TECHNICAL FIELD
[0002] Embodiments of the present disclosure relate to, but are not limited to, orthogonal
frequency division multiplexing (OFDM) wireless communication technology, for example,
relate to a method and device for combating Doppler shift.
BACKGROUND
[0003] As shown in Fig. 1, in a wireless communication system, when there are a line-of-sight
channel and a relative speed between a transmitter and a receiver, a Doppler shift
fd will occur, and

. In the above equation, v is the relative speed between the transmitter and the receiver,
c is a speed of light,
fc is a carrier frequency, and
θ is an angle between the transmitter and the receiver.
[0004] When a mobile client is in a high-speed moving scenario, the Doppler shift will cause
serious interferences to signals.
[0005] At present, in a 4G or 5G high-speed rail communication system, a Vehicle-to-Vehicle
(V2V) system, or a Vehicle-to-Everything (V2X) system, when a user-side equipment
performs cell handover, there is no relevant technical solution to effectively combat
the Doppler shift.
[0006] US Patent Application
US2016345221A1 discloses a wireless communication system that antenna nodes are controlled to maintain
a respective radio cell, each cell having one and the same physical cell identity.
The antenna nodes are further controlled to maintain the respective radio cell in
a single direction substantially along a path such that each wireless communication
device, during movement in a movement direction along the path, can connect either
to consecutive antenna nodes towards which the wireless communication device is moving
or connect to consecutive antenna nodes away from which the wireless communication
device is moving, so as to direct the antenna cells in certain directions in order
to solve the problem that the Doppler shift is reversed at a cell handover and that
this leads to instability / high complexity in the carrier frequency offset compensation
until the new Doppler shift is correctly estimated.
[0007] WO Patent Application
WO2010121453A1 discloses a method for correcting the frequency shift, which includes correcting
the frequency of an input signal of an apparatus for correcting the frequency shift
and eliminating the Doppler frequency shift in the input signal of the apparatus when
an UE is confirmed in a high speed motion by a frequency shift elimination module
which is located at the front-end of the AFC circuit, and receiving the output signal
of the frequency shift elimination module and performing automatic frequency control
according to the output signal by a AFC circuit, however, it does not mention any
particular handling during handover.
SUMMARY
[0008] The embodiments of the present application provide a method for combating Doppler
shift, including: obtaining, in a case where a user equipment (UE) performs cell handover,
a Doppler shift estimation of the user equipment at a last moment in a source cell;
and obtaining an additive inverse of the Doppler shift estimation, and using the additive
inverse of the Doppler shift estimation for Carrier Frequency Offset (CFO) compensation
in an Automatic Frequency Control (AFC).
[0009] The embodiments of the present application further provide a device for combating
Doppler shift, including: an obtaining unit, configured to obtain, in a case where
a user equipment performs cell handover, a Doppler shift estimation of the user equipment
at a last moment in a source cell; and a processing unit, configured to obtain an
additive inverse of the Doppler shift estimation, and use the additive inverse of
the Doppler shift estimation for CFO compensation in an AFC.
[0010] The embodiments of the present application further provide a computer-readable storage
medium having an information processing program stored thereon. When the information
processing program is executed by a processor, the above-mentioned method for combating
Doppler shift is realized.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 is a schematic diagram of a scenario where a Doppler shift is generated.
Fig. 2 is a schematic diagram of a scenario where a Doppler shift causes interference
in a 4G or 5G high-speed rail communication system.
Fig. 3 is a schematic flowchart of a method for combating Doppler shift.
Fig. 4 is a schematic structural diagram of a user-side equipment.
Fig. 5 is a schematic flowchart of a method for combating Doppler shift.
Fig. 6 is a schematic flowchart of a method for combating Doppler shift.
Fig. 7 is a schematic structural diagram of a user-side equipment.
Fig. 8 is a schematic flowchart of a method for combating Doppler shift.
Fig. 9 is a schematic structural diagram of a device for combating Doppler shift.
DETAILED DESCRIPTION
[0012] Hereinafter, the embodiments of the present application will be described in detail
with reference to the drawings. It should be noted that the embodiments in the present
application and features in the embodiments can be combined with each other arbitrarily
if there is no conflict.
[0013] Steps shown in a flowchart of the drawings may be executed in a computer system such
as a set of computer-executable instructions. In addition, although a logical sequence
is shown in the flowchart, in some cases, the steps shown or described may be performed
in a sequence different from the logical sequence.
[0014] For example, as shown in Fig. 2, in a 4G or 5G high-speed rail communication system,
a Doppler shift will cause the following interferences on a mobile client.
- 1) A Doppler shift within a cell occurs when a user terminal receives signals. At
present, methods to combat this interference can adopt a suitable AFC loop and/or
a Global Positioning System (GPS) signal to assist in calculating a relative movement
speed when the user terminal is moving, to achieve stable AFC tracking to compensate
for the Doppler shift.
- 2) A Doppler shift mutation occurs at a mobile client in a handover zone. As shown
in Fig. 2, for example, a mobile terminal at a position 2 is in a handover zone from
a base station 1 to a base station 2. Since the mobile terminal at the position 2
moves in an opposite direction relative to the base stations 1 and 2, the Doppler
shift will suddenly change from a negative maximum value to a positive maximum value.
At present, methods for the mobile terminal to combat this Doppler shift mutation
is the same as the above-mentioned methods for combating the ordinary Doppler shift.
[0015] For the user terminal, 1) using the AFC loop can better combat the Doppler shift
within a cell, but in the handover zone, a carrier frequency shift or a larger CFO
estimation variance due to a low Signal to Interference plus Noise Ratio (SINR) causes
a terminal to have a limited performance in tracking the Doppler shift mutation and
thus leads to a decrease in a reception performance of the mobile terminal in the
handover zone. 2) Using the GPS signal to assist in the calculation of the terminal's
moving speed and position can better assist the mobile terminal in combating a Doppler
mutation in the handover zone. For example, as shown in Fig. 2, when the mobile client
enters the base station 2, the Doppler shift is obtained through GPS-assisted calculation
immediately, input to a CFO estimator and output to an AFC loop filter. However, for
example, for a mobile terminal user in a high-speed rail car, the GPS is shielded
by a carriage and cannot be used.
