
[0034] The present disclosure provides a human Vγ9Vδ2T cell proliferation method, comprising:
step 1, extracting peripheral blood mononuclear cells from the peripheral blood of
a human body;
step 2, providing a first culture medium, resuspending the peripheral blood mononuclear
cells by using the first culture medium, to obtain a cell suspension,
wherein the first culture medium comprises a second culture medium and phosphonic
acid compounds; and the second culture medium comprises a basic culture medium, and
interleukin-2, interleukin-15, and vitamin C or derivatives of vitamin C added in
the basic culture medium; and
the order of the step 1 and the step 2 can be adjusted;
step 3 (or step A), inoculating the cell suspension into a cell culture container
to culture for 60-100 hours; and
step 4 (or step B), using the second culture medium to change the medium, wherein
the second culture medium is used in all the subsequent culture processes.
[0035] In one or multiple embodiments, the basic culture medium is the RPMI-1640 culture
medium; and the phosphonic acid compounds comprise one or a plurality of zoledronic
acid, etidronic acid, ibandronic acid, pamidronic acid, alendronic acid, risedronic
acid, minodronic acid.
[0036] In one or multiple embodiments, in step 2, the cell density of the cell suspension
is 3∼4×10
6 cells/ml.
[0037] In one or multiple embodiments, in step 2, in the first culture medium, the concentration
of the phosphonic acid compounds is 1-1000µM; and
[0038] In the first culture medium and the second culture medium, the concentration of the
interleukin-2 is 1-1000ng/ml, the concentration of the interleukin-15 is 1-1000ng/ml,
and the concentration of the vitamin C or derivatives of vitamin C is 10µM-800mM.
[0039] In one or multiple embodiments, the cell culture container is a 24-well plate, 48-well
plate or 96-well plate; in the step 3, the cell suspension is inoculated into the
cell culture container to culture for 72 hours; and in the subsequent culture process
in the step 4, the medium for cells is changed every 48-72 hours.
[0040] The present disclosure also provides a culture medium, comprising a basic culture
medium, and interleukin-2, interleukin-15, and vitamin C added in the basic culture
medium.
[0041] In one or multiple embodiments, the basic culture medium is the RPMI-1640 culture
medium.
[0042] In one or multiple embodiments, in the culture medium, the concentration of the interleukin-2
is 1-1000ng/ml, the concentration of the interleukin-15 is 1-1000ng/ml, and the concentration
of the vitamin C is 10µM-800mM.
[0043] The present disclosure also provides a first culture medium, which comprises a second
culture medium and phosphonic acid compounds.
[0044] In one or multiple embodiments, in the first culture medium, the concentration of
the phosphonic acid compounds is 1-1000µM.
[0045] The present disclosure has the following advantageous effects:
- (1) compared with a conventional proliferation method (the second type of proliferation
technology), the human Vγ9Vδ2T cells obtained by the proliferation method of the present
disclosure has a higher proliferation efficiency and a higher cell purity; 90% cell
purity can be reached when culturing is conducted for 10-12 days (starting from step
3), and the cell proliferation ratio reaches more than 1000 times (i.e., it can proliferate
100,000 human Vγ9Vδ2T cells to at least 100 million human Vγ9Vδ2T cells), which obviously
shortens the proliferation culture period of the human Vγ9Vδ2T cells;
- (2) compared with the human Vγ9Vδ2T cells obtained by the conventional proliferation
method (the second type of proliferating technology), the human Vγ9Vδ2T cells obtained
by the proliferation method of the present disclosure have stronger killing and suppressing
abilities to tumor; and
- (3) the human Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure
have a stronger anti-apoptotic ability and a longer survival time, and after the cell
proliferation culture period (10-12 days starting from step 3) ends, the human Vγ9Vδ2T
cells obtained by the proliferation method of the present disclosure can continue
to survive about 20 days.
Brief Description of the Drawings
[0046] In order to more clearly illustrate technical solutions of embodiments of the present
disclosure, accompanying drawings which need to be used in the embodiments will be
introduced briefly below, and it should be understood that the accompanying drawings
below merely show some embodiments of the present disclosure, therefore, they should
not be considered as limitation to the scope.
FIG. 1 is a comparison chart of the proliferation efficiencies when four different
culture mediums are used to conduct proliferation culture to the human Vγ9Vδ2T cells;
FIG. 2 is a comparison chart of the apoptosis ratios of the human Vγ9Vδ2T cells obtained
by using four different culture mediums to conduct proliferation culture to the human
Vγ9Vδ2T cells;
FIG. 3 is a comparison chart of the expression levels of critical killer molecule
NKG2D of the human Vγ9Vδ2T cells obtained by using four different culture mediums
to conduct proliferation culture to the human Vγ9Vδ2T cells;
FIG. 4A is a schematic view of the size of tumor after a cell treatment to a humanized
mouse with lung cancer using the human Vγ9Vδ2T cells obtained by a conventional proliferation
method (IL-2);
FIG. 4B is a schematic view of the size of tumor after a cell treatment to a humanized
mouse with lung cancer using the human Vγ9Vδ2T cells obtained by a proliferation method
(IL2+IL15+VC) of the present disclosure;
FIG. 4C is a schematic view of the size of tumor of a humanized mouse with lung cancer
in the case of not being treated;
FIG. 5 is a schematic view of the variations of the volume of the tumor of humanized
mouse with lung cancer under different treating conditions; and
FIG. 6 is a schematic view of the variations of the survival rate of humanized mouse
with lung cancer under different treating conditions.
Detailed Description of the Embodiments
Terms used by the present disclosure
[0047] The term of "basic culture medium" used in the present text refers to a solution
containing nutrients that nourish the growth of mammalian cells. The basic culture
medium provides standard inorganic salts such as zinc, iron, magnesium, calcium and
potassium, and vitamins, glucose, buffer system and essential amino acids. For example,
the basic culture medium is RPMI-1640 culture medium, D-MEM, MEM, RPMI, Opti-MEM or
the combinations thereof.