[0016] In addition, in the 4G or 5G high-speed rail communication system, as shown in Fig.
2, Doppler shifts of uplink transmitted signals of multiple mobile terminals in a
cell, e.g., the transmitted signals at positions 1 and 2 in Fig. 2, are inconsistent,
which causes the base station to perform CFO estimation and compensation on uplink
received signals one by one to combat possible ICI effects. A computational complexity
of this combating method is relatively high, especially for a multiple UE uplink receiving
node in a 4G or 5G V2V communication system.
[0017] Therefore, the embodiments of the present application provide a technical solution
for combating Doppler shift, which can enable the user terminal to better combat the
Doppler shift at smaller costs of the user terminal and the base station in different
scenarios. Through an uplink CFO pre-compensation technology and a receiving-transmit
AFC technology, a computational complexity of an uplink receiver is greatly reduced.
[0018] Fig. 3 is a schematic flowchart of a method for combating Doppler shift. As shown
in Fig. 3, the method includes step 301 and step 302.
[0019] In step 301, when a user equipment performs cell handover, a Doppler shift estimation
of the user equipment at a last moment in a source cell is obtained.
[0020] In step 302, the Doppler shift estimation is inversed, and the inversed Doppler shift
estimation is used for CFO compensation in an AFC.
[0021] The step of obtaining the Doppler shift estimation of the user equipment at the last
moment in the source cell, includes: determining the Doppler shift estimation at a
moment when performing the cell handover according to the following equation:
f̂d(
n)
= Δ
fc(
n) - Δ
fT(
n)
.
[0022] Here,
n is a moment when performing the cell handover,
f̂d(
n) is the Doppler shift estimation at the moment
n, Δ
fT(
n) is an average value of Δ
fc in a time period of length T before the moment n while the user equipment is in a
connected state, Δ
fc is an output value of an AFC loop filter, and Δ
fc(n) is an output value of the AFC loop filter at the moment
n.
[0023] When the user equipment is in a PC5-based ad hoc network of a V2V/V2X system, a high-precision
timing of a GPS is used to calibrate the Δ
fT(
n) within time T
1, and a value of T
1 is any value from 0.1 s to 1 s.
[0024] A value of T is much larger than an average time of the user equipment in a high-speed
moving state being in one cell.
[0025] The value of T is any value from 10 minutes to 30 minutes.
[0026] The step of inversing the Doppler shift estimation to be used and using the inversed
Doppler shift estimation for the CFO compensation in the AFC includes: inversing the
Doppler shift estimation for N times, and using the Doppler shift estimation that
is inversed for N times for the CFO compensation in the AFC.
[0027] N is a natural number greater than or equal to 2, and less than or equal to 5.
[0028] The method further includes: enlarging a loop filter factor of the AFC in the user
equipment.
[0029] The step of enlarging the loop filter factor of the AFC in the user equipment includes:
enlarging the loop filter factor of the AFC in the user equipment by K times, for
N times, i.e., enlarging the loop filter factor of the AFC in the user equipment by
K
N times.
[0030] When the user equipment is in a wireless mobile communication network, a value of
K is any value from 1.3 to 2.
[0031] When the user equipment is in a V2V/V2X system, the value of K is any value from
1 to 1.2.
[0032] N is a natural number greater than or equal to 2, and less than or equal to 5.
[0033] The method further includes: determining an uplink transmission carrier frequency
fT ,
fT =
f̂c - 2 *
f̂d ,
f̂c =
f0 +
f̂d ,
f0 is a downlink carrier transmit frequency,
f̂c is a frequency estimate of a current receiving carrier,
f̂d is the Doppler shift estimation,
f̂d is a Doppler shift, and
f̂d = f̂c -
f0 , f̂0 is a reference frequency estimation.
[0034] The method further includes: receiving Downlink Control Information (DCI), the DCI
carrying a m-bit frequency adjustment value Δ
fTxAFC(
n), and
; and adjusting an uplink transmission carrier frequency
fT(
n) according to the frequency adjustment value Δ
fTxAFC(
n),
fT(
n) =
fT(
n - 1) +
ΔfTxAFC(
n), Δ
fsubcarrier is a subcarrier spacing of an OFDM system, and α and β are preset coefficients.
[0035] The method further includes: when the user equipment is in the PC5-based ad hoc network
of the V2X system, determining the transmission carrier frequency
fT of a Physical Sidelink Share Channel (PSSCH), a Physical Sidelink Control Channel
(PSCCH) and a Physical Downlink Shared Channel (PSDCH); where
fT =
f̂c - 2 *
f̂d ,
f̂c =
f0 +
fd ,
f0 is the downlink carrier transmit frequency,
f̂c is a frequency estimate of a current receiving carrier,
fd is a Doppler shift,
f̂d is the Doppler shift estimation, and
f̂d = f̂c -
f̂0 ,
f̂0 is a reference frequency estimation; and determining a carrier frequency
fT,PSBCH / SLSS(
n) of transmitted signals of a Physical Sidelink Broadcast Channel (PSBCH) and Sidelink
Synchronization Signals; where
fT,PSBCH / SLSS(
n) =
f̂c(
n) -
f̂d(
n);
n is a moment when performing the cell handover,
f̂d(
n) is the Doppler shift estimation at the moment
n, f̂c(
n) is a frequency estimate of a current receiving carrier at the moment n.
[0036] The technical solution provided by the present application will be described in detail
below through several embodiments.
[0037] Fig. 4 is a schematic structural diagram of a user-side equipment. As shown in Fig.
4, the user-side equipment (a receiver) includes: an AFC including a mixer, a Phase
Locked Loop (PLL) local oscillator circuit, a Voltage Controlled Oscillator (VCTCXO)
and a Loop Filter (LF), a Digital to Analog Converter (DAC), an Analog to Digital
Converter (ADC), a CFO estimator, and a TX port, etc. The mixer receives a signal
with a certain frequency from a transmitter, detects a frequency error after comparing
the signal with a local oscillator signal output by the PLL local oscillator circuit
and outputs it to the CFO estimator for CFO estimation. The CFO outputs an estimated
CFO to the LF for compensation. The LF filters out a voltage control signal and controls
the VCTCXO to adjust the frequency to approximate the frequency of the received signal.
The VCTCXO uses the compensated frequency signal as a local oscillator signal and
feeds it back to the mixer through the PLL for frequency error detection. Then the
above processes are repeated, thereby gradually reducing the frequency error between
the local oscillator signal and the received signal, and realizing automatic frequency
control.
[0038] Based on the user-side equipment provided in Fig. 4, Fig. 5 is a schematic flowchart
of a method for combating Doppler shift. As shown in Fig. 5, the method includes step
501 to step 506.
[0039] In step 501, a reference frequency of a user terminal is obtained.
[0040] The reference frequency is a downlink carrier transmit frequency
f0, and a Doppler shift
fd cannot be included in a reference frequency estimation
f̂0 obtained by a mobile terminal.
[0041] In step 502, the Doppler shift at the user terminal is estimated.
[0042] The user terminal may obtain a frequency estimate of a current receiving carrier
f̂c = f0 +
fd through a downlink pilot signal, and the mobile terminal uses
f̂c to complete a reception for the downlink signal. It can be seen that the mobile terminal
estimates the Doppler shift as
f̂d = f̂c -
f̂0.
[0043] In step 503, -
f̂d transformed from the Doppler shift estimation
f̂d of a source cell is used as CFO compensation in an AFC, when the user terminal performs
a cell handover.
[0044] In the high-speed rail channel, before and after performing the handover of the mobile
terminal, the Doppler shift
fd will inevitably change from a negative maximum value to a positive maximum value,
and a mobile client can know exactly when it enters a new cell. By using these two
pieces of known information, when the user terminal enters a target cell, the Doppler
shift estimation
f̂d of the source cell is transformed to -
f̂d, and -
f̂d is input into the CFO estimator and output to the loop filter of the AFC for the
CFO compensation.
[0045] In step 504, an AFC loop filter factor is increased.
[0046] By increasing the AFC loop filter factor, the AFC of the mobile terminal can quickly
converge to a new mutation frequency, so as to reduce degradation for a reception
performance after performing handover.
[0047] In step 505, an uplink transmission carrier frequency
fT is determined.
[0048] Here,

[0049] Since Doppler shift estimations
f̂d of different mobile terminals already contain their respective position and speed
information, for a 4G or 5G communication system using an OFDM system, the CFO compensation
is generally performed in a time domain and requires a large amount of computation.
In step 505, the Doppler shift of the uplink transmission carrier frequency is pre-compensated,
so that transmission carrier frequencies of multiple UEs received by an uplink receiver
can be substantially the same and equal to its downlink transmit frequency
fo, thereby omitting the calculation of CFO compensation for each UE.
[0050] If there is uplink data to be sent at this moment, the uplink data may be sent according
to the determined uplink transmission carrier frequency
fT.
[0051] In step 506, control information of the transmitter is received, and the uplink transmission
carrier frequency is adjusted according to the control information.
[0052] In an implementation, for a base station or the transmitter, if there is a reverse
channel, e.g., a downlink channel in a high-speed rail communication system, the system
may add an AFC control word
ΔfTxAFC(
n) for its uplink transmit frequency in a reverse UE dedicated signaling so that an
uplink receiving carrier frequency of each UE converges near
fo. Therefore, carrier interference (ICI) effects between UEs are further reduced. The
CFO of the uplink receiving frequency of each UE needs to be estimated one by one
on the uplink receiver.
[0053] If there is uplink data to be sent at this moment, the uplink data may be sent according
to the determined uplink transmission carrier frequency.
Example 1
[0054] The Example 1 of the present application is applied to an application scenario where
a user-side equipment performs a cell handover in a 4G or 5G high-speed rail communication
system.
[0055] Fig. 6 is a schematic flowchart of a method for combating Doppler shift. As shown
in Fig. 6, the method includes step 601 to step 606.
[0056] In step 601, a reference frequency of a user terminal is obtained.
[0057] A reference frequency estimation
f̂0 of a certain cell is a nominal frequency of the cell frequency obtained by the user
terminal through high-level signaling plus Δ
fT(
n), Δ
fT(
n) is an average value of Δ
fc in a time period of length T before a current moment n while the user terminal is
in a connected state, and Δ
fc is an output value of an AFC loop filter. T must be much larger than an average time
of the user terminal in a high-speed moving state being in one cell, and generally
ranges from 10 to 30 minutes.
[0058] The moment n is a moment when performing cell handover.
[0059] In step 602, the Doppler shift at the user terminal is estimated.
[0060] A Doppler shift estimation of the user terminal at the current moment n is
f̂d(
n)
= Δ
fc(
n) - Δ
fT(
n) , and Δ
fc(
n) is an output value of the AFC loop filter at the moment
n.
[0061] In step 603, the Doppler shift estimation
f̂d of a source cell is inversed for N times, and the inversed Doppler shift estimation
is used as an output of a CFO estimator.
[0062] In an implementation, at a moment when the user terminal enters a target cell, immediately
the output of the CFO estimator is forced as the last Doppler shift estimation of
a previous serving cell after being inversed for N times. In this way, a AFC performs
CFO compensation based on the output of the CFO estimator.
[0063] In step 604, an AFC loop filter factor of the user terminal is enlarged by K times,
for N times, i.e., enlarging the loop filter factor of the AFC in the user equipment
by K
N times.
[0064] K is an empirical value, and generally ranges from 1.3 to 2. N is an empirical value,
and generally ranges from 2 to 5. By increasing the AFC loop filter factor, the AFC
of the mobile terminal can quickly converge to a new mutation frequency, so as to
reduce degradation for a reception performance after performing the handover.
[0065] In step 605, a Doppler shift of a carrier frequency of an uplink transmit signal
of the user terminal is pre-compensated.
[0066] When the user terminal is in the connected state, the carrier frequency of the transmit
signal at the current moment
n is
fT = f̂c -
2*
f̂d . The compensation is generally performed in a digital domain.
[0067] In step 606, an uplink transmit frequency is adjusted according to received Downlink
Control Information (DCI) information.