[0048] The term of "prepared by" has the same meaning with "containing". The terms of "include",
"comprise", "have", "contain" or any other variants used herein are intended to cover
non-exclusive comprising. For example, the composition, step, method, article or device
comprising listed elements is not necessary to be limited to those elements, other
elements not explicitly listed or elements inherent in such a composition, step, method,
article or device can also be contained.
[0049] The conjunction phrase of "consist of" excludes any unspecified elements, steps or
components. If used in a claim, this phrase will make the claim closed, so that the
claim does not comprise materials other than those described, except for the conventional
impurities associated with them. When the phrase of "consist of" appears in a sub-sentence
of the subject of the claim rather than immediately after the subject, it only defines
the elements described in the sub-sentence; and other elements are not excluded from
the claim as an entirety.
[0050] When the amount, concentration, or other value or parameter is expressed by a range,
a preferred range, or a range defined by a series of preferred upper limit values
and preferred lower limit values, it should be understood as the discourse of all
ranges formed by any pairing of any upper limit or preferred value of any range and
any lower limit or preferred value of any range, regardless of whether the range is
separately disclosed. For example, when the range of "1∼5" is disclosed, the described
range should be explained to comprise the ranges of "1∼4", "1∼3", "1∼2", "1∼2 and
4-5", "1∼3 and 5" and the like. When the value range is described in the present text,
unless otherwise described, the range intends to comprise its end values and all integers
and fractions within the range.
[0051] The term of "parts by mass" refers to the basic unit of measurement that represents
the mass ratio relationship of multiple components; 1 part can represent any unit
mass, for example, it can represent 1g, or 2.689g and the like. If the parts by mass
of component A is a parts and the parts by mass of component B is
b parts, then it shows that the mass ratio of component A to component B is
a:
b. Or, it shows that the mass of the component A is aK, and the mass of the component
B is bK (K is a random number, representing the multiple factor). What should not
be misunderstood is that the sum of the parts by mass of all the components is not
limited to 100 parts, which is different from the mass fraction.
[0052] The term of "and/or" is used to refer that one or both of the described conditions
may occur, for example, A and/or B comprises (A and B) and (A or B).
[0053] In addition, the indefinite articles "a" and "an" before an element or component
of the present disclosure have no restriction on the quantity (i.e., the occurrence
times) of the element or component. Therefore, "a" and "an" should be understood to
comprise one or at least one, and the element or component in the singular form also
contains the plural form, unless the number described is clearly intended to refer
to the singular form.
[0054] The term of "derivatives of vitamin C" generally is a type of compounds with an enediol
structure that stabilizes a reduced vitamin C by introducing other groups to the carbon
atom at position 2 of vitamin C. Examples of derivatives of vitamin C comprise vitamin
C phosphate, such as vitamin C magnesium phosphate and vitamin C sodium phosphate;
vitamin C palmitate, and vitamin C ethyl ether; and vitamin C carbohydrates, such
as vitamin C glucoside and the like.
[0055] The terms of "peripheral blood mononuclear cells", "PBMCs" or "mononuclear cell"
refer to mononuclear cells separated from the peripheral blood, and are usually used
for anti-cancer immunotherapy. The peripheral blood mononuclear cells can be obtained
from collected human blood using, for example, Ficoll-Hypaque density gradient method.
[0056] The "peripheral blood mononuclear cells" can be obtained from normal people, subjects
who are at risk of having disease, or patients. The peripheral blood mononuclear cells
used here need not necessarily be derived from the autologous, and allogeneic peripheral
blood mononuclear cells can also be used.
[0057] The term of "malignant disease" in the present text is used in the broadest sense
thereof, and refers to diseases characterized by uncontrolled cell growth. It comprises,
but is not limited to, adrenocortical carcinoma, anal cancer, bladder cancer, ependymoma,
medulloblastoma, breast cancer, cervical cancer, colon cancer, endometrial cancer,
esophageal cancer, extrahepatic cholangiocarcinoma, eye cancer, gallbladder cancer,
gastric cancer, germ cell tumors, extragonadal cancer, head and neck cancer, hypopharyngeal
cancer, pancreatic islet cell cancer, laryngeal cancer, leukemia, acute lymphoblastic
leukemia, oral cancer, liver cancer, lung cancer, and the like.
[0058] The term of "autoimmune disease" refers to diseases and disorders caused by the body's
immune response to its own tissues, which causes prolonged inflammation and subsequent
tissue destruction. Examples of autoimmune diseases comprise, but is not limited to,
alopecia areata, type 1 diabetes, Guillain-Barre syndrome, multiple sclerosis, rheumatoid
arthritis, scleroderma, polymyositis, vitiligo, and systemic lupus erythematosus.
[0059] The term of "infectious disease" can be the result of any pathogen. Its examples
comprise, but is not limited to, the result of viral infections such as AIDS, hepatitis
B and C, cell infections, bacterial infections, parasites and fungal infections.
[0060] The present disclosure firstly provides a human Vγ9Vδ2T cell proliferation method,
comprising:
step 1, extracting peripheral blood mononuclear cells (PBMC) from the peripheral blood
of a human body;
step 2, providing a first culture medium, resuspending the peripheral blood mononuclear
cells by using the first culture medium, to obtain cell suspension,
wherein the first culture medium comprises a second culture medium and phosphonic
acid compounds; and the second culture medium comprises a basic culture medium, and
interleukin-2 (IL-2), interleukin-15 (IL-15), and vitamin C added in the basic culture
medium; and
the order of the step 1 and the step 2 can be adjusted;
step 3, inoculating the cell suspension into the cell culture container to culture
for 60-100 hours; and
step 4, using the second culture medium to change the medium, and using the second
culture medium in all the subsequent culture processes.
[0061] Specifically, in the step 1, the basic culture medium is RPMI-1640 culture medium.
RPMI is short for Roswell Park Memorial Institute, representing Roswell Park Memorial
Institute. RPMI is a type of cell culture medium developed by the institute, and 1640
refers to the code name of the culture medium. 10% fetal bovine serum is added when
using this culture medium.