[0068] When the user terminal is in the connected state, each downlink subframe may have
a DCI scheduling for a certain user terminal, and m-bit information may be added to
the DCI. When the user terminal receives its own DCI information, it adjusts the uplink
transmit frequency
fT(
n) =
fT(
n - 1) + Δ
fTxAFC(
n) according to Δ
fTxAFC(
n) carried in the m-bit information. For example, m may be 2.
[0069] Here,

[0070] Δ
fsubcarrier is a subcarrier spacing of an OFDM system, and α and β are empirical values, for
example, α=0.01, and β=0.001. The compensation is generally performed in the digital
domain.
Example 2
[0071] The Example 2 of the present application is applied to an application scenario where
a user-side equipment performs a cell handover in a V2V/V2X system of 4G or 5G.
[0072] The V2V/V2X system has both a uu interface-based networking method that is not much
different from an ordinary Long Term Evolution (LTE) system, and an ad hoc networking
method based on PC5 interfaces and using sidelink channels.
[0073] Regardless of whether a current user terminal is interacting with a base station
or a certain forwarding node, in order to estimate a Doppler shift through GPS information,
the user terminal must be knowledge of a current position, a movement speed and a
movement direction of the user terminal, as while as being knowledge of a current
position, a movement speed and a movement direction of the base station or the certain
forwarding node, which leads to excessive system signaling overhead and complicated
calculations of user terminal. Therefore, The Example 2 of the present application
provides a solution to combat multiple Doppler shifts, which can avoid the above situation.
[0074] Fig. 7 is a schematic structural diagram of a user-side equipment. Fig. 7 has the
same structure as Fig. 4, and will not be repeated herein.
[0075] Based on the user-side equipment provided in Fig. 7, Fig. 8 is a schematic flowchart
of a method for combating Doppler shift. As shown in Fig. 8, the method includes step
801 to step 806.
[0076] In step 801, a reference frequency of a user terminal is obtained.
[0077] A reference frequency estimation
f̂0 of a certain base station or node is a nominal frequency of the cell frequency obtained
by the user terminal through high-level signaling plus Δ
fT(
n), Δ
fT(
n) is an average value of Δ
fc in a time period of length T before a current moment n while the user terminal is
in a connected state, and Δ
fc is an output value of an AFC loop filter. When the user terminal is connected to
a base station through a uu interface, GPS may not be needed to assist in status indication.
T must be much larger than an average time of the user terminal in a high-speed moving
state being in one cell, and generally ranges from 10 to 30 minutes. When the user
terminal is in a PC5-based ad hoc network, if the user terminal still has a reference
frequency connected to the uu interface, the reference frequency is used; otherwise,
a high-precision timing of the GPS is used by the user terminal to calibrate a free
oscillating VCTCXO within T
1 time, and the calibration value is converted to the output of the AFC loop filter
to form Δ
fT(
n)
. T
1 generally ranges from 0.1 s to 1 s.
[0078] In step 802, the Doppler shift at the user terminal is estimated.
[0079] A Doppler shift estimation of the user terminal at the current moment n is

[0080] In step 803, the Doppler shift estimation
f̂d of a source cell is inversed for N times, and the inversed Doppler shift estimation
is used as an output of a CFO estimator.
[0081] At a moment when the user terminal enters a target cell, immediately the output of
the CFO estimator is forced as the last Doppler shift estimation of a previous serving
cell that is inversed for N times. N is an empirical value, and generally ranges from
2 to 5.
[0082] In step 804, an AFC loop filter factor of the user terminal is enlarged by K times,
for N times, i.e., enlarging the loop filter factor of the AFC in the user equipment
by K
N times.
[0083] K is an empirical value, and considering an uncertainty of the position and the movement
direction of the user terminal relative to a base station of an original serving cell
and a base station of the target cell under the V2V network, K generally ranges from
1.0 to 1.2.
[0084] In step 805, a Doppler shift of a carrier frequency of an uplink transmit signal
of the user terminal is pre-compensated.
[0085] When the user terminal uses the uu interface to connect, the carrier frequency of
the transmit signal at the current moment
n is
fT =
f̂c - 2 *
f̂d .
[0086] When the user terminal is in the PC5-based ad hoc network, carrier frequencies of
transmit signals PSSCH, PSCCH and PSDCH at the current moment
n are
fT = f̂c - 2 *
f̂d ; carrier frequencies of transmit signals PSBCH and Sidelink Synchronization Signal
are
fT,PSBCH / SLSS(
n)
= f̂c(
n) -
f̂d(
n). The compensation is generally performed in a digital domain.
[0087] In step 806, an uplink transmit frequency is adjusted according to received DCI information.
[0088] Only when the user terminal is connected through the uu interface, each downlink
subframe may have a DCI scheduling for a certain user terminal, and m-bit information
can be added to the DCI. When the user terminal receives its own DCI information,
it adjusts the uplink transmit frequency
fT(
n) =
fT(
n - 1) + Δ
fTxAFC(
n) according to Δ
fTxAFC(
n) carried in the m-bit information. For example, m may be 2.
[0089] Here,

[0090] Δ
fsubcarrier is a subcarrier spacing of an OFDM system, and α and βare empirical values. For example,
α=0.01, and β=0.001. The compensation is generally performed in the digital domain.
[0091] The technical solution provided by the embodiments of the present application can
enable a user terminal to better combat the Doppler shift at smaller costs of user
terminal and base station in different scenarios.
[0092] Fig. 9 is a schematic structural diagram of a device for combating Doppler shift.
As shown in Fig. 9, the device includes an obtaining unit and a processing unit.
[0093] The obtaining unit is configured to obtain, in a case where a user equipment performs
cell handover, a Doppler shift estimation of the user equipment at a last moment in
a source cell.
[0094] The processing unit is configured to inverse the Doppler shift estimation, and use
the inversed Doppler shift estimation for CFO compensation in an AFC.
[0095] The obtaining unit is configured to determine that
f̂d(
n) = Δ
fc(
n) - Δ
fT(
n)
.
[0096] Here,
n is a moment of when performing cell handover,
f̂d(
n) is the Doppler shift estimation at the moment
n, Δ
fT(
n) is an average value of Δ
fc in a time period of length T before the moment n while the user equipment is in a
connected state, Δ
fc is an output value of an AFC loop filter, and Δ
fc(
n) is an output value of the AFC loop filter at the moment
n.