[0062] Optionally, the phosphonic acid compounds comprise one of or a plurality of zoledronic
acid (zoledronate, ZOL), etidronic acid, ibandronic acid, pamidronic acid, alendronic
acid, risedronic acid, minodronic acid.
[0063] In an embodiment of the present disclosure, the phosphonic acid compound is zoledronic
acid.
[0064] Specifically, in the step 2, the cell density of the cell suspension is 3∼4×10
6 cells/ml.
[0065] Specifically, the purpose of steps 2 and 3 lies in culturing the peripheral blood
mononuclear cells by using the first culture medium which contains phosphonic acid
compounds, selectively proliferating human Vγ9Vδ2T cells in the peripheral blood mononuclear
cells, and suppressing the growing of other cells to make other cells apoptotic.
[0066] Optionally, the cell culture container is a 24-well plate, 48-well plate or 96-well
plate.
[0067] The purpose of the step 4 is to further proliferate the human Vγ9Vδ2T cells with
a relatively high purity obtained by the selective proliferation in step 3, to further
add the amount of human Vγ9Vδ2T cells.
[0068] Specifically, in the step 2, in the first culture medium, the concentration of the
phosphonic acid compound is 1-1000µM; and
in the first culture medium and the second culture medium, the concentration of the
interleukin-2 is 1-1000ng/ml, the concentration of the interleukin-15 is 1-1000ng/ml,
and the concentration of the vitamin C is 10µM-800mM.
[0069] Preferably, in the step 3, the cell suspension is inoculated into the cell culture
container to culture for 72 hours.
[0070] Specifically, in the subsequent culture process in the step 4, the medium for cells
is changed every 48-72 hours.
[0071] Specifically, the total culture duration of the steps 3 and 4 usually is 10-12 days,
and the cells at this point reach a sufficient amount and has the strongest killing
ability, which are especially suitable for cell therapy.
[0072] The present disclosure provides a T cell proliferation method, comprising:
step A, using a first culture medium that comprises interleukin-2 and phosphonic acid
compounds, and optionally also comprises interleukin-15, and vitamin C or derivatives
of vitamin C to culture a composition containing the T cells to stimulate the T cells;
and
step B, using a second culture medium that contains interleukin-2, interleukin-15,
and vitamin C or derivatives of vitamin C to culture the stimulated T cells.
[0073] The present disclosure provides a human Vγ9Vδ2T cell proliferation method, comprising:
step A, using a culture medium that comprises interleukin-2 and phosphonic acid compounds,
and optionally also comprises interleukin-15, and vitamin C or derivatives of vitamin
C to culture a composition containing the T cells to stimulate the T cells;
step B, selecting and separating human Vγ9Vδ2T cells from the stimulated peripheral
blood mononuclear cells; and
step C, using a second culture medium that contains interleukin-2, interleukin-15,
and vitamin C or derivatives of vitamin C to culture the selected and separated human
Vγ9Vδ2T cells.
[0074] The present disclosure provides a human Vγ9Vδ2T cell proliferation method, comprising:
step A, extracting peripheral blood mononuclear cells (PBMC) from peripheral blood;
step B, using a culture medium which can stimulate T cells to culture a composition
containing the T cells to stimulate the T cells;
step C, selecting and separating human Vγ9Vδ2T cells from the stimulated peripheral
blood mononuclear cells; and
step D, using a second culture medium that contains interleukin-2, interleukin-15,
and vitamin C or derivatives of vitamin C to culture the selected and separated human
Vγ9Vδ2T cells.
[0075] The present disclosure provides a method for suppressing, preventing or treating
infectious diseases, autoimmune diseases or malignant diseases, comprising:
- (1) extracting peripheral blood mononuclear cells from the peripheral blood of a first
subject;
- (2) using a culture medium that contains interleukin-2 and phosphonic acid compounds,
and optionally also contains interleukin-15, and vitamin C or derivatives of vitamin
C to culture peripheral blood mononuclear cells to stimulate the human Vγ9Vδ2T cells;
- (3) using a second culture medium that contains interleukin-2, interleukin-15, and
vitamin C or derivatives of vitamin C to culture the stimulated human Vγ9Vδ2T cells;
- (4) administering the cultured cells to a second subject, wherein preferably, the
first subject and the second subject can be a same subject.
[0076] Alternatively, the first subject and the second subject are different subjects.
[0077] In the above, the peripheral blood mononuclear cells are compositions containing
T cells, and preferably, the malignant disease is cancer, for example, lung cancer.
[0078] In the human Vγ9Vδ2T cell proliferation method of the present disclosure, the operating
methods without specific conditions are carried out in accordance with the methods
described in general conditions (for example,
Short Protocols in Molecular Biology, edited by F.M. Ausubel, R.E.Kingston, J.G.
Seidman, et al, translated by Ma Xuejun, Shu Yuelong, Beijing: Science Press, 2004).
[0079] The critical technical feature of the present disclosure is the use of interleukin-15
and vitamin C in the cell culture process, through adding interleukin-15 and vitamin
C in the process of proliferation culture of the human Vγ9Vδ2T cells, compared with
the conventional proliferation method (the second type of proliferating technology),
the proliferation efficiency and cell purity of the human Vγ9Vδ2T cells can be improved,
and the cultured human Vγ9Vδ2T cells have stronger anti-apoptotic ability and longer
cell survival time; in addition, the expression level of critical killer molecule
NKG2D thereof is higher, and then the killing ability to tumor cells is stronger.
Compared with the second type of the existing proliferating technology (referring
to the introduction in the background art for the details), the present disclosure
solves, for example, the technical problems of low proliferation efficiency and low
purity, the problem that the obtained cells do not have a strong killing ability,
and the technical problems that the obtained cells do not have enough survival time
and the obtained cells are prone to senescence and apoptosis, and the like.
[0080] To sum up, the human Vγ9Vδ2T cell proliferation method of the present disclosure
has the following advantageous effects:
- (1) compared with a conventional proliferation method (the second type of proliferation
technology), the human Vγ9Vδ2T cells obtained by the proliferation method of the present
disclosure have a better proliferation efficiency and a higher cell purity; 90% cell
purity can be reached when the culture is conducted for 10-12 days (starting from
step 3), and the cell proliferation ratio reaches more than 1000 times (i.e., it can
proliferate 100,000 human Vγ9Vδ2T cells to at least 100 million human Vγ9Vδ2T cells),
which obviously shortens the period of proliferation culture for the human Vγ9Vδ2T
cells;
- (2) compared with the human Vγ9Vδ2T cells obtained by the conventional proliferation
method (the second type of proliferating technology), the human Vγ9Vδ2T cells obtained
by the proliferation method of the present disclosure have stronger killing and suppressing
abilities to tumor; and
- (3) the human Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure
have a stronger anti-apoptotic ability and a longer cell survival time, and after
the cell proliferation culture period (starting from step 3, for 10-12 days) ends,
the human Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure
can continue surviving for about 20 days.
[0081] Based on the above-mentioned human Vγ9Vδ2T cell proliferation method, the present
disclosure also provides a human Vγ9Vδ2T cell culture medium (also referred to as
the second culture medium in the present text), which comprises a basic culture medium
and interleukin-2, interleukin-15, and vitamin C added in the basic culture medium.
[0082] In one or multiple embodiments, the basic culture medium is the RPMI-1640 culture
medium.
[0083] In one or multiple embodiments, in the first culture medium and the second culture
medium, the concentration of the interleukin-2 is 1-1000ng/ml, 1-500ng/ml, 1-200ng/ml,
or 70-130ng/ml. In one or multiple embodiments, in the second culture medium, the
concentration of the interleukin-15 is 1-1000ng/ml, 1-500ng/ml, 1-200ng/ml, or 70-130ng/ml.
In one or multiple embodiments, in the second culture medium, the concentration of
the of the vitamin C is 10µM-800mM, or 20µM-400mM, or 50µM-100µM.
[0084] The present disclosure also provides a human Vγ9Vδ2T cell stimulation and proliferation
culture medium (also referred to as the first culture medium in the present text),
which comprises the above-mentioned second culture medium and phosphonic acid compounds.
[0085] Optionally, in the first culture medium, the concentration of the phosphonic acid
compound is 1-1000µM.
Examples
Experimental reagents and materials
[0086] Main reagents and materials used in the experiments were provided in the following
Table 1.
Table 1. Main reagents and materials
| Name of the reagent |
Name of the company & producing country |
| DiR dye |
Invitrogen, USA |
| CFSE |
Sigma, USA |
| DMEM culture medium |
Gibco, USA |
| RPMI-1640 culture medium |
Gibco, USA |
| Penicillin-streptomycin solution |
Gibco, USA |
| PBS |
Dongguan Jinan University Research Institute, China |
| Fetal Bovine Serum |
Gibco, USA |
| Dimethyl sulfoxide (DMSO) |
Sigma, USA |
| Recombinant Human Interleukin 2 Injection |
Beijing Sihuan Biopharmaceutical Co., Ltd., China |
| Recombinant human IL-15 |
Peprotech, USA |
| L-Ascorbic Acid |
Sigma, USA |
| 0.25% Pancreatin |
Gibco, USA |
| Zoledronic acid |
Sigma, USA |
| Ficoll Lymphocyte Separation Solution |
GE Healthcare, USA |
| Red blood cell lysate |
Tiangen Biochemical Technology (Beijing) Co., Ltd. |
| Anti-human CD3-BV510 (Clone:SK7) |
BD, USA |
| Anti-human TCR Vδ2-PE (Clone:B6) |
BD, USA |
| Anti-human CD314 (NKG2D)-PerCP/Cy5.5 (Clone: 1D11) |
Biolegend, USA |
| Anti-human Ki67-Alexa Fluor® 647 (Clone:B56) |
BD, USA |
| Anti-human CD45RA-PE-cy5 (Clone:HI100) |
Biolegend, USA |
| Anti-human CD27-Pacific Blue (Clone:O323) |
Biolegend, USA |
[0087] Example 1: Vγ9Vδ2T cell proliferation effects and characteristics of Vγ9Vδ2T cells
obtained by proliferation.
Extraction of peripheral blood mononuclear cells
[0088]
- 1) 4 mL of human lymphocyte separation solution was taken and added into a 15mL conical
centrifuge tube, 1×PBS buffer was used to dilute the peripheral blood in equal proportions
and mixed thoroughly, and then 10mL of diluted peripheral blood was slowly spread
on the surface of the lymphocyte separation solution along the wall of the test tube,
and 600g centrifuging was conducted for 25min at 25°C.
- 2) A sterile Pasteur pipette was used to draw the middle white flocculent cell layer
into another sterile centrifuge tube, an equal volume of PBS was added and mixed thoroughly,
and then centrifuging was conducted at 1500rpm for 10min.
- 3) After the supernatant was discarded, 5∼10mL red blood cell lysate buffer was added
to resuspend the cells to lyse for 3∼7min at room temperature. 5 times of the volume
of PBS was added to terminating the lysis. After filtering with a 40µm screen, centrifuging
was conducted at 1500rpm for 10min.
- 4) After the supernatant was discarded, 10mL of serum-free RPMI1640 culture medium
was added to resuspend the cells, and centrifuging was conducted at 1500rpm for 10m
in.
- 5) After the supernatant was discarded, the RPMI1640 complete culture medium (containing
10% fetal bovine serum) was used to dilute the cells sinking at the bottom of the
tube to 2 mL, after mixing thoroughly and slowly, 5µL of cell diluent was drawn for
diluting to an appropriate multiple, and a hemocytometer was used for counting.