[0097] When the user equipment is in a PC5-based ad hoc network of a V2V/V2X system, a high-precision
timing of the GPS is used to calibrate the Δ
fT(
n) within time T
1, and a value of T
1 is any value from 0.1 s to 1 s.
[0098] A value of T is much larger than an average time of the user equipment in a high-speed
moving state being in one cell.
[0099] The value of T is any value from 10 minutes to 30 minutes.
[0100] The processing unit is configured to inverse the Doppler shift estimation for N times,
and use the Doppler shift estimation that is inversed for N times for the CFO compensation
in the AFC.
[0101] N is a natural number greater than or equal to 2, and less than or equal to 5.
[0102] The processing unit is further configured to enlarge a loop filter factor of the
AFC in the user equipment.
[0103] The processing unit is configured to enlarge the loop filter factor of the AFC in
the user equipment by K times, for N times, i.e., enlarging the loop filter factor
of the AFC in the user equipment by K
N times.
[0104] When the user equipment is in a wireless mobile communication network, a value of
K is any value from 1.3 to 2.
[0105] When the user equipment is in a V2V/V2X system, the value of K is any value from
1 to 1.2.
[0106] N is a natural number greater than or equal to 2, and less than or equal to 5.
[0107] The device further includes a determining unit configured to determine an uplink
transmission carrier frequency
fT.
[0108] Here,
fT =
f̂c - 2 *
fd, f̂c =
f0 +
fd ,
f0 is a downlink carrier transmit frequency,
fe is a frequency estimate of a current receiving carrier,
fd is a Doppler shift,
f̂d is the Doppler shift estimation, and
f̂d = f̂c -
f̂0,
f̂0 is a reference frequency estimation.
[0109] The device further includes a receiving unit configured to receive Downlink Control
Information (DCI), the DCI carrying a m-bit frequency adjustment value
ΔfTxAFC(
n), and

[0110] The device further includes an adjusting unit configured to adjust an uplink transmission
carrier frequency
fT(
n), according to the frequency adjustment value Δ
fTxAFC(
n),
fT(
n) =
fT(
n - 1) +
ΔfTxAFC(
n), Δ
fsubcarrier is a subcarrier spacing of an OFDM system, and α and βare preset coefficients.
[0111] The device further includes a determining unit.
[0112] The determining unit is configured to: determine a transmission carrier frequency
fT of a PSSCH, a PSCCH and a PSDCH, when the user equipment is in a PC5-based ad hoc
network of a V2X system; where
fT =
f̂c - 2 *
fd, f̂c =
f0 +
fd ,
f0 is a downlink carrier transmit frequency,
f̂c is a frequency estimate of a current receiving carrier,
f̂d is a Doppler shift,
f̂d is the Doppler shift estimation, and
f̂d = f̂c -
f̂0,
f̂0 is a reference frequency estimation; and determine the carrier frequency
fT,PSBCH / SLSS(
n) of transmitted signals of a PSBCH and Sidelink Synchronization Signals; where
fT,PSBCH / SLSS(
n)
= f̂c(
n) -
f̂d(
n);
n is a moment when performing the cell handover,
f̂d(
n) is the Doppler shift estimation at the moment
n, f̂c(
n) is a frequency estimate of a current receiving carrier at the moment n.
[0113] The embodiments of the present application further provide a user equipment, including
a memory, a processor, and a computer program stored on the memory and capable of
running on the processor. The computer program is executed by the processor to realize
any one of the above methods for combating Doppler shift.
[0114] The embodiments of the present application further provide a computer-readable storage
medium, characterized in that an information processing program is stored on the computer-readable
storage medium, and when the information processing program is executed by a processor,
steps of any one of the above methods for combating Doppler shift are realized.
[0115] It should be understood by those having ordinary skill in the art that all or some
of the steps in the method disclosed above, and functional modules/units in systems,
and devices may be implemented as software, firmware, hardware, or suitable combinations
thereof. If implemented as hardware, divisions among the functional modules/units
stated above do not necessarily correspond to divisions of physical components. For
example, one physical component may have a plurality of functions, or one function
or step may be performed through cooperation of several physical components. Some
or all of the physical components may be implemented as software executed by a processor,
such as a central processing unit, a digital signal processor, or a microprocessor,
or may be implemented as hardware, or may be implemented as an integrated circuit,
such as an application specific integrated circuit. Such software may be distributed
on computer-readable media, which may include computer storage media (or non-transitory
media) and communication media (or transitory media). As well known by those having
ordinary skill in the art, the term "computer storage media" includes volatile/nonvolatile
and removable/non-removable media used in any method or technology for storing information
(such as computer-readable instructions, data structures, program modules and other
data). The computer storage media include, but are not limited to, a Random Access
Memory (RAM), a Read-Only Memory (ROM), an Electrically Erasable Programmable Read-Only
Memory (EEPROM), a flash memory or other memory techniques, a Compact Disc Read-Only
Memory (CD-ROM), a digital versatile disk (DVD) or other optical discs, a magnetic
cassette, a magnetic tape, a magnetic disk or other magnetic storage devices, or any
other media which can be used to store the desired information and can be accessed
by a computer. In addition, it is well known by those having ordinary skill in the
art that the communication media generally include computer-readable instructions,
data structures, program modules or other data in a modulated data signal, such as
a carrier wave or other transmission mechanism, and may include any information delivery
media.
[0116] Compared with related technologies, the embodiments of the present application provide
a method and device for combating Doppler shift. The method includes: obtaining, in
a case where a user equipment performs cell handover, a Doppler shift estimation of
the user equipment at a last moment in a source cell; and inversing the Doppler shift
estimation, and using the inversed Doppler shift estimation for CFO compensation in
an AFC. Therefore, a mobile client can effectively combat Doppler shift mutations
in handover zones in varies scenarios.
1. A method for combating Doppler shift performed by a user equipment, comprising:
obtaining (301), in a case where a user equipment performs cell handover, a Doppler
shift estimation of the user equipment at a last moment in a source cell; and
obtaining (302) an additive inverse of the Doppler shift estimation, and using the
additive inverse of the Doppler shift estimation for Carrier Frequency Offset, CFO,
compensation in an Automatic Frequency Control, AFC.