Proliferation in vitro of Vγ9Vδ2T cell
[0089] After the PBMC in fresh blood was separated using the Ficoll separation solution,
RPMI-1640 complete culture medium with 10% FBS was used to adjust the cell concentration
to 3∼4×10
6 cells/ml, and inoculated to a 24-well plate, and 40ng/mL IL-2 and 50µM zoledronic
acid were added for stimulating for 3 days. Then, the zoledronic acid was removed,
the medium was changed every 2∼3 days for passage, and the RPMI-1640 culture medium
containing cytokines of the following concentrations was used: 100IU/mL IL-15, 100IU/mL
IL-2, and 70µM vitamin C, to culture in a culture incubator at 37°C, 5% CO
2, PH=7.2-7.4, and a humidity of 95% for 10-14 days.
Vγ9Vδ2T cell purity and phenotype identification
[0090] Vγ9Vδ2T cells proliferated in vitro for 10∼14 days were collected and placed inside
a 1.5 mL of EP tube, and then centrifuged at 3500rpm for 5min in a miniature centrifuge
(Eppendorf 5424), and after the supernatant was discarded, washing was conducted twice
with 4°C pre-cooled PBS; the cells were transferred into the corresponding test tubes
according to the blank control tube, isotype control and experimental group, respectively,
and each tube contained about 5×10
5 cells. The control tube and the detection tube were respectively equipped with the
following fluorescent antibody staining solution according to the antibody specification:
anti-human CD3-V500, anti-human TCR-δ2-PE, anti-human CD45-PE-cy5, anti-human CD27-PB
and NKG2D-PE-cy7. The cells were resuspended with the prepared fluorescent antibody
staining solution, then placed in a refrigerator at 4°C or on ice, stained in a dark
place for 15-20 minutes, washed twice with PBS, and centrifuged at 3500rpm for 5 minutes,
and the supernatant was discarded, and then the cells were resuspended with 200-300µL
PBS, and the purity and phenotype of Vγ9Vδ2T cells were detected using a flow cytometry.
Vγ9Vδ2T cell ki67 assay
[0091]
- 1) 7∼10×105 Vγ9Vδ2T cells proliferated in vitro for 10∼14 days were collected, placed inside
a 1.5 mL EP tube, centrifuged at 3500rpm for 5min in a miniature centrifuge (Eppendorf
5424), and after discarding the supernatant, washed twice using 4°C pre-cooled PBS.
- 2) The cell pellet was resuspended by 100µL PBS, surface-stained flow cytometry antibody
CD3-FITC and TCR-52-PE (1:200 dilution) were added, an isotype control antibody of
the same color and same concentration was added to the control tube, and they were
incubated at 4°C in the dark for 15 minutes.
- 3) After staining, the resultant was washed twice in PBS, and centrifuged at 3500rpm
for 5min.
- 4) Foxp3 Staining Buffer Set was used to detect the expression level of intranuclear
ki67 as follows: preparing Fixation & Permeabilization Buffer, evenly mixing F & P
Concentration with F & P Diluent in a volume ratio of 1:3; and resuspending the cells
with 500µL F & P Buffer, standing in a refrigerator at 4°C or on ice in dark place
for 0.5-18 hours, thereby fixing and permeabilizing the cells.
- 5) The 10×Permeabilization Buffer was diluted to 1×Permeabilization Buffer with ddH2O. After fixing, 1mL 1×Permeabilization Buffer was added, and the resultant was centrifuged
at 5500rpm at 4°C for 5min and washed twice.
- 6) The APC-Ki67 fluorescent antibody was diluted into 1× Perm Buffer in a volume ratio
of 1:200 and mixed evenly; the cell pellet was resuspended with a staining solution,
placed in a refrigerator at 4°C or on ice, and stained in dark place for 30 minutes.
- 7) 1×Perm Buffer solution was added, the resultant was centrifuged at 5500rpm at 4°C
for 5min, and resuspended with 1×Perm Buffer solution and centrifuged again to wash
away unbound fluorescent antibody. The cells were resuspended with 200-300µL PBS,
the volume was adjusted, and the Ki67 expression level was analyzed with a flow cytometry.
[0092] FIG. 1 was a comparison chart of the proliferation ratios showing that a culture
medium containing zoledronic acid was first used for stimulation and then four different
cell culture mediums were used to conduct proliferation culture to the human Vγ9Vδ2T
cells.
[0093] In FIG. 1, IL2 indicated what was used in the entire proliferation culture process
was the culture medium obtained by adding IL2 based on the basic culture medium;
[0094] IL2+VC indicated what was used in the entire proliferation culture process was the
culture medium obtained by adding IL2+VC based on the basic culture medium;
[0095] IL2+IL15 indicated what was used in the entire proliferation culture process was
the culture medium obtained by adding IL2+ IL15 based on the basic culture medium;
and
[0096] IL2+IL15+VC indicated what was used in the entire proliferation culture process was
the culture medium obtained by adding IL2+ IL15+VC based on the basic culture medium.
[0097] In the stage of stimulation and proliferation, the solutions of the above four culture
mediums all used the basic culture medium added with ZOL (zoledronic acid) and IL-2
to stimulate the cells, and the amount of the components of each culture medium in
FIG. 1 refers to the concentration as described in the portion of "Vγ9Vδ2T cell proliferation
in vitro" of this example.
[0098] As shown in FIG. 1, after the above four culture mediums were respectively used for
conducting proliferation culture to the human Vγ9Vδ2T cells, the obtained data showed
that the cell proliferation efficiency of the culture medium (IL2 and IL2+VC), in
which IL15 was not added, was relatively low, while the cell proliferation efficiency
of the culture medium (IL2+ IL15 and IL2+ IL15+VC), in which IL15 was added, was relatively
high, and thus, it could be seen that the adding of IL-15 could obviously improve
the proliferation efficiency (rise of Ki67 protein expression) of the human Vγ9Vδ2T
cells.
[0099] FIG. 2 was a comparison chart of the apoptosis ratio of the human Vγ9Vδ2 T cells
obtained by using four different culture mediums to conduct proliferation culture
to the human Vγ9Vδ2T cells, and IL2, IL2+VC, IL2+IL15, IL2+IL15+VC in FIG. 2 represented
the same meanings with those in FIG. 1.
[0100] Based on FIG. 2, it could be seen that adding VC into the culture medium could obviously
reduce the apoptosis ratio and apoptosis rate of cells, and in addition, the combination
of IL-15 and VC could more significantly enhance the anti-apoptotic ability of cells.
[0101] FIG. 3 was a comparison chart of the expression levels of the critical killer molecule
NKG2D of the human Vγ9Vδ2 T cells obtained by using four different culture mediums
to conduct proliferation culture to the human Vγ9Vδ2T cells; and IL2, IL2+VC, IL2+IL15,
IL2+IL15+VC in FIG. 3 represented the same meanings with those in FIG. 1 and FIG.
2.
[0102] Based on FIG. 3, it could be seen that the combination of IL-15 and vitamin C could
make the critical killer molecule NKG2D of human Vγ9Vδ2T cells continuously maintain
a high level of expression, and the critical killer molecule NKG2D could still maintain
a high level of expression at the 21
st day of the culturing and after 21 days of culturing. In other words, the formula
of the combination of IL-15 and VC (i.e., the technical solution of the present disclosure)
could maintain a longer time of the high killing ability of human Vγ9Vδ2T cells.
Example 2: anti-tumor effect of the proliferated Vγ9Vδ2T cells
[0103] Construction of humanized mouse lung cancer model and experimental methods
1. Experimental animals
[0104] Rag2
-/-γc
-/- female mice aged 3-4 weeks were purchased from Taconic Company, which were of SPF
grade. Immunodeficient mice used independently ventilated IVC cages. 5 mice were raised
in each cage. Each isolator had independent HEPA air inlet and outlet and had 24-hour
temperature and humidity control, and the feed and litter supply of the mice were
vacuum-packed and sterilized by γ- radiation, and sterilized water was used as animal
drinking water, and the animal raised in this environment was also packaged in a sterile
environment; and the animals were transported in a biologically safe transportation
box to ensure that the feeding and transportation were maintained in the same microbial
state, so as to ensure and maintain the quality of the animals. The animal experiment
was approved by the experimental animal ethics committee.
2. Method of constructing animal models with tumors
[0105] PBMC (huPBMC) were separated by Ficoll liquid density gradient centrifugation to
construct humanized mouse models (huPBMCs humanized mice). The HLA type of constructing
the humanized mouse-related PBMC was not consistent with the γδ T cells for reinfusion,
and generally was HLA-A2+/-. It was convenient for distinguishing the γδ T cells for
reinfusion and from the humanized mice themselves during subsequent detection.
[0106] Then, normal Rag2
-/-γc
-/- mice aged 4-6 weeks were selected, after being irradiated with a sublethal dose of
300 cGay, 30×10
6 huPBMCs were injected intraperitoneally. After 4 weeks, the surviving humanized mice
could be used for the construction of lung cancer models in the next step. After A549
cells growing adherently were digested, a cell suspension was prepared, and the concentration
of A549 cells was adjusted to 1×10
7 cells/mL with phosphate buffered saline (PBS). The prepared cell suspension was inoculated
into humanized mice by inguinal subcutaneous injection at a dose of 100 µL/mouse.
3. Use of proliferated Vγ9Vδ2T cells to treat animal models
[0107]
- 1) After 5-7 days of tumor formation, 5×106 γδ T cells cultured by IL-2, IL-2+VC, IL-2+IL-15, IL-2+II-15+VC were injected into
the humanized mouse model with lung cancer through the tail vein of the mouse every
3 days, and there were 5 mice in each group, and the dose is 100µL/mouse. The PBS
injection group was a control group of treatment. The γδ T cells cultured by IL-2,
IL-2+VC, IL-2+IL-15 and IL-2+II-15+VC were obtained by the method and steps described
in the portion of "Vγ9Vδ2T cell proliferation in vitro" in embodiment 1, and IL2,
IL2+VC, IL2+IL15 and IL2+IL15+VC represented the same meanings with those in FIG.
1 in embodiment 1.
- 2) After 3-4 times of treatment, they were observed for more than 60 days. The size
of the tumor of the mice was measured using a vernier caliper twice a week, wherein
the short diameter (A) and long diameter (B) of the tumor were used to calculate the
tumor volume according to the formula: V=1/2×A2×B.
- 3) After the reinfusion course of treatment was ended, the peripheral blood was drawn
to detect the percentage and cell activity of the γδ T cells in the mice, and after
the reinfusion was ended, the peripheral blood was drawn every two weeks to detect
the percentage and cell activity of γδ T cells: NKG2D, PDI, CD107a, Fas and FasL.
- 4) Before the mice were sacrificed, the colonization situation of γδT cells in the
mice was detected. GFP signal was detected at the same time, and the number and percentage
of A549 tumor cells in peripheral blood were observed.
4. Experimental result
[0108] The result of tumor treatment experiment was shown in FIGs. 4A, 4B, 4C, 5 and 6.
[0109] FIG. 4A was a schematic view of the size of tumor after a cell treatment to a humanized
mouse with lung cancer using the human Vγ9Vδ2T cells obtained by a conventional proliferation
method (IL-2).
[0110] The conventional proliferation method (the second type of proliferating technology)
was always to add IL2 into the basic culture medium for culturing and to add ZOL for
stimulating proliferation in the early stage of the culturing.
[0111] FIG. 4B was a schematic view of the size of tumor after a cell treatment to a humanized
mouse with lung cancer using the human Vγ9Vδ2T cells obtained by the proliferation
method (IL2+IL15+VC) of the present disclosure.
[0112] FIG. 4C was a schematic view of the size of tumor of the humanized mouse with lung
cancer in the case of not being treated.
[0113] The humanized mice with lung cancer used in the experiments as illustrated in FIGs.
4A, 4B and 4C had the same tumor type and substantively the same tumor volume, and
growing time of the tumor as illustrated in FIGs. 4A, 4B and 4C were the same.