2. The method according to claim 1, wherein obtaining (301) the Doppler shift estimation
of the user equipment at the last moment in the source cell comprises: determining
the Doppler shift estimation at a moment when performing the cell handover according
to the following equation:

wherein,
n is the moment when performing the cell handover,
f̂d(
n) is the Doppler shift estimation at the moment
n, Δ
fT(
n) is an average value of Δ
fc in a time period of length T before the moment n while the user equipment is in a
connected state, Δ
fc is an output value of an AFC loop filter, and Δ
fc(n) is an output value of the AFC loop filter at the moment
n.
3. The method according to claim 2, wherein
a high-precision timing of a Global Positioning System, GPS, is used to calibrate
the ΔfT(n) within time T1, in a case where the user equipment is in a PC5-based ad hoc network of a Vehicle-to-Vehicle,
V2V/Vehicle-to-Everything, V2X, system, and a value of T1 is any value from 0.1 s to 1 s.
4. The method according to claim 2, wherein a value of T is much larger than an average
time of the user equipment in a high-speed moving state being in one cell.
5. The method according to claim 2, wherein the value of T is any value from 10 minutes
to 30 minutes.
6. The method according to claim 1, further comprising: enlarging (504) a loop filter
factor of the AFC in the user equipment.
7. The method according to claim 6, wherein enlarging the loop filter factor of the AFC
in the user equipment, comprises: enlarging (604, 804) the loop filter factor of the
AFC in the user equipment by K
N times. wherein
a value of K is any value from 1.3 to 2, in a case where the user equipment is in
a wireless mobile communication network;
the value of K is any value from 1 to 1.2, in a case where the user equipment is in
a V2V/V2X system; and
N is a natural number greater than or equal to 2, and less than or equal to 5.
8. The method according to claim 1, further comprising:
determining (505) an uplink transmission carrier frequency fT ;
wherein fT = f̂c - 2 * f̂d , f̂c = f0 + fd , f0 is a downlink carrier transmit frequency, f̂c is a frequency estimate of a current receiving carrier, fd is a Doppler shift, f̂d is the Doppler shift estimation, and f̂d = f̂c - f̂0, f̂0 is a reference frequency estimation.
9. The method according to claim 1, further comprising:
receiving Downlink Control Information, DCI; wherein the DCI carries a m-bit frequency
adjustment value ΔfTxAFC(n), and

; and
adjusting an uplink transmission carrier frequency fT(n), according to the frequency adjustment value ΔfTxAFC(n); wherein fT(n) = fT(n - 1) + ΔfTxAFC(n), Δfsubcarrier is a subcarrier spacing of an Orthogonal Frequency-Division Multiplexing, OFDM, system,
n is a moment when performing the cell handover, and α and βare preset coefficients.
10. The method according to claim 1, further comprising:
determining a transmission carrier frequency fT of a Physical Sidelink Share Channel, PSSCH, a Physical Sidelink Control Channel,
PSCCH, and a Physical Downlink Shared Channel, PSDCH, in a case where the user equipment
is in a PC5-based ad hoc network of a V2X system; wherein fT = f̂c - 2 * fd, f̂c = f0 + fd , f0 is a downlink carrier transmit frequency, f̂c is a frequency estimate of a current receiving carrier, fd is a Doppler shift, f̂d is the Doppler shift estimation, and f̂d = f̂c - f̂0, f̂0 is a reference frequency estimation; and
determining a carrier frequency fT,PSBCH / SLSS(n) of transmitted signals of a Physical Sidelink Broadcast Channel, PSBCH, and Sidelink
Synchronization Signals; wherein fT,PSBCH / SLSS(n) = f̂c(n) - f̂d(n); wherein, n is a moment when performing the cell handover, f̂d(n) is the Doppler shift estimation at the moment n, f̂c(n) is a frequency estimate of a current receiving carrier at the moment n.
11. A device for combating Doppler shift, comprising:
an obtaining unit, configured to obtain, in a case where a user equipment performs
cell handover, a Doppler shift estimation of the user equipment at a last moment in
a source cell; and
a processing unit, configured to obtain an additive inverse of the Doppler shift estimation,
and use the additive inverse of the Doppler shift estimation for Carrier Frequency
Offset, CFO, compensation in an Automatic Frequency Control, AFC.
12. A computer-readable storage medium having an information processing program stored
thereon, wherein when the information processing program is executed by a processor,
the method for combating Doppler shift according to any one of claims 1 to 10 is performed.
1. Verfahren zum Bekämpfen einer Doppler-Verschiebung, das von einem Benutzergerät durchgeführt
wird, umfassend:
Erhalten (301), in einem Fall, in dem ein Benutzergerät eine Zellen-Übergabe durchführt,
einer Doppler-Verschiebungsabschätzung des Benutzergeräts zu einem letzten Zeitpunkt
in einer Ursprungszelle; und
Erhalten (302) einer additiven Umkehrung der Doppler-Verschiebungsabschätzung und
Verwenden der additiven Umkehrung der Doppler-Verschiebungsabschätzung für eine Trägerfrequenzversatz-(CFO-)Kompensation
in einer automatischen Frequenzsteuerung (AFC).
2. Verfahren nach Anspruch 1, wobei das Erhalten (301) der Doppler-Verschiebungsabschätzung
des Benutzergeräts zu dem letzten Zeitpunkt in der Ursprungszelle umfasst: Bestimmen
der Doppler-Verschiebungsabschätzung zu einem Zeitpunkt, wenn die Zellen-Übergabe
durchgeführt wird, gemäß der folgenden Gleichung:

wobei n der Zeitpunkt ist, wenn die Zellen-Übergabe durchgeführt wird,
f̂d(
n) die Doppler-Verschiebungsabschätzung zu dem Zeitpunkt n ist, Δ
fT(
n) ein Mittelwert von Δ
fc in einer Zeitspanne der Länge T vor dem Zeitpunkt n ist, während sich das Benutzergerät
in einem verbundenen Zustand befindet, Δ
fc ein Ausgangswert eines AFC-Schleifenfilters ist und Δ
fc(
n) ein Ausgangswert des AFC-Schleifenfilters zu dem Zeitpunkt n ist.
3. Verfahren nach Anspruch 2, wobei
eine hochpräzise Zeitsteuerung eines globalen Positionsbestimmungssystems (GPS) verwendet
wird, um das ΔfT(n) innerhalb der Zeit T1 zu kalibrieren, in einem Fall, in dem sich das Benutzergerät in einem PC5-basierten
Ad-hoc-Netzwerk eines Fahrzeug-zu-Fahrzeug-(V2V/Vehicle-to-Everything-, V2X-)Systems
befindet und ein Wert von T1 ein beliebiger Wert von 0,1 s bis 1 s ist.
4. Verfahren nach Anspruch 2, wobei ein Wert von T viel größer als eine durchschnittliche
Zeit ist, in der sich das Benutzergerät in einem Hochgeschwindigkeits-Bewegungszustand
in einer Zelle befindet.
5. Verfahren nach Anspruch 2, wobei der Wert von T ein beliebiger Wert von 10 Minuten
bis 30 Minuten ist.
6. Verfahren nach Anspruch 1, ferner umfassend: Vergrößern (504) eines Schleifenfilterfaktors
des AFC in dem Benutzergerät.
7. Verfahren nach Anspruch 6, wobei das Vergrößern des Schleifenfilterfaktors des AFC
in dem Benutzergerät umfasst: Vergrößern (604, 804) des Schleifenfilterfaktors des
AFC in dem Benutzergerät um KN-Male, wobei ein Wert von K ein beliebiger Wert von 1,3 bis 2 ist, in einem Fall,
in dem sich das Benutzergerät in einem drahtlosen Mobilkommunikationsnetzwerk befindet;
der Wert von K ein beliebiger Wert von 1 bis 1,2 ist, in einem Fall, in dem sich das
Benutzergerät in einem V2V/V2X-System befindet; und
N eine natürliche Zahl größer als oder gleich 2 und kleiner als oder gleich 5 ist.
8. Verfahren nach Anspruch 1, ferner umfassend:
Bestimmen (505) einer Uplink-Übertragungsträgerfrequenz fT;
wobei fT = f̂c - 2 * f̂d, f̂c = f0 + fd, f0 eine Downlink-Trägerübertragungsfrequenz ist, f̂c eine Frequenzabschätzung eines aktuellen Empfangsträgers ist, fd eine Doppler-Verschiebung ist, f̂d die Doppler-Verschiebungsabschätzung ist und f̂d = f̂c - f̂0, f̂0 eine Referenzfrequenzabschätzung ist.
9. Verfahren nach Anspruch 1, ferner umfassend:
Empfangen von Downlink-Steuerinformationen (DCI), wobei die DCI einen m-Bit-Frequenzanpassungswert
ΔfTxAFC(n) tragen, und

und
Einstellen einer Uplink-Übertragungsträgerfrequenz fT(n) gemäß dem Frequenzanpassungswert ΔfTxAFC(n); wobei fT(n) = fT(n - 1) + ΔfTxAFC(n). Δfsubcarrier ein Unterträgerabstand eines orthogonalen Frequenzmultiplex(OFDM)-Systems ist, n
ein Zeitpunkt ist, wenn die Zellen-Übergabe durchgeführt wird, und α und β voreingestellte
Koeffizienten sind.
10. Verfahren nach Anspruch 1, ferner umfassend:
Bestimmen einer Übertragungsträgerfrequenz fT eines gemeinsamen physikalischen Seitenverbindungskanals (PSSCH), eines physikalischen
Seitenverbindungssteuerkanals (PSCCH) und eines gemeinsamen physikalischen Downlink-Kanals
(PSDCH) in einem Fall, in dem sich das Benutzergerät in einem PC5-basierten Ad-hoc-Netzwerk
eines V2X-Systems befindet; wobei fT = f̂c - 2 * f̂d, f̂c = f0 + fd, f0 eine Downlink-Trägerübertragungsfrequenz ist, f̂c eine Frequenzabschätzung eines aktuellen Empfangsträgers ist, fd eine Doppler-Verschiebung ist, f̂d die Doppler-Verschiebungsabschätzung ist und f̂d = f̂c - f̂0, f̂0 eine Referenzfrequenzabschätzung ist; und
Bestimmen einer Trägerfrequenz fT,PSBCH / SLSS(n) von übertragenen Signalen eines physikalischen Seitenverbindungsrundfunkkanals (PSBCH)
und von Seitenverbindungssynchronisationssignalen; wobei fT,PSBCH /SLSS (n) = f̂c(n) - f̂d(n); wobei n ein Zeitpunkt ist, wenn die Zellen-Übergabe durchgeführt wird, f̂d(n) die Doppler-Verschiebungsabschätzung zu dem Zeitpunkt n ist, f̂c(n) eine Frequenzabschätzung eines aktuellen Empfangsträgers zu dem Zeitpunkt n ist.
11. Vorrichtung zum Bekämpfen einer Doppler-Verschiebung, umfassend:
eine Erhalteeinheit, die konfiguriert ist, um in einem Fall, in dem ein Benutzergerät
eine Zellen-Übergabe durchführt, eine Doppler-Verschiebungsabschätzung des Benutzergeräts
zu einem letzten Zeitpunkt in einer Ursprungszelle zu erhalten; und
eine Verarbeitungseinheit, die konfiguriert ist, um eine additive Umkehrung der Doppler-Verschiebungsabschätzung
zu erhalten,
und die additive Umkehrung der Doppler-Verschiebungsabschätzung für eine Trägerfrequenzversatz-(CFO-)Kompensation
in einer automatischen Frequenzsteuerung (AFC) zu verwenden.
12. Computerlesbares Speichermedium, auf dem ein Informationsverarbeitungsprogramm gespeichert
ist, wobei, wenn das Informationsverarbeitungsprogramm von einem Prozessor ausgeführt
wird, das Verfahren zum Bekämpfen einer Doppler-Verschiebung nach einem der Ansprüche
1 bis 10 durchgeführt wird.