[0114] Through the comparison of FIGs. 4A, 4B and 4C, it could be seen that after the human
Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure were
used to perform cell treatment on the humanized mice with lung cancer, compared with
the human Vγ9Vδ2T cells obtained by a conventional proliferation method, the human
Vγ9Vδ2T cells proliferated by the present disclosure could more effectively suppress
the growth of lung cancer cells (the size of the tumor was significantly reduced),
and could significantly improve the survival rate of humanized mice with lung cancer.
On the 42
nd day, the humanized mice with lung cancer that were treated with human Vγ9Vδ2T cells
obtained by a conventional proliferation method and the untreated humanized lung cancer
mice all died, however, the humanized mice with lung cancer that were treated with
human Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure
all survived with a survival rate of 100%, and the tumor in one mouse completely disappeared
(shown in the block of FIG. 4B).
[0115] FIG. 5 was a schematic view of the variations of the volume of the tumor of the humanized
mice with lung cancer under different treating conditions, and FIG. 5 respectively
illustrated the volume changes of the tumor of the humanized mice with lung cancer
when the humanized mice with lung cancer were treated with the human Vγ9Vδ2T cells
obtained by the conventional proliferation method (IL2) and with the human Vγ9Vδ2T
cells obtained by the proliferation method (IL2+IL15+VC) of the present disclosure,
and were not treated.
[0116] It could be seen that with the increase of time, the volumes of tumors of the humanized
mice with lung cancer which were treated with human Vγ9Vδ2T cells obtained by the
conventional proliferation method (IL2) and which were not treated increased continuously,
and the tumor volumes increased very quickly in the later stage, however, the tumor
volume of humanized mice with lung cancer treated with the human Vγ9Vδ2T cells obtained
by the proliferation method (IL2+IL15+VC) of the present disclosure increased very
slowly, in other words, compared with the human Vγ9Vδ2T cells obtained by the conventional
proliferation method (IL2), the human Vγ9Vδ2T cells obtained by the proliferation
method (IL2+IL15+VC) of the present disclosure had a stronger suppressing effect on
tumor growth in vivo, and rendered smaller tumor volumes.
[0117] FIG. 6 was a schematic view of the variations of the survival rates of the humanized
mice with lung cancer under different treating conditions, and FIG. 6 respectively
illustrated the variations of the survival rates of the humanized mice with lung cancer
which were treated with the human Vγ9Vδ2T cells obtained by the conventional proliferation
method (IL2) and with the human Vγ9Vδ2T cells obtained by the proliferation method
(IL2+IL15+VC) of the present disclosure, and which were not treated.
[0118] It could be seen that with the increase of time, the survival rates of the humanized
mice with lung cancer which were treated with human Vγ9Vδ2T cells obtained by the
conventional proliferation method (IL2) and which were not treated reduced very quickly,
however, the survival rate of the humanized mice with lung cancer treated with the
human Vγ9Vδ2T cells obtained by the proliferation method (IL2+IL15+VC) of the present
disclosure was always 100%, in other words, the human Vγ9Vδ2T cells obtained by the
proliferation method (IL2+IL15+VC) of the present disclosure could significantly improve
the survival rate of the humanized mouse with lung cancer.
Example 3
[0119] The example 1 provided a second culture medium, which comprised a RPMI-1640 culture
medium, and interleukin-2, interleukin-15 and vitamin C added in the RPMI-1640 culture
medium.
[0120] In the above, in the second culture medium, the concentration of the interleukin-2
was 300ng/ml, the concentration of the interleukin-15 was 500ng/ml, and the concentration
of the vitamin C was 100mM.
Example 4
[0121] The example 2 provided a second culture medium, which comprised a RPMI-1640 culture
medium, and interleukin-2, interleukin-15 and vitamin C added in the RPMI-1640 culture
medium.
[0122] In the above, in the second culture medium, the concentration of the interleukin-2
was 500ng/ml, the concentration of the interleukin-15 was 700ng/ml, and the concentration
of the vitamin C was 300mM.
Example 5
[0123] The example 3 provided a first culture medium, which comprised the second culture
medium as mentioned in the example 1 and zoledronic acid.
[0124] In the above, in the first culture medium, the concentration of the zoledronic acid
was 300µM.
Example 6
[0125] The example 4 provided a first culture medium, which comprised the second culture
medium as mentioned in the example 2 and zoledronic acid.
[0126] In the above, in the first culture medium, the concentration of the zoledronic acid
was 500µM.
[0127] It is difficult to describe all the numerical ranges of the process parameters involved
in the present disclosure in the above-mentioned embodiments, but those skilled in
the art can fully imagine that any value falling within the above-mentioned value
range can perform the present disclosure, and certainly the present disclosure contains
any combination of specific values of several numerical ranges. Here, for the sake
of space, the embodiments providing specific values within one or more numerical ranges
are omitted, while this should not be regarded as insufficient disclosure of the technical
solutions of the present disclosure.
[0128] The applicant declares that the above-mentioned embodiments in the present disclosure
are used to describe the specific process equipment and the process flow of the present
disclosure, but the present disclosure are not limited to the above process equipment
and process flow, that is, it does not mean that the present disclosure can only be
implemented depending on the above specific process equipment and process flow. A
person skilled in the art should understand that any improvement to the present disclosure,
and equivalent substitutions to each material of the product of the present disclosure,
and the addition, the selection of the specific methods of auxiliary components and
the like all fall within the scope of the present disclosure.
Industrial applicability
[0129] Compared with a conventional proliferation method (the second type of proliferation
technology), the human Vγ9Vδ2T cells obtained by the proliferation method of the present
disclosure has a higher proliferation efficiency and a higher cell purity, and the
proliferation method of the present disclosure obviously shortens the proliferation
culture period of the human Vγ9Vδ2T cells. Compared with the human Vγ9Vδ2T cells obtained
by the conventional proliferation method (the second type of proliferating technology),
the human Vγ9Vδ2T cells obtained by the proliferation method of the present disclosure
have stronger killing and suppressing abilities to tumor. The human Vγ9Vδ2T cells
obtained by the proliferation method of the present disclosure have a stronger anti-apoptotic
ability and a longer survival time.