1. Procédé pour combattre un décalage Doppler réalisé par un équipement utilisateur,
comprenant les étapes consistant à :
obtenir (301), dans le cas où un équipement utilisateur réalise un transfert intercellulaire
de cellule, une estimation de décalage Doppler de l'équipement utilisateur à un dernier
moment dans une cellule source ; et
obtenir (302) un inverse additif de l'estimation de décalage Doppler, et utiliser
l'inverse additif de l'estimation de décalage Doppler pour une compensation de décalage
de fréquence porteuse, CFO, dans un contrôle automatique de fréquence, AFC.
2. Procédé selon la revendication 1, dans lequel l'étape consistant à obtenir (301) l'estimation
de décalage Doppler de l'équipement utilisateur au dernier moment dans la cellule
source comprend l'étape consistant à : déterminer l'estimation de décalage Doppler
à un moment lors de la réalisation du transfert intercellulaire de cellule selon l'équation
suivante :

dans lequel, n est le moment lors de la réalisation du transfert intercellulaire de
cellule,
f̂d(
n) est l'estimation de décalage Doppler au moment n, Δ
fT(
n) est une valeur moyenne de Δ
fc dans une période de temps de longueur T avant le moment n pendant que l'équipement
utilisateur est dans un état connecté, Δ
fc est une valeur de sortie d'un filtre de boucle AFC, et Δ
fc(
n) est une valeur de sortie du filtre de boucle AFC au moment n.
3. Procédé selon la revendication 2, dans lequel
une synchronisation de haute précision d'un système de positionnement global, GPS,
est utilisée pour calibrer ΔfT(n) dans le temps T1, dans le cas où l'équipement utilisateur se trouve dans un réseau ad hoc basé sur
PC5 d'un système de véhicule à véhicule, V2V/véhicule à tout, V2X, et une valeur de
T1 est une valeur quelconque de 0,1 s à 1 s.
4. Procédé selon la revendication 2, dans lequel une valeur de T est beaucoup plus grande
qu'un temps moyen de l'équipement utilisateur dans un état de déplacement à grande
vitesse se trouvant dans une cellule.
5. Procédé selon la revendication 2, dans lequel la valeur de T est une valeur quelconque
de 10 minutes à 30 minutes.
6. Procédé selon la revendication 1, comprenant en outre l'étape consistant à : agrandir
(504) un facteur de filtre de boucle de l'AFC dans l'équipement utilisateur.
7. Procédé selon la revendication 6, dans lequel l'étape consistant à agrandir le facteur
de filtre de boucle de l'AFC dans l'équipement utilisateur comprend l'étape consistant
à : agrandir (604, 804) le facteur de filtre de boucle de l'AFC dans l'équipement
utilisateur de K
N fois, dans lequel une valeur de K est une valeur quelconque de 1,3 à 2, dans le cas
où l'équipement utilisateur se trouve dans un réseau de communication mobile sans
fil ;
la valeur de K est une valeur quelconque de 1 à 1,2, dans le cas où l'équipement utilisateur
se trouve dans un système V2V/V2X ; et
N est un nombre naturel supérieur ou égal à 2, et inférieur ou égal à 5.
8. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
déterminer (505) une fréquence porteuse de transmission de liaison montante fT ;
dans lequel fT = f̂c - 2 * f̂d, f̂c = f0 + f̂d, f0 est une fréquence de transmission de porteuse de liaison descendante, f̂c est une estimation de fréquence d'une porteuse de réception actuelle, fd est un décalage Doppler,
f̂d est l'estimation de décalage Doppler, et f̂d = f̂c - f̂0, f̂0 est une estimation de fréquence de référence.
9. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
recevoir des informations de contrôle de liaison descendante, DCl, dans lequel les
DCI transportent une valeur d'ajustement de fréquence de m bits ΔfTxAFC(n), et

et
ajuster une fréquence porteuse de transmission de liaison montante fT(n),
selon la valeur d'ajustement de fréquence ΔfTxAFC(n) ; dans lequel fT(n) = fT(n - 1) + ΔfTxAFC(n), Δfsubcarrier est un espacement de sous-porteuse d'un système de multiplexage par répartition orthogonale
de la fréquence, OFDM, n est un moment lors de la réalisation du transfert intercellulaire
de cellule, et α et β sont des coefficients prédéfinis.
10. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
déterminer une fréquence porteuse de transmission fT d'un canal partagé de liaison latérale physique, PSSCH, d'un canal de contrôle de
liaison latérale physique, PSCCH, et d'un canal partagé de liaison descendante physique,
PSDCH, dans le cas où l'équipement utilisateur se trouve dans un réseau ad hoc basé
sur PC5 d'un système V2X ; dans lequel fT = f̂c - 2 * f̂d, f̂c = f0 + fd, f0 est une fréquence de transmission de porteuse de liaison descendante, f̂c est une estimation de fréquence d'une porteuse de réception actuelle, fd est un décalage Doppler, f̂d est l'estimation de décalage Doppler, et f̂d = f̂c - f̂0, f̂0 est une estimation de fréquence de référence ; et
déterminer une fréquence porteuse fT,PSBCH /SLSS(n) de signaux envoyés d'un canal de diffusion de liaison latérale physique, PSBCH,
et de signaux de synchronisation de liaison latérale ; dans lequel fT,PSBCH /SLSS (n) = f̂c(n) - f̂d(n) ; dans lequel n est un moment lors de la réalisation du transfert intercellulaire
de cellule, f̂d(n) est l'estimation de décalage Doppler au moment n, f̂c(n) est une estimation de fréquence d'une porteuse de réception actuelle au moment n.
11. Dispositif pour combattre un décalage Doppler, comprenant :
une unité d'obtention, configurée pour obtenir, dans le cas où un équipement utilisateur
réalise un transfert intercellulaire de cellule, une estimation de décalage Doppler
de l'équipement utilisateur à un dernier moment dans une cellule source ; et
une unité de traitement, configurée pour obtenir un inverse additif de l'estimation
de décalage Doppler,
et utiliser l'inverse additif de l'estimation de décalage Doppler pour une compensation
de décalage de fréquence porteuse, CFO, dans un contrôle automatique de fréquence,
AFC.
12. Moyen de stockage lisible par ordinateur sur lequel est stocké un programme de traitement
d'informations, dans lequel, lorsque le programme de traitement d'informations est
exécuté par un processeur, le procédé pour combattre un décalage Doppler selon l'une
quelconque des revendications 1 à 10 est réalisé.