1. A T cell proliferation method,
characterized by comprising:
step A, culturing a composition containing the T cells, by using a first culture medium
which is able to stimulate T cells, so as to stimulate the T cells; and
step B, using a second culture medium to culture stimulated T cells, wherein the second
culture medium contains interleukin-2, interleukin-15, and vitamin C or a derivative
of vitamin C.
2. The method according to claim 1, wherein the T cells comprise Vγ9Vδ2T cells.
3. The method according to claim 1 or 2, wherein the first culture medium comprises interleukin-2
and phosphonic acid compounds, and optionally, also comprises interleukin-15, and
vitamin C or a derivative of vitamin C.
4. The method according to any one of the preceding claims, wherein the derivative of
vitamin C is selected from the group consisting of vitamin C ethyl ether, vitamin
C palmitate, vitamin C glucoside, vitamin C magnesium phosphate and vitamin C sodium
phosphate and combinations thereof.
5. The method according to any one of the preceding claims, wherein in the second culture
medium, a concentration of the interleukin-15 is 1-1000ng/ml.
6. The method according to any one of the preceding claims, wherein in the second culture
medium, a concentration of the vitamin C or the derivative of vitamin C is 10µM-800mM.
7. The method according to any one of the preceding claims, wherein in the second culture
medium, a concentration of the interleukin-2 is 1-1000ng/ml.
8. The method according to any one of the preceding claims, wherein the composition containing
the T cells comprises peripheral blood mononuclear cells extracted from peripheral
blood of human body.
9. The method according to any one of the preceding claims, wherein in the step A, a
culture duration is 60-100 hours.
10. The method according to any one of claims 3-9, wherein the phosphonic acid compounds
comprise bisphosphoric acid compounds, preferably, selected from the group consisting
of zoledronic acid, etidronic acid, ibandronic acid, pamidronic acid, alendronic acid,
risedronic acid, minodronic acid and combinations thereof, for example, zoledronic
acid.
11. The method according to any one of the preceding claims, wherein the second culture
medium further comprises a basic culture medium, wherein the basic culture medium
is selected from the group consisting of RPMI-1640 culture medium, D-MEM, MEM, RPMI,
Opti-MEM and combinations thereof, for example, RPMI-1640 culture medium.
12. A culture medium, characterized by comprising a basic culture medium, interleukin-2, interleukin-15, and vitamin C or
a derivative of vitamin C.
13. The culture medium according to claim 12, wherein a concentration of the interleukin-2
is 1-1000ng/ml, a concentration of the interleukin-15 is 1-1000ng/ml, and a concentration
of the vitamin C or the derivative of vitamin C is 10µM-800mM.
14. A pharmaceutical composition, characterized by comprising the T cells obtained by proliferation using the method according to any
one of claims 1-11 and a pharmaceutically acceptable carrier, preferably, the pharmaceutical
composition is a cell suspension.
15. Use of the T cells obtained by proliferation using the method according to any one
of claims 1-11 or the pharmaceutical composition according to claim 14 in preparation
of medicines for suppressing, preventing or treating an infectious disease, an autoimmune
disease or a malignant disease, preferably, the malignant disease is cancer, and more
preferably, the malignant disease is selected from the group consisting of adrenocortical
carcinoma, anal cancer, bladder cancer, ependymoma, medulloblastoma, breast cancer,
cervical cancer, colon cancer, endometrial cancer, esophageal cancer, extrahepatic
cholangiocarcinoma, eye cancer, gallbladder cancer, gastric cancer, germ cell tumors,
extragonadal cancer, head and neck cancer, hypopharyngeal cancer, pancreatic islet
cell cancer, laryngeal cancer, leukemia, acute lymphoblastic leukemia, oral cancer,
liver cancer, lung cancer, and combinations thereof, for example, lung cancer.
16. A method for suppressing, preventing or treating an infectious disease, an autoimmune
disease or a malignant disease,
characterized by comprising:
(1) extracting peripheral blood mononuclear cells from peripheral blood of a subject
in need;
(2) proliferating the peripheral blood mononuclear cells through the method according
to any one of claims 1-11; and
(3) administering proliferated product to the subject in need,
wherein the peripheral blood mononuclear cells are used as the composition containing
the T cells, preferably, the malignant disease is cancer, and more preferably, the
malignant disease is selected from the group consisting of adrenocortical carcinoma,
anal cancer, bladder cancer, ependymoma, medulloblastoma, breast cancer, cervical
cancer, colon cancer, endometrial cancer, esophageal cancer, extrahepatic cholangiocarcinoma,
eye cancer, gallbladder cancer, gastric cancer, germ cell tumors, extragonadal cancer,
head and neck cancer, hypopharyngeal cancer, pancreatic islet cell cancer, laryngeal
cancer, leukemia, acute lymphoblastic leukemia, oral cancer, liver cancer, lung cancer,
and combinations thereof, for example, lung cancer.
17. Use of the T cells obtained by proliferation using the method according to any one
of claims 1-11 or the pharmaceutical composition according to claim 14 in suppressing,
preventing or treating an infectious disease, an autoimmune disease or a malignant
disease, preferably, the malignant disease is cancer, and more preferably, the malignant
disease is selected from the group consisting of adrenocortical carcinoma, anal cancer,
bladder cancer, ependymoma, medulloblastoma, breast cancer, cervical cancer, colon
cancer, endometrial cancer, esophageal cancer, extrahepatic cholangiocarcinoma, eye
cancer, gallbladder cancer, gastric cancer, germ cell tumors, extragonadal cancer,
head and neck cancer, hypopharyngeal cancer, pancreatic islet cell cancer, laryngeal
cancer, leukemia, acute lymphoblastic leukemia, oral cancer, liver cancer, lung cancer,
and combinations thereof, for example, lung cancer.
18. Use of the culture medium according to claim 12 or 13 in proliferating T cells, preferably,
the T cells are Vγ9Vδ2T cells.